平面直角坐标系培优原版

合集下载

(完整版)初中七年级下册平面坐标系数学附答案培优试卷

(完整版)初中七年级下册平面坐标系数学附答案培优试卷

一、选择题1.如图,在一单位为1的方格纸上,123345567,,...A A A A A A A A A ∆∆∆,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形,若123A A A ∆的顶点坐标分别为1A (2,0),2A (1,-1),3A (0,0),则依图中所示规律,2017A 的坐标为( )A .(1010,0)B .(1008,0)C .(2,1008)D .(2,2010) 2.如图,在一单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7……,都是斜边在x 轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,﹣1),A 3(0,0),则依图中所示规律,A 2020的坐标为( )A .(1010,0)B .(1012,0)C .(2,1012)D .(2,1010) 3.如图所示,一个动点在第一象限内及x 轴、y 轴上运动,在第一秒内它由原点移动到(0,1)点,而后接着按图所示在x 轴,y 轴平行的方向运动,且每秒移动一个单位长度,那么动点运动到点(7,7)的位置时,所用的时间为( )秒.A .30B .42C .56D .724.对平面上任意一点(a ,b),定义f ,g 两种变换:f(a ,b)=(﹣a ,b),如f(1,2)=(﹣1,2);g(a ,b)=(b ,a),如g(1,2)=(2,1),据此得g[f(5,﹣9)]=( )A .(5,﹣9)B .(﹣5,﹣9)C .(﹣9,﹣5)D .(﹣9,5) 5.如图,将1、2,3三个数按图中方式排列,若规定(,)a b 表示第a 排第b 列的数,则()8,2与(100,100)表示的两个数的积是( )A .1B .2C .3D .66.如图,在平面直角坐标系上有点A(1,0),点A 第一次跳动至点()111A -,,第二次点1A 跳动至点()221A ,,第三次点2A 跳动至点()322A ,-,第四次点3A 跳动至点()432A ,,……,依此规律跳动下去,则点2017A 与点2018A 之间的距离是( )A .2017B .2018C .2019D .20207.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2017次运动后,动点P 的坐标是( )A .(2017,0)B .(2017,1)C .(2017,2)D .(2018,0) 8.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A.(46,4)B.(46,3)C.(45,4)D.(45,5)9.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第100个点的横坐标为()A.12 B.13 C.14 D.1510.如图,在平面直角坐标系上有个点P(1,0),点P第一次向上跳运1个单位至P1(1,1),紧接着第二次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是()A.(-24,49) B.(-25,50) C.(26,50) D.(26,51)二、填空题11.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O出发,按图中箭头所示的方向运动,第1次从原点运动到点(132次接着运动到点(2,0),第3次接着运动到点(2,﹣2),第4次接着运动到点(4,﹣2),第5次接着运动到点(4,0),第6次接着运动到点(53…按这样的运动规律,经过2019次运动后,电子蚂蚁运动到的位置的坐标是_____.12.如图,把图1中的圆A 经过平移得到圆O (如图2),如果图1⊙A 上一点P 的坐标为(m ,n ),那么平移后在图2中的对应点P′的坐标为____13.在平面直角坐标系中,点(,)P x y 经过某种变换后得到(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1P 、2P 、3P 、4P 、…n P 、…,若点1P 的坐标为(2,0),则点2017P 的坐标为__________.14.如图,动点P 从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)…则第2068秒点P 所在位置的坐标是_______________.15.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为_____.16.教材在第七章复习题的“拓广探索”中,曾让同学们探索发现:在平面直角坐标系中,线段中点的横坐标(纵坐标)分别等于对应线段的两个端点的横坐标(纵坐标)和的一半.例如:点(1,1)A 、点(5,1)B ,则线段AB 的中点M 的坐标为(3,1).请利用以上结论解决问题:在平面直角坐标系中,点(3,)E a a +,(,1)F b a b ++,若线段EF 的中点G 恰好在x 轴上,且到y 轴的距离是2,则a b -=______17.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点1(0,1)A ,()21,1A ,()31,0A ,()42,0A ,…,那么点2021A 的坐标为__________.18.如图,点A (0,1),点1A (2,0),点2A (3,2),点3A (5,1)…,按照这样的规律下去,点1000A 的坐标为 _____.19.如图,长方形ABCD 四个顶点的坐标分别为()2,1A ,()2,1B -,()2,1C --,()2,1D -.物体甲和物体乙分别由点()2,0P 同时出发,沿长方形ABCD 的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是______.20.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排行,如(0,1),(0,2),(1,2),(1,3),(0,3),(-1,3),......根据这个规律探索可得,第40个点的坐标为_____________.三、解答题21.如图1,在直角坐标系中直线AB 与x 、y 轴的交点分别为(),0A a ,()0,B b ,且满足80a b a b ++-+=.(1)求a 、b 的值;(2)若点M 的坐标为()1,m 且2ABM AOM S S =,求m 的值;(3)如图2,点P 坐标是()1,2--,若ABO 以2个单位/秒的速度向下平移,同时点P 以1个单位/秒的速度向左平移,平移时间是t 秒,若点P 落在ABO 内部(不包含三角形的边),求t 的取值范围.22.在平面直角坐标系中,已知点(3,5)A ,(7,5)B ,连接AB ,将AB 向下平移6个单位得线段CD,其中点A的对应点为点C.(1)填空:点D的坐标为______,线段AB平移到CD扫过的面积为______.(2)若点P是y轴上的动点,连接PD.①如图,当点P在y轴正半轴时,线段PD与线段AC相交于点E,用等式表示三角形PEC的面积与三角形ECD的面积之间的关系,并说明理由.②当PD将四边形ACDB的面积分成1∶3两部分时,求点P的坐标.23.在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ的面积等于1,即S△MPQ=1,则称点M为线段PQ的“单位面积点”,解答下列问题:如图,在平面直角坐标系xOy中,点P的坐标为(1,0).(1)在点A(1,2),B(﹣1,1),C(﹣1,﹣2),D(2,﹣4)中,线段OP的“单位面积点”是;(2)已知点E(0,3),F(0,4),将线段OP沿y轴向上平移t(t>0)个单位长度,使得线段EF上存在线段OP的“单位面积点”,直接写出t的取值范围.(3)已知点Q(1,﹣2),H(0,﹣1),点M,N是线段PQ的两个“单位面积点”,点M在HQ的延长线上,若S△HMN≥2S△PQN,求出点N纵坐标的取值范围.24.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB 的长度为|x 1﹣x 2|;(应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 .(2)若点C (1,0),且CD ∥y 轴,且CD =2,则点D 的坐标为 .(拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图1,已知E (2,0),若F (﹣1,﹣2),则d (E ,F ) ;(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,则t = .(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,则d (P ,Q )= .25.如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别为()03A ,,()10B -,,()40C ,,()53D ,,现将四边形ABCD 经过平移后得到四边形''''A B C D ,点B 的对应点'B 的坐标为()11,.(1)请直接写点'A 、'C 、'D 的坐标;(2)求四边形ABCD 与四边形''''A B C D 重叠部分的面积;(3)在y 轴上是否存在一点M ,连接MB 、MC ,使MBC ABCD S S ∆=四边形,若存在这样一点,求出点M 的坐标;若不存在,请说明理由.26.如图所示,A (1,0)、点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,且点C 的坐标为(﹣3,2).(1)直接写出点E 的坐标 ;(2)在四边形ABCD 中,点P 从点B 出发,沿“BC→CD”移动.若点P 的速度为每秒1个单位长度,运动时间为t 秒,回答下列问题:①当t= 秒时,点P 的横坐标与纵坐标互为相反数;②求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);③当点P 运动到CD 上时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x ,y ,z 之间的数量关系能否确定?若能,请用含x ,y 的式子表示z ,写出过程;若不能,说明理由.27.如图,在平面直角坐标系中,点的坐标分别是,现同时将点分别向上平移2个单位长度,再向右平移2个单位长度,得到的对应点.连接. (1)写出点的坐标并求出四边形的面积.(2)在轴上是否存在一点,使得的面积是面积的2倍?若存在,请求出点的坐标;若不存在,请说明理由.(3)若点是直线上一个动点,连接,当点在直线上运动时,请直接写出与的数量关系.28.如图,在平面直角坐标系中,已知(),0A a ,(),0B b ,()0,4C ,a ,b 满足()2240a b ++-=.平移线段AB 得到线段CD ,使点A 与点C 对应,点B 与点D 对应,连接AC ,BD .(1)求a ,b 的值,并直接写出点D 的坐标;(2)点P 在射线AB (不与点A ,B 重合)上,连接PC ,PD .①若三角形PCD 的面积是三角形PBD 的面积的2倍,求点P 的坐标;②设PCA α∠=,PDB β∠=,DPC θ∠=.求α,β,θ满足的关系式.29.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 的坐标为(),0a ,点C 的坐标为()0,b 且a 、b 满足8120a b -+-=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O 的线路移动.(1)点B 的坐标为___________;当点P 移动5秒时,点P 的坐标为___________; (2)在移动过程中,当点P 到x 轴的距离为4个单位长度时,求点P 移动的时间; (3)在O C B --的线路移动过程中,是否存在点P 使OBP 的面积是20,若存在直接写出点P 移动的时间;若不存在,请说明理由.30.如图所示,A (1,0),点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,点C 的坐标为(﹣3,2).(1)直接写出点E 的坐标 ;(2)在四边形ABCD 中,点P 从点O 出发,沿OB →BC →CD 移动,若点P 的速度为每秒1个单位长度,运动时间为t 秒,请解决以下问题;①当t 为多少秒时,点P 的横坐标与纵坐标互为相反数;②当t 为多少秒时,三角形PEA 的面积为2,求此时P 的坐标【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】观察图形和三角形点的坐标可以发现规律,下角标为奇数时,点是在x 轴上,并以(1,0)为中点左右交替且间隔2个单位长度出现,由此得到2017A 的坐标.【详解】观察图形可发现:下角标为奇数时,点是在x 轴上,并以(1,0)为中点左右交替且间隔2个单位长度出现,故2017=1+4×504,在(1,0)右边,距离(1,0)是有2×505-1=1009个单位长度,所以2017A 的横坐标为1009+1=2020,即2017A 坐标为(1010,0).故答案为A .【点睛】考查观察图像探究规律的过程,学生要仔细观察图形以及坐标之间的关系,并发现其中规律,找到所求坐标,本题的关键探究规律的过程.2.D解析:D【分析】根据脚码确定出脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,然后确定出第2020个点的坐标即可.【详解】解:观察点的坐标变化发现:当脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,因为2020能被4整除,所以横坐标为2,纵坐标为1010,故选:D .【点睛】本题考查点坐标的变化规律,根据所要求的点坐标确定类似点的变化规律是解题关键. 3.C解析:C【分析】归纳走到(n ,n )处时,移动的长度单位及方向,再求当n=7时所用的时间即可.【详解】质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向向上;质点到达(3,3)处,走过的长度单位是12=2+4+6,方向向右;质点到达(4,4)处,走过的长度单位是20=2+4+6+8,方向向上;…,质点到达(n ,n )处,走过的长度单位是2+4+6+…+2n =n (n +1),当n=7时,可得n (n +1)=7×8=56,∴走过的时间为56s.故选:C.【点睛】本题属于归纳推理,要归纳出质点运动到点(n,n)处的时间可先推出质点运动到点(1,1)点(2,2)点(3,3)点(4,4)所需的时间(单位长度),发现其中的规律进而归纳出质点运动到点(n,n)处的时间.4.C解析:C【分析】根据f,g两种变换的定义自内而外进行解答即可.【详解】解:由题意得,f(5,﹣9)]=(﹣5,﹣9),∴g[f(5,﹣9)]=g(﹣5,﹣9)=(﹣9,﹣5),故选:C.【点睛】本题考查了新定义坐标变换,根据题意、弄懂两种变换的方法是解答本题的关键.5.C解析:C【分析】观察数列得出每三个数一个循环,再根据有序数对的表示的方法得出每个有序数对表示的数,最后计算积即得.【详解】解:∵前7排共有123456728++++++=个数∴()82,在排列中是第28+2=30个数又∵根据题意可知:每三个数一个循环:1303=10÷∴()82,∵前100排共有()10011001+2+3++100=50502+⋅⋅⋅=个数且5050316831÷=⋅⋅⋅∴(100100),是第1684次循环的第一个数:1.∵1故选:C.【点睛】本题考查关于有序数对的规律题,解题关键是根据特殊情况找出数据变化的周期,得出一般规律.6.C解析:C【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2017与点A2018的坐标,进而可求出点A2017与点A2018之间的距离.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2018次跳动至点的坐标是(1010,1009),第2017次跳动至点A2017的坐标是(-1009,1009).∵点A2017与点A2018的纵坐标相等,∴点A2017与点A2018之间的距离=1010-(-1009)=2019,故选C.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.7.B解析:B【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2017除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2017次运动后点P的横坐标为2017,纵坐标以1、0、2、0每4次为一个循环组循环,∵2017÷4=504…1,∴第2017次运动后动点P的纵坐标是1,∴点P(2017,1),故选B.【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.8.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴∵452=2025∴第2025个点在x 轴上坐标为(45,0)则第2020个点在(45,5)故选:D .【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.9.C解析:C【分析】设横坐标为n 的点的个数为a n ,横坐标≤n 的点的个数为S n (n 为正整数),结合图形找出部分a n 的值,根据数值的变化找出变化规律“a n =n ”,再罗列出部分S n 的值,根据数值的变化找出变化规律()12n n n S +=,依次变化规律解不等式()11002n n +≥即可得出结论. 【详解】设横坐标为n 的点的个数为a n ,横坐标≤n 的点的个数为S n (n 为正整数),观察,发现规律:a 1=1,a 2=2,a 3=3,…,∴a n =n .S 1=a 1=1,S 2=a 1+a 2=3,S 3=a 1+a 2+a 3=6,…,∴S n =1+2+…+n =()12n n +. 当100≤S n ,即100≤()12n n +,解得:n ≤(舍去),或n ≥∵1413, 故选:C .【点睛】本题考查了规律型中得点的坐标的变化,解题的关键是根据点的坐标的找出变化规律“()12n n n S +=”.10.C解析:C【详解】经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100÷2=50;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,依此类推可得到:n P 的横坐标为n÷4+1(n 是4的倍数). 故点100P 的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P 第100次跳动至点100P 的坐标是(26,50).故答案为(26,50).二、填空题11.(1616,﹣2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为,0,﹣解析:(1616,﹣2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多40,﹣2,﹣2,00,﹣2,﹣2,0,…,每5次一轮这一规律,进而求出即可.【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,0,﹣2,﹣2,0,第6到100,﹣2,﹣2,0,…第5n+1到5n+50,﹣2,﹣2,0,∵2019÷5=403…4,∴经过2019次运动横坐标为=4×403+4=1616,经过2019次运动纵坐标为﹣2,∴经过2019次运动后,电子蚂蚁运动到的位置的坐标是(1616,﹣2).故答案为:(1616,﹣2)【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.12.(m+2,n-1)【分析】首先根据圆心的坐标确定平移的方法:向右平移了2个单位,有向下平移1个单位,然后可确定P的对应点P’的坐标.【详解】解:∵⊙A的圆心坐标为(-2,1),平移后到达O(解析:(m+2,n-1)【分析】首先根据圆心的坐标确定平移的方法:向右平移了2个单位,有向下平移1个单位,然后可确定P的对应点P’的坐标.【详解】解:∵⊙A的圆心坐标为(-2,1),平移后到达O(0,0),∴图形向右平移了2个单位,有向下平移1个单位,又∵P的坐标为(m,n),∴对应点P’的坐标为(m+2,n-1),故答案为(m+2,n-1).【点睛】本题主要考查了坐标与图形的变化——平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.13.(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2,解析:(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2,0),P6(1,4),…….可以得到从第一个点开始,每4个点的坐标为一个循环.因为2017=504×4+1,所以P2017与P1的坐标相同.故答案为(2,0).点睛:找数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程中归纳出运算结果或运算结果的规律,当所得结果按一定的数量循环时,则可根据循环的规律来解答.14.【分析】分析点P的运动路线及所处位置的坐标规律,进而求解.【详解】解:由题意分析可得,动点P第8=2×4秒运动到(2,0)动点P第24=4×6秒运动到(4,0)动点P第48=6×8秒运解析:(45,43)【分析】分析点P的运动路线及所处位置的坐标规律,进而求解.【详解】解:由题意分析可得,动点P第8=2×4秒运动到(2,0)动点P第24=4×6秒运动到(4,0)动点P第48=6×8秒运动到(6,0)以此类推,动点P第2n(2n+2)秒运动到(2n,0)∴动点P第2024=44×46秒运动到(44,0)2068-2024=44∴按照运动路线,点P到达(44,0)后,向右一个单位,然后向上43个单位∴第2068秒点P所在位置的坐标是(45,43)故答案为:(45,43)【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.15.(﹣5,13)【解析】【分析】设纵坐标为n的点有个(n为正整数),观察图形每行点的个数即可得出=n,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐解析:(﹣5,13)【解析】【分析】设纵坐标为n的点有n a个(n为正整数),观察图形每行点的个数即可得出n a=n,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐标是偶数的从左至右计数,即可求解.【详解】解:设纵坐标为n的点有n a个(n为正整数),观察图形可得,1a=1,2a=2,3a=3,…,∴n a=n,∵1+2+3+…+13=91,∴第90个点的纵坐标为13,又13为奇数,(13-1)÷2=6,∴第91个点的坐标为(-6,13),则第90个点的坐标为(﹣5,13).故答案为:(﹣5,13).【点睛】本题考查了规律探索问题,观察图形得到点的坐标的变化规律是解题关键.16.或19【分析】根据线段的中点坐标公式即可得求出、的值,从而可得到答案.【详解】解:点,,中点,,中点恰好位于轴上,且到轴的距离是2,,解得:或,或19;故答案为:或19.【点睛解析:5-或19【分析】根据线段的中点坐标公式即可得求出a 、b 的值,从而可得到答案.【详解】 解:点(3,)E a a +,(,1)F b a b ++,∴中点3(2a b G ++,1)2a ab +++, 中点G 恰好位于x 轴上,且到y 轴的距离是2, ∴1023||22a ab a b +++⎧=⎪⎪⎨++⎪=⎪⎩, 解得:23a b =-⎧⎨=⎩或613a b =⎧⎨=-⎩, 5a b ∴-=-或19;故答案为:5-或19.【点睛】本题考查坐标与图形性质,中点坐标公式,解题的关键是根据线段的中点坐标公式求出a 、b 的值.17.【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An 的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,解析:()1010,1【分析】由题意可知,每隔四次移动重复一次,继续得出A 5,A 6,A 7,A 8,…,归纳出点A n 的一般规律,从而可求得结果.【详解】∵1(0,1)A ,()21,1A ,()31,0A ,()42,0A∴根据点的平移规律,可分别得:()52,1A ,()63,1A ,()73,0A ,()84,0A ,()94,1A ,()105,1A ,()115,0A ,()126,0A ,…,()4322,1n A n --,()4221,1n A n --,()4121,0n A n --,()42,0n A n∵2021=505×4+1∴2021A 的横坐标为2×505=1010,纵坐标为1即2021(1010,1)A故答案为:()1010,1【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.18.(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点(2,0),点(5,1),(8,2),…,(3n ﹣1,n ﹣1), 点解析:(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点1A (2,0),点3A (5,1),5A (8,2),…,21n A -(3n ﹣1,n ﹣1),点2A (3,2),4A (6,3),6A (9,4),…,2n A (3n ,n +1),∵1000是偶数,且1000=2n ,∴n =500,∴1000A (1500,501),故答案为:(1500,501).【点睛】本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键.19.【分析】根据题意可得长方形的边长为4和2,物体乙的速度是物体甲的2倍,进而得出物体甲与物体乙的路程比为1:2,求得每一次相遇的位置,找到规律即可求解.【详解】解:在长方形ABCD 中,AB=C解析:()1,1--【分析】根据题意可得长方形的边长为4和2,物体乙的速度是物体甲的2倍,进而得出物体甲与物体乙的路程比为1:2,求得每一次相遇的位置,找到规律即可求解.【详解】解:在长方形ABCD 中,AB=CD =4,BC=AD =2,AP=PD =1,由物体乙的速度是物体甲的2倍,时间相同,则物体甲与物体乙的路程比为1:2,根据题意:当第一次相遇时,物体甲和物体乙的路程和为12,物体甲的路程为12×13=4,物体乙的路程为12×23=8,在AB 边上的点(﹣1,1)处相遇; 当第二次相遇时,物体甲和物体乙的路程和为12×2,物体甲的路程为12×2×13=8,物体乙的路程为12×2×23=16,在CD 边上的点(﹣1,﹣1)处相遇; 当第三次相遇时,物体甲和物体乙的路程和为12×3,物体甲的路程为12×3×13=12,物体乙的路程为12×3×23=24,在点P (2,0)处相遇,此时物体甲乙回到原来出发点, ∴物体甲乙每相遇三次,则回到原出发点P 处,∵2021÷3=673……2,∴两个物体运动后的第2021次相遇地点是第二次相遇地点,故两个物体运动后的第2021次相遇地点的坐标为(﹣1,﹣1),故答案为:(﹣1,﹣1).【点睛】本题考查点坐标变化规律以及行程问题、坐标与图形,熟练掌握行程问题中的相遇以及按比例分配的运用,通过计算找到变化规律是解答的关键.20.(1,9)【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第40个点的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【详解】解析:(1,9)【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第40个点的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【详解】解:(0,1),共1个,(0,2),(1,2),共2个,(1,3),(0,3),(-1,3),共3个,…,依此类推,纵坐标是n 的共有n 个坐标,1+2+3+…+n =()12n n +, 当n =9时,()9912+=45,所以,第40个点的纵坐标为9,45-40-(9-1)÷2=1,∴第40个点的坐标为(1,9).故答案为:(1,9).【点睛】本题考查了点的坐标与规律变化问题,观察出纵坐标的数值与相应的点的坐标的个数相等是解题的关键.三、解答题21.(1)4a =-,4b =;(2)5m =-或53m =;(3)513t << 【分析】(1)根据非负数和为0,则每一个非负数都是0,即可求出a ,b 的值;(2)设直线AB 与直线x =1交于点N ,可得N (1,5),根据S △ABM =S △AMN −S △BMN ,即可表示出S △ABM ,从而列出m 的方程.(3)根据题意知,临界状态是点P 落在OA 和AB 上,分别求出此时t 的值,即可得出范围.【详解】(1)∵80a b -+=0,80a b -+≥∴0a b +=,80a b -+=解得:4a =-,4b =(2)设直线AB 与直线1x =交于N ,设()1,N n∵a =−4,b =4,∴A (−4,0),B (0,4),设直线AB 的函数解析式为:y =kx +b ,代入得044k b b =-+⎧⎨=⎩,解得14k b =⎧⎨=⎩∴直线AB 的函数解析式为:y =x +4,代入x =1得()1,5N∵()1,M m∴ABM AMN BMN S S S =-△△△=12×5×|5−m |−12×1×|5−m |=2|5−m |,1422AOM S m m =⨯⨯=△ ∵2ABM AOM S S =∴2522m m -=⨯∴52m m -=或52m m -=-解得:5m =-或53m =,(3)当点P 在OA 边上时,则2t =2,∴t =1,当点P 在AB 边上时,如图,过点P 作PK //x 轴,AK ⊥x 轴交于K ,则KP '=3−t ,KA '=2t −2,∴3−t =2t −2,∴53t = 综上所述:513t <<.【点睛】本题主要考查了平移的性质、一般三角形面积的和差表示、以及非负数的性质等知识点,第(2)问中用绝对值来表示动点构成的线段长度是正确解题的关键.22.(1)(7,1)-;24;(2)①34PEC ECD SS =;见解析;②170,4P ⎛⎫ ⎪⎝⎭或(0,20)P 【分析】(1)由平移的性质得出点C 坐标,AC =6,再求出AB ,即可得出结论;(2)①过P 点作PF AC ⊥交AC 于F ,分别用CE 表示出两个三角形的面积,即可得到答案;②根据题意,可分为两种情况进行讨论分析:(i )当PD 交线段AC 于E ,且PD 将四边形ACDB 分成面积为1:3两部分时;当PD 交AB 于点G ,PD 将四边形ACDB 分成面积为1:3两部分时;分别求出点P 的坐标即可.【详解】解:(1)∵点A (3,5),将AB 向下平移6个单位得线段CD ,∴C (3,5-6),即:C (3,-1),由平移得,AC =6,四边形ABDC 是矩形,∵A (3,5),B (7,5),∴AB =7-3=4,∴CD =4,∴点D 的坐标为:(7,1)-;∴S 四边形ABDC =AB •AC =4×6=24,即:线段AB 平移到CD 扫过的面积为24;故答案为:(7,1)-;24;(2)①过P 点作PF AC ⊥交AC 于F ,则3PF =,如图:。

