二次函数在闭区间上的最值问题
高一数学复习考点知识与题型讲解12---二次函数在闭区间上的最值问题
高一数学复习考点知识与题型讲解第12讲二次函数在闭区间上的最值问题二次函数在闭区间上的最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论.一般分为:对称轴在区间的左边,中间,右边三种情况.设,求在上的最大值与最小值.分析:将配方,得顶点为、对称轴为;当时,它的图象是开口向上的抛物线,数形结合可得在上的最值:(1)当时,的最小值是的最大值是中的较大者.(2)当时,由在上是增函数,则的最小值是,最大值是.(3)当时,由在上是减函数,则的最大值是,最小值是.当时,可类比得结论.【题型一】定轴动区间已知是二次函数,不等式的解集是,且在区间上的最大值是.(1)求的解析式;(2)设函数在上的最小值为,求的表达式.【解析】(1)是二次函数,且的解集是,可设-.(待定系数法,二次函数设为交点式)在区间-上的最大值是.由已知得,,-.(2)由(1)得,函数图象的开口向上,对称轴为(讨论对称轴与闭区间的相对位置)①当时,即时,在上单调递减,(对称轴在区间右侧)此时的最小值;②当时,在上单调递增,(对称轴在区间左侧)此时的最小值;③当时,函数在对称轴处取得最小值(对称轴在区间中间)此时,-综上所述,得的表达式为:.【点拨】①利用待定系数法求函数解析式;②对于二次函数,对称轴是确定的,而函数的定义域不确定,则按照对称轴在区间的“左、中、右”分成三种情况进行讨论.【题型二】动轴定区间求在区间上的最大值和最小值.【解析】的对称轴为.①当时,如图①可知,在上递增,,.②当时,在上递减,在上递增,而,(此时最大值为和中较大者)当时,,如图,当时,,如图③,③当时,由图④可知,在上递减,,.综上所述,当时,,;当时,,;当时,,;当时,,.【点拨】①题目中的函数的对称轴是不确定的,定义域是确定的,在求最小值时与“定轴动区间”的思考一样分对称轴在区间的“左、中、右”分成三种情况(即)进行讨论.②在求最大值时,当,还需要判断和时谁离对称轴更远些,才能确定、哪个是最大值,则还有分类;【题型三】逆向题型已知函数在区间上最大值为,求实数的值.【解析】若,(注意函数不一定是二次函数)则而在上的最大值,(2)若则的对称轴为,则的最大值必定是、、这三数之一,若,解得,此时而为最大值与为最大值矛盾,故此情况不成立.若,解得,此时而距右端点较远,最大值符合条件,.若,解得,当时,,则最大值不可能是;当时,此时最大值为,;综上所述或【点拨】本题没有按照分对称轴在定义域的“左、中、右”分离讨论,否则计算量会很大,还要考虑开口方向呢.思路是最大值必定是、、这三数之一,那逐一讨论求出值后再检验就行.巩固练习1 (★★) 已知函数.当时,求函数在区间上的值域;当时,求函数在区间上的最大值;求在上的最大值与最小值.【答案】(1) (2) ;(3)时, 最小值为,最大值为;时,最小值为,最大值为.时,最大值为,最小值为.【解析】(1)当时,,函数在--上单调递减,在-上单调递增,-,,,,函数在区间上的值域是;(2)当时,,,函数在区间上的最大值;,函数在区间上的最大值;函数在区间上的最大值;(3)函数的对称轴为,①当,即时,函数在-上是增函数,当时,函数y取得最小值为;当时,函数取得最大值为.②当,即时,当时,函数取得最小值为;当时,函数取得最大值为.③当-,即-时,-a时,函数取得最小值为-;当-时,函数取得最大值为-.④当-,即-时,函数在-上是减函数,故当-时,函数取得最大值为-;当时,函数取得最小值为.2(★★) 已知函数.(1)若,求在上的最大值和最小值;(2)若在为单调函数,求的值;(3)在区间上的最大值为4,求实数的值.【答案】(1)最大值是,最小值(2)或(3)或【解析】(1)时,;在-上的最大值是,最小值是-;(2)在为单调函数;区间-在f(x)对称轴-的一边,即--,或-;或-;-(3)-,中必有一个最大值;若---;--,符合-最大;若,;,符合最大;或.3(★★) 已知函数在上恒大于或等于,其中实数求实数的范围.【答案】【解析】若时,在上是减函数,即则条件成立,令(Ⅰ)当时,即则函数在上是增函数,=即,解得或,(Ⅱ)当即若解得与矛盾;(2)若时即解得与矛盾;综上述:.4(★★★)已知函数在区间上的最小值是,最大值是,求的值.【答案】【解析】解法1:讨论对称轴中与的位置关系。
例谈求二次函数最值的方法
一 —
—
一
—
+1 . 2
故厂 的最 大值  ̄ ()222+ = , ( ) f t= t t5 8 -
抠
一
Jt . : 二 ! ] O得 - <
2
.
脚
2’
求 解 时 .首 先 看 二 次 函 数 的 开 口 .
轴 动 与 定 的变 化 进 行 分 类 . 谈 求 最 值 例
轴定 区 间动
当二次函数' , ) 对 称 轴 确 定 而 的 区 间 在 变 化 时 . 区 间 和 对 称 轴 的关 系 由 可 知 . 需 对 动 区 间 能 否 包 含 抛 物 线 的 只
例4 已知厂()X—x 5 闭区 间 - 24 + 在
[一 ,+ ] 有 最 小 值 3 求. 1k 1上 , i } 的值 .
从 而 知 道 其 对 称 轴 的 位 置 . 根 据 所 给 再
出 区 间 可 确 定 其 最 大 值 或 最 小 值 . 后 最 列式求值.
右两侧 及穿过 区间三种 情况进行 讨论 . 再 利 用 二 次 函 数 的 示 意 图 . 合 单 调 性 结
进行求解.
1 所以k 1 、 2. . :一 / ( ) 一 /2 即 I3 ( ) 2 3k 1 , > 时J x 的最小 - ' > 值为 (一 )(一 ) 1 ( , l 1: 32 , 下转第 5 + 6页 )
间 和 对 称 轴 的 位 置.本 文 对 区 间 和 对 称
a
—
解 )对 轴 , 析 的 称 为 詈 =
点
.
0 ≤4 厂 ) ≤£ ( 最大值 为- 4 , 厂 ) 即为5 不 ( ,
合题 意.
当 tO时 .距 离 对 称 轴 2 远 . < = 较
二次函数在区间上的6种最值问题
2 2
在区间[ 1, 2上的最大值为4,求a的值。
2、不等式9 x 6ax a 2a 6 0 1 1 在 x 内恒成立,求实数 a的取值范围。 3 3
2
3、已知函数f x 2 x 2ax 3
在区间[ 1, 1上有最小值,记作 g a
a0
时,
1
ymax f (1) a 4 ymin f (0) 3
图(2)
例3、求
x
f ( x) x2 ax 3 在
a 2
0 x 1
上的最值。
3、由图(3)得: 当 0
a 2 1 ,即1 a 0 时, 2
0
1 2
1
ymax f (1) a 4 ymin
2.当1<a<2时,函数在[0,1]上单 调递减,在[1,a]上单调递增, ∴当x=1时,ymin=2 当x=0时,ymax=3
3 2 o 1 a 2 x
例2 求函数y=x2-2x+3在区间[0,a]上的最 值,并求此时x的值。 解:函数图象的对称轴为直线x=1,抛物线开口向上 1.当a≤1时,函数在[0,a]上单调递减, ∴当x=0时,ymax=3;当x=a时,ymin=a2-2a+3
例1、 当x∈(2,3] 时, 求函数 y x 2 2 x 3 的值域
从图象上观察得到当x (2, 3] 时y [0, 3
(1,4)
4
y
3
练习
在下列条件下求函数 y x 2 x 3的值域
2
2
1
(1) x [ 1, 4)
x
-1
1
2
3
4
例谈二次函数在闭区间上的最值问题
例谈二次函数在闭区间上的最值问题作者:何英林来源:《中学教学参考·理科版》2010年第03期二次函数是高中数学中最基本也最重要的内容之一,而二次函数在某一区间上的最值问题,是初中二次函数内容的继续,随着区间的确定或变化,以及系数中参变数的变化,它又成为高考数学的热点.一、求定二次函数在定区间上的最值当二次函数的区间和对称轴都确定时,要将函数式配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求其最值.【例1】已知2x2≤3x,求函数f(x)=x2-x+1的最值.解:由已知2x2≤3x,可得0≤x≤32,即函数f(x)是定义在区间[0,32]上的二次函数,将二次函数配方得f(x)=(x-12)2+34,其图象开口向上,且对称轴方程x=12∈[0,32],故二、求动二次函数在定区间上的最值当二次函数的区间确定而对称轴变化时,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分别讨论,再利用二次函数的示意图,结合其单调性求解.【例2】已知二次函数f(x)=ax2+4ax+a2-1在区间[-4,1]上的最大值是5,求实数a的值.解:将二次函数配方得f(x)=a(x+2)2+a2-4a-1,其对称轴方程为x=-2,顶点坐标为(-2,a2-4a-1),图象开口方向由a决定,很明显,其顶点横坐标在区间[-4,1]上.若a2-4a-1=5,解得a=2-10(a=2+10舍去);若a>0,则函数图象开口向上,当x=1时,函数取得最大值5,即f(1)=5a+a2-1=5,解得a=1(a=-6舍去).综上讨论,函数f(x)在区间[-4,1]上取得最大值5时,a=2-10或a=1.三、求定二次函数在动区间上的最值当二次函数的对称轴确定而区间在变化时,只需对动区间能否包含抛物线的顶点的横坐标进行分类讨论.【例3】已知函数f(x)=-x2+8x,求f(x)在区间[t,t+1]上的最大值g(t).解:函数f(x)=-x2+8x=-(x-4)2+16,其对称轴方程为x=4,顶点坐标为(4,16),其图象开口向下.(1)当顶点横坐标在区间[t,t+1]右侧时,有t+12+8(t+1)=-t2+6t+7.(2)当顶点横坐标在区间[t,t+1]上时,有t≤4≤t+1,即3≤t≤4,当x=4时,g(t)=f(4)=16.(3)当顶点横坐标在区间[t,t+1]左侧时,有t>4,当x=t时,g(t)=f(t)=-t2+8t.综上,g(t)=-t2+6t+7,当t2+8t,当t>4时.四、求动二次函数在动区间上的最值当二次函数的区间和对称轴均在变化时,亦可根据对称轴在区间的左、右两侧及穿过区间三种情况讨论,并结合其图形和单调性处理.【例4】已知y2=4a(x-a)(a>0),且当x≥a时,S=(x-3)2+y2的最小值为4,求参数a的值.解:将y2=4a(x-a)代入S的表达式得S=(x-3)2+4a(x-a)=[x-(3-2a)]2+12a-8a2.S是关于x的二次函数,其定义域为x∈[a,+∞),对称轴方程为x=3-2a,顶点坐标为(3-2a,12a-8a2),图象开口向上.若3-2a≥a,即02=4,此时a=1或a=12.若3-2a1,则当x=a时-(3-2a)]2+12a-8a2=4,此时a=5(a=1舍去).综上讨论,参变数a的取值为a=1或a=12或a=5.(责任编辑金铃)。
二次函数在闭区间上的最值问题
第三讲 二次函数在闭区间上的最值问题 一.知识点介绍1.区间的概念设a 、b 是两个实数,且a<b ,规定:说明:① 对于[a,b],(a,b),[a,b),(a,b]都称数a 和数b 为区间的端点,其中a 为左端点,b 为右端点,称b-a 为区间长度;②在数轴上,这些区间都可以用一条以a 和b 为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点;③实数集R 也可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”,还可以把满足x ≥a, x>a, x ≤b, x<b 的实数x 的全体分别表示为[a,+∞)、(a,+∞)、(-∞,b]、(-∞,b)。
我们把以上区间记为A ,若x 是A 中的一个数,就说x 属于A ,记作x ∈A 。
否则就说x 不属于A ,记作x ∉A 。
2. 二次函数f(x)=ax 2+bx+c(a≠0)在x ∈[α,β]上的最值: 当a>0时,有三种情况:从上述a>0的三种情况可得结论:(1)若[,]2baαβ-∈,则当2b x a =-时,2min4()24b ac b y f a a-=-=,它的最大值为()f α与()f β中较大的一个。
(2) 若[,]2baαβ-∉,则最大值为()f α与()f β中较大的一个,另一个即为最小值。
当a<0可作同样处理。
二.例题讲解:类型一“轴定区间定”例1:已知f(x)=x 2-x+2,当x 在以下区间内取值时,求f(x)的最大值与最小值。
(1) x ∈[-1,0] (2) x ∈[0,1] (3) x ∈[1,2]变式1:求y =的最值。
变式2:已知0≤x≤1,求y =的最值。
变式3:求函数y x =+的最小值。
类型二“轴变区间定”例2:求函数f(x)=2x 2-2ax+3在区间[-1,1]上的最小值。
含参数的二次函数在闭区间上的最值问题
含参数的二次函数在闭区间上的最值问题含参数的二次函数在闭区间上的最值问题导语:含参数的二次函数在闭区间上的最值问题是数学中常见的优化问题之一。
通过分析函数的性质和求导,我们可以找到函数在给定闭区间上的最大值或最小值。
本文将从简单到复杂的方式,深入探讨这个主题,并提供一些实际例子来帮助读者更好地理解。
引言: 含参数的二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为实数且a≠0。
在闭区间[a, b]上求函数的最值,可以通过以下步骤进行。
一、函数的性质分析1. 我们可以观察函数的开口方向。
如果a>0,函数开口向上,最值为最小值;如果a<0,函数开口向下,最值为最大值。
这个性质对于我们确定最值的区间非常重要。
2. 我们可以通过求导来确定函数的驻点。
驻点是指函数斜率为零的点,可能是最值点的候选。
对于f(x) = ax^2 + bx + c,求导得到f'(x) =2ax + b。
令f'(x) = 0,解得x = -b/2a。
这个x值就是函数的驻点,我们需要判断它是否在闭区间[a, b]上。
3. 我们可以通过比较函数在闭区间的端点值和驻点值来确定最值。
根据前述观察,如果a>0,我们比较f(x)在[a, b]的端点值和驻点值,取较小的值作为最小值;如果a<0,我们比较f(x)在[a, b]的端点值和驻点值,取较大的值作为最大值。
二、实际例子假设我们要找到函数f(x) = x^2 + bx + c在闭区间[1, 3]上的最小值。
