初二数学八下平行四边形所有知识点总结和常考题型练习题

合集下载

最新八下平行四边形所有知识点总结和常考题型练习题

最新八下平行四边形所有知识点总结和常考题型练习题

平行四边形知识点一、四边形相关1、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n 边形的内角和等于∙-)2(n 180°; 多边形的外角和定理:任意多边形的外角和等于360°。

2、多边形的对角线条数的计算公式设多边形的边数为n ,则多边形的对角线条数为2)3(-n n 。

3.三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半. 二、平行四边形1.定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义既是平行四边形的一条性质,又是一个判定方法.2.平行四边形的性质:平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的.(1)角:平行四边形的对角相等,邻角互补; (2)边:平行四边形两组对边分别平行且相等; (3)对角线:平行四边形的对角线互相平分;(4)面积:①S ==⨯底高ah ; ②平行四边形的对角线将四边形分成4个面积相等的三角形. 3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形 ②方法1:两组对边分别相等的四边形是平行四边形 ③方法2:一组对边平行且相等的四边形是平行四边形 ④方法3:两组对角分别相等的四边形是平行四边形 ⑤方法4: 对角线互相平分的四边形是平行四边形 三、矩形1. 矩形定义:有一个角是直角的平行四边形是矩形。

2. 矩形性质①边:对边平行且相等; ②角:对角相等、邻角互补,矩形的四个角都是直角; ③对角线:对角线互相平分且相等; ④对称性:轴对称图形(对边中点连线所在直线,2条). 3. 矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形; ②对角线相等的平行四边形; ③四个角都相等 识别矩形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的任意一个角为直角. ② 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的对角线相等. ③ 说明四边形ABCD 的三个角是直角. 4. 矩形的面积① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab . 四、菱形1. 菱形定义:有一组邻边相等的平行四边形是菱形。

人教版八年级下册数学平行四边形知识点归纳及练习

人教版八年级下册数学平行四边形知识点归纳及练习

人教版八年级下册数学平行四边形知识点归纳及练习在平行四边形中,有以下几个定理和性质:1.四边形的内角和等于360°,外角和等于360°。

2.多边形的内角和等于(n-2)180°,外角和等于360°。

3.平行四边形的性质有:两组对边分别平行,两组对边分别相等,两组对角分别相等,对角线互相平分,邻角互补。

4.判断平行四边形的方法:两组对边分别平行且相等,两组对角分别相等,一组对边平行且相等,对角线互相平分。

5.矩形是一种具有平行四边形所有通性的四边形,其四个角都是直角,对角线相等。

6.判断矩形的方法:平行四边形加一个直角,三个角都是直角,对角线相等的平行四边形。

7.菱形也是一种具有平行四边形所有通性的四边形,其四个边都相等,对角线垂直且平分对角。

8.判断菱形的方法:平行四边形加一组邻边等,四个边都相等,对角线垂直的平行四边形。

9.正方形是一种具有平行四边形所有通性的矩形,其四个边都相等,四个角都是直角,对角线相等且垂直且平分对角。

10.判断正方形的方法:平行四边形加一组邻边等和一个直角,菱形加一个直角,矩形加一组邻边等。

11.等腰梯形的性质有:两底平行,两腰相等,同一底上的底角相等,对角线相等。

12.判断等腰梯形的方法:两底平行且相等,同一底上的底角相等,对角线相等。

2) 四边形ABCD是等腰梯形,因为它是梯形且底角相等。

3) 四边形ABCD是等腰梯形,因为它是梯形且对角线相等。

1) 四边形ABCD是等腰梯形,因为它是梯形且两腰相等。

证明:由梯形的定义可知AD∥BC,又因为AC=BD,所以四边形ABCD是等腰梯形。

14.在三角形中,连接两个中点的线段叫做中位线。

根据中位线定理,中位线平行于第三边,并且等于第三边的一半。

15.在梯形中,连接两个非平行边中点的线段叫做中位线。

根据梯形中位线定理,中位线平行于两底,并且等于两底之和的一半。

(完整word版)初二数学八下平行四边形所有知识点总结和常考题型练习题,

(完整word版)初二数学八下平行四边形所有知识点总结和常考题型练习题,

(完整word版)初二数学八下平行四边形所有知识点总结和常考题型练习题,平行四边形知识点一、四边形相关1 、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理: n 边形的内角和等于( n2) ? 180°;多边形的外角和定理:任意多边形的外角和等于360°。