培优练习(附答案) -平面直角坐标系

培优练习(附答案) -平面直角坐标系

平面直角坐标系一、平面直角坐标系中的点的特征 1、对于点p(x,y),(1)在第一象限时,0>x ,0>y ; (2)在第二象限时,0<x ,0>y ; (3)在第三象限时,0<x ,0<y ; (4)在第四象限时,0>x ,0<y ; 2、对于点p(x,y), (1)在x 轴上时,0=y ,x 可取任意数;(2)在y 轴上时,0=x ,y 可取任意数;3、对于点p(x,y),(1)若在第一、三象限的角平分线上时,y x =;(2)若在第二、四象限的角平分线上时,横、纵坐标互为相反数,即0=+y x . 5、平行于x 轴的直线上的点纵坐标相同,横坐标不同;平行于y 轴的直线上的点的横坐标相同,纵坐标不同.例1:(1)已知在平面直角坐标系中,点2(+m P ,)1+m 是x 轴上的一点,则点P 的坐标为 .(2)若点b a M +(,)ab 在第二象限,则点a N (,)b 在第 象限. (3)已知线段AB ∥x 轴,若点A 的坐标为(1,2),线段AB 的长为3,则点B 的坐标为 .分析:(1)x 轴上的点纵坐标为0;(2)第二象限上的点横坐标为负数,纵坐标为正数;(3)平行于x 轴上的点纵坐标相同.练:1、已知1(M ,)2-,a N (,)b .若MN ∥x 轴,则=a ,=b ;若MN ∥y 轴,则=a ,=b ;MN ⊥x 轴,且MN =2,则N .二、探索点的坐标规律解决点的规律探索型问题应从最简单的情形入手,进而找出规律、解决问题.例2:在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形.边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为( ) A 、64 B 、49 C 、36 D 、25分析:求出边长1,2,3,4,5,6,7的正方形的整点的个数, 得到边长为1和2的正方形内部有1个整点,边长为3和4的 正方形内部有9个整点,边长为5和6的正方形内部有25个 整点,推出边长为7和8的正方形内部有49个整点, 即可得出答案.-1-111O y x1、在平面直角坐标系中,点1A (1,1),2A (2,4),3A (3,9),4A (4,16),…,用你发现的规律确定点9A 的坐标为 .2、如图,将长方形ABCD 放置在平面直角坐标系中,A B ∥x 轴,且AB =4,AD =2,且A (2,1). (1)求B ,C ,D 的坐标,并说明将长方形ABCD 进行怎样的平移使点C 移到点A 处; (2)y 轴上是否存在点P ,使△PAB 的面积等于长方形ABCD 面积的43,若存在,求出P 点坐标;若不存在,说明理由.DCBA yx4321654321O参考答案例1:(1)P(1,0) (2)第三象限 (3)B (4,2)或(-2,2) 练1:1≠a , 2-=b ;1=a ,2-≠b ; (1,0)或(1,-4) 例2:B练2:(1)4A (2,0);8A (4,0);12A (6,0);(2)n A 4(n 2,0); (3)向上. 例3:18.5 四、巩固练习1、(9,81). 提示:n A n (,2n )2、(1)B (6,1),C (6,3),D (2,3),将长方形ABCD 先向左平移4个单位,再向下平移2个单位,可使点C 移到点A.(2)存在,理由如下:设0(P ,a ),则121-⋅=∆a AB S ABP ∴43241421⨯⨯=-⨯⨯a∴31=-a ,∴4=a 或-2故P (0,4)或(0,-2)。