1. 观察函数的开口方向。
由于a=1>0,说明函数开口向上,最值为最小值。
2. 求导。
对函数f(x)求导得f'(x) = 2x + b。
令f'(x) = 0,解得x = -b/2。
这个x值就是函数的驻点。
3. 比较端点值和驻点值。
在闭区间[1, 3]中,我们计算f(1),f(3)和f(-b/2)的值。
二次函数最值知识点总结典型例题及习题
二次函数最值知识点总结典型例题及习题必修一二次函数在闭区间上的最值一、知识要点:对于一元二次函数在闭区间上的最值问题,关键在于讨论函数的对称轴与区间的相对位置关系。
一般分为对称轴在区间左侧、中间和右侧三种情况。
例如,对于函数f(x) = ax^2 + bx + c (a ≠ 0),求其在闭区间[x1.x2]上的最大值和最小值。
分析:将函数f(x)配方,得到其顶点为(-b/2a。
c - b^2/4a)。
因此,对称轴为x = -b/2a。
当a。
0时,函数f(x)的图像为开口向上的抛物线。
结合数形结合可得在闭区间[x1.x2]上f(x)的最值:1)当对称轴在[x1.x2]之外时,f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者。
2)当对称轴在[x1.x2]之间时,若x1 ≤ -b/2a ≤ x2,则f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者;若x1.-b/2a或x2 < -b/2a,则f(x)在闭区间[x1.x2]上单调递增或单调递减,最小值为f(x1),最大值为f(x2)。
当a < 0时,情况类似。
二、例题分析归类:一)正向型此类问题是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系往往成为解决这类问题的关键。
此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。
1.轴定区间定二次函数和定义域区间都是给定的,我们称这种情况是“定二次函数在定区间上的最值”。
例如,对于函数y = -x^2 + 4x - 2在区间[0.3]上的最大值为2,最小值为-2.2.轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。
例如,对于函数f(x) = (x-1)^2 + 1,在区间[t。
t+1]上的最值为f(t)和f(t+1)中的较大者。
二次函数方程不等式的含参问题
二次含参模块已知单调区间求参问题............................................................................................................. - 2 - 含参二次函数在闭区间内最值问题........................................................................................... - 3 - 解含参一元二次不等式........................................................................................................... - 12 - 一元二次不等式恒成立问题................................................................................................... - 17 - 二次方程根的分布..................................................................................................................... - 27 -已知单调区间求参问题【例1】,对称轴为,判断,,的大小?【答案】【例2】,在上单调递增,上单调递减,则下列说法正确的是不确定【答案】B.【例3】在上单调,求的范围?【答案】∞,,.含参二次函数在闭区间内最值问题一、含参求最值........................................................................................................................... - 4 -(一)轴定区间定............................................................................................................... - 4 - (二)轴动区间定............................................................................................................... - 5 - (三)轴定区间动............................................................................................................... - 6 - (四)相关练习................................................................................................................... - 6 - 二、已知最值求参....................................................................................................................... - 8 -(一)已知最值求参——先斩后奏................................................................................... - 8 - (二)已知值域求参......................................................................................................... - 10 -一、含参求最值设()()002>=++=a c bx ax x f ,则二次函数在闭区间[]n m ,上的最大、最小值有如下的分布情况:⎪⎪⎩⎪⎪⎨⎧+>-+≤-=22)(22)()(maxn m a b m f n m a b n f x f()⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤-≤-<-=n a b n f n a b m a b f m abm f x f 2)(2)2(2)(min;(一)轴定区间定【例1】函数()()2220f x ax ax b a =-++≠在[]2,3上有最大值5和最小值2,求,a b 的值。
考点08 二次函数在闭区间上的最值(值域)问题的解法(解析版)
专题二函数考点8 二次函数在闭区间上的最值(值域)问题的解法【方法点拨】一、知识梳理二、二次函数在闭区间上的最值(值域)问题的解法【高考模拟】1.已知函数()bf x ax x=+,若存在两相异实数,m n 使()()f m f n c ==,且40a b c ++=,则||m n -的最小值为( )A .22B 3C 2D 3【答案】B 【分析】由题设可得20(0)ax cx b x -+=≠,又()()f m f n c ==即,m n 为方程两个不等的实根,即有,c bm n mn a a+==,结合2||()4m n m n mn -=+-40a b c ++=得2||16()41b bm n a a-=⋅+⋅+.【解析】由题意知:当()bf x ax c x=+=有20(0)ax cx b x -+=≠, ∵()()f m f n c ==知:,m n 是20(0,0,0)ax cx b x a b -+=≠≠≠两个不等的实根.∴,c b m n mn a a +==,而2224||()4c ab m n m n mn a--=+-= ∵40a b c ++=,即4c b a =--,∴||m n -=b t a =,则||m n -==∴当18t =-时,||m n -故选:B 【点睛】关键点点睛:由已知条件将函数转化为一元二次方程的两个不同实根为,m n ,结合韦达定理以及||m n -=.2.已知函数2()f x ax bx c =++,满足(3)(3)f x f x +=-,且(4)(5)f f <,则不等式(1)(1) f x f -<的解集为( )A .(0,)+∞B .(2,)-+∞C .(4,0)-D .(2,4)【答案】C 【分析】由题设知()f x 关于3x =对称且开口向上,根据二次函数的对称性(1)(1)f x f -<有115x <-<,求解集. 【解析】依题意,有二次函数关于3x =对称且开口向上,∴根据二次函数的对称性:若(1)(1)f x f -<,即有115x <-<, ∴40x -<<. 故选:C 【点睛】关键点点睛:由题设可得()f x 关于3x =对称且开口向上,根据对称性求函数不等式的解集即可. 3.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为( ) A .1-B .0C .1D .2【答案】A 【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈ 使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥, 利用导数判断()g x 的单调性求最小值即可. 【解析】由()sin f x x x =+可得()1cos 0f x x '=+≥, 所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-, 所以sin cos m x x x ≥+对于[0,]x π∈有解, 令()sin cos g x x x x =+,只需()min m g x ≥, 则()sin cos sin cos g x x x x x x x '=+-=, 当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增, 当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减, ()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-, 所以1m ≥-,整数m 的最小值为1-, 故选:A. 【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.4.已知函数2()26f x x ax =+--,若存在a R ∈,使得()f x 在[2,]b 上恰有两个零点,则实数b的最小值为( )A .B .4C .2+D .2+【答案】C 【分析】由函数在[2,]b 上恰好有2个零点可得,可得零点必在区间的端点,讨论零点为2和b 时,解得a 的值,将a 的值代入使得函数值f (b )0=求出b 的值即可. 【解析】因为函数2())|2|6f x x ax =+--在[2,]b 上恰有两个零点,所以在2x =与x b =时恰好取到零点的最小值和最大值时,实数b 取最小值, 若2x =,()f x 的零点满足f (2)2|222|60a =+--=,解得2a =,或4a =-,当2a =,2()|22|6f x x x =+--,满足()f x 在[2,]b 上恰好有2个零点,则f (b )2|22|60b b =+--=,且2b >,解得2b =(舍)或4b =-(舍),当4a =-时,2()|42|6f x x x =---且2b >,满足()f x 在[2,]b 上恰好有2个零点, 则f (b )2|42|60b b =---=,2b >,所以2|42|6b b --=,即2426b b --=-整理2440b b -+=,解得2b =(舍),或2480b b --=解得:2b =-(舍)或2b =+综上所述,当2b =+()f x 在[2,]b 上恰好有2个零点.故答案为:2+ 【点睛】本题考查函数的零点和方程根的关系,考查了计算能力,同时考查了转化思想与分类讨论思想的应用,属于难题.5.已知数列{}n a 的前n 项和为n S ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则19m n+的最小值为( ) A .145B .114C .83D .103【答案】B【分析】运用数列的递推式和等比数列的定义、通项公式可得2nn a =.求得6m n +=,()19119191066m m n m n n n m n m ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭,运用基本不等式,检验等号成立的条件,根据单调性即可得出结果. 【解析】解:22n n S a =-,可得11122a S a ==-,即12a =,2n ≥时,1122n n S a --=-,又22n n S a =-,相减可得1122n n n n n a S S a a =-=-﹣﹣,即12n n a a -=,{}n a 是首项为2,公比为2的等比数列.所以2nn a =.64m n a a =,即2264m n ⋅=,得6m n +=,所以()191191911010666m m n m n m n m n n ⎛⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝ 181663=⨯=, 当且仅当9n m m n=时取等号,即为32m =,92n =.因为m ,n 取整数,所以均值不等式等号条件取不到,则1983m n +>, 因为19196m n y m m +=+=-,在30,2⎛⎫⎪⎝⎭上单调递减,在3(,)2+∞上单调递增,所以当2m =,4n =时,19m n+取得最小值为114.