2、多边形的对角线条数的计算公式设多边形的边数为 n,那么多边形的对角线条数为n(n3) 。

2二、平行四边形1.定义:两组对边分别平行的四边形是平行四边形.D C 平行四边形的定义既是平行四边形的一条性质,又是一个判定方法.O 2.平行四边形的性质:平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.〔 1〕角:平行四边形的对角相等,邻角互补;A B 〔 2〕边:平行四边形两组对边分别平行且相等;〔 3〕对角线:平行四边形的对角线互相平分;〔 4〕面积:①S底高= ah;②平行四边形的对角线将四边形分成 4 个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法 1:两组对边分别相等的四边形是平行四边形③方法 2:一组对边平行且相等的四边形是平行四边形④方法 3:两组对角分别相等的四边形是平行四边形D C⑤方法 4:对角线互相平分的四边形是平行四边形三、矩形O1.矩形定义:有一个角是直角的平行四边形是矩形。

A B2.矩形性质①边:对边平行且相等;②角:对角相等、邻角互补,矩形的四个角都是直角;③对角线:对角线互相平分且相等;④对称性:轴对称图形〔对边中点连线所在直线, 2 条〕.3.矩形的判定:满足以下条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.4.矩形的面积①设矩形 ABCD的两邻边长分别为a,b ,那么 S 矩形 =ab.四、菱形1.菱形定义:有一组邻边相等的平行四边形是菱形。