【3套试卷】人教版七年级数学下册第7章平面直角坐标系培优卷

【3套试卷】人教版七年级数学下册第7章平面直角坐标系培优卷

人教版七年级数学下册第7章平面直角坐标系培优卷一.选择题(共10小题)1.下列各点中,位于第四象限的点是()A.(3,-4) B.(3,4) C.(-3,4) D.(-3,-4)2.在平面直角坐标系中,点(P-所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点A(2x-4,x+2)在坐标轴上,则x的值等于()A.2或-2 B.-2 C.2 D.非上述答案4.已知点P(-4,3),则点P到y轴的距离为()A.4 B.-4 C.3 D.-35.如图,已知在△AOB中A(0,4),B(-2,0),点M从点(4,1)出发向左平移,当点M平移到AB 边上时,平移距离为()A.4.5 B.5 C.5.5 D.5.756.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0) B.(1,2) C.(5,4) D.(5,0)7.已知点M向左平移3个单位长度后的坐标为(-1,2),则点M原来的坐标是()A.(-4,2) B.(2,2) C.(-1,3) D.(-1,-2)8.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)9.已知点A(-1,2)和点B(3,m-1),如果直线AB∥x轴,那么m的值为()A.1 B.-4 C.-1 D.310.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点1(1,1),P紧接着第2次向左跳动2个单位至点2(1,1),P 第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P第2017次跳动至2017P的坐标是()A.(504,1007) B.(505,1009)C.(1008,1007) D.(1009,1009)二.填空题(共7小题)11.在平面直角坐标系中,把点A(-10,1)向上平移4个单位,得到点A′,则点A′的坐标为.12.如图是轰炸机机群的一个飞行队形,若最后两架轰炸机的平面坐标分别为A(-2,3)和B(-2,-1),则第一架轰炸机C的平面坐标是.13.若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为.14.在平面直角坐标系中,将点A(-1,3)向左平移a个单位后,得到点A′(-3,3),则a的值是.15.点Q(x,y)在第四象限,且|x|=3,|y|=2,则点Q的坐标是.16.若点A(a,b)在第四象限,则点C(-a-1,b-2)在第象限.17.已知平面内有一点A的横坐标为-6,且到原点的距离等于10,则A点的坐标为.三.解答题(共7小题)18.已知平面直角坐标系中有一点M(m-1,2m+3),且点M到x轴的距离为1,求M的坐标.19.若点P(1-a,2a+7)到两坐标轴的距离相等,求a的值.20.如图,点A(1,0),点B点P(x,y),OC=AB,OD=OB.(1)则点C的坐标为;(2)求x-y+xy的值.21.请你在图中建立直角坐标系,使汽车站的坐标是(3,1),并用坐标说明儿童公园、医院、李明家、水果店、宠物店和学校的位置.22.在平面直角坐标系中,已知点P(2m+4,m-1),试分别根据下列条件,求出点P 的坐标. 求:(1)点P 在y 轴上;(2)点P 的纵坐标比横坐标大3;(3)点P 在过A(2,-5)点,且与x 轴平行的直线上.23.已知平面直角坐标系中有一点M(2m-3,m+1).(1)点M 到y 轴的距离为l 时,M 的坐标?(2)点N(5,-1)且MN ∥x 轴时,M 的坐标?24.【阅读材料】平面直角坐标系中,点P(x,y)的横坐标x 的绝对值表示为|x|,纵坐标y 的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3【解决问题】(1)求点(2,4),A B --的勾股值[A],[B];(2)若点M 在x 轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M 的坐标.参考答案:1-5 ABAAC6-10 DBCDB11. (-10,5)12. (2,1)13. (2,5)14.215. (3,-2)16.三17. (-6,8)或(-6,-8)18. 解:由题意可得:|2m+3|=1,解得:m=-1或m=-2,当m=-1时,点M的坐标为(-2,1);当m=-2时,点M的坐标为(-3,-1);综上,M的坐标为(-2,1)或(-3,-1).19. 解:∵点P(1-a,2a+7)到两坐标轴的距离相等,∴|1-a|=|2a+7|,∴1-a=2a+7或1-a=-(2a+7),解得a=-2或a=-8.20. 解:(1)∵点A(1,0),点B(,0),∴OA=1、OB=,则AB=-1,∵OC=AB,OD=OB,∴OC=-1,OD=,则点C坐标为(-1,0),故答案为:(-1,0).(2)由(1)知点P坐标为(-1,),则x=-1、y=,∴原式=-1-+(-1)=-1+2-=1-.21. 解:如图所示:建立平面直角坐标系,儿童公园(-2,-1),医院(2,-1),李明家(-2,2),水果店(0,3),宠物店(0,-2),学校(2,5).22. 解:(1)令2m+4=0,解得m=-2,所以P点的坐标为(0,-3);(2)令m-1-(2m+4)=3,解得m=-8,所以P点的坐标为(-12,-9);(3)令m-1=-5,解得m=-4.所以P点的坐标为(-4,-5).23. 解:(1)∵点M(2m-3,m+1),点M到y轴的距离为1,∴|2m-3|=1,解得m=1或m=2,当m=1时,点M的坐标为(-1,2),当m=2时,点M的坐标为(1,3);综上所述,点M的坐标为(-1,2)或(1,3);(2)∵点M(2m-3,m+1),点N(5,-1)且MN∥x轴,∴m+1=-1,解得m=-2,故点M的坐标为(-7,-1).24. 解:(1)∵点A(-2,4),B(+,-),∴[A]=|-2|+|4|=2+4=6,[B]=|+|+|−|=++−=2;(2)∵点M在x轴的上方,其横,纵坐标均为整数,且[M]=3,∴x=±1时,y=2或x=±2,y=1或x=0时,y=3,∴点M的坐标为(-1,2)、(1,2)、(-2,1)、(2,1)、(0,3).人教版七年级下册第七课平面直角坐标系单元综合测试卷一.选择题(共10小题)1.在直角坐标系中,点A(-6,5)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,点A(-1,2),则点B的坐标为()A..(-2,2) B..(-2,-3) C..(-3,-2) D.(-2,-2)3.已知点A(-3,0),则A点在()A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上4.在平面直角坐标系的第四象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,-4) B.(-4,3) C.(4,-3) D.(-3,4)5.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0) B.(1,2) C.(5,4) D.(5,0)6.如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A(3,1),B(2,2),则“宝藏”点C的位置是()A.(1,0) B.(1,2) C.(2,1) D.(1,1)7.钓鱼岛历来就是中国不可分割的领土,中国对钓鱼岛及其附近海域拥有无可争辩的主权,能够准确表示钓鱼岛位置的是()A.北纬25°40′~26°B .东经123°~124°34′C .福建的正东方向D .东经123°~124°34′,北纬25°40′~26°8.已知点M(a,1),N(3,1),且MN=2,则a 的值为( )A .1B .5C .1或5D .不能确定9.如图所示是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋②的坐标是( )A .(0,-2)B .(1,-2)C .(2,-1)D .(1,2)10.如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为( )A .(60,0)B .(72,0)C .⎝⎛⎭⎫67 15, 95D .⎝⎛⎭⎫79 15, 95二.填空题(共6小题)11.若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为 .12.在平面直角坐标系中,已知点A(2,3),点B 与点A 关于x 轴对称,则点B 坐标是 .13.若点P(m+5,m-2)在x 轴上,则m= ;若点P(m+5,m-2)在y 轴上,则m= .14.如图所示是轰炸机机群的一个飞行队形,如果其中两架轰炸机的平面坐标分别表示为A(-2,3)和B(2,1),那么轰炸机C 的平面坐标是 .15.将点P(x,4)向右平移3个单位得到点(5,4),则P点的坐标是.16.把自然数按如图的次序在直角坐标系中,每个点坐标就对应着一个自然数,例如点(0,0)对应的自然数是1,点(1,2)对应的自然数是14,那么点(1,4)对应的自然数是;点(n,n)对应的自然数是三.解答题(共6小题)17.在平面直角坐标系中,点A(2m-7,n-6)在第四象限,到x轴和y轴的距离分别为3,1,试求m+n的值.18.已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,-4)且与y轴平行的直线上.19.小王到公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示,可是她忘记了在图中标出原点和x轴、y轴,只知道游乐园D的坐标为(2,-2),且一格表示一个单位长度.(1)在原图中建立直角坐标系,求出其它各景点的坐标;(2)在(1)的基础上,记原点为0,分别表示出线段AO和线段DO上任意一点的坐标.20.已知A(1,0)、B(4,1)、C(2,4),△ABC经过平移得到△A′B′C′,若A′的坐标为(-5,-2).(1)求B′、C′的坐标;(2)求△A′B′C′的面积.21.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为,B4的坐标为.(2)按以上规律将△OAB进行n次变换得到△OA n B n,则A n的坐标为,B n的坐标为;(3)△OA n B n的面积为.22.(1)在如图直角坐标系中,描出点(9,1)(11,6)(16,8)(11,10)(9,15)(7,10)(2,8)(7,6)(9,1),并将各点用线段顺次连接起来.(2)给图形起一个好听的名字,求所得图形的面积.(3)如果将原图形上各点的横坐标加2、纵坐标减5,猜一猜,图形会发生怎样的变化?(4)如果想让变化后的图形与原图形关于原点对称,原图形各点的坐标应该如何变化?答案:1-10 BDBCD DDCAA11. (2,5)12. (2,-3)13.-514. (-2,-1)15. (2,4)16.60 4n2-2n+117.解:∵点A(2m-7,n-6)在第四象限,到x轴和y轴的距离分别为3,1, ∴2m-7=1,n-6=-3,解得m=4,n=3,所以,m+n=4+3=7.18.解:(1)∵点P(2m+4,m-1)在x轴上,∴m-1=0,解得m=1,∴2m+4=2×1+4=6,m-1=0,所以,点P的坐标为(6,0);(2)∵点P(2m+4,m-1)的纵坐标比横坐标大3,∴m-1-(2m+4)=3,解得m=-8,∴2m+4=2×(-8)+4=-12,m-1=-8-1=-9,∴点P的坐标为(-12,-9);(3)∵点P(2m+4,m-1)在过点A(2,-4)且与y轴平行的直线上,∴2m+4=2,解得m=-1,∴m-1=-1-1=-2,∴点P 的坐标为(2,-2).19.解:(1)如图画出平面直角坐标系:其各景点的坐标分别为:A(0,4),B(-3,2),C(-2,-1),E(3,3);(2)线段AO 上一点:(0,1),线段DO 上任意一点:(1,-1).20.解:∵A(1,0)、A ′(-5,-2).∴平移规律为向左6个单位,向下2个单位,∵B(4,1)、C(2,4),∴B ′(-2,-1),C'(-4,2);(2)△A ′B ′C ′的面积=△ABC 的面积=3×4- 12×3×1- 12×2×3- 12×1×4=5.5.21.解:(1)∵A 1(2,3)、A 2(4,3)、A 3(8,3).∴A 4的横坐标为:24=16,纵坐标为:3.故点A 4的坐标为:(16,3).又∵B 1(4,0)、B 2(8,0)、B 3(16,0).∴B 4的横坐标为:25=32,纵坐标为:0.故点B 4的坐标为:(32,0).故答案为:(16,3),(32,0).(2)由A 1(2,3)、A 2(4,3)、A 3(8,3),可以发现它们各点坐标的关系为横坐标是2n ,纵坐标都是3.故A n 的坐标为:()2n ,3.由B 1(4,0)、B 2(8,0)、B 3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故B n 的坐标为:()2n+1,0;故答案为:()2n ,3,()2n+1,0;(3)∵A n 的坐标为:()2n ,3,B n 的坐标为:()2n+1,0,∴△OA n B n 的面积为12×2n+1×3=3×2n .22.解:(1)如图所示:(2)图形可以叫做“四角的星星”.面积为:14×14-4×⎝⎛⎭⎫5×5+2× 12×5×2=56; 或者是:4× 12×4×5+4×4=56;(3)如果将原图形上各点的横坐标加2、纵坐标减5,图形的形状、大小都不改变,只是位置发生变化;(4)如果想让变化后的图形与原图形关于原点对称,那么原图形各点的横、纵坐标都分别变为原来横、纵坐标的相反数.人教版七年级数学下册第七章平面直角坐标系培优测试试卷一、单选题(共10题;共30分)1.在平面直角坐标系中,将点(-2,-3)向上平移3个单位长度,则平移后的点的坐标为( )A. (-2,0)B. (-2,1)C. (0,-2)D. (1,-1)2.点P(m+3,m+1)在直角坐标系的x轴上,则点P的坐标为()A. (2,0)B. (0,-2)C. (4,0)D. (0,-4)3.如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A. (﹣2,3)B. (3,﹣1)C. (﹣3,1)D. (﹣5,2)4.已知点A在x轴上,且点A到y轴的距离为4,则点A的坐标为( )A. (4,0)B. (0,4)C. (4,0)或(-4,0)D. (0,4)或(0,-4)5.将点A(﹣1,2)向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A. (3,1)B. (﹣3,﹣1)C. (3,﹣1)D. (﹣3,1)6.点A1(5,–7)关于x轴对称的点A2的坐标为( ).A.(–5, –7)B.(–7 , –5)C.(5, 7)D.(7, –5)7.如图,在正方形ABCD 中,A,B,C 三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD 向右平移3 个单位,则平移后点 D 的坐标是()A. (﹣6,2)B. (0,2)C. (2,0)D. (2,2)8.A(-3,4)和B(4,-1)是平面直角坐标系中的两点,则由A点移到B点的路线可能是()A. 先向上平移5个单位长度,再向右平移7个单位长度B. 先向上平移5个单位长度,再向左平移7个单位长度C. 先向左平移7个单位长度,再向上平移5个单位长度D. 先向右平移7个单位长度,再向下平移5个单位长度9.小张和小陈都在电影院看电影,小张的位置用(a,b)表示,小陈的位置用(x,y)表示,我们约定“排数在前,列数在后”,若小张恰在小陈的正前方,则()A. a=xB. b=yC. a=yD. b=x10.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是()A. (2,﹣1)B. (4,﹣2)C. (4,2)D. (2,0)二、填空题(共6题;共24分)11.线段AB两端点A(-1,2),B(4,2),则线段AB上任意一点可表示为________.12.将点P(x,4)向右平移3个单位得到点(5,4),则P点的坐标是________.13.点A(1-x,5)、B(3,y)关于y轴对称,那么x+y = .14.在平面直角坐标系中,若点M(﹣1,4)与点N(x,4)之间的距离是5,则x 的值是________.15.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋②的坐标是________.16.有一个英文单词的字母顺序对应如图中的有序数对分别为(2,1),(2,2),(4,2),(5,1),请你把这个英文单词写出来(或者翻译成中文)为________。

平面直角坐标系(培优专用)

平面直角坐标系(培优专用)

