减肥问题数学模型【最优版】

合集下载

数学建模经典案例

数学建模经典案例

运动 t=24 (每周跳舞8小时或自行车10小时), 14周即可.
2)第二阶段增Βιβλιοθήκη 运动的减肥计划增加运动相当于提高代谢消耗系数
( 0.025) t ( 0.028)
减肥所需时间从19周降至14周
提高12%
减少25%
• 这个模型的结果对代谢消耗系数很敏感. • 应用该模型时要仔细确定代谢消耗系数 (对不同的人; 对同一人在不同的环境).
w(k n) 0.975 [w(k ) 50] 50
n
• 第二阶段:每周c(k)保持Cm, w(k)减至75千克
w(k n) 0.975 [w(k ) 50] 50
n
已知 w(k ) 90, 要求 w(k n) 75, 求n
75 0.975 (90 50) 50
k 10
第一阶段10周, 每周减1千克,第10周末体重90千克 吸收热量为 c(k 1) 12000 200k , k 0,1,,9
1)不运动情况的两阶段减肥计划
• 第二阶段:每周c(k)保持Cm, w(k)减至75千克 基本模型 w(k 1) w(k ) c(k 1) w(k )
减肥计划
某甲体重100千克,目前每周吸收20000千卡热量, 体重维持不变。现欲减肥至75千克.
1)在不运动的情况下安排一个两阶段计划. 第一阶段:每周减肥1千克,每周吸收热量逐渐减少, 直至达到下限(10000千卡); 第二阶段:每周吸收热量保持下限,减肥达到目标. 2)若要加快进程,第二阶段增加运动,试安排计划. 3)给出达到目标后维持体重的方案.
n
lg(25 / 40) n 19 lg 0.975
第二阶段19周, 每周吸收热量保持10000千卡, 体重按

数学建模减肥模型例题

数学建模减肥模型例题

数学建模减肥模型例题
以下是一个数学建模的减肥模型例题:
假设一个人想通过控制饮食和运动来减肥,他每天所摄入的总卡路里数(包括食物和饮料)为C,他每天通过进行运动所消耗的总卡路里数为E。

为了减肥,他希望每天的摄入卡路里数小于消耗卡路里数。

假设他的基础代谢率为B,即他在休息状态下所消耗的卡路里数。

他希望通过减少每天摄入的卡路里数和增加运动量来控制减肥速度。

现在我们假设他的减肥速度为V(单位:千克/周),并且他的目标减肥时间为T(单位:周)。

我们需要建立一个模型来计算他每天应该摄入的卡路里数C和他每天需要进行的运动量E。

解决方案:
首先,我们需要根据减肥速度V和目标减肥时间T来计算他的目标减肥总量M(单位:千克)。

M = V * T。

然后,我们可以根据他的基础代谢率B和目标减肥总量M来计算他在目标减肥时间内所需的总卡路里数D。

D = M * 7700(每千克脂肪相当于7700卡路里) + B * T。

接下来,我们可以根据目标减肥总量M和目标减肥时间T来计算每天需要摄入的卡路里数C。

C = D / T。

最后,我们可以计算每天需要进行的运动量E。

E = C - B。

通过这个模型,该人可以根据自己的减肥速度和目标减肥时间来计算每天需要摄入的卡路里数和进行的运动量,从而实现减肥目标。

但需要注意的是,这只是一个简化的模型,实际减肥效果受到多种因素的影响,还需综合考虑其他因素来制定全面的减肥计划。

两个新的减肥差分方程模型和解法

两个新的减肥差分方程模型和解法

两个新的减肥差分方程模型和解法一、引言减肥是现代社会中一个普遍的健康问题。

随着人们对健康的重视程度提升,减肥已成为许多人追求的目标。

对于减肥来说,除了饮食和运动外,数学模型在帮助人们理解和解决减肥问题方面也起到了重要的作用。

本文将介绍两个新的减肥差分方程模型和相应的解法。

二、模型1:体重变化模型2.1 模型描述我们首先考虑一个体重变化的模型。

假设一个人的体重在时间t时刻的变化率与摄入的能量和消耗的能量之间相关。

设W(t)表示时间t时刻的体重,n(t)表示摄入的能量,m(t)表示消耗的能量。

则该模型可以表示为:dW(t)=n(t)−m(t)dt2.2 解法为了求解上述差分方程,我们可以使用离散化的方法来近似求解。

假设时间变化的步长为Δt,则差分方程可以改写为:W(t+Δt)−W(t)=n(t)−m(t)Δt进一步整理得到:W(t+Δt)=Δt⋅(n(t)−m(t))+W(t)因此,我们可以通过迭代的方式逐步计算出体重在不同时刻的值。

三、模型2:脂肪堆积模型3.1 模型描述在对减肥问题进行更深入的分析时,我们希望能够考虑到脂肪的堆积过程。

假设一个人的脂肪堆积速率与摄入的脂肪量和消耗的脂肪量之间相关。

设F(t)表示时间t时刻的脂肪堆积,p(t)表示摄入的脂肪量,q(t)表示消耗的脂肪量。

则该模型可以表示为:dF(t)=p(t)−q(t)dt3.2 解法我们可以使用与前一个模型类似的方法来求解上述差分方程。

假设时间变化的步长为Δt,则差分方程可以改写为:F(t+Δt)−F(t)=p(t)−q(t)Δt进一步整理得到:F(t+Δt)=Δt⋅(p(t)−q(t))+F(t)通过迭代的方式,我们可以逐步计算出脂肪堆积在不同时刻的值。

四、应用实例:健身计划优化4.1 问题描述假设现在有一个减肥者,他希望在一段时间内减掉10公斤的体重。

他每天的饮食和运动有一定的规律,摄入的能量和消耗的能量也是一定的。

他想知道在给定的条件下,通过调整饮食和运动的方式来达到减肥目标。

数学建模减肥模型

数学建模减肥模型

w w c ( t )w
c ( t ) w /
(8)
• 若不运动,容易算出c=15000kcal;若运动(内容同上), 则c=16800kcal。 • 评注 人体体重的变化是有规律可循的,减肥也 应该科学化、定量化。这个模型虽然只考虑了一个非 常简单的情况,但是它对专门从事减肥这项活动(甚 至作为一项事业)的人来说也不无参考价值。 • 体重的变化与每个人特殊的生理条件有关,特别 是代谢系数 ,不仅因人而异,而且即使同一个人在 不同环境下也会有所改变。从上面的计算中我们看到, 当 由 0.025增加到0.028时(变化约12%),减肥所 需时间就从19周减少到14周(变化约25%),所以应 用这个模型是要对 作仔细的 核对。

• •

• •
通常,制订减肥计划以周为时间单位比较方便, 所以这里用离散时间模型——差分方程模型来讨论。 模型假设 根据上述分析,参考有关生理数据, 作出以下简化假设: 1。体重增加正比于吸收的热量,平均每8000kcal 增加体重1kg(kcal为非国际单位制单位1kcal=4.2kJ); 2。正常代谢引起的体重减少正比于体重,每周每 公斤体重消耗热量一般在200kcal至300kcal之间,且因 人而异,这相当于体重70kg的人每天消耗2000kcal至 3200kcal; 3。运动引起的体重减少正比于比重,且与运动形 式有关; 4。为了安全与健康,每周体重减少不宜超过1.5kg, 每周吸收热量不要少于10000kcal。
c / w 20000/ 8000/ 100 0.025
• 相当于每周每公斤体重消耗热量200kcal。从假设2可以 知道,某甲属于代谢相当弱的人。他又吃得那么多, 难怪如此之胖。 • 第一阶段要求体重每周减少b=1kg,吸收热量减 至下限 cmin 10000 kcal , 即

数学建模之减肥问题的数学模型.

数学建模之减肥问题的数学模型.