故选:B. 【点睛】本题考查数列的通项公式的求法,运用数列的递推式和等比数列的定义、通项公式,考查基本不等式的运用,考查化简运算能力,属于中档题.6.已知函数()11,021,232x x x f x x -⎧-≤≤⎪=⎨⎛⎫<≤⎪ ⎪⎝⎭⎩,若存在实数123,,x x x ,当12303x x x ≤<<≤时,()()()123f x f x f x ==,则()2312x f x x x +的最小值是( ).A .58B .516C .532D .564【答案】C 【分析】作出分段函数的图像,结合图像确定123,,x x x 的范围及等量关系,再将所求式子转化为关于3x 的函数,利用函数的单调性求解最小值. 【解析】 如图:122x x += ,312112x x -⎛⎫-= ⎪⎝⎭即312112x x -⎛⎫=+ ⎪⎝⎭,()33112312111222x x x f x x x --⎡⎤⎛⎫⎛⎫+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=+ 令311,2x t t -⎛⎫=∈ ⎪⎝⎭1142⎡⎫⎪⎢⎣⎭,,则()()2321212x f x t t x x =++ 当14t =时取得最小值532. 故选C【点睛】本题主要考查分段函数图像、函数零点、函数最小值的应用,解题中主要应用了数形结合的思想、换元思想、函数思想,属于中档题;解题的关键有两个:一是准确作出分段函数图像,利用已知条件确定出123,,x x x 范围以及122x x +=;二是将所求式子转化为关于3x 的函数,利用函数的性质求最小值.7.已知实数x 、y 满足{24 2y xx y y ≤+≤≥-,若存在x 、y 满足()()22211(0)x y r r ++-=>,则r 的最小值为( )A .1B .2C .423D .523【答案】B【解析】试题分析:可行域为直线,24,2y x x y y =+==-围成的三角形区域, (),x y 到点()1,1-的距离最小值为2,所以r 的最小值为2考点:线性规划问题8.若实数a 、b 、c +∈R ,且2256ab ac bc a +++=-,则2a b c ++的最小值为( ) A .51- B .51+C .252+D .252-【答案】D 【解析】因为2256ab ac bc a +++=-,所以2ab a ac bc +++()()a a b c a b =+++()()a c a b =++()262551=-=- ,所以()()()()22a b c a c a b a c a b ++=+++≥++=252-,当且仅当()()a c a b +=+时,等号成立. 故选D.点睛:本题主要考查均值不等式的灵活应用,关键是对已知等式分解为()()()2=51a c a b ++-.9.已知圆和两点,若圆上存在点,使得,则的最小值为( )A .B .C .D . 【答案】D 【解析】试题分析:由题意以为直径的圆与圆有公共点,则,解得.所以的最小值为1,故选D .考点:两圆的位置关系.【名师点睛】1.两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到. 10.已知函数()1ln ax f x xe x ax -=--,21,a e ⎛⎤∈-∞- ⎥⎝⎦,函数()f x 的最小值M ,则实数M 的最小值是() A .1- B .1e-C .0D .31e-【答案】C 【分析】求得()()11'1ax f x ax e x -⎛⎫=+- ⎪⎝⎭,先证明110ax e x --≤,可得当10,x a ⎛⎫∈- ⎪⎝⎭时,()f x 单调递减,当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,(),f x 单调递增,则()2min 1111ln f x f e a a a -⎛⎫⎛⎫=-=-+-- ⎪ ⎪⎝⎭⎝⎭,设(2210,,1ln t e M t e t a -⎤-=∈=-+⎦,()()22ln 10,t h t t t e e=-+<≤可证明()h t 在(20,e ⎤⎦上单调递减,()()20h t h e ≥=,从而可得结果.【解析】 求得()()()1111111'11ax ax ax ax ax f x eaxe a e ax ax e x x x ----+⎛⎫=+--=+-=+- ⎪⎝⎭ 考察11ax y ex -=-是否有零点,令0y =, 可得1ln x a x -=,记()1ln xx xϕ-=,()2ln 2'x x xϕ-=,()x ϕ在()20,e 上递减,在()2,e +∞上递增, 所以()min x ϕ= ()2e ϕ 21e =-,即21ln 1x x e-≥-, 因为21a e ≤-,所以11ln 10ax x a e x x--≤⇔-≤, 故可知,当10,x a ⎛⎫∈-⎪⎝⎭时,()()10,'0,ax f x f x +>≤单调递减, 当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()()10,'0,ax f x f x +<≥单调递增,从而由上知()2min 1111ln f x f e a a a -⎛⎫⎛⎫=-=-+-- ⎪ ⎪⎝⎭⎝⎭, 设(()222210,,1ln 10t t e M t e t lnt t e a e -⎤-=∈=-+=-+<≤⎦, 记()()()22211ln 10,'0,t h t t t e h t e e t=-+<≤=-≤()h t 在(20,e ⎤⎦上单调递减,()()20h t h e ∴≥=,M ∴的最小值为0.故选C.【点睛】本题主要考查利用导数判断函数的单调性以及函数的最值,属于难题.求函数()f x 最值步骤:(1) 求导数()f x ';(2)判断函数的单调性;(3)若函数单调递增函数或单调递减,利用单调性求最值;(4) 如果只有一个极值点,则在该处即是极值也是最值;(5)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小. 11.已知函数()1f x x a =+,若存在,42ππϕ⎛⎫∈ ⎪⎝⎭,使()()sin cos 0f f ϕϕ+=,则实数a 的取值范围是( )A .1,22⎛⎝⎭B .122⎛⎫-- ⎪ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,02⎛⎫-⎪⎝⎭【答案】B【解析】 由题意,110sin cos aaφφ+=++ 有解∴sinφ+a+cosφ+a=0∴-(φ+4π) ∵φ∈(4π,2π), ∴φ+4π∈(2π,34π),∴sin (φ+4π)∈(2,1)(φ+4π)∈(1∴-2a ∈(1∴a ∈12⎛⎫- ⎪ ⎪⎝⎭。
二次函数根的分布和最值
二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程ax2bx 0根的分布情况设方程ax2 bx 0 a = 0的不等两根为X i, X2且x i :::X2,相应的二次函数为f x =ax2■ bx ■ c = 0,方程的根即为二次函数图象与x轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)根在区间上的分布还有一种情况:两根分别在区间m,n夕卜,即在区间两侧为:::m,x2• n ,(图形分别如下)需满足的条件是对以上的根的分布表中一些特殊情况作说明: (1) 两根有且仅有一根在 m,n 内有以下特殊情况:1 若f m =0或f n =0,贝眦时f m|_f n :: 0不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间 m,n 内,从而可以求出参数的值。
如方 程 mx 2-m ・2x ・2=0在区间 1 , 3E 有一根,因为 f1=0 , 所以222mx 2 - m2x ^ x-1 mx-2,另一根为一,由13得 m ::: 2即为所求; mm 32 方程有且只有一根, 且这个根在区间 m,n 内,即丄=0,此时由厶=0可以求出参数的值, 然后 再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程x 2 -4 m x 2 m 6 = 0有且一根在区间-3,0内,求m 的取值范围。
分析:①由15f -3Lf 0 :: (即卩 14m 15 m 3 :: 0得出 -3 :: m ;②由• ; -0即 16m 2-4 2m 6;=0得 143 3出m~-1或m ,当m = -1时,根x=-2三i 3。
,即m=-1满足题意;当m 时,根2 23 15-3, 0,故m 不满足题意;综上分析,得出 -3:::m 或m=-1』 2 14根的分布练习题例1、已知二次方程 2m 1 x 2 -2mx ■ m -1 =0有一正根和一负根,求实数 m 的取值范围。
2020高考数学专项训练《31闭区间上二次函数的最值问题》(有答案)
专题31 闭区间上二次函数的最值问题例题:已知函数f(x)=x 2-ax +1,求函数f(x)在区间[-1,1]上的最值.变式1已知函数f(x)=x 2-2ax +2,当x ∈[-1,1]时,f(x)≥a 恒成立,求实数a 的取值范围.变式2求二次函数f(x)=ax 2+(2a -1)x -3(a ≠0)在区间⎣⎡⎦⎤-32,2上的最大值.串讲1已知函数f(x)=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f(x)<0成立,则实数m 的取值范围是________________.串讲2若f(x)=1-2a -2a cos x -2sin 2x 的最小值为g(a). (1)求g(a)的解析式;(2)求能使g(a)=12的a 值,并求出当a 取此值时,f(x)的最大值.若函数f(x)=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,证明M -m的值与b 无关.已知a 为实数,函数f(x)=x 2+|x -a|+1,x ∈R . (1)求f (x )的最小值;(2)若a >0,g (x )=f (x )+a |x |,求g (x )的最小值.答案:(1)f (x )min=⎩⎪⎨⎪⎧34+a ,a ≥12,a 2+1,-12<a <12,34-a ,a ≤-12.(2)g (x )min=⎩⎨⎧a +1,a ≥1,-a 2+6a +34,13≤a <1,2a 2+1,0<a <13.解析:(1)f (x )=⎩⎨⎧x 2+x -a +1,x ≥a ,x 2-x +a +1,x <a ,①当a ≤-12时,f (x )在⎝⎛⎭⎫-∞,-12上单调递减,⎝⎛⎭⎫-12,+∞上单调递减, f (x )min =f ⎝⎛⎭⎫-12=34-a ;2分 ②当-12<a <12时,f (x )在(-∞,a )上单调递减,(a ,+∞)上单调递减,f (x )min =f (a )=a 2+1;4分③当a ≥12时,f (x )在⎝⎛⎭⎫-∞,12上单调递减,⎝⎛⎭⎫12,+∞上单调递减, f (x )min =f ⎝⎛⎭⎫12=34+a ;6分综上:f (x )min=⎩⎪⎨⎪⎧34+a ,a ≥12,a 2+1,-12<a <12,34-a ,a ≤-12.7分(2)g (x )=x 2+|x -a |+1+a |x |=⎩⎨⎧x 2+(a +1)x -a +1,x ≥a ,x 2+(a -1)x +a +1,0<x <a ,x 2-(a +1)x +a +1,x ≤0.①当a +12≤a 时,即a ≥1时,-a +12<0且1-a 2≤0,g (x )在(-∞,0)上单调递减,(0,+∞)上单调递减,g (x )min =g (0)=a +1;9分 ②当a +12>a 时,即0<a <1时,-a +12<0且1-a 2>0,(ⅰ)当1-a 2≤a ,即13≤a <1时,g (x )在⎝⎛⎭⎫-∞,1-a 2上单调递减,⎝⎛⎭⎫1-a 2,+∞上单调 递减,所以g (x )min =f ⎝⎛⎭⎫1-a 2=-a 2+6a +34;11分(ⅱ)当1-a 2>a ,即0<a <13时,g (x )在(-∞,a )上单调递减,(a ,+∞)上单调递减,所以g (x )min =f (a )=2a 2+1;13分综上:g (x )min=⎩⎨⎧a +1,a ≥1,-a 2+6a +34,13≤a <1,2a 2+1,0<a <13.14分专题31例题答案:f(x)min = ⎩⎪⎨⎪⎧2+a ,a <-2,1-a24,-2≤a ≤2,2-a ,a >2.f(x)max =⎩⎨⎧2-a ,a <0,2+a ,a ≥0.解法1函数f(x)=x 2-ax +1=⎝⎛⎭⎫x -a 22-a 24+1,对称轴为x =a 2, ①当a2<-1时,即a <-2时,f(x)在[-1,1]上单调递增,f(x)min =f(-1)=2+a ,f(x)max=f(1)=2-a ;②当-1≤a 2<0时,即-2≤a <0时,f(x)在⎝⎛⎭⎫-1,a 2上单调递减,在⎝⎛⎭⎫a 2,1上单调递增,f(x)min =f ⎝⎛⎭⎫a 2=1-a24,f(x)max =f(1)=2-a ; ③当0≤a 2<1时,即0≤a <2时,f(x)在⎝⎛⎭⎫-1,a 2上单调递减,在⎝⎛⎭⎫a 2,1上单调递增,f(x)min=f ⎝⎛⎭⎫a 2=1-a24,f(x)max =f(-1)=2+a ; ④当a2≥1时,即a ≥2时,f(x)在[-1,1]上单调递减,f(x)min =f(1)=2-a ,f(x)max =f(-1)=2+a.综上,f(x)min =⎩⎪⎨⎪⎧2+a ,a <-2,1-a24,-2≤a ≤2,2-a ,a >2.f(x)max =⎩⎨⎧2-a ,a <0,2+a ,a ≥0.解法2函数f(x)=x 2-ax +1=⎝⎛⎭⎫x -a 22-a 24+1,对称轴为x =a2,先求最小值. ①当a2<-1时,即a <-2时,f(x)在[-1,1]上单调递增,f(x)min =f(-1)=2+a ;②当-1≤a 2≤1时,即-2≤a ≤2时,f(x)min =f ⎝⎛⎭⎫a 2=1-a 24;③当a2≥1时,即a ≥2时,f(x)在[-1,1]上单调递减,f(x)min =f(1)=2-a.