平面直角坐标系第1讲坐标与坐标系一、位置与坐标1.在平面直角坐标系中有A,B两点,若以B点为原点建立直角坐标系,则A点的坐标为(2,3),若以A 点为原点建立直角坐标系(两直角坐标系x轴,y轴方向一致),则B点的坐标为__________.2.已知点B(2-)在x轴上,则B点坐标为__________.m-,3m3.在平面直角坐标系中,点A(n,1n-)一定不在第__________象限.4.点A在x轴的上方,距离x轴2个单位长度,距离y轴3个单位长度,则A点的坐标为__________.5.在平面直角坐标系中,点P到x轴和y轴的距离分别为3、5,则这样的点P的个数是__________.+ 6.在平面直角坐标系中,若点A(27m-,6n-)在第四象限,且到x轴和y轴的距离分别为3、1,则m n 的值为__________.7.已知P(2xx-)到两坐标轴的距离相等,则x的值为__________..-,34二、与坐标轴平行的直线上两点间的坐标关系1.已知点A(a,3),B(-4,b),若AB∥y轴,则a=__________;若AB∥x轴,则b=__________.2.若过点P和点A(3,2)的直线平行于x轴,过点P和B(-1,-2)的直线平行于y轴,则点P的坐标为__________.3.已知线段AB∥x轴,且4AB=,若点A的坐标为(2,-3),则点B的坐标为__________.4.已知点A(4,x),B(y,-3),若AB∥x轴,且线段AB的长为5,则xy的值为__________.5.已知点A(3a-6,a+4)、B(-3,2),且AB∥y轴,点P为直线AB上一点,且2=,则点PPA PB的坐标为________________.6.在平面直角坐标系中,点A(-3,2)、B(3,4)、C(x,y),若AC∥x轴,则线段BC的长度最短时,点C的坐标为__________.第2讲 坐标系中的平移及应用一、平移与坐标变化1.线段MN 是由线段EF 经过平移得到的,若点E (-1,3)的对应点M (2,5),则点F (-3,-2)的 对应点N 的坐标是__________.2.已知A (1,-2)、B (-1,2)、E (2,a )、F (b ,3),若将线段AB 平移至EF ,点A 、E 为对应点, 则a b +的值为__________.3.已知△ABC 内任意一点P (a ,b )经过平移后对应点1P (c ,d ),已知点A 坐标(-3,2)在经过此次平移后对应点1A (4,-3),则a b c d --+的值为__________.4.三角形ABC 在平移时,点B (-1,2)经过平移后对应点为B ′(4,-1),而此时x 轴上的点A 经过平 移,其对应点A ′恰好在y 轴上,则点A ′的坐标为__________.5.若点A (0B (1-,0),把线段AB 平移,使B 点的对应点E 到x 轴距离为1,A 点的对应点F 到y 轴的距离为2,且EF 与两坐标轴没有交点,则F 点的坐标为____________________.二、简单应用1.在平面直角坐标系中,点C 是线段AB 的中点.(1)线段BC 能否由线段AC 平移得到?若能,请直接写出与线段AB 端点A 、B 对应的点,若不能请说 明理由;(2)若点A (1,-2)、C (2,3),则点B 的坐标为__________; (3)若点A (-2,3),B (4,1),则点C 的坐标为__________; (4)若点A (1x ,1y ),B (2x ,2y ),C (0x ,0y ),请直接写出点A 、B 和C 的坐标关系式.2.在平面直角坐标系中,以A 、B 、C 、D 为顶点的四边形为平行四边形. (1)若A (1x ,1y )、B (2x ,2y )、C (3x ,3y )、D (4x ,4y ),且边DC 平移可由边AB 得到(A 与D对应),请直接写出点A 、B 、C 和D 的坐标关系式;(2)①若A (-2,2)、B (1,4)、C (2,1),则D 点坐标为____________________________; ②如图,若A (2,3)、B (1,1),能否在x 轴和y 轴上分别找到点C 、D 满足题意?若能,请求 出点C 、D 的坐标;若不能,请说明理由.第3讲 坐标与规律1.在平面直角坐标系中,点A (1,0)第一次向左跳动至1A (-1,1),第二次向右跳至2A (2,1),第三次向左跳至3A (-2,2),第四次向右跳至4A (3,2),……,依照此规律跳动下去,点A 第2017次跳动后至2017A 的坐标是( ) A .(-1009,1009) B .(1009,1008) C .(-1008,1008) D .(1008,1007)2.在平面直角坐标系中,小明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2 步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位,……,依此类推,第n 步的走 法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( ) A .(66,34) B .(67,33) C .(100,33) D .(99,34)3.如图3,在平面直角坐标系中,一个点从A (1a ,2a )出发沿图中路线依次经过B (3a ,4a ), C (5a ,6a ),D (7a ,8a ),……,按此一直运动下去,则201420152016a a a ++的值为( ) A .1006 B .1007 C .1509 D .15114.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0), (2,1),(3,1),(3,0),(3,﹣1)…根据这个规律探索可得,第100个点的坐标为( ) A .(14,0) B .(14,-1) C .(14,1) D .(14,2)5.如图,在平面直角坐标系中,A (1,1)、B (-1,1)、C (-1,-2)、D 、(1,-2),把一条长为2017 个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A →B →C →D →A →…… 的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是__________.6.如图6,网格中的每个小正方形的边长都是1,1A 、2A 、3A 、……都在格点上,123A A A △、345A A A △、 567A A A △、…都是斜边在x 轴上,且斜边长分别为2、4、6、……的等腰直角三角形.若123A A A △的三 个顶点坐标为1A (2,0)、2A (1,﹣1)、3A (0,0),则依图中所示规律,203A 的坐标为( ) A .(-100,0) B .(100,0) C .(-99,0) D .(99,0)7.如图7,在平面直角坐标系中,有若干个横、纵坐标为整数的点,其顺序按图中“→”方向排列,从原 点开始依次为(0,0)、(0,1)、(1,1)、(1,0)、(2,0)、(2,1)、(2,2)、(1,2)、(0,2)、 (0,3)、……,按此规律,第2017个点的坐标是__________.第4题图第3题图第6题图第5题图第7题图。

平面直角坐标系培优专题精编版

平面直角坐标系培优专题精编版

y x1234–1–2–3–4–5–1–2–3–412345A F B C DE O 平面直角坐标系一、基本知识过关测试1.有顺序的两个数a 与b 组成的_________叫_________,记为________.6排7号可表示为______________;则(8,9)表示的意义是______________.2.在平面内画两条互相________,________重合的数轴就组成了_____________,此时坐标平面被两条坐标轴分为第_____象限、第_____象限、第______象限、第______象限;_______上的点不属于任何象限.①如图,分别写出下列各点坐标,A ______、B ______、C _______、D _______、E _______、F _______、O ________. ②在平面直角坐标系中描出下列个点,G (3,-4),H (-3,4),M (4,0),N (0,-1). 3.(1)设P (x ,y )在第一象限,且|x |=1,|y |=2,则P 点的坐标为_________. (2)点B (-1,m 2+1)在第______象限.(3)已知点C (m ,n ),且mn >0,m +n <0,则C 在第______象限. (4)点D (2m ,m -4)在第四象限,则偶数m =_______.(5)平面直角坐标系内,点A (n ,1-n )一定不在第________象限.4.点A (m +4,m -1)在x 轴上,则m =________;点B (m +1,3m +4)在y 轴上,则B 点坐标__________.5.①已知A 点坐标(-4,2),则A 点横坐标为________,纵坐标为_______,点A 到x 轴的距离为______,到y 轴的距离为________.②点P (x ,y )到x 轴,y 轴的距离分别为5和4,那么点P 的坐标是___________. ③N (a ,b )到x 轴的距离为___________,到y 轴的距离为___________.④已知点P (2-a ,3a +6)到两坐标轴的距离相等,则P 点坐标为___________. 6.已知点A (a ,3)和点B (-2,b ).①若A 、B 关于x 轴对称,则a =______,b =_______; ②若A 、B 关于y 轴对称,则a =______,b =_______; ③若A 、B 关于原点对称,则a =______,b =_______.7.△A 1B 1C 1是由△ABC 平移后得到的,已知△ABC 的边上任一点P (x 0,y 0)经平移后对应点为P 1(x 0+5,y 0-2),已知A (-1,2),B (-4,5),C (-3,0),则A 1、B 1、C 1的坐标分别为________,_________,__________,△A 1B 1C 1是由△ABC 先向_____移______个单位长度,再向______移______个单位长度而得到的.8.①已知点M (x ,y ),N (-2,3),且MN ∥x 轴,则x =_______,y =______;已知点A (x ,2),B (-3,y ),若AB ∥y 轴,则x =______,y =_______.②若|x |=|y |,则P (x ,y )在_________上;若P (x -3,2x )在第二象限的夹角平分线上,则P 点坐标为____________.9.已知点A (-1,-1),B (-1,4),C (4,4),若ABCD 是正方形,则顶点D 的坐标是______. 10.如图,有一只蜗牛从直角坐标系的原点O 向y 轴正方向出发,它前进1cm ,右转90°,再前进1cm 后,左转90°,再前进1cm 后,右转90°,…当它走到点P (n ,n )时,左边碰到障碍物,就直行1cm ,再右转90°,前进1cm ,再左转90°,前进1cm ,…,最后回到了x 轴上,则蜗牛所走过的路程S 为________厘米.E C B DAA (1,2)C (1,1)B (-1,-1)11.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3);B (2,0),B 1(4,0),B 2(8,0),B 3(16,0),观察每次变换后的三角形有何变化,找出规律,再将△OA 3B 3变换成△OA 4B 4,则A 4,B 4的坐标分别是_______________.12.已知点A (-5,0),B (3,0),在y 轴上有一点C ,满足S △ABC =16,则点C 的坐标是___________,在坐标平面上满足S △ABC =16的点C 有_________个. 二、综合、提高、创新【例1】如图是某市的部分景点图,每个方格边长为一个单位长度,取北为y 轴的正方向,若以A :科技大学为坐标原点,则各景点的坐标为,B :大成殿(2,3),C :中心广场(5,4),D :钟楼(______),E :碑林(______).若记C :中心广场的坐标为(0,0),则各景点的坐标为A :科技大学(-5,-4),B :大成殿(-3,-1),D :钟楼(_______),E :碑林(______).【例2】如图,是传说中的藏宝岛图,藏宝人生前用直角坐标系的方法画出了这幅图.现今的寻宝人没有原来的地图,但知道在该图上有三块大石头A (1,2),B (-1,-1),C (1,1),而藏宝地的坐标是(4,-1),试设法在地图上找到藏宝地点.【例3】(1)如图1,△A 1B 1C 1是由△ABC 平移后得到的,已知A (0,0),B (3,-1),C (-1,-4)且B 1(-2,1),试写出△ABC 变换为△A 1B 1C 1的一种平移方案,写出点A 1,C 1的坐标.(2)如图2,△A 1B 1C 1是由△ABC 经过变换后得到的图形,试写出其变换的过程及在这些变换过程中点B ,C 对应的坐标.图1B 1C 1A 1BCA Oxy1234–1–2–3–4–5–1–2–3–4–512345图2A 1C 1B 1ABCyxO123451234–1–2–3–4–5–1–2–3–4–5【例4】(1)如图,在一单位为1cm的方格纸上,依图所示的规律,设定点A1,A2,A3,A4,……A n,连接点A1、A2、A3组成三角形,记为△1,连结点A2、A3、A4组成三角形,记为△2…,连结点A n、A n+1、A n+2组成三角形,记为△n(n为正整数)请你推断,当△n的面积为100cm2时,n=_______.(2)将正整数按如图所示的规律在平面直角坐标系中进行排列,每个正整数对应一个整点坐标(x,y),且x,y均为整数,如数5对应的坐标为(-1,-1),试探求数2012对应的坐标.【例5】(1)如下图,求面积①A(2,0),B(0,1),C(0,4).②A(0,2),B(-2,0),C(2,-1),D(34,0).yxO ABCDBOE CxyAS△ABC=_____________ S△ABC=_____________③A(1,4),B(3,-1),C(-4,-2).④A(-14,0),B(-11,6),C(-1,8),O(0,0).OxyBCAOACBxyS△ABC=_____________ S OABC=_____________(2)在平面直角坐标系中,A点坐标为(3-2,0),C点坐标为(-3-2,0),B 点在y轴上,且S△ABC=3,则B点的坐标是____________,在坐标平面上能满足S△ABC=3的点C有___________个.B O AC lx yx y C ED B O A O B (1,3)A (2,-1)C (-4,-2)xy y xBAO C【例6】已知:如图A (-4,0)、C (3,27),直线AC 交y 轴于点B . (1)求△AOC 的面积;(2)求点B 的坐标;(3)在平面直角坐标系内是否存在一点P (m ,1),使△ABP =S △AOC ,若存在试求出m 的值,若不存在试说明理由.三、反馈练习 (一)填空1.若点C (x ,y )满足x +y <0,xy >0,则点C 在第_____象限.2.若点A (a ,b )在第三象限,则点Q (-a +1,3b -5)在第______象限. 3.已知点P (a ,-2),Q (3,b )且PQ ∥y 轴,则a =______,b ≠_______. 4.已知A (x +1,2),B (-3,2y -1)关于y 轴对称,则x =_________. 5.(1)点M (3,0)到点N (-2,0)的距离是___________.(2)点C 在y 轴上,到坐标原点的距离为5个单位长度,则C 点坐标为_________. (3)点D 在y 轴左侧,它到x 轴距离为2个单位长度,到y 轴距离为1个单位长度,则D 点坐标为__________.6.在长方形ABCD 中,A (-4,1),B (0,1),C (0,3),则D 点的坐标是_________,S 长方形ABCD 为_______个单位面积.7.如图,一个机器人从O 点出发,向正东方走3m 到达A 1点,再向正北方向走6m 到达A 2点,再向正西方向走9m 到达A 3点,再向正南方向走12m 到达A 4点,再向正东方向走15m 到达A 5点.按如此规律走下去,相对于点O ,机器人走到A 6点的坐标为_______.8.如图一个粒子在第二象限移动,在第一分钟内它从原点运动到(-1,0),而后它接着按着图所示在与x 轴、y 轴平行的方向来回运动且每分钟移动1个单位长度,那么在2012分钟时,则这个粒子所处的位置的坐标为_____________. (二)解答9.如图,△ABC 是一个三角形,A (-4,0),B (2,0),把△ABC 沿AC 边平移,使A 点平移到C 点,△ABC 变换为△DCE ,已知C (0,3.5),请写出D 、E 的坐标,并用坐标说出平移的过程.10.如图所示,已知△ABC 的三个顶点的坐标分别为A (2,-1)、B (1,3)、C (-4,-2),求出△ABC 的面积.11.如图,A (1,0),B (3,0),C (0,3),D (2,-1).(1)试在y 轴上找一点P ,使三角形ADP 的面积与三角形ABC 的面积相等;(2)如果第二象限内有一点Q (a ,1),使S △QAC =S △ABC ,求Q 点坐标.※12.在平面直角坐标系中,已知O使原点,四边形ABCD是长方形,A,B,C的坐标分别使A(-2,-2),B(-2,-3),C(4,3).(1)求D点坐标;(2)将长方形ABCD以每秒1个单位长度水平向右平移,2秒钟后所得的四边形A1B1C1D1四个顶点的坐标各多少?请将(1)(2)中的答案直接填入下表中:点D A1B1C1D1坐标(3)以(2)中方式平移长方形ABCD,几秒钟后三角形OBD的面积等于长方形ABCD的面积.。