东北大学秦皇岛分校数学模型课程设计报告减肥问题的数学建模学院数学与统计学院专业信息与计算科学学号5133117姓名楚文玉指导教师张尚国刘超成绩教师评语:指导教师签字:2016年01月09日摘要肥胖已成为公众日益关注的卫生健康问题. 肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一. 但是实际情况却是人们不会理性的对待自己的身体状况,经常使用一些不健康的方式减肥,到最后适得其反,给自己的身体造成很大的伤害. 本文特别的从数学模型的角度来考虑和认识问题,通过该模型的建立,科学的解释了肥胖的机理,引导群众合理科学的减肥.本文建立了减肥的数学模型,从数学的角度对有关身体肥胖的规律做进一步的探讨和分析. 在研究此问题时,体重的实时变化数据是我们研究的核心数据,这就会使我们联系到变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型. 微分方程模型反映的是变量之间的间接关系,因此,在研究体重,能量与运动之间的关系时,得到直接关系就得求解微分方程.本文利用了微分方程模型求解减肥的实际问题,根据基本规律写出了平衡关系式[()()][()()]t t t D A B R t t ωωω+∆-=-+∆再利用一定的转换条件进行转化为简单明了的式子,求解出模型关系式()(1)dt dt at e e dωω--=+- 然后根据建立的模型表达式来解决一些实际的减肥问题,给出数学模型所能解答的一些实际建议.关键字: 微分方程模型 能量守恒 能量转换系数1 问题重述1.1 课题的背景随着社会的进步和发展,人们的生活水平在不断提高,饮食营养摄入量的改善和变化、生活方式的改变,使得肥胖成了社会关注的一个问题. 为此,联合国世界卫生组织曾颁布人体体重指数(简记BMI ):体重(单位:kg )除以身高(单位:m )的平方,规定BMI 在18.5至25为正常,大于25为超重,超过30则为肥胖.据悉我国有关机构针对东方人的特点,拟将上述规定中的25改为24,30改为29.无论从健康的角度,是从审美的角度,人们越来越重视减肥,大量的减肥机构和商品出现,不少自感肥胖的人加入了减肥的行列,盲目的减肥,使得人们感到不理想,如何对待减肥问题,不妨通过组建模型,从数学的角度,对有关的规律作一些探讨和分析.根据背景知识,我们知道任何人通过饮食摄取的能量不能低于用于维持人体正常生理功能所需要的能量,因此作为人体体重极限值的减肥效果指标一定存在一个下限1ω,当1*ωω<时表明能量的摄入过低并致使维持他本人正常的生理功能的所需不足,这种减肥所得到的结果不能认为是有效的,它将危机人的身体健康,是危险的,称1ω为减肥的临界指标.另外,人们认为减肥所采取的各种体力运动对能量的消耗也有一个所能承受的范围,记为10<R R <,当能量的摄取量高于体重0ω时,这是体重不会从0ω减少,所以可以看到单一的措施达不到减肥效果. 1.2 具体的问题和相关数据现有五个人,身高、体重和BMI 指数分别如下表1.1所示,体重长期不变,试为他们按照以下方式制定减肥计划,使其体重减至自己的理想目标,并维持下去:表1.1 身高,体重和BMI 指数表人数编号 1 2 3 4 5 身高 1.7 1.68 1.64 1.72 1.71 体重 100 112 113 114 124 BMI 34.6 33.5 35.2 34.8 35.6 理想目标 75 80 80 85 90 每天摄 入能量 28572543273426892776题目具体要求如下:(1)在基本不运动的情况下安排计划,每天吸收的热量保持下限,减肥达到目标; (2)若是加快进程,增加运动,重新安排计划,经过查找资料得到以下各项运动每小时每kg 体重的消耗的热量如下表1.2所示:表1.2 每小时每kg 体重的热量消耗运动 跑步 跳舞 乒乓 自行车 (中速) 游泳(50m/min )热量消耗7.03.04.42.5 7.9(3)给出达到目标后维持体重的方案.2 模型假设与符号说明2.1 问题分析本问题要建立减肥的数学模型,减肥是一个比较长期和不定的过程,因此要用数学的方法对减肥这一问题建模,就需要选定一个测量肥胖的标准量. 因为人体的脂肪是能量的主要贮存和提供的方式,而且也是减肥的主要目标. 因此,我们以人体脂肪的重量作为体重的标志. 已知脂肪的能量转换率为100﹪,每千克脂肪可以转换为8000kcal,称D为脂肪的能量转换系数.肥胖主要是体现在人的身体上,减肥其实就是将人的体重降下来,所以归根到底,研究减肥就是要研究体重的变化,因此在减肥过程中我们要对人的体重进行持续的检测,忽略个体间的差异(年龄、性别、健康状况等)对减肥的影响,可以将人体的体重ω.看成是时间t的函数()t在减肥的过程中,无论是由于进食摄取能量导致体重的增加,还是由于体力活动消耗能量致使体重的减少,异或还有其他一些不可预知的因素,这都是一个渐变的过程,ω是连续光滑的.所以我们认为能量的摄取和消耗都是随时发生的,而不同所以认定()t的活动对能量的消耗是不同的. 所以我们在建模的过程中需要设定一个参数用来表示某种活动消耗的人体能量. 记r为某一种活动每小时所消耗的能量,记b为1kg体重每小时所消耗的能量.2.2 模型假设1.假设以人体脂肪的重量作为体重的标志.ω是连续而且充分光滑的.2.假设体重随时间的变化()t3.假设在单位时间人体的能量消耗与其体重成正比.4.假设人体每天摄入的能量是一定的.记为A.5.正常代谢引起的减少正比于体重,每人每千克体重消耗热量一般为28.75~45.71kcal,且因人而异.6.假设在研究减肥的过程中,我们忽略个体间的差异对减肥的影响.7.人体每天摄入量是一定的,为了安全和健康,每天吸收热量不要小于1429kcal.8.假设单位时间内人体由于基础代谢和食物特殊动力作用所消耗的能量正比于人的体重.2.3 符号说明D : 脂肪的能量转化系数.()t ω:人体的体重关于时间t 的的函数..r : 每千克体重每小时运动所消耗的能量(/)/kcal kg h .b : 每千克体重每小时所消耗的能量(/)/kcal kg h .0A : 每天摄入的能量.1W : 五个人理想的体重目标向量.A : 五个人每天分别摄入的能量..W : 五个人减肥前的体重.B : 每人每天每千克体重基础代谢的能量消耗.3 模型建立与求解3.1 一般模型建立如果以1天为时间的计量单位,于是每天基础代谢的能量消耗量应=24(/)B b kcal d ,由于人的某种运动一般不会是全天候的,不妨假设每天运动h 小时,则每天由于运动所消耗的能量应为=(/)R rh kcal d . 按照假设2, 体重随时间的变化()t ω是连续而且充分光滑的,我们可以在任何一个时间段内考虑由于能量的摄入与消耗引起人的体重的变化. 按照能量的平衡原理,任何时间段内由于体重的改变所引起的人体内能量的变化应该等于这段时间内摄入的能量与消耗的能量之差. 我们选取某一段时间(, )t t t +∆,在时间段(, )t t t +∆内考虑能量的改变: 设体重改变的能量变化为W ∆,则有=[(+)()]W t t t D ωω∆∆- (3.1)设摄入与消耗的能量之差为M ∆,则有[()()]M A B R t t ω∆=-+∆ (3.2)根据能量平衡原理有M W ∆=∆ (3.3)得:[()()][()()]t t t D A B R t t ωωω+∆-=-+∆ (3.4)取0t ∆→,可得d d (0) a d t ωωωω⎧=-⎪⎨⎪⎩= (3.5) 其中/a A D =,()/d B R D =+,0t =(模型开始考察时刻),即减肥问题的数学模型 模型求解得()(1)dt dt at e e dωω--=+- (3.6)/a A D =表示由于能量的摄入而增加的体重,而()/d B R D =+表示由于能量的消耗而失掉的百分数(每单位体重中由于基础代谢和活动而消耗掉的那部分). 3.2 针对实际问题的模型建立1. 由一般模型的建立已经知道减肥问题的数学模型为微分方程模型(3.6),利用此方法可求解出每个人要达到自己的理想体重的天数.首先确定此人每天每千克体重基础代谢的能量消耗B ,因为没有运动,所以有0R =,根据式(3.6)式,得AB W=(3.7)从而得到每人每天每千克体重基础代谢的能量消耗从假设5可知,这些人普遍属于代谢消耗相当弱的人,加上吃得比较多,有没有运动,所以会长胖,进一步,由()t ω (五人的理想体重),W (五人减肥前的体重),D=8000kcal/kg (脂肪的能量转换系数),根据式(3.6)式有001/ln ln/a d D B At d a d B B Aωωωω--=-=--- (3.8) 将A (五个人每天分别摄入的能量)的值代入上式时,就会得出五个人要达到自己的理想体重时的天数,如下表3.1所示表3.1 达到理想体重所需天数表人1 2 3 4 5 天数 194 372 313 266 298Matlab 源程序: R = 0;D = 8000; %能量转换系数W1 = [ 75 80 80 85 90 ]; %理想的体重目标A = [ 2857 2543 2734 2689 2776 ]; %每人每天摄入的能量 W = [100 112 113 114 124 ]; %每人的体重 n = length( W );B = A./W %每人每天每千克体重基础代谢的能量消耗 a = A./D d = (B + R)./D for i = 1:nt(i) = -(D/B(i))*log((W1(i)*B(i)-A0)/(W(i)*B(i)-A0)); %减肥所需要的时间 end2. 为加快进程,增加运动,结合查找资料得到各项运动每小时每kg 体重消耗的热量表2,再结合假设3,取1h h =,R rh r ==,根据式(4.6)有001/()ln ln/()a d D B R At d a d B R B R Aωωωω-+-=-=--++- (3.9) 将A (五个人每天分别摄入的能量)的值代入上式时,取不同的r ,得到一组数据, 在运动的情况下,我们选取的是一个小时,得到了每个人在不同运动强度下,要达到自己的理想目标所需的天数,如下表3.2所示:表3.2 不同运动强度下达到理想体重所需天数运动跑步 跳舞 乒乓 自行车 游泳 时间/天122 155 141 160 116 187 261 229 274 176 173 232 207 243 164 148 198 177 206 140 163 220 196 230 154Matlab 源程序: h = 1;r = [ 7.0 3.0 4.4 2.5 7.9 ]; R = h.*r; n1 = length(R);D = 8000; %能量转换系数W1 = [ 75 80 80 85 90 ]; %理想的体重目标A = [ 2857 2543 2734 2689 2776 ]; %每人每天摄入的能量 W = [ 100 112 113 114 124 ]; %每人的体重 n = length(W);B = A./W; %每人每天每千克体重基础代谢的能量消耗 for j = 1:n1 for i = 1:nt = (i,j) = -(D./(B(i) + R(j)) * log((W1(i). * (B(i)+R(j)) - A0)./(W(i).* (B(i) + R(j)) -A0))); %减肥所需要的时间end end3. 要使体重稳定在一个定值,则有*AB Rω=+ (3.10) 根据自己的不同理想目标和B (每人每天每千克体重基础代谢的能量消耗),在不同小时下的能量消耗表:(1)在1h =的情况下运动所消耗的能量,如下表3.3表3.3 1h =的情况下运动所消耗的能量运动 跑步 跳舞 乒乓 自行车 游泳消耗能量(kcal) 2667.00 2367.800 2472.800 2330.200 2735.300 2376.400 2056.400 2168.400 2016.400 2448.400 2495.600 2175.600 2287.600 2135.600 2567.600 2600.000 2260.000 2379.000 2217.500 2676.500 2644.800 2284.800 2410.800 2239.800 2725.800(2)在2h =的情况下运动所消耗的能量,如下表3.4表3.4 2h =的情况下运动所消耗的能量运动 跑步 跳舞 乒乓 自行车 游泳 消耗能量(kcal) 3198.00 2592.800 2802.800 2517.700 3327.800 2936.400 2296.400 2520.400 2216.400 3080.400 3055.600 2415.600 2639.600 2335.600 3199.600 3195.000 2515.000 2753.000 2430.000 3348.000 3274.800 2554.800 2806.800 2464.800 3436.800Matlab 源程序: h = [12];r = [ 7.0 3.0 4.4 2.5 7.9 ]; R = h*r;D = 8000; %能量转换系数W1 = [ 75 80 80 85 90 ]; %理想的体重目标A = [ 2857 2543 2734 2689 2776 ]; %每人每天摄入的能量 W = [ 100 112 113 114 124 ]; %每人的体重 n1 = length(W);B = A./W; %每人每天每千克体重基础代谢的能量消耗 for j = 1:n for I = 1:n1A1(i,j) = W1(i).*(B(i)+R(1,j)); %在h=1的时间下运动所消耗的能量 A2(i,j) = W1(i).*(B(i)+R(2,j)); %在h=2的时间下运动所消耗的能量 end end4 模型的分析与讨论4.1 针对一般减肥模型在式(3.6)中假设0a =,即假设停止进食,无任何能量摄入,于是有0()dt t e ωω-= (4.1)这表明在t 时刻保存的体重占初始体重的百分率由dt e -给出,特别当1t =时,e d -给出了单位时间内体重的消耗率,它表明在(0,)t 时间内体重的消耗率,它表明在(0,)t 内体重减少的百分率,可见这种情况下体重的变化完全是体内脂肪的消耗而产生的,如此继续下去,由lim 0t t ω→∞=(),即体重(脂肪)将消耗殆尽,可知不进食的节食减肥方法是危险的.a/d 是模型中的一个重要的参数,由于/a A D =表示由于能量的摄入而增加的体重,而()/d B R D =+表示由于能量的消耗而失掉的体重,于是/a d 就表示摄取能量而获得的补充量,综合以上的分析可知, t 时刻的体重由两部分构成, 一部分是初始体重中由于能量消耗而被保存下来的部分. 另一部分是摄取能量而获得的补充部分,这一解释从直观上理解也是合理的. 由式(3.5)0dtd <ω即/a d ω<,体重从0ω递减, 这是减肥产生效果,另外由式(3.6)可以看到t →∞时*()//()t a d A B R ωω→==+,也就是说式(3.5)的解渐进稳定于*a/d ω=,它给出了减肥过程的最终结果,因此不妨称*ω为减肥效果指标,由*/()A B R ω=+,因为B 是基础代谢的能量消耗,它不能作为减肥的措施随着每个人的意愿进行改变,对于每个人可以认为它是一个常数,于是就有如下结论:减肥的效果主要是由两个因素控制的,包括由于进食而摄入的能量以及由于运动消耗的能量,从而减肥的两个重要措施就是控制饮食和增加运动量,这恰是人们对减肥的认识.人体体重的变化时有规律可循的,减肥也应科学化,定量化,这个模型虽然只是揭示了饮食和锻炼这两个主要因素与减肥的关系,但它们对人们走出盲区减肥的误区,从事减肥活动有一定的参考价值. 4.2 针对具体问题从上几个表可知,普遍观察得出结论,游泳是减肥的最佳方法,无论是在长时间还是短时间内,从结果来看,游泳消耗的能量是最多的,也是达到快速减肥的最佳方法,也可从下图可知,图4.1表示每个人的能量消耗图,都是离散的,并且都是递增的,表明了游泳时能量消耗最快的,选此方法减肥是最合理有效的. Matlab 源程序: x = [ 7.0 3.0 4.4 2.5 7.9 ]; y = [ 2667.00 2367.800 2472.800 2330.200 2735.300 2376.400 2056.400 2168.4002016.4002448.4002495.600 2175.600 2287.600 2135.600 2567.600 2600.000 2260.000 2379.000 2217.500 2676.500 2644.8002284.8002410.800 2239.800 2725.800 ];subplot( 3, 2, 1 ); plot( x, y(1,:),' g* '); title(' 第一个人 '); subplot( 3, 2, 2); plot( x, y(2,:),' ro '); title(' 第二个人 ');数学与统计学院课程设计(实习)报告第10页subplot( 3, 2, 3);plot( x, y(3,:),' g. ');title(' 第三个人');subplot( 3, 2, 4);plot( x, y(4,:),' c+ ');title('第四个人');subplot( 3, 2, 5);plot( x ,y(5,:),' go ');title(' 第五个人');图4.1 每个人的能量消耗图参考文献[1]姜启源,谢金星,叶俊. 数学模型[M]. 北京: 高等教育出版社, 2015年.[2]王敏生,王庚. 现代数学建模方法[M]. 北京: 科学出版社, 2008年.[3]罗万成. 大学生数学建模案例精选[M]. 成都: 西南交通大学出版社, 2007年.[4]胡良剑,孙晓君. Matlab数学实验[M]. 北京: 高等教育出版社, 2006年.。