八年级初二数学平行四边形知识点及练习题附解析

八年级初二数学平行四边形知识点及练习题附解析

八年级初二数学平行四边形知识点及练习题附解析一、选择题1.如图,在Rt △ABC 中,∠ACB =90°,D 、E 分别是AB 、AC 的中点,连接CD ,过E 作EF ∥DC 交BC 的延长线于F ,若四边形DCFE 的周长为18cm ,AC 的长6cm ,则AD 的长为( )A .13cmB .12cmC .5cmD .8cm2.如图,点O (0,0),B (0,1)是正方形OBB 1C 的两个顶点,以它的对角线OB 1为一边作正方形OB 1B 2C 1,以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,再以正方形OB 2B 3C 2的对角线OB 3为一边作正方形OB 3B 4C 3,…,依次进行下去,则点B 6的坐标是( )A .(42,0)B .(42,0)-C .(8,0)-D .(0,8)- 3.平行四边形的对角线分别为 x 、y ,一边长为 12,则 x 、y 的值可能是( ) A .8 与 14 B .10 与 14C .18 与 20D .4 与 284.如图,E 是边长为2的正方形ABCD 的对角线AC 上一点,且AE AB =,F 为BE 上任意一点,FGAC 于点G ,FH AB ⊥于点H ,则FG FH +的值是( )A 2B 2C .2D .15.如图,平行四边形ABCD 中,AB=18,BC =12,∠DAB =60°,E 在AB 上,且AE :EB =1:2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则下列结论正确的个数是( )(1)CE 平分∠BCD ;(2)AF=CE ;(3)连接DE 、DF ,则ADFCDE S S ∆=;(4)DP :DQ=23:13 A .4个B .3个C .2个D .1个6.如图,△A 1B 1C 1中,A 1B 1=4,A 1C 1=5,B 1C 1=7.点A 2、B 2、C 2分别是边B 1C 1、A 1C 1、A 1B 1的中点;点A 3、B 3、C 3分别是边B 2C 2、A 2C 2、A 2B 2的中点;……;以此类推,则第2019个三角形的周长是( )A .201412B .201512C .201612 D .2017127.如图,ABCD 的对角线,AC BD 交于点,O DE 平分ADC ∠交BC 于点,60,E BCD ∠=︒2,AD AB =连接OE .下列结论:ABCDSAB BD =⋅①;DB ②平分ADE ∠;AB DE =③;CDEBOCSS=④,其中正确的有( )A .1个B .2个C .3个D .4个8.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP=EF ;②△APD 一定是等腰三角形;③AP ⊥EF ;2PD=EF .其中正确结论的番号是( )A .①③④B .①②③C .①③D .①②④9.如图,在平行四边形ABCD 中,AE 平分BAD ∠,交BC 于点E 且AB AE =,延长AB 与DE 的延长线相交于点F ,连接AC 、CF .下列结论:①ABC EAD △≌△;②ABE △是等边三角形;③BF AD =;④BEF ABC S S =△△;⑤CEF ABE S S =△△;其中正确的有( )A .2个B .3个C .4个D .5个10.如图,矩形ABCD 的面积为20cm 2,对角线相交于点O .以AB 、AO 为邻边画平行四边形AOC 1B ,对角线相交于点O ;以AB 、AO 为邻边画平行四边形AO 1C 2B ,对角线相交于点O 2 :……以此类推,则平行四边形AO 4C 5B 的面积为( )A .58cm 2 B .54cm 2 C .516cm 2 D .5 32cm 2 二、填空题11.在平行四边形ABCD 中, BC 边上的高为4 ,AB =5 ,25AC =,则平行四边形ABCD 的周长等于______________ .12.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDGFDGS S =,正确的有__________________.13.如图,在矩形ABCD 中,∠ACB =30°,BC =23,点E 是边BC 上一动点(点E 不与B ,C 重合),连接AE ,AE 的中垂线FG 分别交AE 于点F ,交AC 于点G ,连接DG ,GE .设AG =a ,则点G 到BC 边的距离为_____(用含a 的代数式表示),ADG 的面积的最小值为_____.14.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.15.如图,在正方形ABCD 中,AC=62,点E 在AC 上,以AD 为对角线的所有平行四边形AEDF 中,EF 最小的值是_________.16.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.17.在平行四边形 ABCD 中,AE 平分∠BAD 交边 BC 于 E ,DF 平分∠ADC 交边 BC 于 F ,若 AD=11,EF=5,则 AB= ___.18.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt △ABC 中,∠ACB =90°,若点D 是斜边AB 的中点,则CD =12AB ,运用:如图2,△ABC 中,∠BAC =90°,AB =2,AC =3,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED 连接BE ,CE ,DE ,则CE 的长为_____.19.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,E 为AC 上一点,BE 平分∠ABO ,EF ⊥BC 于点F ,∠CAD =45°,EF 交BD 于点P ,BP =5,则BC 的长为_______.20.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.三、解答题21.在等边三角形ABC 中,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 的上方作菱形ADEF ,且∠DAF=60°,连接CF . (1)(观察猜想)如图(1),当点D 在线段CB 上时, ①BCF ∠= ;②,,BC CD CF 之间数量关系为 .(2)(数学思考):如图(2),当点D 在线段CB 的延长线上时,(1)中两个结论是否仍然成立?请说明理由.