再求最大值,因为抛物线开口向上,则最高点必为曲线一端点,所以f(x)max =max {f(-1),f(1)}=⎩⎨⎧2-a ,a <0,2+a ,a ≥0.综上,f(x)min = ⎩⎪⎨⎪⎧2+a ,a <-2,1-a24,-2≤a ≤2,2-a ,a >2.f(x)max =⎩⎨⎧2-a ,a <0,2+a ,a ≥0.变式联想变式1答案:[-3,1].解法1研究函数f(x)=x 2-2ax +2在x ∈[-1,1]时的最小值,f(x)=x 2-2ax +2=(x -a)2+2-a 2,对称轴为x =a.①当a ≤-1时,f(x)在[-1,1]上单调递增,所以f(x)min =f(-1)=2a +3,要使得f(x)≥a 恒成立,只需f(x)min ≥a ,即2a +3≥a ,所以-3≤a ≤-1.②当-1<a <1时,f(x)在[-1,1]上的最小值为f(x)min =f(a)=2-a 2,要使得f(x)≥a 恒成立,只需f(x)min ≥a ,即2-a 2≥a ,所以-1<a <1.③当a ≥1时,f(x)在[-1,1]上单调递减,所以f(x)min =f(1)=3-2a ,要使得f(x)≥a 恒成立,只需f(x)min ≥a ,即3-2a ≥a ,所以a =1.综上,实数a 的取值范围是[-3,1].解法2不等式f(x)≥a 可化为a(1+2x)≤x 2+2①当-1≤x <-12时,不等式化为a ≥x 2+22x +1,令g(x)=x 2+22x +1,则g′(x)=⎝ ⎛⎭⎪⎫x 2+22x +1′=2(x 2+x -2)(2x +1)2<0,g(x)在⎣⎡⎭⎫-1,-12上单调递减,所以g(x)max =g(-1)=-3,则a ≥-3.②当x =-12时,0≤14+2恒成立,则a ∈R .③当-12<x ≤1时,不等式化为a ≤x 2+22x +1,令g (x )=x 2+22x +1,则g ′(x )=⎝ ⎛⎭⎪⎫x 2+22x +1′=2(x 2+x -2)(2x +1)2<0,g (x )在⎝⎛⎦⎤-12,1上单调递减,所以g (x )min =g (1)=1,则a ≤1. 综上,实数a 的取值范围是[-3,1]. 变式2答案:f(x)max =⎩⎪⎨⎪⎧-(2a -1)24a-3,a <-1,-34a -32,-1≤a <25且a ≠0,8a -5,a ≥25. 解析:f(x)=a ⎝⎛⎭⎫x +2a -12a 2-(2a -1)24a -3,对称轴为x = -2a -12a, (1)当a >0时,①当-2a -12a ≤14,即a ≥25时,f(x)max =f(2)=8a -5;②当-2a -12a >14,即0<a <25时,f(x)max =f ⎝⎛⎭⎫-32=-34a -32. (2)当a <0时,-2a -12a<0,①当-2a -12a ≤-32时,即-1≤a <0时,f(x)max =f ⎝⎛⎭⎫-32=-34a -32; ②当-32<-2a -12a <0时,即a <-1时,f(x)max =f ⎝⎛⎭⎫-2a -12a =-(2a -1)24a -3.综上,f(x)max =⎩⎪⎨⎪⎧-(2a -1)24a-3,a <-1,-34a -32,-1≤a <25且a ≠0,8a -5,a ≥25.说明:二次函数在闭区间的最值问题一般分为含参和不含参两种类型,对于不含参的定轴、定区间问题,根据轴与区间的位置关系,结合图象,确定函数的单调性即可求得最值;对于定轴、动区间,动轴、定区间,动轴、动区间的含参最值问题,常常抓住对称轴与区间的位置关系进行分类讨论,分类讨论时要做到不重、不漏;不过有时直接研究函数在区间端点处的取值以回避繁琐的分类讨论显得更快捷.总之,数形结合,灵活处理是解决此类问题的关键所在.串讲激活串讲1 答案:⎝⎛⎭⎫-22,0. 解法1讨论对称轴与区间的位置关系,求出f(x)的最大值f(x)max ,解不等式f(x)max <0;解法2因为抛物线开口向上,所以最大值在区间端点处取得.则要使得任意x ∈[m ,m+1],都有f(x)<0成立,只需满足⎩⎨⎧f (m )<0,f (m +1)<0,解得-22<m <0.串讲2答案:(1)g(a)= ⎩⎪⎨⎪⎧1-4a (a >2),-a22-2a -1(-2≤a ≤2),1(a <-2);(2)5.解析:(1)f(x)=2⎝⎛⎭⎫cos x -a 22-a 22-2a -1,令t =cos x ∈[-1,1].当a2<-1,即a <-2时,f(x)在cos x =-1时取得最小值,即g(a)=1;当-1≤a2≤1,即-2≤a ≤2时,f(x)在cos x=a 2时取得最小值,即g(a)=-a 22-2a -1;当a2>1,即a >2时,f(x)在cos x =1时取得最小值,即g(a)=1-4a.综上,g(a)=⎩⎪⎨⎪⎧1-4a (a >2),-a22-2a -1(-2≤a ≤2),1(a <-2).(2)由g(a)=12,得1-4a =12或-a 22-2a -1=12,当1-4a =12,a =18,与a >2矛盾,舍去;当-a 22-2a -1=12,得a =-3(舍去)或a =-1∈[-2,2]所以f(x)=2⎝⎛⎭⎫cos x +122+12,当cos x =1时,f(x)max =5.新题在线答案:M -m =⎩⎨⎧|1+a|,a <-2,或a >0,a 24,-2≤a ≤-1,1+a +a24,-1<a ≤0.M -m 的值与b 无关.解析:函数f(x)=x 2+ax +b 的图象是开口朝上且以直线x =-a2为对称轴的抛物线.①当-a 2>1或-a2<0,即a <-2,或a >0时,函数f(x)在区间[0,1]上单调,此时M-m =|f(1)-f(0)|=|1+a|,故M -m 的值与b 无关;②当12≤-a2≤1,即-2≤a ≤-1时,函数f(x)在区间⎣⎡⎦⎤0,-a 2上单调递减,在⎣⎡⎦⎤-a 2,1上单调递增,且f(0)>f(1),此时M -m =f(0)-f ⎝⎛⎭⎫-a 2=a24,故M -m 的值与b 无关; ③当0≤-a 2<12,即-1<a ≤0时,函数f(x)在区间⎣⎡⎦⎤0,-a 2上单调递减,在⎣⎡⎦⎤-a 2,1上单调递增,且f(0)<f(1),此时M -m =f(1)-f ⎝⎛⎭⎫-a 2=1+a +a 24,故M -m 的值与b 无关.综上,M -m 的值与b 无关.。
二次函数在闭区间上的最值(详解)
分析:将 f ( x ) 配方,得顶点为 - , ( [ ]( 1 )当 - ∈ m ,n 时,f ( x ) 的最小值是 f - ⎪=[ ]若 - < m ,由 f ( x ) 在 m ,n 上是增函数则 f ( x ) 的最小值是 f (m ) ,最大值是学习必备欢迎下载二次函数在闭区间上的最值一、 知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。
一般分为:对称轴在区间的左边,中间,右边三种情况.设 fx ) = ax 2 ++bxc (a ≠ 0) ,求 f ( x ) 在 x ∈[m ,n] 上的最大值与最小值。
⎛ b 4ac - b 2⎫ b⎪ 、对称轴为 x =-⎝ 2a 4a ⎭ 2a当 a > 0 时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上 f ( x ) 的最值:b ⎛b ⎫4ac - b22a ⎝ 2a ⎭ 4a,f ( x ) 的最大值是f (m ) 、f (n ) 中的较大者。
(2)当 -b∉[m ,n ]时2ab 2af (n )若 n < -b,由 f ( x ) 在[m ,n ]上是减函数则 f ( x ) 的最大值是 f (m ) ,最小值是 f (n )2a当 a < 0 时,可类比得结论。
二、例题分析归类:(一)、正向型是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。
此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。
1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。
例 1. 函数 y = - x 2 + 4 x - 2 在区间[0,3]上的最大值是_________,最小值是_______。
练习.已知2x2≤3x,求函数f(x)=x2+x+1的最值。
二次函数求最值(动轴定区间、动区间定轴)
8
6
4
2 x=1 k
2
k+2 5
当k ≥1 时 f(x) max=f(k+2)=k2+2k-3
10
15
f(x) min=f(k)=k2-2k-3
4
6
8
10
8
例: 6求函数y=x2-62x-3在x∈[k,k6+2]时的最值
(2)若x∈[ 2,4 ],求函数f(x)的最值; 10
(3)若x∈[ 1 , 5 ],求函数f(x)的最值; 8
2
(4)若x∈[
12, 2
3
6
2 ],求函数f(x)的最值;
4
解:画出函数在定义域内的图像如图
对称轴为直线x=1,由图知,
15
10
5
x= 1 时有最大值 f (1) 13
2
24
x=1时有最小值f(1)=-4
当0≤ k<1时 f(x)max=f(k+2)=k2+21k0 -3
10
10
当k ≥1 时 f(x) max=f(k+2)=k2+2k-3
f(x)min=f(1)=8- 4 f(x)min=f(1)=10- 4 f(x) min=f(k)=k2-2k-3
例: 6求函数y=x2-62x-3在x∈[k,k6+2]时的最值
k
2
2
2
2
1105
k+2
4
4
4
4
6
6
6
6
8
中考热点,二次函数区间范围的最值问题
中考热点,二次函数区间范围的最值问题二次函数最值问题的重要性毋庸置疑,其贯穿了整个中学数学,是中学数学的重要内容之一,也是学好中学数学必须攻克的极为重要的问题之一。
二次函数在闭区间上的最值问题是二次函数最值问题的典型代表,其问题类型通常包括不含参数和含参数二次函数在闭区间上的最值问题、二次函数在闭区间上的最值逆向性问题以及可转化为二次函数在闭区间上最值的问题,在此类问题的解决过程中,涉及数形结合、分类讨论等重要数学思想与方法。
中考中多涉及到含参数二次函数在闭区间上的最值问题,很多学生不习惯数形结合及分类讨论思想的运用,导致解题失误或错误。
类型1 求解自变量在不同区间里二次函数最值1.(2019•大兴区一模)已知二次函数y=x2﹣2x+3,当自变量x满足﹣1≤x≤2时,函数y的最大值是.【解析】先根据二次函数的已知条件,得出二次函数的图象开口向上,再根据变量x在﹣2≤x≤1的范围内变化,再分别进行讨论,即可得出函数y的最大值.∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴该抛物线的对称轴为x=1,且a=1>0,∴当x=1时,函数有最小值2,当x=﹣1时,二次函数有最大值为:(﹣1﹣1)2+2=6,故答案为6.2.(2019•新华区校级自主招生)已知函数y=x2﹣2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是()A.m≥1 B.0≤m≤2 C.1≤m≤2 D.m≤2【解析】:∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴抛物线开口向上,对称轴为x=1,顶点坐标为(1,2),与y轴的交点为(0,3).其大致图象如图所示:由对称性可知,当y=3时,x=0或x=2,∵二次函数y=x2﹣2x+3在闭区间[0,m]上有最大值3,最小值2,∴1≤m≤2.故选:C.3.(2019•郑州模拟)二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.【解析】:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4,∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,﹣2≤x≤3,y随x的增大而增大,∴a﹣4=﹣3,∴a=1,故答案为1.4.(2019•邯郸模拟)对于题目“二次函数y=3/4(x﹣m)2+m,当2m﹣3≤x≤2m时,y的最小值是1,求m的值.”甲的结果是m=1,乙的结果是m =﹣2,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【解析】根据对称轴的位置,分三种情况讨论求解即可求得答案,然后判断即可.二次函数的对称轴为直线x=m,①m<2m﹣3时,即m>3,y的最小值是当x=2m﹣3时的函数值,此时3/4(2m﹣3﹣m)2+m=1,因为方程无解,故m值不存在;②当2m﹣3≤m≤2m时,即0≤m≤3时,二次函数有最小值1,此时,m=1,③当m>2m时,即m<0,y的最小值是当x=2m时的函数值,此时,3/4(2m﹣m)2+m=1,解得m=﹣2或m=2/3,∵m<0,∴m=﹣2,所以甲、乙的结果合在一起正确,故选:C.类型2 二次函数区间最值解决实际问题利用二次函数解决实际问题,最常见的为利润问题和费用最低等问题,首先根据题中常见的等量关系建立二次函数模型,然后利用二次函数确定最值,注意要考虑自变量在实际问题中的取值范围。
复合函数定义域、二次函数在闭区间上的最值
(对称轴固定,定义域
解析: 因为函数 f(x)=x2-2x-3=(x-1)2-4的对称 轴为 x=1 固定不变,要求函数的最值,
即要看区间[t,t+2]与对称轴 x=1的位
置,则从以下几个方面解决如图:
t
t+2
X=1
则由上图知解为: 当t+2≤1(t≤-1)时 f(x)max=f(t)=t2-2t-3 f(x)min=f(t+2)=t2+2t+3 当 t<1 < t+2 时 f(x)max=max{f(t),f(t+2)} (-1 <t<1) f(x)min=f(1)=-4 当t ≥1 时 f(x) max=f(t+2)=t2+2t+3 f(x) min=f(t)=t2-2t-3
复合函数定义域
例1. 设函数 f ( x )的定义域为 [ 0 ,1 ] ,则 (1)函数 f ( x 2 ) 的定义域为________ (2)函数 f ( x 2 ) 的定义域为__________
归纳:已知 f ( x ) 的定义域,求 f [ g ( x )] 的定义域
f [ g ( x )] 中 其解法是:若 f ( x )的定义域为 a x b ,则
(5)若x∈[t,t+2]时, 求函数f(x)的最值.