减肥计划的数学模型

减肥计划的数学模型


关键字:体重 、吸收热量、消耗热量、体重指数
问题重述

我们知道肥胖与热量吸收有直接关系, 我们将通过调整饮食和增减运动来降低 某同学对热量的吸收,帮他制定减肥计 划,看他在一个月内能否减肥成功。
背景与问题的分析


背景分析:1.体重指数BIM=W(kg)/L2 (m2), 18.5<BIM<25~ 正 常 ; BIM>25~ 超 重 ; BIM>30~肥胖2.通过控制饮食和适当的运动, 在不伤害身体的情况下,达到减肥目标 问题分析:饮食(吸收热量)引起体重增加 代谢和运动(消耗热量)引起体重减少
模型评价

此模型有利于看出减肥的趋势,合理分配生活时间起到了双赢的 效果,而且计算较小。但是此模型考虑的因素不会很全面,所以 会有一定的误差
现欲减肥至60公斤3为了安全与健康每周体重不宜超过15公斤每周吸收的热量不要小于10000千卡每小时每千克运动消耗的热量模型的建立每周吸收20000千卡w80公斤不变qm10000wk1wkaqk1bartwk模型求解qk1baw1a1bk8000200kqm10000取art0007即rt56bbart0032n12模型检验一个月内无法减肥成功经科学研究一周不要减肥超过15公斤再经模型求解计算出需要22周才能达到减肥目标值也就是说平均每周减肥091公斤这个数值比较符合事实又不会影响身体的健康
模型假设


减肥计划:某同学体重80公斤,身高1.6m,目前每周吸收20000 千卡热量。现欲减肥至60公斤 1)体重增加正比于吸收的热量,每8000千卡增加体重1千克 2)运动引起的体重减少正比于体重,且与运动形式有关 3)为了安全与健康,每周体重不宜超过1.5公斤,每周吸收的热 量不要小于10000千卡

减肥的数学模型

减肥的数学模型

减肥的数学模型
三、模型假设
(1)设某人每天摄取的热量是 a J,其中 b J 用于新陈代谢(自动消耗) ,而从事工作、生活每 天每 kg 体重消耗 J 的热量, 进行体育锻炼每天 每 kg 体重消耗 J 的热量; (2) 某人以脂肪形式储存的热量百分百有效, 而 1 kg 脂肪所含热量是 42000J; (3)设体重 (t )是 t 的连续可微函数。
解得
)t a b (a b) ( ) 0 ( (t ) e 42000