(3)(拓展应用):如图(3),当点D 在线段BC 的延长线上时,若6AB =,13CD BC =,请直接写出CF 的长及菱形ADEF 的面积..22.如图,点E 为▱ABCD 的边AD 上的一点,连接EB 并延长,使BF =BE ,连接EC 并延长,使CG =CE ,连接FG .H 为FG 的中点,连接DH ,AF . (1)若∠BAE =70°,∠DCE =20°,求∠DEC 的度数; (2)求证:四边形AFHD 为平行四边形;(3)连接EH ,交BC 于点O ,若OC =OH ,求证:EF ⊥EG .23.如图,在Rt ABC ∆中,90ABC ∠=︒,30C ∠=︒,12AC cm =,点E 从点A 出发沿AB 以每秒1cm 的速度向点B 运动,同时点D 从点C 出发沿CA 以每秒2cm 的速度向点A 运动,运动时间为t 秒(06t <<),过点D 作DF BC ⊥于点F .(1)试用含t 的式子表示AE 、AD 、DF 的长;(2)如图①,连接EF ,求证四边形AEFD 是平行四边形;(3)如图②,连接DE ,当t 为何值时,四边形EBFD 是矩形?并说明理由. 24.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明..)ABCD 中,AB BC ≠,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D . 结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形; 结论2:'B DAC .试证明以上结论. (应用与探究)在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)25.如图1,在正方形ABCD (正方形四边相等,四个角均为直角)中,AB =8,P 为线段BC 上一点,连接AP ,过点B 作BQ ⊥AP ,交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC ′,延长QC ′交AD 于点N .(1)求证:BP =CQ ; (2)若BP =13PC ,求AN 的长; (3)如图2,延长QN 交BA 的延长线于点M ,若BP =x (0<x <8),△BMC '的面积为S ,求S 与x 之间的函数关系式.26.探究:如图①,△ABC 是等边三角形,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、AN ,延长MC 交AN 于点P . (1)求证:△ACN ≌△CBM ;(2)∠CPN = °;(给出求解过程)(3)应用:将图①的△ABC 分别改为正方形ABCD 和正五边形ABCDE ,如图②、③,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、DN ,延长MC 交DN 于点P ,则图②中∠CPN = °;(直接写出答案)(4)图③中∠CPN = °;(直接写出答案)(5)拓展:若将图①的△ABC 改为正n 边形,其它条件不变,则∠CPN = °(用含n 的代数式表示,直接写出答案).27.如图,四边形ABCD 是边长为3的正方形,点E 在边AD 所在的直线上,连接CE ,以CE 为边,作正方形CEFG (点C 、E 、F 、G 按逆时针排列),连接BF.(1)如图1,当点E 与点D 重合时,BF 的长为 ;(2)如图2,当点E 在线段AD 上时,若AE=1,求BF 的长;(提示:过点F 作BC 的垂线,交BC 的延长线于点M ,交AD 的延长线于点N.) (3)当点E 在直线AD 上时,若AE=4,请直接写出BF 的长.28.如图,四边形ABCD 为正方形.在边AD 上取一点E ,连接BE ,使60AEB ∠=︒.(1)利用尺规作图(保留作图痕迹):分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ,则60AEB ∠=︒;(2)在前面的条件下,取BE 中点M ,过点M 的直线分别交边AB 、CD 于点P 、Q . ①当PQ BE ⊥时,求证:2BP AP =;②当PQ BE =时,延长BE ,CD 交于N 点,猜想NQ 与MQ 的数量关系,并说明理由.29.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由; (2)求证:CP AE =;(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.30.(问题情境)在△ABC 中,AB=AC ,点P 为BC 所在直线上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB ,垂足为F .当P 在BC 边上时(如图1),求证:PD+PE=CF .图① 图② 图③证明思路是:如图2,连接AP ,由△ABP 与△ACP 面积之和等于△ABC 的面积可以证得:PD+PE=CF .(不要证明) (变式探究)当点P 在CB 延长线上时,其余条件不变(如图3).试探索PD 、PE 、CF 之间的数量关系并说明理由.请运用上述解答中所积累的经验和方法完成下列两题: (结论运用)如图4,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C′处,点P 为折痕EF 上的任一点,过点P 作PG ⊥BE 、PH ⊥BC ,垂足分别为G 、H ,若AD=8,CF=3,求PG+PH 的值;(迁移拓展)在直角坐标系中.直线l1:y=443x-+与直线l2:y=2x+4相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为1.求点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形,根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=18-AB,然后根据勾股定理即可求得.【详解】∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为18cm,AC的长6cm,∴BC=18﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(18﹣AB)2+62,解得:AB=10cm,∴AD=5cm,故选C.【点睛】本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.2.C解析:C【解析】【分析】根据已知条件如图可得到B1,B2所在的正方形的对角线长为2,B3所在的正方形的对角线长为3,依据规律可得B6所在的正方形的对角线长为6=8,再根据B6在x轴的负半轴,就可得到B6的坐标。