初一数学培优卷2――平面直角坐标系

初一数学培优卷2――平面直角坐标系

树诚学校集小学.初中.高中全程式培训于一体.聘请有丰富经验与教学技巧的一线优秀教师(教学能手与学科骨干).期待你的参与.联系电话:主校6289959(少年宫) 分校:6952472 常年开设各学科预科与同步班.1初一数学培优卷2――平面直角坐标系1.已知点M 在y 轴上,纵坐标为5,点P(3,-2),则△OMP 的面积是_______。

2.已知线段MN 平行于x 轴,且MN 的长度为5,若M (2,-2),那么点N 的坐标是__________.3.写出如图中△ABC三角形的面积。

4.如图:已知<OEF=90º,且点E 的纵坐标为-5E点F 的纵坐标为-7,则线段OE 长的取值范围( ) F5.如果点A 、第四象限B 、第三象限C 、第二象限D 、第一象限6.直角坐标系中,点 在第二象限,且 到 轴、轴距离分别为3,7,则点坐标为( )A 、B 、C 、D 、7.已知点 且∥轴,则________,________.8.如果y x<0,),(y x Q 那么在( )象限 ( ) A 、 第四 B 、 第二 C 、 第一、三 D 、 第二、四9.已知3)2(2=++-b a ,则),(b a P --的坐标为( )A 、 )3,2(B 、 )3,2(-C 、 )3,2(-D 、 )3,2(--10.按照下列条件确定点),(y x P 位置: ⑴ 若x=0,y ≥0,则点P 在⑵ 若xy=0,则点P 在⑶ 若22=+yx ,则点P 在⑷ 若3-=x ,则点P 在⑸ 若y x =,则P 在 11.在如图所示的直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(0,0),B(2,5),C(9,8)D(12,0)确定这个四边形的面积。

你是怎样做的?树诚学校集小学.初中.高中全程式培训于一体.聘请有丰富经验与教学技巧的一线优秀教师(教学能手与学科骨干).期待你的参与.联系电话:主校6289959(少年宫) 分校:6952472 常年开设各学科预科与同步班. 2D CB A12. 下列各点中,在第二象限的点是()A. (2,3)B. (2,-3)C. (-2,-3)D. (-2,3)13. 将点A(-4,2)向上平移3个单位长度得到的点B的坐标是()A. (-1,2)B. (-1,5)C. (-4,-1)D. (-4,5)14. 如果点M(a-1,a+1)在x轴上,则a的值为()A. a=1B. a=-1C. a>0D. a的值不能确定15. 点P的横坐标是-3,且到x轴的距离为5,则P点的坐标是()A. (5,-3)或(-5,-3)B. (-3,5)或(-3,-5)C. (-3,5)D. (-3,-5)16. 若点P(a,b)在第四象限,则点M(b-a,a-b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限17. 点M(a,a-1)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限18. 在平面直角坐标系中,若一图形各点的横坐标不变,纵坐标分别减3,那么图形与原图形相比()A. 向右平移了3个单位长度B. 向左平移了3个单位长度C. 向上平移了3个单位长度D. 向下平移了3个单位长度19. 到x轴的距离等于2的点组成的图形是()A. 过点(0,2)且与x轴平行的直线B. 过点(2,0)且与y轴平行的直线C. 过点(0,-2)且与x轴平行的直线D. 分别过(0,2)和(0,-2)且与x轴平行的两条直线20. 已知点P的坐标(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是。

(word完整版)七年级平面直角坐标系培优练习

(word完整版)七年级平面直角坐标系培优练习

七年级平面直角坐标系练习知识讲解①坐标平面内的点与有序实数对一一对应;②点P (a ,b )到x 轴的距离为│b │,•到y 轴距离为│a │,到原点距离为22a b +;③各象限内点的坐标的符号特征:P (a ,b ),P•在第一象限⇔a>0且b>0,P 在第二象限⇔a<0,b>0,P 在第三象限⇔a<0,b<0,P 在第四象限⇔a>0,b<0;④点P (a ,b ):若点P 在x 轴上⇔a 为任意实数,b=0;P 在y 轴上⇔a=0,b 为任意实数;P 在一,三象限坐标轴夹角平分线上⇔a=b ;P 在二,四象限坐标轴夹角平分线上⇔a=-b ;⑤A (x 1,y 1),B (x 1,y 2):A ,B 关于x 轴对称⇔x 1=x 2,y 1=-y 2;A 、B 关于的y 轴对称⇔ x 1=-x 2,y 1=y 2;A 、B 关于原点对称⇔x 1=-x 2,y 1=-y 2;AB ∥x 轴⇔y 1=y 2且x 1≠x 2;AB ∥y 轴⇔x 1=x 2且y 1≠y 2(A ,B 表示两个不同的点).练习题:一、 选择题1、在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC =30°时,∠BOD 的度数是( ).A .60°B .120°C .60°或 90°D .60°或120°2、如图3,已知∠3=∠4,∠2=80O ,则∠1=( )A.80OB. 70OC. 60OD. 50O 3、12的负的平方根介于( )。

A 、之间与45--B 、之间与34--C 、之间与23--D 、之间与12--4、若2)(11y x x x +=---,则y x -的值为( )。

A 、1- B 、1 C 、2D 、3 5、如果0<yx ,),(y x Q 那么在( )象限。

第七章-平面直角坐标系培优讲义

第七章-平面直角坐标系培优讲义

第七章 平面直角坐标系培优讲义一、本章基本知识归类1、已知M (1,-2),就本章所学知识,说出你能得出的结论. ①M 在第象限;②M 到x 轴的距离为 ,到y 轴的距离为 ;③M 点向上平移a 个单位,得到点 ,再向下平移b 个单位,得到点 。

引申已知N (a ,b )为平面内一点, ①试讨论N 在平面内的位置;②N 到x 轴的距离为 ,到y 轴的距离为 ; ③当时,N 在第一、三象限的角平分线上; 当时,N 在第二、四象限的角平分线上。

2、已知M (1,-2),N (a ,b )①若MN ∥x 轴,则a ,b 应满足的条件为 ; ②若MN ∥y 轴,则a ,b 应满足的条件为 ; ③若MN ⊥x 轴,且MN=2,则N 点坐标为 ;④若M 点向左平移3个单位,再向下平移4个单位,得到点N ,则a= ,b=.二、重点题型研究【例1】在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【变式训练】1、在平面直角坐标系中,点(-1,m 2+1)一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 2、如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限. 3、点(x ,x-1)不可能在 ( )A.第一象限B.第二象限C.第三象限D.第四象限4、如果点P(m ,1-2m)在第四象限,那么m 的取值范围是( ).A. 210<<mB. 021<<-m C.0<m D .21>m5、若关于x ,y 的方程组⎩⎨⎧=-=+93323my x y mx 的解为坐标的点(x ,y )在第二象限,则符合条件的实数m的范围是( ).A. 91>mB. 2-<mC.912<<-m D .921<<-m【例2】点P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是____________________. 【变式训练】1、x 轴上的点P 到y 轴的距离为2.5,则点P 的坐标为( )A .(2.5,0)B .(-2.5,0)C .(0,2.5)D .(2.5,0)或(-2.5,0) 2、已知点P ()82,2+-a a 到x 轴、y 轴的距离相等,求点P 的坐标. 3、如果点M (m +3,2m +4)在y 轴上,那么点M 的坐标是_________. 4、点P (m+3,m+1)在x 轴上,则P 点坐标为________.【例3】已知线段AB 平行于x 轴,AB 长为5.若点A 的坐标为(4,5),则点B 的坐标为______________. 【变式训练】1、已知点A(1,2),AC ∥y 轴, AC=5,则点C 的坐标是 _____________.2、如果点A ,点B 且AB//轴,则_______3、如果点A ,点B 且AB//轴,则_______4、已知:A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则点B 的坐标是.5、已知长方形ABCD 中,AB=5,BC=8,并且AB ∥x 轴,若点A 的坐标为(-2,4),则点C 的坐标为__________________________.6、在直角坐标系中,已知A (1,0)、B (-1,-2)、C (2,-2)三点坐标,若以 A 、B 、C 、D 为顶点的四边形是平行四边形,那么点D 的坐标可以是.①(-2,0) ②(0,-4) ③(4,0) ④(1,-4)【例4】若点M 在第一、三象限的角平分线上,且点M 到x 轴的距离为2,则点M 的坐标是( ) A .(2,2) B .(-2,-2) C .(2,2)或(-2,-2) D .(2,-2)或(-2,2) 【变式训练】1、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,则a =,点的坐标为。

平面直角坐标系培优ppt课件

平面直角坐标系培优ppt课件

一个水泵站,分别向两村
各铺一条水管.要使所用
水管最短,水泵站应修在
什么位置?在图中标出水泵
站的位置,并求出所用水
管的长度.
.
例13、在平面直角坐标系中,如图,矩形
OABC的OA= 3 ,AB=l,将矩形OABC沿
OB对折,点A落在点A′上,求A′点坐标.
.
例14 在直角坐标系中,A(-4,0),B(2,0),点C
依此规律跳动下去,点A第100次跳动至点A100的
坐标是

.
例5、如图,将边长为1的正三角形OAP沿x轴正 方向连续翻转2014次,点P依次落在
点P1,P2,P3…P2014的位置,则
点P2014的坐标为

.
练习
如图,将边长为1的正方形OAPB沿x轴正方向连续
翻转2015次,点P依次落在点P1,P2,P3,
B、( 3 + 1, 3 – 2)
D、(1 + 3 ,1 - 3 )
y B
A C
O.
x
例9
“若点P、Q的坐标是(x1,y1)、(x2,y2),则线
x1 x2
y1 y2
段PQ中点的坐标为( 2 , 2 ).”
已知点A、B、C的坐标分别为(-5,0)、
(3,0)、(1,4),利用上述结论求线段AC、 BC的中点D、E的坐标,并判断DE与AB的位置 关系.
.
例10
在平面直角坐标系内,已知点(1-2a,a-2)在 第三象限的角平分线上,求a的值及点的坐标?
.
例11:已知点 A(m5,1) , 点 B(4,m1),且直线 AB// y 轴,则
m的值为多少?
.
例12:在平面直角坐标系中,已知:

部编数学七年级下册专题7.1平面直角坐标系专项提升训练(重难点培优)2023培优(解析版)【人教版】

部编数学七年级下册专题7.1平面直角坐标系专项提升训练(重难点培优)2023培优(解析版)【人教版】

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!2022-2023学年七年级数学下册尖子生培优题典【人教版】专题7.1平面直角坐标系专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•锦江区校级期中)在平面直角坐标系中,下列各点位于第四象限的是( )A.(2,﹣)B.(﹣2,﹣)C.(2,)D.(﹣2,)【分析】平面直角坐标系中第四象限内的点的特点是横坐标大于0,纵坐标小于0,由此解答即可.【解答】解:A、点(2,﹣)在第四象限,故此选项符合题意;B、点(﹣2,﹣)在第三象限,故此选项不符合题意;C、点(2,)在第一象限,故此选项不符合题意;D、点(﹣2,)在第二象限,故此选项不符合题意,故选:A.2.(2022秋•锦江区校级期中)根据下列表述,能确定准确位置的是( )A.太平洋影城3号厅2排B.南偏东40°C.天府大道中段D.东经116°,北纬42°【分析】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解.【解答】解:A、太平洋影城3号厅2排,不能确定具体位置,故本选项不符合题意;B、南偏东40°,不能确定具体位置,故本选项不符合题意;C、天府大道中段,不能确定具体位置,故本选项不符合题意;D、东经116°,北纬42°,能确定具体位置,故本选项符合题意.故选:D.3.(2022秋•重庆期中)在平面直角坐标系中,点P(a﹣3,2a+1)在y轴上,则a的值为( )A.3B.﹣3C.D.【分析】直接利用y轴上点的坐标特点得出a﹣3=0,进而得出答案.【解答】解:∵点P(a﹣3,2a+1)在y轴上,∴a﹣3=0,解得:a=3.故选:A.4.(2022秋•罗湖区校级期中)在平面直角坐标系中,若点A(a,ab)在第四象限,则点B(a2b,﹣b2)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用第四象限内点的坐标特点得出a,b的符号,进而得出答案.【解答】解:∵A(a,ab)在第四象限,∴,解得a>0,b<0,∴a2b<0,﹣b2<0,∴点B(a2b,﹣b2)所在的象限是第三象限.故选:C.5.(2022秋•天桥区期中)点P在第二象限内,P到x轴的距离是5,到y轴的距离是3,那么点P的坐标为( )A.(﹣5,3)B.(﹣3,﹣5)C.(﹣3,5)D.(3,﹣5)【分析】根据点的x轴的距离等于纵坐标的绝对值,点的y轴的距离等于横坐标的绝对值,再根据平面直角坐标系中第二象限点的坐标特征即可解答.【解答】解:点P在第二象限内,P到x轴的距离是5,到y轴的距离是3,那么点P的坐标是(﹣3,5),故选:C.6.(2022秋•渠县校级期中)如图,象棋盘上,若“将”位于点(1,﹣1),“象”位于点(3,﹣2).则“炮”位于点( )A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)【分析】直接利用已知点坐标得出原点位置,进而得出答案.【解答】解:如图所示:“炮”位于点(﹣2,1).故选:C.7.(2022秋•天长市月考)若点P(m﹣2,﹣1﹣3m)落在坐标轴上,则m的值是( )A.m=2B.C.m=2或D.m=﹣2或【分析】根据x轴上点的纵坐标为0,y轴上点的横坐标为0列方程求解即可.【解答】解:∵点P(m﹣2,﹣1﹣3m)落在坐标轴上,∴m﹣2=0或﹣1﹣3m=0,解得m=2或m=﹣.故选:C.8.(2022春•长安区校级期中)如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),用方位角和距离可描述为:在点O正北方向,距离O点2个单位长度.下面是嘉嘉和琪琪用两种方式表示目标B,则判断正确的是( )嘉嘉:目标B的位置为(3,210°);淇淇:目标B在点O的南偏西30°方向,距离O点3个单位长度.A.只有嘉嘉正确B.只有淇淇正确C.两人均正确D.两人均不正确【分析】根据题意判断即可得到结论.【解答】解:由题意得,目标B的位置为(4,210°)或目标B在点O的南偏西60°方向,距离O点4个单位长度;故选:D.9.(2022春•长安区校级期中)在平面直角坐标系中,一只蜗牛从原点O出发,按向下、向右、向上、向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则点A2021的坐标是( )A.(505,0)B.(505,﹣1)C.(1010,0)D.(1010,﹣1)【分析】根据点的坐标变化发现规律即可写出点A4n+1的坐标(n为正整数).【解答】解:根据点的坐标变化可知:各点的坐标为:A5(2,﹣1),A9(4,﹣1),A13(6,﹣1),•∴点A4n+1的坐标(n为正整数)为(2n,1);∴点A2021的坐标是(1010,﹣1),故选:D.10.(2022春•海淀区月考)在平面直角坐标系xOy中,直线l经过点A(﹣1,0),点A1,A2,A3,A4,A5,……按如图所示的规律排列在直线l上.若直线l上任意相邻两个点的横坐标都相差1,纵坐标也都相差1,若点A n(为正整数)的纵坐标为﹣2022,则n的值为( )A.4042B.4043C.4044D.4045【分析】观察①n为奇数时,横坐标纵坐标变化得出规律;②n为偶数时,横坐标纵坐标变化得出规律,再求解.【解答】解:观察①n为奇数时,横坐标变化:﹣1+1,﹣1+2,﹣1+3,…﹣1+,纵坐标变化为:0﹣1,0﹣2,0﹣3,…﹣,②n为偶数时,横坐标变化:﹣1﹣1,﹣1﹣2,﹣1﹣3,…﹣1﹣,纵坐标变化为:1,2,3,…,∵点A n(n为正整数)的纵坐标为﹣2022,∴﹣=﹣2022,解得n=4043,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•下城区校级期中)在平面直角坐标系中,点P(﹣3,2)在第 二 象限;点P到x轴的距离是 2 .【分析】直接利用点的坐标特点、横纵坐标的意义得出答案.【解答】解:∵点P(﹣3,2),横坐标为负数,纵坐标为正数,∴点P(﹣3,2)在第二象限;点P到x轴的距离是2.故答案为:二,2.12.(2022秋•三水区期中)在直角坐标系中,点A的坐标是(﹣3,4),则点A到x轴的距离为 4 .【分析】根据点到x轴的距离是点的纵坐标的绝对值,可得答案.【解答】解:点A在直角坐标系中的坐标是(﹣3,4),则点A到x轴的距离是4.故答案为:4.13.(2022秋•城阳区期中)已知点M到x轴的距离为5,到y轴的距离为3,且在第四象限内,则点M的坐标为 (3,﹣5) .【分析】根据第四象限内的点的坐标第四象限(+,﹣);点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标,可得答案.【解答】解:M到x轴的距离为5,到y轴距离为3,且在第四象限内,则点M的坐标为(3,﹣5),故答案为:(3,﹣5).14.(2022秋•市中区期中)国庆期间,小强和小明两位同学去电影院看中国外交官撤侨题材电影《万里归途》.在电影票上,小强的“45排4座”记作(5,4),则小明的“6排7座”可记作 (6,7) .【分析】根据用“排、座”有序数确定点的位置,可得答案.【解答】解:在电影票上,小强的“5排4座”记作(5,4),则小明的“6排7座”可记作(6,7),故答案为:(6,7).15.(2022•玉树市校级一模)在平面直角坐标系中,点A(﹣2,4),点B(1,4),则线段AB= 3 .【分析】由题意可知,AB∥x轴,则线段AB的长度为1﹣(﹣2)=3.【解答】解:由点A(﹣2,4),点B(1,4)的坐标可知,AB∥x轴,∴线段AB的长度为1﹣(﹣2)=3.故答案为:3.16.(2022秋•皇姑区校级月考)已知点M的坐标为(2,﹣4),线段MN=5,MN∥x轴,则点N的坐标为 (﹣3,﹣4)或(7,﹣4) .【分析】根据平行于x轴的直线上点的纵坐标相等求出点N的纵坐标,再分点N在点M的右边与左边两种情况求出点N的横坐标即可.【解答】解:∵点M的坐标为(2,﹣4),MN∥x轴,∴点N的纵坐标为﹣4,∵MN=5,∴点N在点M的右边时,横坐标为2+5=7,此时,点N(7,﹣4),点N在点M的左边时,横坐标为2﹣5=﹣3,此时,点N(﹣3,﹣4),综上所述,点N的坐标为(﹣3,﹣4)或(7,﹣4).故答案为:(﹣3,﹣4)或(7,﹣4).17.(2022秋•商河县期中)规定以下两种变换:①f(m,n)=(﹣m,n),如f(2,1)=(﹣2,1);②g(m,n)=(﹣n,﹣m),如g(2,1)=(﹣1,﹣2).按照以上变换有:f[g(3,4)]=f(﹣4,﹣3)=(4,﹣3),那么g[f(﹣2,3)]等于 (﹣3,﹣2) .【分析】直接利用新定义分别化简,进而得出答案.【解答】解:g[f(﹣2,3)]=g(2,3)=(﹣3,﹣2).故答案为:(﹣3,﹣2).18.(2022秋•海淀区校级期中)如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若点M到直线l1、l2的距离分别是pcm、qcm,则称有序实数对(p,q)是点M的“距离坐标”.特别地,当点在直线上时,定义点到直线的距离为0.下列说法:①“距离坐标”是(0,0)的点只有点O;②“距离坐标”是(0,1)的点只有1个;③“距离坐标”是(2,2)的点共有4个;正确的有 ①③ (填序号).【分析】根据(p,q)是点M的“距离坐标”,得出①若pq≠0,则“距离坐标”为(p、q)的点有且仅有4个.②若pq=0,且p+q≠0,则“距离坐标”为(p、q)的点有且仅有2个,进而得出解集从而确定答案.【解答】解:如上图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负数实数对(p、q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列两个个结论:(1)若pq≠0,则“距离坐标”为(p、q)的点有且仅有4个.(2)若pq=0,且p+q≠0;①p=0,q=0,则“距离坐标”为(0,0)的点有且仅有1个;故①“距离坐标”是(0,0)的点只有点O是正确的;②p=0,q=1,则“距离坐标”为(0,1)的点有且仅有2个;故②“距离坐标”是(0,1)的点有1个是错误的;③得出(2,2)是与l1距离是2的点是与之平行的两条直线,与l2的距离是2的也是与之平行的两条直线,这四条直线共有4个交点.所以③是正确的.正确的有:①③.故答案为:①③.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022秋•南海区月考)在直角坐标系中描绘下列各点,并将各组内这些点依次用线段连接起来.C(﹣6,3),D(﹣6,0),A(0,0),B(0,3).(1)图形中那些点在坐标轴上?(2)线段BC与x轴有什么位置关系?【分析】(1)在坐标系中描出各点,再顺次连接可得一个长方形,结合图案得出点D、A、B在坐标轴上;(2)根据图形可得平行于x轴的两点B、C的纵坐标相等.【解答】解:(1)如图所示:点D、A、B在坐标轴上;(2)线段BC平行于x轴.20.(2022秋•无为市月考)如图,这是冉冉所在学校的平面示意图,图中小方格都是边长为1个单位长度的正方形,若艺术楼的坐标为(2,1),实验楼的坐标为(﹣2,﹣1).(1)请在图中画出平面直角坐标系,并写出教学楼和体育馆的坐标.(2)若食堂的坐标为(1,2),请在(1)中所画的平面直角坐标系中标出食堂的位置.【分析】(1)根据已知点坐标得出原点位置,进而得出答案;(2)利用(1)中平面直角坐标系得出答案.【解答】解:(1)教学楼的坐标:(0,﹣2),体育馆的坐标:(﹣1,2);(2)食堂的位置如图所示.21.(2022秋•天长市月考)已知点P(2a﹣7,3﹣a).(1)若点P在第三象限,求a的取值范围;(2)点P到y轴的距离为11,求点P的坐标.【分析】(1)根据题意列出不等式即可解决问题;(2)根据题意列出方程即可解决问题.【解答】解:(1)∵点P(2a﹣7,3﹣a)在第三象限,∴,解得3<a<3.5;(2)∵点P到y轴的距离为11,∴|2a﹣7|=11,∴2a﹣7=﹣11或2a﹣7=11,解得a=﹣2或a=9,∴3﹣a=3+2=5或3﹣a=3﹣9=﹣6,∴点P的坐标为(﹣11,5)或(11,﹣6).22.(2022秋•无为市月考)在平面直角坐标系中,一个动点A从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次只移动1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:A4 (2,0) ,A6 (3,1) ,A12 (6,0) ,A14 (7,1) .(2)按此规律移动,n为正整数,则点A4n的坐标为 (2n,0) ,点A4n+2的坐标为 (2n+1,1) .(3)动点A从点A2022到点A2023的移动方向是 向下 .(填“向上”、“向右”或“向下”)【分析】(1)根据点的坐标变化即可填写各点的坐标;(2)根据(1)发现规律即可写出点A4n的坐标(n为正整数);(3)根据(2)发现的规律,每四个点一个循环,进而可得蜗牛从点A2020到点A2021的移动方向.【解答】解:(1)根据点的坐标变化可知:各点的坐标为:A4(2,0),A6(3,1),A12(6,0),A14(7,1);故答案为:(2,0),(3,1),(6,0),(7,1);(2)根据(1)发现:点A4n的坐标(n为正整数)为(2n,0);点A4n+2的坐标为(2n+1,1);故答案为:(2n,0),(2n+1,1);(3)因为每四个点一个循环,所以2023÷4=505…3.所以从点A2022到点A2023的移动方向是向下.故答案为:向下.23.(2022秋•江阴市期中)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,按图解答下列问题:(1)C→ D (+1, ﹣2 );(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为:(+2,+2),(+2,﹣1),(﹣2,+3),(+1,﹣3),请在图中标出P的位置.【分析】(1)根据规定求解即可;(2)利用绝对值求和即可;(3)根据要求作出图形即可.【解答】解:(1)C→D(+1,﹣2);故答案为:D,﹣2;(2)若这只甲虫的行走路线为A→B→C→D,甲虫走过的最少路程=1+4+2+1+2=10;(3)如图,点P即为所求.24.(2022秋•海淀区校级期中)给出如下定义:在平面直角坐标系xOy中,已知点P1(a,b),P2(c,b),P3(c,d),这三个点中任意两点间的距离的最小值称为点P1,P2,P3的“完美间距″.例如:如图,点P1(﹣1,2),P2(1,2),P3(1,3)的“完美间距”是1.(1)点Q1(4,1),Q2(5,1),Q3(5,5)的“完美间距”是 1 ;(2)已知点O(0,0),A(4,0),B(4,y).①若点O,A,B的“完美间距”是2,则y的值为 ±2 ;②点O,A,B的“完美间距”的最大值为 4 ;③已知点C(0,4),D(﹣4,0),点P(m,n)为线段CD上一动点,当O(0,0),E(m,0),P (m,n)的“完美间距”取最大值时,求此时点P的坐标.【分析】(1)分别计算出Q1Q2,Q2Q3,Q1Q3的长度,比较得出最小值即可;(2)①分别计算出OA,AB的长度,由于斜边大于直角边,故OB>OA,OB>AB,所以“最佳间距”为OA或者AB的长度,由于“最佳间距”为1,而OA=4,故OB=2,即可求解y的值;②由①可得,“最佳间距”为OA或AB的长度,当OA≤AB时,“最佳间距”为OA=4,当OA>AB时,“最佳间距”为AB<4,比较两个“最大间距”,即可解决;③同①,当点O(0,0),E(m,0),P(m,n)的“最佳间距”为OE或者PE的长度,先求出直线CD的解析式,用m表示出线段OE和线段PE的长度,分两类讨论,当OE≥PE和OE<PE时,求出各自条件下的“最佳间距”,比较m的范围,确定“最佳间距”的最大值,进一步求解出P点坐标.【解答】解:(1)如图,在给出图形中标出点Q1,Q2,Q3,∵Q1(4,1),Q2(5,1),Q3(5,5),∴Q1Q2=1,Q2Q3=4,在Rt△Q1Q2Q3中,Q1Q3=,∵1<4<,“最佳距离”为1;故答案为:1;(2)①如图:∵O(0,0),A(4,0),B(4,y),∴OA=4,AB=|y|,在直角△ABO中,OB>OA,OB>AB,又∵点O,A,B的“最佳间距”是2,且4>2,∴|y|=2,∴y=±2,故答案为:±2;②由①可得,OB>OA,OB>AB,∴“最佳间距”的值为OA或者是AB的长,∵OA=4,AB=|y|,当AB≥OA时,“最佳间距”为4,当AB<OA时,“最佳间距”为|y|<4,∴点O,A,B的“最佳间距”的最大值为4,故答案为:4;③设直线CD为y=kx+4,代入点D得,如图,﹣4k+4=0,∴k=1,∴直线CD的解析式为:y=x+4,∵E(m,0),P(m,n),且P是线段CD上的一个动点,∴PE∥y轴,∴OE=﹣m,PE=n=m+4,Ⅰ、当﹣m≥m+4时,即OE≥PE时,m≤﹣2,“最佳间距”为m+4,此时m+4≤2,Ⅱ、当﹣m<m+4时,即OE<PE时,﹣2<m<0,“最佳间距“为﹣m,此时﹣m<2,∴点O(0,0),E(m,0),P(m,n)的“最佳间距”取到最大值时,m=﹣2,∴m=﹣2,∴n=m+4=2,∴P(﹣2,2).。