( ) t 42000
(5.2.3)
减肥的数学模型
下面作进一步的分析,对(5.2.3)求导得
d (a b) ( ) 0 e dt 42000

( ) t 42000
Байду номын сангаас
(5.2.4)
由(5.2.1)、(5.2.3)、(5.2.4)可以对 减(增)肥效果分析如下:
(1 )若 (a b) ( ) 0 ,即每天净吸收大 d 0, 则体重增加; 于当初总消耗, dt
减肥的数学模型
(2) 若 (a b) ( ) 0 , 即每天净吸收小于 d 0, 则体重减少; 当初总消耗, dt (3) 若 (a b) ( ) 0 , 即每天净吸收等于 d 0, 则体重不变; 当初总消耗, dt (4)由(5.2.3)知
减肥的数学模型
一、问题的提出 随着生活水平的提高,普通百姓减肥之 风日盛,但是众多的减肥食品几乎让人不 知所措,有些甚至对身体产生危害,迫切 需要考虑如何建立减肥的数学模型以便进 行指导?
减肥的数学模型
二、问题分析
各种族不同性别的人都有自己的体重标准。对 亚洲人来说,超过标准体重的20%视为肥胖,肥 胖从某种意义上就是脂肪过多。如果吸收了过多 的热量,则这些热量就会转化为脂肪而使体重增 加。为了减肥似乎应该不吃或少吃,但为了维持 生命,就必须摄入一定的热量以进行必要的新陈 代谢、学习、工作。因此,减肥应基于对饮食、 新陈代谢、学习、工作这些关系的正确分析上, 选择适当的方法进行。减肥模型的建立就由此入 手。

减肥问题的数学模型

减肥问题的数学模型

减肥问题的数学模型李剑飞 陈永福 周全中摘要:在我们日常生活中,肥胖问题日益突出。

肥胖不仅影响身体的灵敏度,而且容易引起各种心脑血管疾病。

那么,怎样才能达到减肥的目的?根据所学知识,当人体能量消耗大于摄入时,体内脂肪将燃烧提供能量以满足人体所需。

在这个模型中,我们分析了能量的三个来源:碳水化合物、蛋白质、脂肪,并通过网上查询得到了有关能量消耗的基本资料:E=1.1×Q ωW (1+∑=41j j j k ω),即能量 的消耗有基础代谢消耗和体力活动消耗两种方向;最后我们得出了体重的变化公式34131)1(1.1λλ∑∑==+-=∆j j j w i ii w k Q m m 为检验模型的适用性,我们还充分根据网上资料,合理取值,得出了与实际基本相符的数据:对一体重为W=65kg 的男性,若其参加各种活动所占的比例为ω1=0.4,=2ω0.3,=3ω0.2,4ω=0.1摄入各种物质的质量为 m 1=0.15kg ,m 2=0.2kg ,m 3=0.15kg 则此人每日长胖0.099kg对一体重为45kg 的女性,设其每日摄入物质为m 1=0.15kgm 2=0.002kg m 3=0.002kg ,每日的活动比例为0.05,0.05,0.1,0.8,则同理可算得:此人每日变瘦0.071kg 。

在模型的改进中,我们考虑了人群的差异性和减肥方式的多样,尽可能地与实际相符合。

该模型是一个较为一般的模型,具有普适性,可以推广到金融等经济机构中去。

关键词:减肥 消耗 摄入 活动 燃烧值减肥问题的数学模型一、 问题的提出现今社会,随着物质生活水平的提高,肥胖已成为困扰人们身体健康的一大疾病,减肥已日趋大众化。

如何有效地,健康地减肥成为一个亟待解决的问题。

下面本文从减肥机理的角度出发建立合理的数学模型来解决这个问题。

二、 问题的分析肥胖困扰着很大一部分人群。

如何耗去多余的脂肪,提高身体健康质量,成为人们的共识。

两个新的减肥差分方程模型和解法

两个新的减肥差分方程模型和解法

两个新的减肥差分方程模型和解法随着现代化生活方式的普及,越来越多的人开始关注自身体型和健康状况。

而减肥就成为了现代人生活中重要的一部分。

基于此,数学家们提出了两个新的减肥差分方程模型和解法。

首先,第一个模型基于人类摄入食物和消耗热量的关系。

该模型的方程为:dW/dt = (I - E)/C其中,dW/dt代表单位时间内体重的变化率;I代表人类摄入的食物热量;E代表人类消耗的热量;C代表消耗1千卡路里所需的平均热量。

该方程通过计算摄入与消耗的热量之差,从而求得体重的变化。

为了解决该方程,数学家们采用了欧拉法。

该方法的基本思路是将连续的问题转化为离散的问题,从而使用计算机进行求解。

具体而言,在每个时间间隔内,将dW/dt进行离散化处理,即:W(i+1) = W(i) + dW/dt * h其中,h代表时间间隔。

通过迭代计算,最终可以得到体重在不同时间点下的变化。

尽管该模型基于简单的数学方程,但是它确实能对人类减肥过程中的体重变化进行预测和改善。

接下来,第二个模型基于人类饮食习惯的优化。

该模型的方程为:dP/dt = (I - αP)/C其中,dP/dt代表单位时间内肥胖程度的变化率;I代表人类的进食量;C代表人类消耗1千卡路里所需的平均热量;α代表人类的饱腹感。

该方程通过计算摄入与消耗的热量之差以及人类饮食习惯对饱腹感的影响,从而求得肥胖程度的变化。

为了解决该方程,数学家们采用了欧拉法和六阶龙格-库塔法。

这些方法不仅可以有效地预测人类肥胖程度的变化,而且可以对饮食习惯进行优化建议。

值得一提的是,这两个减肥差分方程模型可以被用于各种生物学、医学和工程学领域中。

它们也可以发挥更广泛的作用,例如在气象或地球科学领域中进行气候模拟和自然灾害预测。

总的来说,这两个新的减肥差分方程模型和解法为数学家们提供了一种有效的方式来解决减肥难题。

同时,它们也为我们提供了一个有趣而且有用的开创性途径来解决其他各种问题。

数学建模减肥计划

数学建模减肥计划

减肥计划——节食与运动背景社会的进步和发展,人们的生活水平不断提高。

由于饮食营养摄入量的不断改善和提高,“肥胖”已经成为全社会关注的一个重要的问题。

您的体重正常吗?不妨用联合国世界卫生组织颁布的所谓体重指数(简记BMI )体重指数BMI=w(kg)/l2(m2) 18.5<BMI<25 ~正常;BMI>25 ~ 超重; BMI>30 ~ 肥胖。

肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。

肥胖也是身体健康的晴雨表,反映着体内多方面的变化。

很多人在心理上害怕肥胖,追求苗条,不少人纷纷奔向减肥食品的柜台。

可是大量事实说明,多数减肥食品达不到减肥的目标,或者即使能减肥一时,也难以维持下去。

许多医生和专家的意见是,只有通过控制饮食和适当的运动,才能在不伤害身体的条件下,达到减轻体重并维持下去的目的,本论文要建立一个简单的体重变化规律模型,并由此通过节食与运动制定合理、有效地减肥计划。

模型分析通常,当体内能量守恒被破坏时就会引起体重的变化。

人们通过饮食吸收热量,转化为脂肪等,导致体重增加;又由于代谢和运动消耗热量,引起体重减少。

只要做适当的简化假设就可得到体重变化的关系。

减肥计划应以不伤害身体为前提,这可以用吸收热量不要过少、减少体重不要过快来表达。

当然,增加运动量是加速减肥的有效手段。

通常,制定减肥计划以周为时间单位比较方便,所以这里用离散时间模型——差分方程模型来讨论。

模型假设根据上述分析,参考有关生理数据,作出以下简化假设:1)体重增加正比于吸收的热量——每8000千卡增加体重1千克;2)代谢引起的体重减少正比于体重,每周每公斤体重消耗200千卡 ~ 320千卡(因人而异),相当于70千克的人每天消耗2000千卡 ~ 3200千卡;3)运动引起的体重减少正比于体重,且与运动形式有关;4)为了安全与健康,每周体重减少不宜超过 1.5千克,每周吸收热量不要小于10000千卡。

数学建模减肥计划

数学建模减肥计划

减肥计划——节食与运动摘要:本题讨论的是人体体重在随着人体代谢和人的运动而减少的减肥计划。

小组成员:常露鹏首先在每周减肥1kg,每周吸收的热量渐渐减少,直至安全下限的情况下,建立差分方程模型计算出:c(k+1)=(β∗ω(0)−(1+β∗k))/α,得出k<=10;其次在c(k)=42000kJ安全下限,人体基本不运动情况下得到方程:ω(n+10)=(1-β)^n*[ω(10)-α*42000/β]+α*42000/β,在人体运动时有β1=(β+α*γ*t)满足上式方程。

最后在体重维持75kg稳定时,求出人体在不运动和运动的不同状态下的每周需要吸收的热量c。

在体重维持75kg稳定时,求出人体在不运动和运动的不同状态下的每周需要吸收的热量c。

关键词:差分方程;常微分方程;常数变易法;MTLAB;问题重述:体重指数(BMI)定义为:体重指数(BMI)=体重/ 身高的平方,规定BMI在18.5至25之间为正常,大于25为超重,超过30为肥胖。