t
–1 0 1
t +2 2 3 4
x
例1、已知函数f(x)= x2 –2x – 3.
(1)若x∈[–2,0],求函数f(x)的最值; (2)若x∈[ 2,4],求函数f(x)的最值; 1 5 (3)若x∈[ , ],求函数f(x)的最值; 2 2 y 1 3 (4)若x∈[ , ],求 2 2 函数f(x)的最值;
二次函数面积最值问题解题思路
二次函数面积最值问题解题思路分析题意,列表如下:先看最值点,要使一个函数在某点取得最值,必须使该点的横坐标最小。
3、函数的最值应满足三个条件:(1)在闭区间[0, 2],(2)开区间[-1, 1],(3)过(-1, 1)。
(上述已排除C、 D两点)。
4、有二次函数f(x)满足,则在该点处必有一条切线(f(x)=0)与一条抛物线x=y-2交于C(C不能为1/2),而在切线(C)、抛物线y-2的焦点上都有0,这样, f(C)=f(0)=f(-1),从而有f(0)为f(-1)的最小值,故C点为一次函数y-2最小值,即为抛物线的顶点C。
3、“可去”“可进”(“进”指的是大于最小值的某一定点,“去”是去掉最小值)。
①用函数y=x+1,求出x和最小值C的距离,即C 为最小值。
②令y=0,因此有y>0,在抛物线y-2的上方不可能取得最小值,所以去掉了最小值。
综合以上几点,此题答案为C。
4、若函数有一次、二次两个极值,要保证使函数在第一个极值处取得最值,就必须保证在第二个极值处取得最小值。
(因为在第一个极值处取得最小值的同时,也在第二个极值处取得最小值,若选C,将在第一个极值处取得最小值,但在第二个极值处取得最小值时,将会使这个最小值减小;若选B,将在第一个极值处取得最小值,但在第二个极值处取得最小值时,将会使这个最小值增大。
)因此本题选A。
3、假设,则当x=2时,方程(1)(x)=0;当x=3时,方程(1)(x)=-4;4、选项A、 B两个点,都可以。
点评:学习二次函数面积最值问题的解法,要抓住关键:一是确定二次函数的顶点和对称轴;二是明确两个性质点。
二次函数在一个点处的最值问题,重点是把握两个性质点,一是函数图象上二次函数的最值点;二是性质点的坐标范围或者说“最小值”。
有了二次函数的图象和性质点,再考虑各个性质点是否过直线外一点。
要想“最值”问题解得最好,一般都是按照这样的思路来完成解答的。
4、若函数有一次、二次两个极值,要保证使函数在第一个极值处取得最值,就必须保证在第二个极值处取得最小值。
【高中数学过关练习】过关练13-二次函数在闭区间上的最值问题
过关练13 二次函数在闭区间上的最值问题一、单选题1.(2022·山西运城·高一期末)已知二次函数()()2f x ax x c x =-+∈R 的值域为[)0,∞+,则41a c+的最小值为( ) A .16 B .12 C .10 D .8【解析】由题意知0a >,140ac ∆=-=, ∴14ac =且0c >, ∴4148a c ac+≥=, 当且仅当41a c=,即1a =,14c =时取等号.故选:D.2.(2022·全国·高一期末)若不等式220ax bx ++>的解集为{}21x x -<<,则二次函数224y bx x a =++在区间[]0,3上的最大值、最小值分别为( )A .-1,-7B .0,-8C .1,-1D .1,-7【解析】220ax bx ++>的解集为{}21x x -<<, 2∴-,1是方程220ax bx ++=的根,且0a <,∴21221b a a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,1a ∴=-,1b =-,则二次函数2224241y bx x a x x =++=-+-开口向下,对称轴1x =,在区间[]0,3上,当1x =时,函数取得最大值1,当3x =时,函数取得最小值7- 故选:D .3.(2022·河南·信阳高中高一期末(理))函数()(||1)f x x x =-在[,]m n 上的最小值为14-,最大值为2,则n m -的最大值为( ) A .52B .522+C .32D .2【解析】当x ≥0时,()()221111()244f x x x x x x ==-=--≥-﹣, 当x <0时,()()22111()24f x x x x x x =-=--=-++,作出函数()f x 的图象如图:当0x ≥时,由()f x =22x x -=,解得x =2. 当12x =时,()1124f =-.当x <0时,由21()4f x x x =--=-,即24410x x +=﹣,解得x 2444443244212-±+⨯-±-±-±===∴此时x 12-- ∵[,m n ]上的最小值为14-,最大值为2,∴n =21212m --≤≤, ∴n m -的最大值为1252222--=+, 故选:B .4.(2022·重庆巫山·高一期末)若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范围是( ) A .(]0,4 B .3,42⎡⎤⎢⎥⎣⎦C .3,32⎡⎤⎢⎥⎣⎦D .3,2⎡⎫+∞⎪⎢⎣⎭【解析】234y x x =--为开口方向向上,对称轴为32x =的二次函数 min 99254424y ∴=--=- 令2344x x --=-,解得:10x =,23x = 332m ∴≤≤即实数m 的取值范围为3,32⎡⎤⎢⎥⎣⎦故选:C5.(2022·浙江台州·高一期末)已知函数()22f x ax x =+的定义域为区间[m ,n ],其中,,a m n R ∈,若f (x )的值域为[-4,4],则n m -的取值范围是( )A .[4,42]B .[22,82]C .[4,82]D .[42,8]【解析】若0a =,()2f x x =,函数为增函数,[,]x m n ∈时,则()24,()24f m m f n n ==-==,所以2(2)4n m -=--=, 当0a >时,作图如下,为使n m -取最大,应使n 尽量大,m 尽量小,此时14a =, 由22()424()424f n am m f m an n =⎧+=⎧⇒⎨⎨=+=⎩⎩,即2240ax x +-=, 所以24,m n mn a a+=-=-,所以()22416482n m m n mn a a-=+-=+=82n m -≤ 当14a -<-时,即104a <<时,此时,m n 在对称轴同侧时n m -最小,由抛物线的对称性,不妨设,n m 都在对称轴右侧,则由22()24,()24f n an n f m am m =+==+=-, 解得24162416a an m -++-+-==416416141441414141422a a a a n m a aa a+--+--∴-===++-++-, 当且仅当1414a a +=- ,即0a =时取等号,但0a >,等号取不到,4n m ∴->,0a <时,同理,当14a =-时,max ()82n m -=14a >-时,()min 4n m ->, 综上,n m -的取值范围是[4,82], 故选:C6.(2022·广东茂名·高一期末)已知函数2,02()34,23x x f x x x ⎧≤≤=⎨-<≤⎩,若存在实数1x ,2x (12x x <)满足12()()f x f x =,则21x x -的最小值为( ) A .712B .22C .23D .1【解析】当0≤x ≤2时,0≤x 2≤4,当2<x ≤3时,2<3x -4≤5, 则[0,4]∩(2,5]=(2,4],令12()()f x f x ==t ∈(2,4], 则1x t 243t x +=, ∴2214143333t x x t tt -==, 32t ,即94t =时,21x x -有最小值712,故选:A.二、多选题7.(2022·新疆巴音郭楞·高一期末)定义在R 上的奇函数()f x 在(),0∞-上的解析式()()1f x x x =+,则()f x 在[)0,∞+上正确的结论是( )A .()00f =B .()10f =C .最大值14D .最小值14-【解析】由题可知,函数()f x 为定义在R 上的奇函数,则()()f x f x -=-, 已知()f x 在(),0∞-上的解析式()()1f x x x =+, 则当0x >时,0x -<,则()()()1f x x x f x -=--=-,所以当[)0,x ∈+∞时,()()2211124f x x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭,可知()00f =,()10f =,且最大值为14,无最小值,所以()f x 在[)0,∞+上正确的结论是ABC. 故选:ABC.8.(2022·贵州遵义·高一期末)设函数()21,21,ax x a f x x ax x a -<⎧=⎨-+≥⎩,()f x 存在最小值时,实数a 的值可能是( )A .2B .-1C .0D .1【解析】当x a ≥时,()()222211f x x ax x a a =-+=--+,所以当x a ≥时,()()2min 1f x f a a ==-+,若0a =,则()21,01,0x f x x x -<⎧=⎨+≥⎩,所以此时()min 1f x =-,即()f x 存在最小值, 若0a >,则当x a <时,()1f x ax =-,无最小值, 若0a <,则当x a <时,()1f x ax =-为减函数, 则要使()f x 存在最小值时,则22110a a a ⎧-+≤-⎨<⎩,解得1a ≤-,综上0a =或1a ≤-. 故选:BC.三、填空题9.(2022·广西南宁·高一期末)已知函数2()25,[1,5]f x x x x =-+∈-.则函数的最大值和最小值之积为______【解析】因为22()25(1)4f x x x x =-+=-+,所以当1x =时,min ()(1)4f x f ==,当5x =时,2max ()(5)(51)420f x f ==-+=,所以最大值和最小值之积为42080⨯=.故答案为:8010.(2022·广东汕头·高一期末)函数()()()2f x x a bx a =++是偶函数,且它的值域为(],2-∞,则2a b +=__________.【解析】()()()()22222f x x a bx a bx a ab x a =++=+++为偶函数,所以20a ab +=,即0a =或2b =-,当0a =时,()2f x bx =值域不符合(],2-∞,所以0a =不成立;当2b =-时,()2222f x x a =-+,若值域为(],2-∞,则21a =,所以21a b +=-.故答案为:1-.11.(2022·广东·华南师大附中高一期末)对x ∀∈R ,不等式2430mx x m ++->恒成立,则m 的取值范围是___________;若2430mx x m ++->在()1,1-上有解,则m 的取值范围是___________.【解析】(1)关于x 的不等式函数2430mx x m ++->对于任意实数x 恒成立,则()204430m m m >⎧⎨∆=--<⎩,解得m 的取值范围是()4,+∞.(2)若2430mx x m ++->在()1,1-上有解, 则2341x m x ->+在()1,1-上有解,易知当314x -<≤时23401xx -≥+, 当314x <<时23401x x -<+,此时记34t x =-, 则104t <<,()244253311624t g t t t t --==⎛⎫++++ ⎪⎝⎭,在10,4⎛⎫ ⎪⎝⎭上单调递减,故()12g t >-, 综上可知,234112x x ->-+,故m 的取值范围是1,2⎛⎫-+∞ ⎪⎝⎭.故答案为:()4,+∞;1,2⎛⎫-+∞ ⎪⎝⎭四、解答题12.(2022·河南安阳·高一期末(文))已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式; (2)求()f x 在区间[]1,2-上的值域. 【解析】(1)解:由()02f =可得2c =,()()()()221112f x a x b x c ax a b x a b c +=++++=+++++,由()()121f x f x x +-=-得221ax a b x ++=-,所以221a a b =⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩,所以()222f x x x =-+.