新课标人教版八年级数学下平行四边形及特殊的平行四边形知识点总结及经典习题

新课标人教版八年级数学下平行四边形及特殊的平行四边形知识点总结及经典习题

《四边形》的基本知识、主要考点、配套试题全章知识脉络:平行四边形◆考点1.平行四边形的两组对边分别平行且相等 推论:平行四边形一组邻边的和为周长的一半对边平行 内错角相等(有“角平分线”会产生“等腰三角形” ) 1.□ABCD 的周长为34cm ,且AB=7cm ,则BC=cm 。

2.□ABCD 的周长为26cm ,相邻两边相差3cm ,则AB=cm 。

3、如果ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB=cm ,BC=cm ,CD=_____cm ,4、如图,□ABCD 中,CE 平分∠BCD ,BG 平分∠ABC ,BG 与CE 交于点F 。

(1)求证:AB=AG ;(2)求证:AE=DG ;(3)求证:CE ⊥BG 。

◆考点2.平行四边形的两组对角分别相等 推论:平行四边形的邻角互补1.平行四边形的一个角为50度,则其余三个角分别为。

2.平行四边形相邻两个角相差40度,则相邻两角度数分别为。

3、□ABCD 中两邻角∠A :∠B=1:2,则∠C=_______度4、在□ABCD 中,若∠A-∠B=70°,则∠A=______,∠B=______,∠C=______,∠D=______.BCDA G E F◆考点3.平行四边形的对角线互相平分推论1:经过平行四边形对角线交点的直线具备双重平分作用: ①该直线平分平行四边形的面积;②该直线在平行四边形内的部分被对角线平分。

1.如图,□ABCD 中,AC 、BD 交于点O ,△AOB 与△BOC 的周长相差2,且AB=5,则BC=。

2.如图△ABC 中,AB=3,AC=5,则BC 边上的中线AD 长度的取值范围是。

3.平行四边形的一条对角线长为10,则它的两边可能长为( ) A .5和5 B .3和9 C .4和15 D .10和204.平行四边形的两条对角线长分别6和10,则它的边长不可能是( ) A .3 B .4 C .7 D .85.平行四边形的一条边长为8,则它两条对角线可以是( ) A .6 和12 B .6和10 C .6 和8 D .6 和66.如图,□ABCD 中,AC 、BD 交于点O ,过点O 作OE ⊥AC 交AD 于E , 连接CE ,若△CDE 的周长为12,则□ABCD 的周长为。

初二数学下册(人教版)第十八章平行四边形18.1知识点总结含同步练习及答案

初二数学下册(人教版)第十八章平行四边形18.1知识点总结含同步练习及答案

描述:例题:初二数学下册(人教版)知识点总结含同步练习题及答案第十八章 平行四边形 18.1 平行四边形一、学习任务1. 了解平行四边形的概念,掌握平行四边形的性质,能够运用平行四边形的性质进行有关的证明和计算.2. 理解并掌握平行线间的距离及性质,并能利用这个性质解决有关的面积问题.3. 掌握平行四边形的判定方法,并能灵活的运用,解决相应的问题,培养推理论证的能力.4. 掌握三角形的中位线定理.二、知识清单平行四边形 三角形的中位线三、知识讲解1.平行四边形平行四边形两组对边分别平行的四边形叫做平行四边形(parallelogram ).平行四边形的性质① 平行四边形的对边相等;② 平行四边形的对角相等;③ 平行四边形的对角线互相平分.平行四边形的判定① 两组对边分别平行的四边形是平行四边形;② 两组对边分别相等的四边形是平行四边形;③ 一组对边平行且相等的四边形是平行四边形;④ 两组对角分别相等的四边形是平行四边形;⑤ 对角线互相平分的四边形是平行四边形.如图,在平行四边形 中,,, 与 相交于点,图中有多少个平行四边形?解: 个.ABCD EF ∥AB GH ∥AD EF GH O 9描述:例题:2.三角形的中位线三角形中位线的定义平面几何内的三角形任意两边中点的连线叫做三角形的中位线.三角形中位线的定理三角形的中位线平行于三角形的第三边,并且等于第三边的一半.四、课后作业 (查看更多本章节同步练习题,请到快乐学)分别是:平行四边形 ,平行四边形 ,平行四边形 ,平行四边形 ,平行四边形 ,平行四边形 ,平行四边形 ,平行四边形 ,平行四边形 .AGOE GBF O F CHO HDEO AGHD GBCH ABF E EF CD ABCD 已知平行四边形 中,,则 ( )A. B. C. D. 解:B.ABCD ∠B =4∠A ∠C =18∘36∘72∘144∘在下列条件中,不能确定四边形 为平行四边形的是( )A. ,B.C. ,D. ,解:D.D 梯形是个反例.ABCD ∠A =∠C ∠B =∠D∠A =∠B =∠C =90∘∠A +∠B =180∘∠B +∠C =180∘∠A +∠B =180∘∠C +∠D =180∘、、、 为平面内四个点,从下面这四个条件中任意选两个,能使四边形 是平行四边形的选法有( )① ;② ;③ ;④ .A. 种B. 种C. 种D. 种解:B.能使四边形 是平行四边形的选法有①③,①②,③④,②④.A B C D ABCD AB ∥CD AB =CD BC ∥AD BC =AD 5432ABCD 已知 的各边长度分别是 ,,,则连接各边中点的三角形的周长为()A. B. C. D. 解:D.△ABC 3 cm 4 cm 5 cm 2 cm 7 cm 5 cm 6 cm答案:1. 下面几组条件中,能判断一个四边形是平行四边形的是 A .一组对边相等B .两条对角线互相平分C .一组对边平行D .两条对角线互相垂直B ()ABCD ()高考不提分,赔付1万元,关注快乐学了解详情。