据悉,我国针对东方人的特点,拟将上述标准的25改为24,30改为29。

在不伤害身体的条件下,达到减轻体重并维持下去的目的。

问题分析:1.人们通过饮食及吸收热量,转化为脂肪等,导致身体加重。

2.运动和代谢可以消耗热量引起体重减少,因为体重变化受其他因素的影响,所以描述体重的变化要做出适当的假设。

3.减肥计划应当注意身体健康,不能伤害身体,这可以用吸收热量不要过少,减肥不要过快来表达。

其中增加运动量是快速减肥的最好手段,要在建模中凸现出来。

问题假设:根据分析,参考资料,作出以下假设。

(1)假设人处于正常代谢的最佳状态。

忽略人体的健康,性别,年龄等因素。

假设体重与时间有关。

(2)体重的增加与吸收的热量成正比,用α=1/33600(kg/kJ),即平均每33600KJ的热量能够使人体重增加1kg。

(3)正常代谢引起的体重减少与体重成正比,β表示代谢消耗系数,因人而异,每周每千克体重消耗热量一般在840—1344kJ。

数学建模减肥计划

数学建模减肥计划

当维持体重ω(k)=75kg(稳定)时,我们由 (1)得到������*c-β*ω(k)=0. 得到c=63000kJ,我们由(2)式得到������*cβ1*ω(k)=0. 得到c=70560kJ。


由以上差分方程的图形得知,体重随时间 在一定范围内单调递减,所以当c=42000kJ 时,可以让人达到减肥目的。但是最后体 重会在某时刻达到极 限(即稳定)。如图
对于第二阶段,c(k)=42000kJ,所以 ω(k+1)=(1-β)ω(k)+������*42000(5) 设体重由90kg减至75kg需要n周,则由(5) 有 ω(n+10)=(1-β)^n*[ω(10)-������*42000/β]+������ *42000/β(6) ω(n+10)=75,ω(10)=90,n=19。 如图

如果该肥胖者运动,可取������*γ*t=0.003(每周 跳舞8h或骑自行车10h),记β�)=(1-β1)^n*[ω(10)-������ *42000/β1]+������*42000/β1(7) 把������,β1的数据带入(7),n=14。如图
0

上式的基本性质(如:稳定点、单调性、 极限等)和模型(5)相似。
b
b

林道荣.数学实验与数学建模【M】.北京: 科学出版社,2011.
用ω(k)表示第k周某人的体重,其第k周吸收 的热量为c(k)。 不考虑运动:我们有差分方程模型为 ω(k+1)= ω(k)+������*c(k+1)- β*ω(k),k=0,1,2,3… 如果每周运动时间为t h,则 ω(k+1)= ω(k)+������*c(k+1)-(β+������*γ*t)(k), k=0,1,2,3…

减肥问题数学模型【最优版】

减肥问题数学模型【最优版】

减肥问题数学模型【最优版】小S 减肥法 请看http://goo.gl/tfaCQ减肥问题数学模型摘要肥胖已成为公众日益关注的卫生健康问题。

肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。

但是实际情况确是违禁广告屡禁不止。

之所以造成这种情况的原因很多,但是有一个重要原因就是科学素质低,不知道应该从生理机理,特别是从数学模型的角度来考虑和认识问题。

该模型的优点是科学的解释了肥胖的机理,引导群众合理科学的减肥。

在问题一中,我们找到营养的供给、成人(男、女)每天需要的热量、热量的主要构成、活动强度系数表以及三种热量构成物的单位产热量等方面数据,并结合肥胖的三个要素(进食、活动、新陈代谢),建立了如下的数学模型:w(t)=)1(0ct ct e ca e w ---+ 其a=i i i i i i r r w η∑∑==3131/;c=(1+10+i μ)4.2310⨯/i i i r η∑=31。

同时也提出了,模型的改造方法一跟二。

在问题二中,实际应用上面的数学模型,重点对“NRG 清赘减肥胶囊”减肥药广告以及“10步易学瘦身操模型论述”减肥方法广告进行了论述和判断其是否对人体有副作用。

在对“10步易学瘦身操模型论述”减肥方法广告进行的论述中,还进行了定量的计算。

关键词:减肥饮食活动新陈代谢一、问题重述肥胖已成为公众日益关注的卫生健康问题。

肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。

肥胖也是身体健康的晴雨表,反映着体内多方面的变化。

很多人在心理上害怕自己变得肥胖,追求苗条,因而减肥不仅是人们经常听到的话题,更有人花很多的时间和金钱去付诸实践的活动,从而也就造成了各种减肥药、器械和治疗方法的巨大的市场。