(2)解:由(1)可得:()()222211f x x x x =-+=-+, 则()f x 的图象的对称轴方程为1x =,()11f =, 又因为()15f -=,()22f =,所以,()f x 在区间[]1,2-上的值域为[]1,5.13.(2022·广东潮州·高一期末)()2f x x bx c =++,不等式()0f x ≤的解集为[]1,3.(1)求实数b ,c 的值;(2)[]0,3x ∈时,求()f x 的值域.【解析】(1)解:由题意,1和3是方程20x bx c ++=的两根,所以1313b c +=-⎧⎨⨯=⎩,解得4,3b c =-=;(2)解:由(1)知,22()43(2)1f x x x x =-+=--,所以当[]0,2x ∈时,()f x 单调递减,当[]2,3x ∈时,()f x 单调递增, 所以min ()(2)1f x f ==-,max ()(0)3f x f ==, 所以()f x 的值域为[1,3]-.14.(2022·广东湛江·高一期末)已知函数()223f x x ax =++,[]4,6x ∈-.(1)当2a =-时,求()f x 的最值;(2)若()f x 在区间[]4,6-上是单调函数,求实数a 的取值范围. 【解析】(1)当2a =-时,()()224321f x x x x =-+=--, ∴()f x 在[]4,2-上单凋递减,在2,6上单调递增,∴()()min 21f x f ==-,()()()()2max 4444335f x f =-=--⨯-+=.(2)()()222233f x x ax x a a =++=++-,∴要使()f x 在[]4,6-上为单调函数,只需4a -≤-或6a -≥,解得4a ≥或6a ≤-. ∴实数a 的取值范围为(][),64,-∞-+∞.15.(2022·北京通州·高一期末)已知二次函数2()21f x ax ax =-+. (1)求()f x 的对称轴;(2)若(1)7f -=,求a 的值及()f x 的最值.【解析】(1)解:因为二次函数2()21f x ax ax =-+, 所以对称轴212ax a-=-=. (2)解:因为(1)7f -=,所以217a a ++=. 所以2a =.所以2()241f x x x =-+. 因为20a =>, 所以()f x 开口向上,又2()241f x x x =-+对称轴为1x =,所以最小值为(1)1f =-,无最大值. 16.(2022·陕西·长安一中高一期末)函数2()22f x x x =-- (1)当[2,2]x ∈-时,求函数()f x 的值域; (2)当[,1]x t t ∈+时,求函数()f x 的最小值.【解析】(1)解:由题意,函数()22()2213f x x x x =--=--,可得函数()f x 在[]2,1-上单调递减,在[]12,上单调递增,所以函数()f x 在区间[]22-,上的最大值为(2)6f -=,最小值为(1)3f -=-, 综上函数()f x 在上的值域为[]3,6-.(2)解:①当0t ≤时,函数在区间[],1t t +上单调递减,最小值为2(1)3f t t +=-; ②当01t <<时,函数在区间[],1t 上单调递减, 在区间[]1,+1t 上单调递增,最小值为(1)3f =-;③当1t ≥时,函数在区间[],1t t +上单调递增,最小值为2()22f t t t =--,综上可得:当0t ≤时,函数()f x 的最小值为23t -;当01t <<,函数()f x 的最小值为3-;当1t ≥时,函数()f x 的最小值为222t t --.17.(2022·福建泉州·高一期末)已知函数2()4(0)f x ax ax b a =-+>在[0,3]上的最大值为3,最小值为1-. (1)求()f x 的解析式;(2)若(1,)∃∈+∞x ,使得()f x mx <,求实数m 的取值范围. 【解析】(1)()f x 的开口向上,对称轴为2x =, 所以在区间[]0,3上有:()()()()min max 2,0f x f f x f ==,即481133a a b a b b -+=-=⎧⎧⇒⎨⎨==⎩⎩,所以()243f x x x =-+.(2)依题意(1,)∃∈+∞x ,使得()f x mx <,即2343,4x x mx m x x-+<>+-, 由于1x >,33424234x x x x+-≥⋅=, 当且仅当33x x x=⇒=. 所以234m >.18.(2022·吉林·梅河口市第五中学高一期末)已知函数()()220f x mx mx n m =-+<在区间[]0,3上的最大值为5,最小值为1.(1)求m ,n 的值;(2)若正实数a ,b 满足2na mb -=,求114a b+的最小值.【解析】(1)由()()220f x mx mx n m =-+<,可得其对称轴方程为212mx m-=-=,所以由题意有(1)25(3)961f m m n f m m n =-+=⎧⎨=-+=⎩,解得1,4m n =-=.(2)由(1)2na mb -=为42a b +=,则111111171171725()()()(2)14242424848b a b a a b a b a b a b a b +=++=++≥+⨯=+=, (当且仅当25a b ==时等号成立). 所以114a b +的最小值为258.19.(2022·山东日照·高一期末)已知函数()223f x x ax =--.(1)若1a =,求不等式()0f x ≥的解集;(2)已知()f x 在[)3,+∞上单调递增,求a 的取值范围; (3)求()f x 在[]1,2-上的最小值.【解析】(1)当1a =时,函数()223f x x x =--,不等式()0f x ≥,即223(1)(3)0x x x x --=+-≥,解得1x ≤-或3x ≥, 即不等式()0f x ≥的解集为(,1][3,)-∞-+∞.(2)由函数()223f x x ax =--,可得()f x 的图象开口向上,且对称轴为x a =,要使得()f x 在[)3,+∞上单调递增,则满足3a ≤, 所以a 的取值范围为(,3]-∞.(3)由函数()223f x x ax =--,可得()f x 的图象开口向上,且对称轴为x a =,当1a <-时,函数()f x 在[]1,2-上单调递增,所以()f x 最小值为()122f a -=-; 当12a -≤≤时,函数()f x 在[]1,a -递减,在[],2a 上递增,所以()f x 最小值为()23f a a =--;当2a >时,函数()f x 在[]1,2-上单调递减,所以()f x 最小值为()214f a =-, 综上可得,()f x 在[]1,2-上的最小值为()2min22,13,1214,2a a f x a a a a -<-⎧⎪=---≤≤⎨⎪->⎩. 20.(2022·江苏苏州·高一期末)已知函数f (x )=x |x ﹣m |+n . (1)当f (x )为奇函数,求实数m 的值;(2)当m =1,n >1时,求函数y =f (x )在[0,n ]上的最大值. 【解析】(1)因为f (x )为奇函数,所以f (﹣0)=﹣f (0), 所以f (0)=0,即n =0,所以f (x )=x |x ﹣m |, 又f (﹣1)=﹣f (1),所以|1﹣m |=|1+m |,解得m =0,此时f (x )=x |x |,对∀x ∈R ,f (﹣x )=﹣x |x |=﹣f (x ), 所以f (x )为奇函数,故m =0.(2)f (x )=x |x ﹣1|+n =22,1,1x x n x x x n x ⎧-++⎨-+>⎩所以f (x )在10,2⎡⎤⎢⎥⎣⎦和[1,n ]上单调递增,在1,12⎡⎤⎢⎥⎣⎦上单调递减,其中211(),()24f n f n n =+=,2111212()()()24f n f n n n n +--=--=,令214n n >+得,12n +>12n +>1()()2f n f >,2max ()f x n =.121n +<≤时1()()2f n f ≤,所以max 1()4f x n =+,因此y =f (x )在[0,n ]上的最大值为2112,14212,n n n n ⎧++⎪⎪⎨+⎪⎪⎩. 21.(2022·天津市武清区杨村第一中学高一期末)已知函数()22f x x mx n =++的图象过点()1,1-,且满足()()23f f -=.(1)求函数()f x 的解析式:(2)求函数()f x 在[],2a a +上的最小值;(3)若0x 满足()00f x x =,则称0x 为函数()y f x =的不动点,函数()()g x f x tx t =-+有两个不相等且正的不动点,求t 的取值范围. 【解析】(1)∵()f x 的图象过点()1,1-, ∴21m n ++=-① 又()()23f f -=, ∴82183m n m n -+=++② 由①②解2m =-,1n =-,∴()2221f x x x =--;(2)()2213221222f x x x x ⎛⎫=--=-- ⎪⎝⎭,[],2x a a ∈+,当122a +≤,即32a ≤-时,函数()f x 在[],2a a +上单调递减,∴()()2min 2263f x f a a a ⎡⎤=+=++⎣⎦;当122a a <<+,即3122a -<<时,函数()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在1,22a ⎡⎤+⎢⎥⎣⎦单调递增,∴()min1322f x f ⎛⎫⎡⎤==- ⎪⎣⎦⎝⎭; 当12a ≥时,函数()f x 在[],2a a +上单调递增, ∴()()2min 221f x f a a a ⎡⎤==--⎣⎦.综上,()2min23263,,2331,,2221221,2a a a f x a a a a ⎧++≤-⎪⎪⎪⎡⎤=--<<⎨⎣⎦⎪⎪--≥⎪⎩.(3)设()()g x f x tx t =-+有两个不相等的不动点1x 、2x ,且1>0x ,20x >,∴()g x x =,即方程()22310x t x t -++-=有两个不相等的正实根1x 、2x .∴()()21212Δ3810,30,2102t t t x x t x x ⎧⎪=+-->⎪+⎪+=>⎨⎪-⎪=>⎪⎩,解得1t >. 22.(2022·安徽合肥·高一期末)已知函数()22f x x mx =--.(1)若0m >且()f x 的最小值为3-,求不等式()1f x <的解集; (2)若当21x ≤时,不等式()20f x x -<恒成立,求实数m 的取值范围. 【解析】(1)解:()f x 的图象是对称轴为2mx =,开口向上的抛物线,所以,()222min2232424m m mm f x f ⎛⎫==--=--=- ⎪⎝⎭,因为0m >,解得2m =,由()1f x <得2230x x --<,即()()310x x -+<,得13x ,因此,不等式()1f x <的解集为()1,3-.(2)解:由21x ≤得11x -≤≤,设函数()()()2222g x f x x x m x =-=-+-,因为函数()g x 的图象是开口向上的抛物线,要使当21x ≤时,不等式()20f x x -<恒成立,即()0g x <在[]1,1-上恒成立,则()()1010g g⎧<⎪⎨-<⎪⎩,可得122010m m ---<⎧⎨+<⎩,解得3<1m -<-. 23.(2022·贵州毕节·高一期末)已知函数2()2(0)f x x ax a =->. (1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值.【解析】(1)当3a =时,不等式5()7f x -<<, 即为2567x x -<-<,即226756⎧-<⎪⎨-<-⎪⎩x x x x ,所以171,5或-<<⎧⎨<>⎩x x x , 所以11x -<<或57x <<,所以原不等式的解集为(1,1)(5,7)-⋃. (2)(0)(2)0f f a ==,由题意0=t 或22t a +=,这时24a -≤-解得2a ≥, 若0=t ,则2t a +≤,所以()()2242f t f a +==-⇒=;若22t a +=,即22t a a =-≥, 所以()()422f t f a =-=-,则2a =,综上,0,2t a ==或2,2t a ==.24.