人教八下平行四边形专题知识点 常考(典型)题型 重难点题型(含详细答案)

人教八下平行四边形专题知识点 常考(典型)题型 重难点题型(含详细答案)

平行四边形专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.平行四边形的定义 (2)2.平行四边形的性质 (3)3.平行四边形的判定定理 (7)4.三角形中位线定理 (10)三、重难点题型 (14)1.平行四边形的共性 (14)2.平行四边形间距离的应用 (16)3.与平行四边形有关的计算 (17)4.与平行四边形有关的证明 (19)二、基础知识点1.平行四边形的定义平行四边形:两组对边分别平行的四边形。

平行四边形ABCD记作“□ABCD”注:只要满足对边平行的四边形都是平行四边形。

矩形、菱形、正方形都是特殊的平行四边形例1.如图,□ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:BE=DF.答案:∵四边形ABCD为平行四边形∴AD∥CB,AD=CB∵DE⊥AB,BF⊥CD∴∠DEA=∠CFB∴△ADE≌△CFB∴AE=CF∵DC=AB∴BE=DF例2.在平面直角坐标系中,有A(0,1),B(-1,0),C(1,0)三点,若点D与A,B,C构成平行四边形,求D的坐标。

(3解)答案:如下图,有三种情况,坐标分别为:(0,-1);(2,1);(-2,1)2.平行四边形的性质性质1(边):平行四边形的对边相等(AB=CD,AC=BD)证明:∵∠CAD=∠ADB ∠DAB=∠ADC AD=AD ∴△ACD≌△DBA(ASA)∴AB=CD AC=BD性质2(角):平行四边形对角相等,邻角互补(∠A=∠D,∠C=∠B;∠A+∠C=∠B+∠D=180°)证明:∵△ACD≌△DBA(ASA)又∵∠CAB=∠CAD+∠DAB ∠CDB=∠CDA+∠ADB∴∠CAB=∠CDB∵AB∥CD∴∠B+∠BDC=180°性质3(对角线):平行四边形对角线互相平分(AO=OC;BO=OD)证明:∵AD=BC ∠OAD=∠OCB ∠ODA=∠OBC∴△AOD≌△COB(ASA)∴AO=OC OB=OD注1:平行四边形对角线互相平分,但两对角线不一定相等解析:假设平行四边形对角线相等∴∠OAD=∠ADO=∠OBC=∠OCB∠OAB=∠OBA=∠OCD=∠CDO又∵∠DAB+∠CBA=180°∴∠DAB=∠ABC=∠BCD=∠CDA=90°∴仅在平行四边形的四个角为直角时(即矩形),对角线相等注2:对角线不一定平分角解析:假设平行四边形对角线平分角,则∠ADB=∠BDC ∠ACD=∠ACB ∵∠DCB=∠BAD∴∠ACD=∠CAD又∵OD=OD∴△AOD≌△COD(AAS)∴AD=DC=BC=AB∴仅当平行四边形四条边相等时(即菱形),对角线平分角性质4:平行四边形是中心对称图形,对称中心为对角线交点。