数学建模之减肥问题的数学模型

数学建模之减肥问题的数学模型

东北大学秦皇岛分校数学模型课程设计报告减肥问题的数学建模学院数学与统计学院专业信息与计算科学学号5133117姓名楚文玉指导教师张尚国刘超成绩教师评语:指导教师签字:2016年01月09日摘要肥胖已成为公众日益关注的卫生健康问题. 肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一. 但是实际情况却是人们不会理性的对待自己的身体状况,经常使用一些不健康的方式减肥,到最后适得其反,给自己的身体造成很大的伤害. 本文特别的从数学模型的角度来考虑和认识问题,通过该模型的建立,科学的解释了肥胖的机理,引导群众合理科学的减肥.本文建立了减肥的数学模型,从数学的角度对有关身体肥胖的规律做进一步的探讨和分析. 在研究此问题时,体重的实时变化数据是我们研究的核心数据,这就会使我们联系到变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型. 微分方程模型反映的是变量之间的间接关系,因此,在研究体重,能量与运动之间的关系时,得到直接关系就得求解微分方程.本文利用了微分方程模型求解减肥的实际问题,根据基本规律写出了平衡关系式[()()][()()]t t t D A B R t t ωωω+∆-=-+∆再利用一定的转换条件进行转化为简单明了的式子,求解出模型关系式然后根据建立的模型表达式来解决一些实际的减肥问题,给出数学模型所能解答的一些实际建议.关键字: 微分方程模型 能量守恒 能量转换系数1 问题重述1.1 课题的背景随着社会的进步和发展,人们的生活水平在不断提高,饮食营养摄入量的改善和变化、生活方式的改变,使得肥胖成了社会关注的一个问题. 为此,联合国世界卫生组织曾颁布人体体重指数(简记BMI ):体重(单位:kg )除以身高(单位:m )的平方,规定BMI 在18.5至25为正常,大于25为超重,超过30则为肥胖.据悉我国有关机构针对东方人的特点,拟将上述规定中的25改为24,30改为29.无论从健康的角度,是从审美的角度,人们越来越重视减肥,大量的减肥机构和商品出现,不少自感肥胖的人加入了减肥的行列,盲目的减肥,使得人们感到不理想,如何对待减肥问题,不妨通过组建模型,从数学的角度,对有关的规律作一些探讨和分析.根据背景知识,我们知道任何人通过饮食摄取的能量不能低于用于维持人体正常生理功能所需要的能量,因此作为人体体重极限值的减肥效果指标一定存在一个下限1ω,当1*ωω<时表明能量的摄入过低并致使维持他本人正常的生理功能的所需不足,这种减肥所得到的结果不能认为是有效的,它将危机人的身体健康,是危险的,称1ω为减肥的临界指标.另外,人们认为减肥所采取的各种体力运动对能量的消耗也有一个所能承受的范围,记为10<R R <,当能量的摄取量高于体重0ω时,这是体重不会从0ω减少,所以可以看到单一的措施达不到减肥效果.1.2 具体的问题和相关数据现有五个人,身高、体重和BMI 指数分别如下表1.1所示,体重长期不变,试为他们按照以下方式制定减肥计划,使其体重减至自己的理想目标,并维持下去:表1.1 身高,体重和BMI 指数表题目具体要求如下:(1)在基本不运动的情况下安排计划,每天吸收的热量保持下限,减肥达到目标;(2)若是加快进程,增加运动,重新安排计划,经过查找资料得到以下各项运动每小时每kg体重的消耗的热量如下表1.2所示:表1.2 每小时每kg体重的热量消耗(3)给出达到目标后维持体重的方案.2 模型假设与符号说明2.1 问题分析本问题要建立减肥的数学模型,减肥是一个比较长期和不定的过程,因此要用数学的方法对减肥这一问题建模,就需要选定一个测量肥胖的标准量. 因为人体的脂肪是能量的主要贮存和提供的方式,而且也是减肥的主要目标. 因此,我们以人体脂肪的重量作为体重的标志. 已知脂肪的能量转换率为100﹪,每千克脂肪可以转换为8000kcal,称D为脂肪的能量转换系数.肥胖主要是体现在人的身体上,减肥其实就是将人的体重降下来,所以归根到底,研究减肥就是要研究体重的变化,因此在减肥过程中我们要对人的体重进行持续的检测,忽略个体间的差异(年龄、性别、健康状况等)对减肥的影响,可以将人体的体重看成是时间t的函数()tω.在减肥的过程中,无论是由于进食摄取能量导致体重的增加,还是由于体力活动消耗能量致使体重的减少,异或还有其他一些不可预知的因素,这都是一个渐变的过程,所以认定()tω是连续光滑的.所以我们认为能量的摄取和消耗都是随时发生的,而不同的活动对能量的消耗是不同的. 所以我们在建模的过程中需要设定一个参数用来表示某种活动消耗的人体能量. 记r为某一种活动每小时所消耗的能量,记b为1kg体重每小时所消耗的能量.2.2 模型假设1.假设以人体脂肪的重量作为体重的标志.2.假设体重随时间的变化()tω是连续而且充分光滑的.3.假设在单位时间人体的能量消耗与其体重成正比.4.假设人体每天摄入的能量是一定的.记为A.5.正常代谢引起的减少正比于体重,每人每千克体重消耗热量一般为28.75~45.71kcal,且因人而异.6.假设在研究减肥的过程中,我们忽略个体间的差异对减肥的影响.7.人体每天摄入量是一定的,为了安全和健康,每天吸收热量不要小于1429kcal.8.假设单位时间内人体由于基础代谢和食物特殊动力作用所消耗的能量正比于人的体重.2.3 符号说明D:脂肪的能量转化系数.:人体的体重关于时间t的的函数..()tkcal kg h.r:每千克体重每小时运动所消耗的能量(/)/kcal kg h.b:每千克体重每小时所消耗的能量(/)/A:每天摄入的能量.1W : 五个人理想的体重目标向量.A : 五个人每天分别摄入的能量..W : 五个人减肥前的体重.B : 每人每天每千克体重基础代谢的能量消耗.3 模型建立与求解3.1 一般模型建立如果以1天为时间的计量单位,于是每天基础代谢的能量消耗量应=24(/)B b kcal d ,由于人的某种运动一般不会是全天候的,不妨假设每天运动h 小时,则每天由于运动所消耗的能量应为=(/)R rh kcal d . 按照假设2, 体重随时间的变化()t ω是连续而且充分光滑的,我们可以在任何一个时间段内考虑由于能量的摄入与消耗引起人的体重的变化.按照能量的平衡原理,任何时间段内由于体重的改变所引起的人体内能量的变化应该等于这段时间内摄入的能量与消耗的能量之差. 我们选取某一段时间(, )t t t +∆,在时间段(, )t t t +∆内考虑能量的改变:设体重改变的能量变化为W ∆,则有=[(+)()]W t t t D ωω∆∆- (3.1)设摄入与消耗的能量之差为M ∆,则有[()()]M A B R t t ω∆=-+∆ (3.2)根据能量平衡原理有M W ∆=∆ (3.3)得:[()()][()()]t t t D A B R t t ωωω+∆-=-+∆ (3.4)取0t ∆→,可得 0d d (0) a d t ωωωω⎧=-⎪⎨⎪⎩= (3.5)其中/a A D =,()/d B R D =+,0t =(模型开始考察时刻),即减肥问题的数学模型模型求解得()(1)dt dt at e e dωω--=+- (3.6) /a A D =表示由于能量的摄入而增加的体重,而()/d B R D =+表示由于能量的消耗而失掉的百分数(每单位体重中由于基础代谢和活动而消耗掉的那部分).3.2 针对实际问题的模型建立1. 由一般模型的建立已经知道减肥问题的数学模型为微分方程模型(3.6),利用此方法可求解出每个人要达到自己的理想体重的天数.首先确定此人每天每千克体重基础代谢的能量消耗B ,因为没有运动,所以有0R =,根据式(3.6)式,得A B W= (3.7) 从而得到每人每天每千克体重基础代谢的能量消耗从假设5可知,这些人普遍属于代谢消耗相当弱的人,加上吃得比较多,有没有运动,所以会长胖,进一步,由()t ω (五人的理想体重),W (五人减肥前的体重),D=8000kcal/kg (脂肪的能量转换系数),根据式(3.6)式有001/ln ln /a d D B A t d a d B B Aωωωω--=-=--- (3.8) 将A (五个人每天分别摄入的能量)的值代入上式时,就会得出五个人要达到自己的理想体重时的天数,如下表3.1所示表3.1 达到理想体重所需天数表Matlab源程序:R = 0;D = 8000; %能量转换系数W1 = [ 75 80 80 85 90 ]; %理想的体重目标A = [ 2857 2543 2734 2689 2776 ]; %每人每天摄入的能量W = [100 112 113 114 124 ]; %每人的体重n = length( W );B = A./W %每人每天每千克体重基础代谢的能量消耗a = A./Dd = (B + R)./Dfori = 1:nt(i) = -(D/B(i))*log((W1(i)*B(i)-A0)/(W(i)*B(i)-A0)); %减肥所需要的时间end2. 为加快进程,增加运动,结合查找资料得到各项运动每小时每kg 体重消耗的热量表2,再结合假设3,取1h h =,R rh r ==,根据式(4.6)有001/()ln ln /()a d D B R A t d a d B R B R Aωωωω-+-=-=--++- (3.9) 将A (五个人每天分别摄入的能量)的值代入上式时,取不同的r ,得到一组数据,在运动的情况下,我们选取的是一个小时,得到了每个人在不同运动强度下,要达到自己的理想目标所需的天数,如下表3.2所示:表3.2 不同运动强度下达到理想体重所需天数Matlab源程序:h = 1;r = [ 7.0 3.0 4.4 2.5 7.9 ];R = h.*r;n1 = length(R);D = 8000; %能量转换系数W1 = [ 75 80 80 85 90 ]; %理想的体重目标A = [ 2857 2543 2734 2689 2776 ]; %每人每天摄入的能量W = [ 100 112 113 114 124 ]; %每人的体重n = length(W);B = A./W; %每人每天每千克体重基础代谢的能量消耗for j = 1:n1for i = 1:nt = (i,j) = -(D./(B(i) + R(j)) * log((W1(i). * (B(i)+R(j)) - A0)./(W(i).*(B(i) + R(j)) - A0))); %减肥所需要的时间endend3. 要使体重稳定在一个定值,则有*A B Rω=+ (3.10) 根据自己的不同理想目标和B (每人每天每千克体重基础代谢的能量消耗),在不同小时下的能量消耗表:(1)在1h =的情况下运动所消耗的能量,如下表3.3表3.3 1h =的情况下运动所消耗的能量(2)在2h =的情况下运动所消耗的能量,如下表3.4表3.4 2h =的情况下运动所消耗的能量Matlab源程序:h = [12];r = [ 7.0 3.0 4.4 2.5 7.9 ];R = h*r;D = 8000; %能量转换系数W1 = [ 75 80 80 85 90 ]; %理想的体重目标A = [ 2857 2543 2734 2689 2776 ]; %每人每天摄入的能量W = [ 100 112 113 114 124 ]; %每人的体重n1 = length(W);B = A./W; %每人每天每千克体重基础代谢的能量消耗for j = 1:nfor I = 1:n1A1(i,j) = W1(i).*(B(i)+R(1,j)); %在h=1的时间下运动所消耗的能量A2(i,j) = W1(i).*(B(i)+R(2,j)); %在h=2的时间下运动所消耗的能量endend4 模型的分析与讨论4.1 针对一般减肥模型在式(3.6)中假设0a =,即假设停止进食,无任何能量摄入,于是有0()dt t e ωω-= (4.1)这表明在t 时刻保存的体重占初始体重的百分率由dt e -给出,特别当1t =时,e d -给出了单位时间内体重的消耗率,它表明在(0,)t 时间内体重的消耗率,它表明在(0,)t 内体重减少的百分率,可见这种情况下体重的变化完全是体内脂肪的消耗而产生的,如此继续下去,由lim 0t t ω→∞=(),即体重(脂肪)将消耗殆尽,可知不进食的节食减肥方法是危险的.a/d 是模型中的一个重要的参数,由于/a A D =表示由于能量的摄入而增加的体重,而()/d B R D =+表示由于能量的消耗而失掉的体重,于是/a d 就表示摄取能量而获得的补充量,综合以上的分析可知, t 时刻的体重由两部分构成, 一部分是初始体重中由于能量消耗而被保存下来的部分. 另一部分是摄取能量而获得的补充部分,这一解释从直观上理解也是合理的.由式(3.5)0dtd <ω即/a d ω<,体重从0ω递减, 这是减肥产生效果,另外由式(3.6)可以看到t →∞时*()//()t a d A B R ωω→==+,也就是说式(3.5)的解渐进稳定于*a/d ω=,它给出了减肥过程的最终结果,因此不妨称*ω为减肥效果指标,由*/()A B R ω=+,因为B 是基础代谢的能量消耗,它不能作为减肥的措施随着每个人的意愿进行改变,对于每个人可以认为它是一个常数,于是就有如下结论:减肥的效果主要是由两个因素控制的,包括由于进食而摄入的能量以及由于运动消耗的能量,从而减肥的两个重要措施就是控制饮食和增加运动量,这恰是人们对减肥的认识.人体体重的变化时有规律可循的,减肥也应科学化,定量化,这个模型虽然只是揭示了饮食和锻炼这两个主要因素与减肥的关系,但它们对人们走出盲区减肥的误区,从事减肥活动有一定的参考价值.4.2 针对具体问题从上几个表可知,普遍观察得出结论,游泳是减肥的最佳方法,无论是在长时间还是短时间内,从结果来看,游泳消耗的能量是最多的,也是达到快速减肥的最佳方法,也可从下图可知,图4.1表示每个人的能量消耗图,都是离散的,并且都是递增的,表明了游泳时能量消耗最快的,选此方法减肥是最合理有效的.Matlab源程序:x = [ 7.0 3.0 4.4 2.5 7.9 ];y = [ 2667.00 2367.800 2472.800 2330.200 2735.3002376.400 2056.400 2168.400 2016.400 2448.4002495.600 2175.600 2287.600 2135.600 2567.6002600.000 2260.000 2379.000 2217.500 2676.5002644.800 2284.800 2410.800 2239.800 2725.800 ];subplot( 3, 2, 1 );plot( x, y(1,:),' g* ');title(' 第一个人 ');subplot( 3, 2, 2);plot( x, y(2,:),' ro ');title(' 第二个人 ');subplot( 3, 2, 3);plot( x, y(3,:),' g. ');title(' 第三个人 ');subplot( 3, 2, 4);plot( x, y(4,:),' c+ ');title('第四个人');subplot( 3, 2, 5);plot( x ,y(5,:),' go ');title(' 第五个人 ');图4.1 每个人的能量消耗图参考文献[1]姜启源,谢金星,叶俊. 数学模型[M]. 北京: 高等教育出版社, 2015年.[2]王敏生,王庚. 现代数学建模方法[M]. 北京: 科学出版社, 2008年.[3]罗万成. 大学生数学建模案例精选[M]. 成都: 西南交通大学出版社, 2007年.[4]胡良剑,孙晓君. Matlab数学实验[M]. 北京: 高等教育出版社, 2006年.。