10平面直角坐标系-坐标应用题培优题和课后练习

10平面直角坐标系-坐标应用题培优题和课后练习

平面直角坐标系【坐标应用题】【培优练习】1.如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标_________ ;(2)顺次连接(1)中的所有点,得到的图形是_________ 图形(填“中心对称”、“旋转对称”、“轴对称”);(3)指出(1)中关于点P成中心对称的点_________ .2.中国象棋棋盘中隐藏着直角坐标系,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.例如:图中“马”所在的位置可以直接走到B,A等处.(1)若“马”的位置在点C,为了到达点D,请按“马”走的规则,在图上用虚线画出一种你认为合理的行走路线;(2)如果图中“马”位于(1,﹣2)上,试写出A、B、C、D四点的坐标.3.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明.4.如图,奥运福娃在5×5的方格(每小格边长为1m)上沿着网格线运动.贝贝从A处出发去寻找B、C、D处的其它福娃,规定:向上向右走为正,向下向左走为负.如果从A 到B记为:A⇒B(+1,+4),从B到A记为:B⇒A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A⇒C(_________ ,_________ ),B⇒C(_________ ,_________ ),C⇒_________ (﹣3,﹣4);(2)若贝贝的行走路线为A⇒B⇒C⇒D,请计算贝贝走过的路程;(3)若贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出妮妮的位置E点;(4)在(3)中贝贝若每走1m需消耗1.5焦耳的能量,则贝贝寻找妮妮过程中共需消耗多少焦耳的能量?5.如图,点A用(3,1)表示,点B用(8,5)表示.若用(3,3)→(5,3)→(5,4)→(8,4)→(8,5)表示由A到B的一种走法,并规定从A到B只能向上或向右走,用上述表示法写出另两种走法,并判断这几种走法的路程是否相等.6.如图,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x轴上行驶,从原点O出发.(1)汽车行驶到什么位置时离A村最近?写出此点的坐标.(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.7.小华去某地考察环境污染问题,并且事先知道下面的信息:(1)“悠悠日用化工品厂A”在他所在地的北偏东30度的方向,距离此处3千米;(2)“佳味调味品厂B”在他现在所在地的北偏西45度的方向,距离此处2.4千米;(3)“幸福水库C”在他现在所在地的南偏东27度的方向,距离此处1.5千米的地方.根据这些信息,请建立直角坐标系,帮助小华完成这张表示各处位置的简图.8.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向西走60米,再向北走10米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.9.如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.10.在下图中,确定点A、B、C、D、E、F、G的坐标.请说明点B和点F有什么关系?11.温州一位老人制作的仿真郑和宝船尺寸如图,已知在某一直角坐标系中点A坐标为(9,0),请你直接在图中画出该坐标系,并写出其余5点的坐标.12.徐浩同学准备把如图所示的一张“探宝路线图”通过电话告诉李林同学,请你帮助设计一种把“探宝路线图”清楚告诉对方的方法.13.下图描述了A、B…等11位同学每天课余时间安排;请仔细观察,并回答以下问题:(1)_________ 的娱乐时间和学习时间是相等的.(2)_________ 用于学习的时间相同,都是_________ 刻钟;_________ 用于学习的时间也相同,都是_________ 刻钟.(3)_________ 的学习时间比娱乐时间多;_________ 的学习时间比娱乐时间少.(4)从图中看,A、B、C、D、E、G这六位同学的课余时间安排有什么共同点?14.在某河流的北岸有A、B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,B在A的右边,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).(1)请建立平面直角坐标系,并描出A、B两村的位置,写出其坐标.(2)近几年,由于乱砍滥伐,生态环境受到破坏,A、B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置在图中标出水泵站的位置,并求出所用水管的长度.15.读一读,想一想,做一做:国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线所经过的每一个小方格.在如图乙的小方格棋盘中有一“皇后Q”,她所在的位置可用“(2,3)”来表示,请说明“皇后Q”所在的位置“(2,3)”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q”所控制的四个位置.16.国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大的多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图a是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线所经过的每一个小方格.(1)在如图b的小方格棋盘中有一个“皇后Q”,她所在的位置可用“(2,3)”来表示,则:①“皇后Q”所在的位置“(2,3)”的意义是_________ ;②写出棋盘中不能被该“皇后Q”所控制的四个位置_________ ;(2)如图c也是一个4×4的小方格棋盘,请在这个棋盘中放入四个“皇后Q”,使这四个“皇后Q”之间互相不受对方控制(在图c中的某四个小方格中标出字母Q即可).17.试分别指出坐标平面内以下各直线上各点的横坐标、纵坐标的特征以及与两条坐标轴的位置关系.(1)在图中,过A(﹣2,3)、B(4,3)两点作直线AB,则直线AB上的任意一点P(a,b)的横坐标可以取_________ ,纵坐标是_________ .直线AB与y轴_________ ,垂足的坐标是_________ ;直线AB与x轴_________ ,AB与x轴的距离是_________ .(2)在图中,过A(﹣2,3)、C(﹣2,﹣3)两点作直线AC,则直线AC上的任意一点Q(c,d)的横坐标是_________ ,纵坐标可以是_________ .直线AC与x轴_________ ,垂足的坐标是_________ ;直线AC与y轴_________ ,AC与y轴的距离是_________ .(3)在图中,过原点O和点E(4,4)两点作直线OE,我们发现,直线OE上的任意一点P (x,y)的横坐标与纵坐标_________ ,并且直线OE _________ ∠xOy.【课后作业】1.图中标明了李明同学家附近的一些地方。

7.1平面直角坐标系 培优训练-2020-2021学年人教版七年级数学下册

7.1平面直角坐标系 培优训练-2020-2021学年人教版七年级数学下册

第7章 平面直角坐标系第1节 《平面直角坐标系》同步培优训练一、选择。

1.已知点()A m n ,,且有0mn ≥,则点A 一定不在A .第一象限B .第二象限C .第三象限D .坐标轴上 2.在平面直角坐标系中,x 轴的上方有一点P,它到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标为( )A .(3,2)B .(-3,2)C .(3,2)或(-3,2)D .(2,3)3.象棋中有“马走日,象(相)走田”的规则,在如图所示的棋盘中,如果“相”的位置表示为(5,8),则“相”走一步之后所在位置不可能是( )A .(7,6)B .(7,10)C .(2,6)D .(3,10) 4.在平面直角坐标系中,如果mn >0,那么点(m ,|n|)一定在( ) A .第一象限或第二象限B .第一象限或第三象限C .第二象限或第四象限D .第三象限或第四象限5.已知平面内两点M 、N,如果它们平移的方式相同,那么平移后它们之间的相对位置是( )A .不能确定B .发生变化C .不发生变化D .需分情况说明6.已知ab <0,则点P (a ,b )在( )A.第一或第二象限内B.第二或第三象限内C.第一或第三象限内D.第二或第四象限内7.已知点P在第四象限,且到x轴的距离是3,到y轴的距离是2,则点P 的坐标为()A.(3,﹣2)B.(2,﹣3)C.(2,3)D.(—2,3)8.在平面直角坐标系中,下面的点在第一象限的是A.(1,2)B.(-2,3)C.(0,0)D.(-3,-2)9.如图,直角坐标系中四边形的面积是()A.4B.5.5C.4.5D.510.把所有正偶数从小到大排列,并按如下规律分组:第一组:2,4;第二组:6,8,10,12;第三组:14,16,18,20,22,24第四组:26,28,30,32,34,36,38,40……则现有等式A m=(i,j)表示正偶数m是第i组第j个数(从左到右数),如A10=(2,3),则A2018=()A.(31,63)B.(32,17)C.(33,16)D.(34,2)二、填空。

人教版七年级下册数学 第六讲 平面直角坐标系(培优版)

人教版七年级下册数学  第六讲  平面直角坐标系(培优版)

第六讲平面直角坐标系(培优版)【版块一坐标系点的特征】【题型一】点到坐标轴的距离1.点P(2a,1-3a)到两坐标轴的距离之和为6,则点P的坐标是.2.若点P(1-a,2a+7)到两坐标轴的距离相等,则6−5a的平方根是.【题型二】点在平行于坐标轴的直线上1.在平面直角坐标系中,线段AB=4,AB平行于坐标轴,若点A坐标为(-3,2),则点B坐标为.2.平面直角坐标系中,点A(-3,2),B(3,4),C(x,y),若AC//x轴,则线段BC的长度最小时点C 的坐标为______________________.3.已知M(3|a|﹣9,4﹣2a)在y轴上,直线MN∥x轴,且线段MN长度为4.求N点坐标.【题型三】点在角平分线上已知点P、Q的坐标分别为(2m﹣5,m﹣1)、(n+2,2n﹣1),若点P在第二、四象限的角平分线上,点Q 在第一、三象限的角平分线上,则m n的值为.【题型四】坐标平移如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.5【题型五】平移与对称已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′、B′、C′的坐标;(2)求出△ABC的面积;(3)作△A′B′C′关于x轴的对称图形△A′B′C′(不写作法);(4)点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.【题型六】规律探究1.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是.2.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,则点P3的坐标是;点P2014的坐标是.3.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2020的坐标为.4.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n 次移动到A n.则△OA2A2018的面积是()A.504m2B.m2C.m2D.1009m2【版块二坐标系与面积】【题型一】面积问题(分类讨论)1.在平面直角坐标系中有三点A(a,0),B(b,0),C(1,3),且a,b满足|3b+a﹣2|+=0(1)求A,B的坐标;(2)在x负半轴上有一点D,使S△DOC=S△ABC,求点D坐标:(3)在坐标轴上是否还存在这样的点D,使S△DOC=S△ABC仍然成立?若存在直接写出点D的坐标;若不存在,说明理由.【题型二】含参数面积问题2.如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b满足关系式.(1)求a,b的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.【题型三】面积法求值或坐标3.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.【版块三坐标与几何综合】【题型一】1.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0. (1)a=___,b=___,△BCD的面积为______;(2)如图2,若AC△BC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当△CPQ=△CQP时,求证:BP 平分△ABC;(3)如图3,若AC△BC,点E是点A与点B之间一动点,连接CE,CB始终平分△ECF,当点E在点A与点B之间运动时,BECBCO∠∠的值是否变化?若不变,求出其值;若变化,请说明理由.【题型二】猪蹄模型2.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB△y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD△AC时,△ODA的角平分线与△CAE的角平分线的反向延长线交于点P,求△APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM△AD交BC于M点,△BMD、△DAO的平分线交于N点,则点D在运动过程中,△N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.【题型三】3.在平面直角坐标系中,D(0,﹣3),M(4,﹣3),直角三角形ABC的边与x轴分别相交于O、G两点,与直线DM分别交于E、F点,∠ACB=90°.(1)将直角三角形如图1位置摆放,如果∠AOG=46°,则∠CEF=;(2)将直角三角形ABC如图2位置摆放,N为AC上一点,∠NED+∠CEF=180°,请写出∠NEF与∠AOG之间的等量关系,并说明理由.(3)将直角三角形ABC如图3位置摆放,若∠GOC=140°,延长AC交DM于点Q,点P是射线GF 上一动点,探究∠POQ,∠OPQ与∠PQF的数量关系,请直接写出结论(题中的所有角都大于0°小于180°).【巩固训练】1.已知点P(2m+6,m﹣3)是平面直角坐标系内的一点,试分别根据下列条件,直接求出P点的坐标.(1)点P在坐标轴上,则点P的坐标为.(2)点P的纵坐标比横坐标大3,则点P的坐标为.(3)点P在象限角平分线所在直线上,则点P的坐标为.(4)点P在过A(2,﹣3)点且与x轴平行的直线上,则点P的坐标为.(5)点P到x轴、y轴的距离相等,则点P的坐标为.2.已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O 点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.。

八上数学 第七章平面直角坐标系(培优卷,含答案PDF版)

八上数学 第七章平面直角坐标系(培优卷,含答案PDF版)

第七章平面直角坐标系培优提高卷一、选择题。

(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第K 棵树种植在P k (X k ,Y k )处,其中X 1=1,Y 1=1,当k ≥2时,X k =X k –1+1-5([51-k ]-[52-k ]),Y k =Y k –1+[51-k ]-[52-k ],[a ]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0,按此方案,第2013棵树种植点的坐标是()A .(3,402)B .(3,403)C .(4,403)D .(5,403)2.如图,在平面直角坐标系中,已知点A (-1,1),B (-1,-2),将线段AB 向下平移2个单位,再向右平移3个单位得到线段A /B /,设点),(y x P 为线段A /B /上任意一点,则y x ,满足的条件为()A .3=x ,14-≤≤-yB .2=x ,14-≤≤-y C .14-≤≤-x ,3=y D .14-≤≤-x ,2=y(第2题)(第3题)(第4题)3.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是()A .(﹣1,0)B .(1,﹣2)C .(1,1)D .(﹣1,﹣1)4.如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b 的值为()A .2B .3C .4D .55.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A .(66,34)B .(67,33)C .(100,33)D .(99,34)6.在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换:①()()f m n m n =-,,,如()()f 2121=- ,,;②()()g m n m n =--,,,如()()g 2121=-- ,,.按照以上变换有:()()()f g 34f 3434⎡⎤=--=-⎣⎦ ,,,,那么()g f 32⎡-⎤⎣⎦ ,]等于()A .(3,2)B .(3,2-,)C .(3-,2)D .(3-,2-,)7.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2).点D 、E 分别在AB 、BC 边上,BD =BE =1.沿直线DE 将△BDE 翻折,点B 落在点B ′处,则点B ′的坐标为()A .(1,2)B .(2,1)C .(2,2)D .(3,1)8.如图,△ABC 的两个顶点BC 均在第一象限,以点(0,1)为位似中心,在y 轴左方作△ABC 的位似图形△AB ′C ′,△ABC 与△A ′B ′C 的位似比为1:2.若设点C 的纵坐标是m ,则其对应点C ′的纵坐标是()A .﹣(2m ﹣3)B .﹣(2m ﹣2)C .﹣(2m ﹣1)D .﹣2m9.已知点A (0,0),B (0,4),C (3,t +4),D (3,t ).记N (t )为▱ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为()A .6、7B.7、8C.6、7、8D.6、8、910.以下是甲、乙、丙三人看地图时对四个坐标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆.乙:从学校向西直走300米,再向北直走200米可到邮局.丙:邮局在火车站西200米处.根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站()A.向南直走300米,再向西直走200米B.向南直走300米,再向西直走100米C.向南直走700米,再向西直走200米D.向南直走700米,再向西直走600米二、填空题。