人教八下平行四边形专题知识点常考(典型)题型重难点题型(含详细答案)

人教八下平行四边形专题知识点常考(典型)题型重难点题型(含详细答案)

平行四边形专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.平行四边形的定义 (2)2.平行四边形的性质 (3)3.平行四边形的判定定理 (7)4.三角形中位线定理 (10)三、重难点题型 (14)1.平行四边形的共性 (14)2.平行四边形间距离的应用 (16)3.与平行四边形有关的计算 (17)4.与平行四边形有关的证明 (19)二、基础知识点1.平行四边形的定义平行四边形:两组对边分别平行的四边形。

平行四边形ABCD记作“□ABCD”注:只要满足对边平行的四边形都是平行四边形。

矩形、菱形、正方形都是特殊的平行四边形例1.如图,□ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:BE=DF.答案:∵四边形ABCD为平行四边形∴AD∥CB,AD=CB∵DE⊥AB,BF⊥CD∴∠DEA=∠CFB∴△ADE≌△CFB∴AE=CF∵DC=AB∴BE=DF例2.在平面直角坐标系中,有A(0,1),B(-1,0),C(1,0)三点,若点D与A,B,C构成平行四边形,求D的坐标。

(3解)答案:如下图,有三种情况,坐标分别为:(0,-1);(2,1);(-2,1)2.平行四边形的性质性质1(边):平行四边形的对边相等(AB=CD,AC=BD)证明:∵∠CAD=∠ADB ∠DAB=∠ADC AD=AD ∴△ACD≌△DBA(ASA)∴AB=CD AC=BD性质2(角):平行四边形对角相等,邻角互补(∠A=∠D,∠C=∠B;∠A+∠C=∠B+∠D=180°)证明:∵△ACD≌△DBA(ASA)又∵∠CAB=∠CAD+∠DAB ∠CDB=∠CDA+∠ADB∴∠CAB=∠CDB∵AB∥CD∴∠B+∠BDC=180°性质3(对角线):平行四边形对角线互相平分(AO=OC;BO=OD)证明:∵AD=BC ∠OAD=∠OCB ∠ODA=∠OBC∴△AOD≌△COB(ASA)∴AO=OC OB=OD注1:平行四边形对角线互相平分,但两对角线不一定相等解析:假设平行四边形对角线相等∴∠OAD=∠ADO=∠OBC=∠OCB∠OAB=∠OBA=∠OCD=∠CDO又∵∠DAB+∠CBA=180°∴∠DAB=∠ABC=∠BCD=∠CDA=90°∴仅在平行四边形的四个角为直角时(即矩形),对角线相等注2:对角线不一定平分角解析:假设平行四边形对角线平分角,则∠ADB=∠BDC ∠ACD=∠ACB ∵∠DCB=∠BAD∴∠ACD=∠CAD又∵OD=OD∴△AOD≌△COD(AAS)∴AD=DC=BC=AB∴仅当平行四边形四条边相等时(即菱形),对角线平分角性质4:平行四边形是中心对称图形,对称中心为对角线交点。

2022年初二数学八下平行四边形所有知识点总结和常考题型练习题

2022年初二数学八下平行四边形所有知识点总结和常考题型练习题

平行四边形知识点一、四边形有关1、四边形旳内角和定理及外角和定理四边形旳内角和定理:四边形旳内角和等于360°。

四边形旳外角和定理:四边形旳外角和等于360°。

推论:多边形旳内角和定理:n 边形旳内角和等于•-)2(n 180°; 多边形旳外角和定理:任意多边形旳外角和等于360°。

2、多边形旳对角线条数旳计算公式设多边形旳边数为n ,则多边形旳对角线条数为2)3(-n n 。

二、平行四边形1.定义:两组对边分别平行旳四边形是平行四边形.平行四边形旳定义既是平行四边形旳一条性质,又是一种鉴定措施.2.平行四边形旳性质:平行四边形旳有关性质和鉴定都是从 边、角、对角线 三个方面旳特性进行简述旳. (1)角:平行四边形旳对角相等,邻角互补; (2)边:平行四边形两组对边分别平行且相等; (3)对角线:平行四边形旳对角线互相平分;(4)面积:①S ==⨯底高ah ; ②平行四边形旳对角线将四边形提成4个面积相等旳三角形. 3.平行四边形旳鉴别措施①定义:两组对边分别平行旳四边形是平行四边形 ②措施1:两组对边分别相等旳四边形是平行四边形③措施2:一组对边平行且相等旳四边形是平行四边形 ④措施3:两组对角分别相等旳四边形是平行四边形⑤措施4: 对角线互相平分旳四边形是平行四边形 三、矩形1. 矩形定义:有一种角是直角旳平行四边形是矩形。