(2022·贵州·赫章县教育研究室高一期末)已知函数()2623f x ax x b =+-+(,a b 为常数),在1x =时取得最大值2. (1)求()f x 的解析式; (2)求函数()f x 在3,2上的单调区间和最小值.【解析】(1)由题意知6126232a ab ⎧-=⎪⎨⎪+-+=⎩,∴32a b =-⎧⎨=⎩ , ∴ ()2361f x x x =-+-.(2)∵()()()22321312f x x x x =---=--+,∴当[]3,2x ∈-时,()f x 的单调增区间为[]3,1-,单调减区间为[]1,2,又()()32718146,2121211f f -=---=-=-+-=-, ∴ ()f x 最小值为46-.25.(2022·广东·化州市第三中学高一期末)已知函数()22f x x mx =-+.(1)若()f x 在区间(],1-∞上有最小值为1-,求实数m 的值;(2)若4m ≥时,对任意的12,1,12m x x ⎡⎤∈+⎢⎥⎣⎦,总有()()21244mf x f x -≤-,求实数m 的取值范围.【解析】(1)可知()f x 的对称轴为2m,开口向上, 当12m ≤,即2m ≤时,()2min 2124m m f x f ⎛⎫==-=- ⎪⎝⎭, 解得23m =-23,∴23m =- 当12m>,即2m >时,()()min 131f x f m ==-=-, 解得4m =,∴4m =. 综上,23m =-4m =.(2)由题意得,对1,12m x ⎡⎤∈+⎢⎥⎣⎦,()()2max min 44m f x f x -≤-. ∵1,122m m ⎡⎤∈+⎢⎥⎣⎦,11222m m m⎛⎫-≥+- ⎪⎝⎭,∴()2min224m m f x f ⎛⎫==- ⎪⎝⎭,()()max 13f x f m ==-.∴()()22max min1444m m f x f x m -=-+≤-, 解得5m ≥,∴5m ≥.26.(2022·黑龙江·鹤岗一中高一期末)已知二次函数()f x 满足()()12f x f x x +-=,且()01f =.(1)求函数()f x 在区间[]1,1-上的值域;(2)当x ∈R 时,函数y a =-与()3y f x x =-的图像没有公共点,求实数a 的取值范围.【解析】(1)解:设()()20f x ax bx c a =++≠、∴()1()22f x f x ax a b x +-=++=,∴220a a b =⎧⎨+=⎩,∴1a =,1b =-,又()01f =,∴1c =,∴()21f x x x =-+.∵对称轴为直线12x =,11x -≤≤,1324f ⎛⎫= ⎪⎝⎭,()13f -=, ∴函数的值域3,34⎡⎤⎢⎥⎣⎦.(2)解:由(1)可得:()2341y f x x x x =-=-+∵直线y a =-与函数()3y f x x =-的图像没有公共点∴()2min 41a x x -<-+, 当2x =时,()2min 41=3x x -+-∴3a -<-,∴3a >.27.(2022·陕西安康·高一期末)已知二次函数()[]21,1,2f x x ax x =++∈-.(1)当1a =时,求()f x 的最大值和最小值,并指出此时x 的取值; (2)求()f x 的最小值,并表示为关于a 的函数()H a .【解析】(1)当1a =时,()21f x x x =++,对称轴为12x =-,开口向上,所以()f x 在11,2⎡⎤--⎢⎥⎣⎦上单调递减,在1,22⎡⎤-⎢⎥⎣⎦上单调递增,()2min111312224f x f ⎛⎫⎛⎫⎛⎫=-=-+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()2max 22217f x f ==++=.所以当12x =-时,()f x 的最小值为34,当2x =时()f x 的最大值为7.(2)()21f x x ax =++的对称轴为2a x =-,开口向上,当12a-≤-即2a ≥时,()21f x x ax =++在[]1,2-上单调递增, ()()()2min 1112f x f a a =-=--+=-,当122a -<-<即42a -<<时,()21f x x ax =++在1,2a ⎡⎤--⎢⎥⎣⎦上单调递减,在,22a ⎡⎤-⎢⎥⎣⎦上单调递增,此时()22min 112224a a a a f x f a ⎛⎫⎛⎫⎛⎫=-=-+⋅-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当22a-≥即4a ≤-时,()21f x x ax =++在[]1,2-上单调递减, ()()2min 222152f x f a a ==++=+,所以252,4()1,4242,2a a a H a a a a +≤-⎧⎪⎪=--<<⎨⎪-≥⎪⎩.28.(2022·北京平谷·高一期末)已知二次函数()()211f x ax a x =-++.(1)当对称轴为1x =-时, (i )求实数a 的值;(ii )求f (x )在区间[]22-,上的值域. (2)解不等式()0f x ≥. 【解析】(1)解:(i )由题得(1)(1)11,12,223a a a a a a a -++-==-∴+=-∴=-; (ii )()212133f x x x =--+,对称轴为1x =-, 所以当[]2,2x ∈-时,max 124()(1)1333f x f =-=-++=.min 445()(2)1333f x f ==--+=-.所以f (x )在区间[]22-,上的值域为54[,]33-. (2)解:()2110ax a x -++≥,当0a =时,10,1x x -+≥∴≤;当0a >时,121(1)(1)0,0,1ax x x x a--≥∴=>=, 当01a <<时,不等式的解集为1{|x x a≥或1}x ≤; 当1a =时,不等式的解集为R ;当1a >时,不等式的解集为{|1x x ≥或1}x a≤;当0a <时,121(1)(1)0,0,1ax x x x a--+≤∴=<=, 所以不等式的解集为1{|1}x x a≤≤. 综上,当0a =时,不等式的解集为{|1}x x ≤; 当01a <<时,不等式的解集为1{|x x a≥或1}x ≤; 当1a =时,不等式的解集为R ;当1a >时,不等式的解集为{|1x x ≥或1}x a≤;当0a <时, 不等式的解集为1{|1}x x a≤≤. 29.(2022·重庆·高一期末)已知函数()29f x x ax a =-+-,a R ∈.(1)若()f x 在[]0,1上的值域为[]4,6,求a 的值;(2)若关于x 的不等式()0f x <只有一个正整数解,求a 的取值范围. 【解析】(1)解:因为函数()29f x x ax a =-+-,a R ∈,对称轴2ax =,且()09f a =-,()1102f a =-,21924a f a a ⎛⎫=--+ ⎪⎝⎭,当02a<时,函数()f x 在0,1上单调递增,所以 ()()0416f f ⎧=⎪⎨=⎪⎩,即941026a a -=⎧⎨-=⎩,此时无解; 当>12a时,函数()f x 在0,1上单调递减,所以 ()()0614f f ⎧=⎪⎨=⎪⎩,即961024a a -=⎧⎨-=⎩,解得3a =; 当012a ≤≤,即02a ≤≤时,函数()f x 在2a x =取得最小值,所以42a f ⎛⎫= ⎪⎝⎭,即21944a a --+=,方程在02a ≤≤上无解, 综上得:3a =;(2)解:关于x 的不等式()0f x <只有一个正整数解,等价于2+9>+1x a x 只有一个正整数解,令()2+9+1x g x x =,则()()()2+91010+1+22+12102+1+1+1g x x x x x x x ==-≥⋅=,当且仅当10+1+1x x =,即101x =, ()2+9+1x g x x =在(101⎤-⎦,上递减,在)101,⎡+∞⎣递增, 而21013<,()21+9151+1g ==,()29g =,()2+913222+13g ==,()2+999133,5>>3+12233g ==,当a 13932⎛⎤∈ ⎥⎝⎦,不等式只有一个正整数解2x =,所以a 的取值范围为13932⎛⎤⎥⎝⎦,.30.(2022·河北秦皇岛·高一期末)已知函数()1f x x x=+,()21g x x ax a =-+-. (1)若()g x 的值域为[)0,∞+,求a 的值.(2)证明:对任意[]11,2x ∈,总存在[]21,3x ∈-,使得()()12f x g x =成立.【解析】(1)解:因为()g x 的值域为[)0,∞+,所以()()222414420a a a a a ∆=--=-+=-=,解得2a =.(2)证明:由题意,根据对勾函数的单调性可得()1111f x x x =+在[]1,2上单调递增,所以()152,2f x ⎡⎤∈⎢⎥⎣⎦.设()21g x x ax a =-+-在[]1,3-上的值域为M ,当12a≤-,即2a -时,()g x 在[1,3]-上单调递增,因为max ()(3)8212g x g a =-=,min ()(1)24g x g a -==-,所以2,52M ⎡⎤⊆⎢⎥⎣⎦;当32a,即6a 时,()g x 在[1,3]-上单调递减,因为max ()(1)212g x g a -==,min ()(3) 824g x g a =--=,所以2,52M ⎡⎤⊆⎢⎥⎣⎦;当132a -<<,即26a -<<时,22min 11()1(2)(4,0]244a g x g a a a ⎛⎫==-+-=--∈- ⎪⎝⎭,max ()max{2, 82}[4,12)g x a a =-∈,所以52,2M ⎡⎤⊆⎢⎥⎣⎦;综上,52,2M ⎡⎤⊆⎢⎥⎣⎦恒成立,即()f x 在[1,2]上的值域是()g x 在[1,3]-上值域的子集恒成立,所以对任意1[1,2]x ∈总存在2[1,3]x ∈-,使得()()12f x g x =成立.31.(2022·内蒙古赤峰·高一期末)已知函数2()21f x ax x a =-+-(a 为实常数). (1)若0a >,设()f x 在区间[1,2]的最小值为()g a ,求()g a 的表达式: (2)设()()f x h x x=,若函数()h x 在区间[1,2]上是增函数,求实数a 的取值范围. 【解析】(1)由于0a >,当[1,2]x ∈时,2211()212124f x ax x a a x a a a ⎛⎫=-+-=-+-- ⎪⎝⎭①若1012a <<,即12a >,则()f x 在[1,2]为增函数 ,()(1)32g a f a ==-; ②若1122a ≤≤,即1142a ≤≤时,11()2124g a f a a a ⎛⎫==-- ⎪⎝⎭;③若122a >,即104a <<时,()f x 在[1,2]上是减函数,()(2)63g a f a ==-; 综上可得163,04111()21,442132,2a a g a a a a a a ⎧-<<⎪⎪⎪=--≤≤⎨⎪⎪->⎪⎩; (2)21()1a h x ax x-=+-在区间[1,2]上任取1212x x ≤<≤, ()()()212121211221212111a a a h x h x ax ax x x a x x x x ⎛⎫⎛⎫⎛⎫----=+--+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭[]211212(21)x x ax x a x x -=--(*) ()h x 在[1,2]上是增函数 ()()210h x h x ∴->∴(*)可转化为12(21)0ax x a -->对任意12,[1,2]x x ∈且12x x <都成立,即1221ax x a >- ①当0a =时,上式显然成立 ②12210,a a x x a ->>,由1214x x <<得211a a-≤,解得01a <≤; ③12210,a a x x a-<<,由1214x x <<得,214a a -≥,得102a -≤<, 所以实数a 的取值范围是1,02⎡⎫-⎪⎢⎣⎭.。
二次函数的最值问题
例4. 若函数f(x)=x2+(a+2)x+3中,x∈[a,b]的图象关于直线 6 x=1对称,则b=________
2 , 0 (2) x 0 , 3 在(1) x x (3) 2 ,3 上的值域.