3.2平面直角坐标系培优训练北师大版2024—2025学年八年级上册

3.2平面直角坐标系培优训练北师大版2024—2025学年八年级上册

3.2平面直角坐标系培优训练北师大版2024—2025学年八年级上册类型一、平面直角坐标系中的有序数对例1.如图,若棋子“炮”的坐标为(3,0),棋子“马”的坐标为(1,1),则棋子“车”的坐标为()A.(3,2)B.(﹣3,3)C.(2,2)D.(﹣2,1)变式1.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(﹣1,﹣2),“炮”位于(﹣4,1),则“象”位于点()A.(1,2)B.(﹣2,1)C.(1,﹣2)D.(﹣1,﹣2)变式2.如图是小刚画的一张脸,如果用(0,2)表示A点所在的眼睛,用(2,2)表示B点所在的眼睛,那么C点表示的嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)变式3.观察数表,若用有序整数对(m,n)表示第m行第n列的数,如(4,3)表示实数6,则(20,18)表示的数是.变式4.如图,小明在与同伴玩“找宝”游戏,他们准备到A、B、C三个点去找宝,现已知点A的坐标是(1,0),点B的坐标是(3,2),则点C的坐标是.类型二、平面直角坐标系中点的坐标特征1.若xy>0,则关于点P(x,y)的说法正确的是()A.在一或二象限B.在一或四象限C.在二或四象限D.在一或三象限2.点P(t+3,t+2)在直角坐标系的x轴上,则P点坐标为()A.(0,﹣2)B.(﹣2,0)C.(1,2)D.(1,0)3.在平面直角坐标系中,点A(0,﹣2)在()A.x轴的负半轴上B.y轴的负半轴上C.x轴的正半轴上D.y轴的正半轴上4.在平面直角坐标系中,点A的坐标为(﹣7,3),点B的坐标为(3,3),则线段AB的位置特征为()A.与x轴平行B.与y轴平行C.在第一、三象限的角平分线上D.在第二、四象限的角平分线上5.已知点A(m,2)在y轴上,则m+1等于()A.﹣1B.1C.0D.±16.已知点A(3a+5,a﹣3)在第一、三象限的角平分线上,则a的值为()A.﹣5B.﹣4C.﹣3D.﹣27.第一象限内的点P(2,a﹣4)到坐标轴的距离相等,则a的值为.8.当m=时,点A(2﹣m,3m﹣12)在x轴上.9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B坐标为.10.已知点P(2m+4,m﹣1).(1)若点P在x轴上,则点P的坐标为;(2)若点P在第四象限,且到y轴的距离是2,则点P的坐标为.11.若点P(m+1,3﹣2m)在第一、第三象限的角平分线上,则m=.12.点M(2,﹣1)到x轴的距离是.13.已知点A(3a+2,2a﹣4),试分别根据下列条件,求出a的值并写出点A的坐标.(1)点A在x轴上;(2)点A与点A'(﹣4,﹣)关于y轴对称;(3)经过点A(3a+2,2a﹣4),B(3,4)的直线,与x轴平行;(4)点A到两坐标轴的距离相等.14.已知点A(a﹣1,﹣2),B(﹣3,b+1),根据以下要求确定a,b的值.(1)当直线AB∥x轴时,a,b;(2)当直线AB∥y轴时,a,b;(3)当点A和点B在二四象限的角平分线上时,求a,b的值.15.已知点P(2x﹣6,3x+1),求下列情形下点P的坐标.(1)点P在y轴上;(2)点P到x轴、y轴的距离相等,且点P在第二象限;(3)点P在过点A(2,﹣4)且与y轴平行的直线上.16.在平面直角坐标系中,点P(2﹣m,3m+6).(1)若点P与x轴的距离为9,求m的值;(2)若点P在过点A(2,﹣3)且与y轴平行的直线上,求点P的坐标.三、与坐标系有关的面积问题1.已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积;(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.2.在平面直角坐标系中,△ABC经过平移得到三角形△A′B′C′,位置如图所示:(1)分别写出点A、A'的坐标:A,A';(2)若点M(m,n)是△ABC内部一点,则平移后对应点M'的坐标为;(3)求△ABC的面积.3.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.4.如图,已知点A (a ,0)、B (b ,0)满足(3a +b )2+|b ﹣3|=0.将线段AB 先向上平移2个单位,再向右平移1个单位后得到线段CD ,并连接AC 、BD .(1)请求出点A 和点B 的坐标;(2)点M 从O 点出发,以每秒1个单位的速度向上平移运动.设运动时间为t 秒,问:是否存在这样的t ,使得四边形OMDB 的面积等于8?若存在,请求出t 的值;若不存在,请说明理由;(3)在(2)的条件下,点M 从O 点出发的同时,点N 从点B 出发,以每秒2个单位的速度向左平移运动,设射线DN 交y 轴于点E .设运动时间为t 秒,问:S △EMD ﹣S △OEN 的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.5.在平面直角坐标系中,O 为坐标原点,过点A (8,6)分别作x 轴、y 轴的平行线,交y 轴于点B ,交x 轴于点C ,点P 是从点B 出发,沿B →A →C 以2个单位长度/秒的速度向终点C 运动的一个动点,运动时间为t (秒).(1)直接写出点B 和点C 的坐标B ( , )、C ( , );(2)当点P 运动时,用含t 的式子表示线段AP 的长,并写出t 的取值范围;(3)点D (2,0),连接PD 、AD ,在(2)条件下是否存在这样的t 值,使S △APD =S 四边形ABOC ,若存在,请求出t 值,若不存在,请说明理由.类型四、坐标中点的规律探索问题1.如图,一个粒子在第一象限和x ,y 轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y 轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…),且每秒运动一个单位长度,那么2024秒时,这个粒子所处位置为________________2.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2024次碰到球桌边时,小球的位置是_______________3.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,…,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形的变化,按照变换规律,则点A n的坐标是()A.(2n,3)B.(2n﹣1,3)C.(2n+1,0)D.(2n,0)4.如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1)…,按照这样的规律下去,点A100的坐标为()A.(101,100)B.(150,51)C.(150,50)D.(100,55)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 平面直角坐标系培优提高卷一、选择题。

(本题有10个小题,每小题3分,共30分)1. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第K棵树种植在P k (X k ,Y k )处,其中X 1=1,Y 1=1,当k ≥2时,X k =X k –1+1-5([51-k ]-[52-k ]),Y k =Y k –1+[51-k ]-[52-k ],[a ]表示非负实数a 的整数部分,例如[2.6]= 2,[0.2]= 0,按此方案,第2013棵树种植点的坐标是( )A .(3,402)B .(3,403)C .(4,403)D .(5,403) 2.如图,在平面直角坐标系中,已知点A (-1,1),B (-1,-2),将线段AB 向下平移2个单位,再向右平移3个单位得到线段A /B /,设点),(y x P 为线段A /B /上任意一点,则y x ,满足的条件为( )A .3=x ,14-≤≤-yB .2=x ,14-≤≤-yC .14-≤≤-x ,3=yD .14-≤≤-x ,2=y(第2题) (第3题) (第4题)3.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )A .(﹣1,0)B .(1,﹣2)C .(1,1)D .(﹣1,﹣1) 4.如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .5 5.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( ) A .(66,34) B .(67,33) C .(100,33) D .(99,34) 6.在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换:①()()f m n m n =-,,,如()()f 2121=- ,,;②()()g m n m n =--,,,如()()g 2121=-- ,,.按照以上变换有:()()()f g 34f 3434⎡⎤=--=-⎣⎦ ,,,,那么()g f 32⎡-⎤⎣⎦ ,]等于( )A .(3,2)B .(3,2-,)C .(3-,2)D .(3-,2-,) 7.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2).点D 、E 分别在AB 、BC 边上,BD =BE =1.沿直线DE 将△BDE 翻折,点B 落在点B ′处,则点B ′的坐标为 ( )A .(1,2)B .(2,1)C .(2,2)D .(3,1)8.如图,△ABC的两个顶点BC均在第一象限,以点(0,1)为位似中心,在y 轴左方作△ABC的位似图形△AB′C′,△ABC与△A′B′C的位似比为1:2.若设点C的纵坐标是m,则其对应点C′的纵坐标是()A.﹣(2m﹣3)B.﹣(2m﹣2)C.﹣(2m﹣1)D.﹣2m9.已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为▱ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为()A.6、7 B.7、8 C.6、7、8 D.6、8、910.以下是甲、乙、丙三人看地图时对四个坐标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆.乙:从学校向西直走300米,再向北直走200米可到邮局.丙:邮局在火车站西200米处.根据三人的描述,若从图书馆出发判断下列哪一种走法其终点是火车站()A.向南直走300米,再向西直走200米B.向南直走300米,再向西直走100米C.向南直走700米,再向西直走200米D.向南直走700米,再向西直走600米二、填空题。

(本题有6个小题,每小题4分,共24分)11.如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.(1)在网格的格点中找一点C,使△ABC是直角三角形,且三边长均为无理数(只画出一个,并涂上阴影);(2)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有_________-个;(3)若将线段AB绕点A顺时针旋转90°,写出旋转后点B的坐标.12.已知点A(1,0),点B(0,2)若有点C在X轴上并使S△ABC=2,则点C的坐标为________13.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(−3,3),嘴唇C点的坐标为(−2,1),将此“QQ”笑脸向右平移2个单位后,此“QQ”笑脸右眼B的坐标是 .14.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2017的坐标为。

15.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2014个点的横坐标为________________.16.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2014的坐标为________________.三、解答题。

(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.如图所示,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0),(1)请直接写出点A关于原点O对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,求出A′点的坐标。

(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点18.在正方形网格中建立如图所示的平面直角坐标系,△ABC的三个顶点都在格点上,点A的坐标是(4,4),请解答下列问题。

(1)画出△ABC关于x轴对称的△A1B1C1。

(2)画出△ABC关于原点对称的△A2B2C2。

(3)将△ABC绕点B逆时针旋转900,画出旋转后的A3BC3。

(4)求△A1A2A3的面积。

19.在直角坐标系中,长方形ABCD的边AB可表示为(-2,y)(-1≤y≤2),边AD可表示为(x,2)(-2≤x≤4)。

求:(1)长方形各顶点的坐标;(2)长方形ABCD的周长.20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:(+1,+4),从(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向.图中____)(____,C B −→−,_____),1_____(+−→−C 若这只甲虫的行走路线为A →B →C →D ,请计算该甲虫走过的路程;若图中另有两个格点M 、N ,且)4,3(--−→−b a A M ,)2,5(--−→−b a N M ,则A N −→−应记作什么?21.在棋盘中建立如图所示的直角坐标系,一颗棋子A 位置如图,它的坐标是(-1,1).(1)如果棋子B 刚好在棋子A 关于x 轴对称的位置上,则棋子B 的坐标为______________;棋子A 先向右平移两格再向上平移两格就是棋子C 的位置,则棋子C 的坐标为_______________;(2)棋子D 的坐标为(3,3),试判断A 、B 、C 、D 四棋子构成的四边形是否是轴对称图形,如果是,在图中用直尺作出它的对称轴,如果不是,请说明理由; (3)在棋盘中其他格点位置添加一颗棋子E ,使四颗棋子A ,B ,C ,E 成为轴对称图形,请直接写出棋子E的所有可能位置的坐标__________________________________.xyOA22.如图,长阳公园有四棵树,A 、B 、C 、D (单位:米) (1)请写出A 、B 两点坐标﹒(2)为了更好的保护古树,公园决定将如图所示的四边形用围栏圈起来,划为保护区,请你计算保护区面积﹒23.已知:在平面直角坐标系中,四边形ABCD是长方形,∠A =∠B =∠C =∠D =90°AB ∥CD ,AB =CD =8cm ,AD =BC =6cm ,D 点与原点重合,坐标为(0,0).(1)写出点B 的坐标.(2)动点P 从点A 出发以每秒3个单位长度的速度向终点B 匀速运动, 动点Q 从点C 出发以每秒4个单位长度的速度I 沿射线CD 方向匀速运动,若P ,Q 两点同时出发,设运动时间为t 秒,当t 为何值时,PQ ∥BC ?(3)在Q 的运动过程中,当Q 运动到什么位置时,使△ADQ 的面积为9? 求出此时Q 点的坐标.参考答案与详解1.B【解析】∵T(51-k)﹣T(52-k)组成的数列为0,0,0,0,1,0,0,0,0,1,0,0,0,0,1…,k=2,3,4,5,…一一代入计算得数列x n为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,…即x n的重复规律是x5n+1=1,x5n+2=2,x5n+3=3,x5n+4=4,x5n=5.n∈N*.数列{y n}为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,…即y n的重复规律是y5n+k=n,0≤k<5.∴由题意可知第6棵树种植点的坐标应为(1,2);第2013棵树种植点的坐标应为(3,403).故选B4.A.【解析】由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选A.5.C【解析】由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选C . 6.A .【解析】∵()()f m n m n =-,,,()()g m n m n =--,,, ∴()()()g f 32g 3,23,2⎡-⎤=--=⎣⎦ ,.故选A . 7.B .【解析】∵矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2), ∴CB =3,AB =2,又根据折叠得B ′E =BE ,B ′D =BD ,而BD =BE =1, ∴CE =2,AD =1,∴B ′的坐标为(2,1).故选B . 8.A .【解析】设点C 的纵坐标为m ,则A 、C 间的纵坐标的长度为(m -1),∵△ABC 放大到原来的2倍得到△A ′B ′C ,∴C ′、A 间的纵坐标的长度为2(m -1),∴点C ′的纵坐标是-[2(m -1)-1]=-(2m -3).故选:A . 9.C .【解析】当t =0时,A (0,0),B (0,4),C (3,4),D (3,0),此时整数点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6个点;当t =1时,A (0,0),B (0,4),C (3,5),D (3,1),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8个点;当t =1.5时,A (0,0),B (0,4),C (3,5.5),D (3,1.5),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7个点;当t =2时,A (0,0),B (0,4),C (3,6),D (3,2),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(2,5),共8个点;故选项A 错误,选项B 错误;选项D 错误,选项C 正确;故选C . 10.A【解析】根据题意,画出如图的示意图,可知A 正确.11.【解析】(1)根据方格的值,利用勾股定理及逆定理可以做出判断,并作出图形; (2)可以根据AB 做腰和底两种情况分别在图形中找到相应的等腰三角形的点; (3)根据旋转的性质和对称性可以判断. 解: (1)(2)满足条件的点P 共有 4 个(3)写出旋转后点B 的坐标 (3,1) 12.(-1,0)或(3,0)【解析】由题意可设C 点的坐标为(x ,0),则ABC S =12x 122⨯⨯-=,解得x =3或x =-1,所以C 点的坐标为(-1,0)或(3,0). 13.(1,3)【解析】先确定右眼B 的坐标,然后根据向右平移几个单位,这个点的横坐标加上几个单位,纵坐标不变,由此可得出答案.解:∵左眼A 的坐标是(-3,3),嘴唇C 点的坐标为(-2,1), ∴右眼的坐标为(-1,3),向右平移2个单位后右眼B 的坐标为(1,3). 14.(1010,0)【解析】∵各三角形都是等腰直角三角形, ∴直角顶点的纵坐标的长度为斜边的一半,A 2(1,-1),A 4(2,2),A 6(-1,-3),A 8(2,4),A 10(-1,-5),A 12(2,6),…,∵2016÷4=504,∴点A 2016在第一象限,横坐标是2,纵坐标是2016÷2=1008, ∴A 2016的坐标为(2,1008).在第一象限,所以A 2017的坐标为(x ,0) 则x =1008+2。

相关文档
最新文档