数学建模减肥计划

数学建模减肥计划
差分方程模型
减肥计划——节食与运动 节食与运动 减肥计划
减肥计划——节食与运动 节食与运动 减肥计划 背 景
体重指数 体重指数BMI(Body Mass Index )=w(kg)/l2(m2). 18.5<BMI<25 ~正常; BMI>25 ~ 超重 正常; 超重; 正常 BMI>30 ~ 肥胖 肥胖. 多数减肥食品达不到减肥目标,或不能维持 多数减肥食品达不到减肥目标, 通过控制饮食和适当的运动,在不伤害身体 通过控制饮食和适当的运动, 的前提下, 的前提下,达到减轻体重并维持下去的目标
75 = 0 .975 ( 90 50 ) + 50
n
lg(25 / 40) n= = 19 lg 0.975
小 结
第二阶段19周 每周吸收热量保持10000千卡 体重按 千卡, 第二阶段 周, 每周吸收热量保持 千卡 减少至75千克 千克。 w(n) = 40 × 0.975 n + 50 (n = 1,2, ,19) 减少至 千克。
w = w + αc βw
20000 β= = = 0.025 w 8000 × 100
αc
即每周每千克体重消耗 20000/100=200千卡 千卡
1)不运动情况的两阶段减肥计划 ) 第一阶段 w(k)每周减 千克 c(k)减至下限 第一阶段: 每周减1千克 减至下限10000千卡 每周减 千克, 减至下限 千卡
4.4
2.5
7.9 t~每周运动 每周运动 时间(小时 小时) 时间 小时
取 αγ t = 0 .003 , 即 γ t = 24
β (= 0.025) → β ′ = β + αγt(= 0.028)
αCm αCm ]+ β′ β′

减肥的数学建模

减肥的数学建模

数学建模论文学院:电子与信息工程专业:计算机科学与技术班级:083班减肥的数学模型摘要本文建立了减肥的数学模型,从数学的角度对有关身体肥胖的规律做进一步的探讨和分析。

在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。

微分方程模型反映的是变量之间的间接关系,因此,在研究能量与运动之间的关系时,得到直接关系,就得求微分方程。

本文利用了微分方程模型求解实际问题,根据基本规律写出了平衡关系式,再利用一定的转换条件进行转化为简单明了的式子,求解出结果。

【关键字】:微分方程转化能量转换系数肥胖指数能量平衡原理一、问题提出随着社会的进步和发展,人们的生活水平在不断地提高。

由于营养摄入量的不断改善和提高,“肥胖”已成为全社会关注的一个重要问题.无论从健康的角度还是从审美的角度,人们越来越重视自己形体的健美,从而导致目前社会上出现了各种各样的所谓“减肥药品”,“减肥食品”及名目繁多的健美中心。

你如何对待减肥问题?试建立模型,从数学的角度对有关的规律做进一步的探讨和分析。

二、背景知识肥胖通常是用肥胖指数(The Body Mass Index)来测量的。

肥胖指数是一个体重与身高的比率,它被认为是大多数人身体脂肪的合理反映。

肥胖指数的计算是体重(公斤)比上身高(米)的平方(kg/m2)。

WHO的BMI参考标准为:低于18.5为轻体重,18.5-24.9为正常体重,25-29.9为超重(over-weight),大于30为肥胖(Obesity)。

适用人群为:18至65岁的人士。

儿童、发育中的青少年、孕妇、乳母、老人及身型健硕的运动员除外。

临界点的划定依据是,BMI超过该点,不良健康结果的风险会显著提高。

世界卫生组织认为BMI指数保持在22左右是比较理想的。

但是这个BMI是基于美国的数据制定的,在不同人种间不一定普遍适用,基本上各国都有自己的BMI值。

澳洲的BMI 正常范围是20-24.9,超重的范围是25-30,BMI大于30界定为肥胖。

数学建模 减肥模型

数学建模 减肥模型

有一人体重110kg,身高180cm,制定减肥计划使其BMI降到25以下目前人们公认的评测体重的标准是联合国世界卫生组织颁布的体重指数BMI,定义为BMI=h/L^2其中h是体重(单位是kg),L是身高(单位是m)。

模型分析:在正常情况下,人体通过食物摄入的热量与代谢和运动消耗的热量会影响体重的变化,摄入的热量大于消耗的热量会使人增肥,反之会使人体重降低,因此需要从人体对热量的吸收与消耗两方面进行分析,在适当的假设下建立模型,减肥计划应以不伤害人体健康为目标,所以吸收热量不应过少减重体重不要过快来限制,同时增大运动量也是减肥的关键,也应加以考虑,通常,制定减肥计划以周为时间单位比较方便,所以这里用离散时间模型——差分方程来讨论。

模型假设:根据上述分析,参考有关生理数据,做出以下假设:1、体重增加正比于吸收的热量,平均每8000kcal增加体重1kg。

(kcal是非国际单位制单位,1kcal=4.5kJ);2、身体正常代谢引起的体重减少正比于体重,每周每千克体重消耗热量一般在200kcal至320kcal之间,且因人而异,这相当于体重110kg的人每天消耗约3413kcal至5029kcal之间;3、运动引起的体重减少正比于体重,且与运动形式和运动时间有关;4、为了健康考虑,每周吸收热量不能少于10 000kcal,且每周减少量不能超过1 000kcal每周体重减少不能超过1kg;5、假设此人身体健康,没有肠胃方面的毛病;通过调查资料得知各种食物的每百克所含的大卡热量供参考(假设食物重量如表中一样重),如下表基本模型:记第k周(初)体重为w(k)(kg),第k周吸收热量为c(k)(kcal),k=1,2,……。

设热量转换(体重的)系数为α,身体代谢消耗系数为β,根据模型假设,正常情况下(不考虑运动)体重变化的基本方程为α(1)wk(k)1kcwβkw(k-+=⋯⋯)=()(+,2,1),由假设1,α=1/8000kg/kcal,当确定了个人的代谢消耗系数β后,就可按照(1)式由每周吸收的热量c(k)推导出他的体重w(k)的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

减肥问题数学模型摘要肥胖已成为公众日益关注的卫生健康问题。

肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。

但是实际情况确是违禁广告屡禁不止。

之所以造成这种情况的原因很多,但是有一个重要原因就是科学素质低,不知道应该从生理机理,特别是从数学模型的角度来考虑和认识问题。

该模型的优点是科学的解释了肥胖的机理,引导群众合理科学的减肥。

在问题一中,我们找到营养的供给、成人(男、女)每天需要的热量、热量的主要构成、活动强度系数表以及三种热量构成物的单位产热量等方面数据,并结合肥胖的三个要素(进食、活动、新陈代谢),建立了如下的数学模型:w(t)=)1(0ctcte c a ew ---+ 其a=i i i i i i r r w η∑∑==3131/;c=(1+10+i μ)4.2310⨯/i i i r η∑=31。

同时也提出了,模型的改造方法一跟二。

在问题二中,实际应用上面的数学模型,重点对“NRG 清赘减肥胶囊”减肥药广告以及“10步易学瘦身操模型论述”减肥方法广告进行了论述和判断其是否对人体有副作用。

在对“10步易学瘦身操模型论述”减肥方法广告进行的论述中,还进行了定量的计算。

关键词:减肥 饮食 活动 新陈代谢一、问题重述肥胖已成为公众日益关注的卫生健康问题。

肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。

肥胖也是身体健康的晴雨表,反映着体内多方面的变化。

很多人在心理上害怕自己变得肥胖,追求苗条,因而减肥不仅是人们经常听到的话题,更有人花很多的时间和金钱去付诸实践的活动,从而也就造成了各种减肥药、器械和治疗方法的巨大的市场。