例1:分别求函数 y x 2 x 3
2
对称轴x = -
2. 求函数y=x2-2x+3在区间[0,a]上的最 值,并求此时x的值。 解: 对称轴:x=1, 抛物线开口向上 1.当0<a≤1时,函数在[0,a]上单调递减, ∴当x=0时,ymax=3 y 当x=a时,ymin=a2-2a+3 2.当1<a<2时 ,函数在[0,1]上单 调递减,在[1,a]上单调递增, 3 ∴当x=1时,ymin=2 2 当x=0时,ymax=3 o 1 2 x 3.当a≥2时 ,函数在[0,1]上单调 a 递减,在[1,a]上单调递增, ∴当x=1时,ymin=2,当x=a时,ymax= a2-2a+3
例1:求二次函数f(x)=x2-2ax-1在区间 [0,2]上的最小值?
变式:求二次函数f(x)=-x2+4ax-3在区间 [-2,1]上的最大值?
例3:求函数y=x2+2ax+3在x[-2,2]时的 最值? 解析: 因为函数y=x2+2ax+3 =(x+a)2+3-a2 的对称轴为x=-a。要求最值则要看x=-a 是否在区间[-2,2]之内,则从以下几个 方面解决如图:
t 2 2 t 7 ( t 1) 从而 g ( t ) 8 (1 t 2 ) t 2 4 t 4 (t 2 )
小结:
本节课讨论了两类含参数的二次函数 最值问题: (1)轴动区间定 (2)轴定区间动 核心思想仍然是判断对称轴与区间的 相对位置,从中体会到数形结合思想、分类 讨论思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数在闭区间上的最值问题湖北省荆州中学 鄢先进二次函数在闭区间上的最值问题是高中数学的重点和热点问题,频繁出现在函数试题中,很受命题者亲睐。
影响二次函数在闭区间上最值问题的主要因素是二次函数图像的开口方向与所给区间和对称轴的位置关系。
本文介绍有关二次函数在闭区间上最值问题的常见类型及解题策略,供同学们参考。
类型一 定轴定区间例1.已知函数2()2f x x x =-,求()f x 的最小值. 解:22()2(1)1f x x x x =-=-- 由图像可知,当1x =时,min ()1f x =-变式1.已知函数2()2f x x x =-,[2,4]x ∈,求()f x 的最小值。
分析:由图像可知,函数)(x f 在[2,4]为增函数,min ()(2)0f x f ∴==变式2.已知函数2()2f x x x =-,[0,3]x ∈,求()f x 的最大值.分析:由图像可知函数()f x 在[0,1]上递减,在[1,3]上递增,且3离对称轴的距离大于0离对称轴的距离。
max ()(3)3f x f ∴==例2.已知二次函数f x ax ax a ()=++-2241在区间[]-41,上的最大值为5,求实数a 的值。
解:将二次函数配方得f x a x a a ()()=++--24122,函数图像对称轴方程为x =-2,顶点坐标为()---2412,a a ,图像开口方向由a 决定。
很明显,其顶点横坐标在区间[]-41,内。
x①若a <0,函数图像开口向下,如下图1所示。
当x =-2时,函数()f x 取得最大值5 即f a a ()-=--=24152,解得a =±210 故a a =-=+210210()舍去图1 图2②若a >0,函数图像开口向上,如上图2所示,当x =1时,函数()f x 取得最大值5 即f a a ()15152=+-=,解得a a ==-16或,故a a ==-16()舍去综上可知:函数f x ()在区间[]-41,上取得最大值5时,a a =-=2101或 点拨:求解有关二次函数在闭区间上的最值问题,应先配方,作出函数图像,然后结合其图像研究,要特别注意开口方向、对称轴和区间的相对位置。
在例1中,二次函数图像的开口,对称轴和区间都是固定的,需引起同学们注意的是,当函数的最值的取得在区间两个端点都有可能的时候,要比较端点与对称轴距离的大小。
在例2中,二次函数图像的对称轴和区间是固定的,但图像开口方向是随参数a 变化的,要注意讨论。
小结:二次函数2()()f x a x k h =-+(0)a >在区间[,]m n 最值问题。
①若[,]k m n ∈,则min ()()f x f k h ==,max ()max{()()}f x f m f n =⋅ ②若[,]k m n ∉,当k m <时,min ()()f x f m =,max ()()f x f n =当k n >时,min ()()f x f n =,max ()()f x f m =当0a <时,仿此讨论 类型二 定轴动区间例3.已知函数22,[2,]y x x x a =-∈-,求函数的最小值().g a分析:由于函数图像的对称轴为1x =,区间左端点固定,区间右端点的位置不能确定,所以需分两类进行讨论,即①对称轴在区间[2,]a -内,②对称轴在区间[2,]a -右侧。
解:函数222(1)1y x x x =-=--①当21a -<<时,函数在[2,]a -上单调递减,则当x a =时,2min 2y a a =- ②当1a ≥时,函数在[2,1]-上单调递减,在[1,]a 上单调递增,则当1x =时,mi n 1y =-。
综上可知:22()1a a g a ⎧-=⎨-⎩211a a -<<≥例4.已知函数2()62x f x x =-++在区间[,]m n 上的值域是[22,22]m n --,求,m n 的值.分析:由于函数图像的对称轴为1x =,而区间左右端点值均含有参数,所以要分三类进行讨论,即①对称轴在区间右侧②对称轴在区间内③对称轴在区间左侧解:22113()6(1)222x f x x x =-++=--+①若1m n <≤,则max ()()2 2.f x f n n ==- m i n ()()2 2.f x f m m ==-经验证无解。
②若1.m n <<则()f x 在区间[,1]m 单调递增,在[1,]n 上单调递减,因此max ()(1)2 2.f x f n ==-()f x 在x m =或x n =处取最小值22m -。
故13222n -=得17.4n = 由于21171339220.().(1)024232m f n -<=--+=>故()f x 在x m =处取最小值2 2.m -即2113(1)2222m m --+=-解得1m =-③若1.m n ≤<则max ()()2 2.f x f m n ==-min ()()2 2.f x f n m ==- 解得2, 4.m n ==综上可知1174m n ⎧=-⎪⎨=⎪⎩或24m n =⎧⎨=⎩.点拨:当二次函数解析式确定,但自变量取值区间变化时,需根据对称轴和区间的位置关系,对区间参数进行讨论。
类型三 动轴定区间例5.求2()21f x x ax =--在区间[0,2]上的最大值和最小值。
分析:因为有自变量有限制条件,要求函数最值,最好是先作出函数图像,作二次函数图像时先看开口方向,再看对称轴的位置,因为此函数图像对称轴.x a =位置不定,并且在不同的位置产生的结果也不同,所以要以对称轴的位置进行分类讨论。
解:22()()1f x x a a =---,对称轴为.x a =①当0a <时,由图①可知,min ()(0)1f x f ==-,max ()(2)34.f x f a ==- ②当01a ≤<时,由图②可知,2min ()()1,f x f a a ==--max ()(2)34.f x f a ==- ③当12a ≤≤时,由图③可知,2min ()()1,f x f a a ==--max ()(0) 1.f x f ==- ④当2a >时,由图④可知,min ()(2)34,f x f a ==-max ()(0) 1.f x f ==-点拨:当二次函数开口方向和给定区间固定,对称轴位置不确定时,只要讨论对称轴和给定区间的位置关系即可,结合图像需分两种或三种情况讨论。
例6.已知二次函数2()21f x x ax a =-++-在[01],上有最大值2,求a 的值. 解:22()()1f x x a a a =--+-+.①当0a <时,max ()(0)2f x f ==,得1a =-. ②当01a ≤≤时,max ()()2f x f a ==,解得1[01]2a ±=∉,,故该方程在[01],上①②③④无解.③当1a >时,max ()(1)2f x f ==,得2a =. 综上可知:1a =-或2a =.点拨:求解二次函数在闭区间上的最值问题,关键是抓住“三点一轴”,“三点”即区间端点与区间中点,“一轴”即二次函数的对称轴,合理进行讨论。
类型四 动轴动区间例7.设a 是正实数,2ax y +=(0,0).x y ≥≥若2132y x x +-的最大值是().M a 求()M a 的表达式.分析:该题是二元函数求最大值,应先由2ax y +=解出y 代入,消元,转化为关于x 的二次函数,再求最大值。
解:设21()32f x y x x =+-由2ax y +=得2y ax =-222111()(2)3[(3)](3) 2.222f x ax x x x a a ∴=-+-=---+-+0y ≥ 20ax ∴-≥.又0,0a x >≥,2[0,].x a∴∈①当203(0)a a a<-<>即01a <<或23a <<时21()(3)(3) 2.2M a f a a ∴=-=-+②当23(0)a a a -≥>即12a ≤≤时∴2226()()M a f a a a ==-+③当30a -≤即3a ≥时∴()(0)2M a f ==综上可知:221(3)2226()2a M a a a ⎧-+⎪⎪⎪=-+⎨⎪⎪⎪⎩(0123)(12)(3)a a a a <<<<≤≤≥或点拨:当二次函数对称轴和区间都不固定时,还是应先配方,理清函数对称轴和区间的位置关系,然后对参数进行讨论。
通过前面二次函数在闭区间上的最值问题的四类题型,我们可以发现二次函数的最值总是在对称轴或区间端点处取得,要是同学们理解了这一点,解决问题还会有意想不到的效果。
例8 .已知函数2()(21)3f x ax a x =+--(0)a ≠在区间3[,2]2-上最大值为1,求实数a 的值.分析:若按常规方法从求函数最大值直接入手,则需作如下分类讨论:①当a <0时,分三种情况讨论最大值, ②当a >0时,分两种情况讨论最大值。
一共有五种情形,过程繁琐。
若从整体角度分析,注意到函数()f x 的最大值只可能产生在二次函数的顶点或端点处,这样可以先求函数()f x 在顶点和端点的函数值,再逐一验证参数的正确性即可。
解:函数()f x 的最大值只能在132x =-,或22x =,或3122ax a-=处取得.①令3()12f -=,解得103a =-,此时01223322202a x a -⎡⎤==-∈-⎢⎥⎣⎦,.故()f x 的最大值不可能在1x 处取得.(103a =-,抛物线开口向下) ②令(2)1f =,解得34a =,此时0321212232a x a -+-==-<.故max ()(2)f x f =,得34a =,符合题意. ③令1212a f a -⎛⎫= ⎪⎝⎭,解得32a -±=.要使()f x 在0122a x a -=处取得最大值,必须且只须0a <且03[,2]2x ∈-,经检验,只有a =综上可知:34a =或32a +=-点拨:本题利用特殊值检验法,先计算特殊点(闭区间的端点、抛物线的顶点)的函数值,再检验其真假,思路明了、过程简洁,是解决逆向型闭区间二次函数最值问题的一种有效方法。
其实二次函数在闭区间上最值问题的本质就是讨论函数在区间内的单调性,在解决有关二次函数的最值问题时,我们要充分利用二次函数图像来分析问题,结合开口方向,对称轴和所给区间的位置关系,合理的进行分类讨论,有时采用逆向思维,还会有事半功倍的效果。