各种假药或对身体有害的药品和治疗方法、夸大疗效的虚假广告等等就应运而生了,对老百姓造成了不应有的伤害。

情况的严重使得国家广电总局、新闻出版总署等不得不发出通知,命令所有电视台自2006年8月1日起停止播出丰胸、减肥等产品的电视购物节目。

但是实际情况确是违禁广告屡禁不止。

之所以造成这种情况的原因很多,但是有一个重要原因就是科学素质低,不知道应该从生理机理,特别是从数学模型的角度来考虑和认识问题。

一、收集相应数据对此减肥问题建立数学模型。

二、任意找几则减肥药和减肥方法广告,用你建立的数学模型论述它们是如何达到减肥的,会不会产生对身体有害的副作用?二.相关数据1 、每日膳食中,营养的供给是作为保证正常人身体健康而提出的膳食质量标准,营养素的要求量是指维持身体正常的生理能所需的营养素的数量,如果人们在饮食中摄入营养素的数量低于这个数量,将使身体产生不利的影响. (每天膳食提供的热量不少于5000 ———7500J ,这是维持正常命活动的最少热量)2 、成人每天需要的热量= 人体基本代谢需要的热量+ 体力活动需要的热量+ 食物的特殊动力的作用所需要的热量①人体基本代谢的需要的热量的简单算法:10J女子:基本热量(千卡) = 体重(斤) ×9 (千卡) = 体重(斤)×3.78 ×310J男子:基本热量(千卡) = 体重(斤) ×10 (千卡) = 体重(斤)×4. 2 ×3②食物的特殊动力的作用所需要的热量≈10 % ×人体基本代谢的最低热量③体力活动所需要的热量= 人体基本代谢的需要的本热量×活动强度系数3 、热量主要由3 种物质即由脂肪、蛋白质、碳水化合物转化而得,因此在减肥期间应当限制膳食的总热量,而不仅是限制脂肪的摄入。

正确的摄入比例为:碳水化合物:55 %———60 % 脂肪:20 %———25 % 蛋白质:15 %———20 %在减肥的过程间适量增加蛋白质的摄入,降低另两类的摄入,但也不该过分改变上述比值。

4 、人体的体重是评定膳食能量摄入适当与否的重要标志。

5 、由于热量的3 种来源是碳水化合物、脂肪、蛋白质我们不妨以人体这3 种物质的重量作为体重的标志。

记这3 种物质的转化系数分别为1r = 1. 7 ×710J / kg ,2r = 1. 7 ×710J / kg ,3r = 3. 8 ×710J / kg三、 模型假设1 、假设人的体重由碳水化使物、脂肪、蛋白质三部分组成,不考虑其它成分;2 、假设人每天摄入的食物中能转化为热量的只有碳水化使物、脂肪、蛋白质;3 、摄入的食物全部转化为热量。

四、 符号说明四、模型建立4.1问题一4.1.1问题分析:该小题要求,收集的相关数据,并在此基础上,对减肥问题建立数学模型。

对于此问题的解决,我们要先从营养的供给、成人(男、女)每天需要的热量、热量的主要构成、活动强度系数表以及三种热量构成物的单位产热量等方面收集到上述数据。

然后,再根据数据以及能量平衡定理,列出方程,再结合积分的知识,求出W (t )的关系式即减肥问题的数学模型。

4.1.2模型建立:根据背景知识成人每天所需要的热量由人体基本代谢所需需热量、体力活动所需热量和食物的特殊动力的作用所需要的热量三部分组成. (下面以成人男子为分析对象,未成年男子和女子代入其相应的数据即可得到) 成人每天的基本代谢所需热量为:w(t)⨯10 ×4. 2 ×310J 成人每天的体力活动所需热为:w(t) ⨯10j μ ×4. 2 ×310J成人每天由于食物的特殊动力的作用所需热量为:w ( t )×4. 2 ×310J 已知人每天摄入的总热量为:i i i r w ∑=31现在我们研究在时间(t ,t + △t) 内能量的变化。

摄入与消耗能量之差为:i i i r w ∑=31 △t - w(t) (1+ 10 + 10j μ )体重改变的能量变化为: [w(t + △t) - w(t) ]i i i r η∑=31由能量的守恒可得等式:i i i ji i i r t w t t w t t w t r w ημ∑∑==-∆+=∆⨯++-∆31331)]()([102.4)10101)((以△t 除等式两边且△t →0 ,可得cw a dtdw-= 其中a =i i i i i i r r w η∑∑==3131/ c=(1+10+i μ)*3102.4⨯/i i i r η∑=31于是我们给出了一个减肥的数学模型。

4.1.3模型求解解:当t =0为模型启动的初始时刻,此时人的体重为w(0)=0w , 通过变量分离, 两边积分易得(l)的解为: w(t)=)1(0ct ct e cae w ---+ 其中 a=i i i i i i r r w η∑∑==3131/;C=(1+10+i μ)4.2310⨯/i i i r η∑=31于是我们得到了一个体重与时间、饮食摄入、运动强度之间的关系模型4.1.4模型合理性分析因为i i i r η∑=31是人的体重转化为热量的一个系数, 所以i i i r η∑=31恒不等于0 ,且是一个常数。

若a =0,则ct i i i e w t w r w -===∑031)(,0这说明如果不进食,人的体重只与人自身的代谢和体力活动有关,这是完全合理的。

若a 增大,则w (t )增大,说明能量摄入越多,体重就不断增加;若c 增大,即j u 增大,则w(t)下降,这表明活动强度越大,消耗的能量越多。

331102.4)10101(⨯++=∑=j i i i w c a μη表明能量的摄取量是对能量消耗的一种补充。

综上分析,认为本模型得出结果是比较科学和合理的。

4.1.5模型的改进(1)改进一:以一天(24小时)为时间计量单位。

于是以天为单位的基础代谢的能量消耗量为__24c C = (焦耳/日)._c 为1千克体重每小时所消耗的能量,于是,,,_DRC dD a a dW a dt dW +==-=--其中R 为一天活动消耗的能量。

D=4200J/KJ. (2)改进二:a 、c 不是常数,如a=a(t),c=c(t),这时模型变为:.)()(W t c t a dtdW -=。

4.1.6总结(1)一般方法只供参考,各步有机联系但侧重点不同。

(2)模型虽粗,但能定性说明问题,每步还有改进的余地。

4.2问题二4.2.1问题分析:4.2.2减肥药及减肥方法广告4.2.2.1减肥药广告100%纯天然植物配方,无任何副作用。

NRG清赘减肥胶囊提取物,100%纯天然植物配方、不含任何激素、抗生素成分,对身体无任何副作用。

NRG 是您健康、安全、科学减肥的第一选择!快速减肥,打造完美身材使用NRG减肥药,一般用户7天明显见效,一个疗程完全瘦身,少则8斤,多则30斤,效果绝对看得见,一般肥胖者无需服用第二个疗程。

即使身体十分超重的用户,使用两个疗程之后也可以完全瘦身。

100%纯天然植物配方,绿色、健康减肥NRG是提取天然植物精华,服用时使体内的脂肪得到自然的分解和消耗,使体重渐进式的减少。

在使用的同时也在不断的疏活经络,消耗仍然是一个平衡状态的,所以体重是不会反弹的。

使无需节食、轻松、快乐减肥理念NRG崇尚以人为本的减肥理念,无需节食无需手术,更不同于其他减肥产品诱导节食。

服用时,无需节食,同时更要保持正常的饮食,以补充分解脂肪所消耗的热量。

让你轻松快乐的打造完美纤丽身材。

4.2.2.2减肥方法广告10步易学瘦身操塑造背部曲线:两手撑地与肩同宽,膝盖跪地,注意保持头,肩和腰在一直线上。

此时,左手向前伸直的同时右脚向后踢,保持身体,左手,右腿在一直线上。

再慢慢收回,这样反复10次。

快速击退腰腹赘肉:两腿并拢席地而地,膝盖弯曲90度左右,身体稍稍后倾,两手臂向上伸直。

两手慢慢平放于胸前,收缩小腹保持此动作10秒。

再慢慢举起手臂,注意保持胸,后背和腰在一直线上。

反复10次。

改善腿部曲线:侧躺后双脚并拢,左手叉腰,右手臂支撑地面,收缩小腹。

双腿轻轻向上提升45度,注意双腿不要分开。

再慢慢放下,反复20次。

瘦腿哑铃操:两手握住哑铃置放于胸前,左腿支撑身体,右腿膝盖弯曲90度并渐渐向后抬起。

左腿稍稍弯曲,身体前倾,保持5秒钟后慢慢收回,反复10次。

腰腹健身球操:双腿向两侧伸开与肩同宽,两手向下伸直握住健身球。

最大限度地由右向左做回转运动,反复10次,再交换方向。

手臂健身球操:双腿向两侧伸开与肩同宽,两手握住健身球置于左胸前。

左腿膝盖弯曲并向上抬起,健身球慢慢移至右胸侧,左右反复移动10次。

再交换右腿瘦腿健身球操:双腿向两侧伸开与肩同宽,双手握住健身球置于胸前。

相关文档
最新文档