2. 矩形性质ABDOCADBCO①边:对边平行且相等;②角:对角相等、邻角互补,矩形旳四个角都是直角;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).3. 矩形旳鉴定:满足下列条件之一旳四边形是矩形①有一种角是直角旳平行四边形;②对角线相等旳平行四边形;③四个角都相等辨认矩形旳常用措施①先阐明四边形ABCD为平行四边形,再阐明平行四边形ABCD旳任意一种角为直角.②先阐明四边形ABCD为平行四边形,再阐明平行四边形ABCD旳对角线相等.③阐明四边形ABCD旳三个角是直角.4. 矩形旳面积①设矩形ABCD旳两邻边长分别为a,b,则S矩形=ab.四、菱形1. 菱形定义:有一组邻边相等旳平行四边形是菱形。

(完整版)人教版八年级下册数学平行四边形知识点归纳及练习,推荐文档

(完整版)人教版八年级下册数学平行四边形知识点归纳及练习,推荐文档

平行四边形复习1 •四边形的内角和与外角和定理:(1)四边形的内角和等于360 °;(2)四边形的外角和等于360° .2.多边形的内角和与外角和定理:(1)n边形的内角和等于(n-2)180 ° ;(2)任意多边形的外角和等于360° .3 •平行四边形的性质:因为ABCD是平行四边形⑴两组对边分别平行;(2)两组对边分别相等;⑶两组对角分别相等;(4) 对角线互相平分;(5) 邻角互补.4.平行四边形的判定:(1) 两组对边分别平行(2) 两组对边分别相等(3) 两组对角分别相等ABCD是平行四边形(4) 一组对边平行且相等(5) 对角线互相平分5.矩形的性质:(1)具有平行四边形的所有通性; 因为ABCD是矩形(2四个角都是直角;(3)对角线相等.D C6.矩形的判定:(1)平行四边形一个直角(2)三个角都是直角四边形ABCD是矩形.(3)对角线相等的平行四边形D C两条对称轴练习:、填空:(每小题2分,共24分) 1、对角线 ________ 平行四边形是矩形2、如图⑴已知 0是口ABCD 的对角线交点,AC = 24, BD = 38, AD = 14,那么△ OBC 的周长等A (3)D•/ ABCD 是梯形且 AD// BC••• AC =BD/ ••• ABCD 四边形是等腰梯形 B CA14.三角形中位线定理: 三角形的中位线平行第三边,并且 等于它的一半. B C15.梯形中位线定理: 梯形的中位线平行于两底,并且等 于两底和的一半. B D C C^\BA B 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方 形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线 定理:中心对称的有关定理 ※「关于中心对称的两个图形是全等形 • 探2•关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 探3•如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 三公式: 1 • S 菱形=1 ab=ch. (a 、b 为菱形的对角线,c 为菱形的边长 22. S 平行四边形=ah. a 为平行四边形的边, h 为a 上的高) ,h 为c 边上的高) 13. S 梯形=一 (a+b ) h=Lh. (a 、b 为梯形的底,h 为梯形的高 2 四常识: 丄为梯形的中位线) ※一若n 是多边形的边数,则对角线条数公式是:2•规则图形折叠一般“出一对全等,一对相似” n (n 3)2 3•如图:平行四边形、矩形、菱形、正方形的从属关系 4・常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形;仅是中心对称图形的有:平行四边形 ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆注意:线段有⑷3、 在平行四边形 ABCD 中,/ C = / B+ / D,则/ A = _____ ,/ D = _______ 。

初二数学八下平行四边形所有知识点总结和常考题型练习题

初二数学八下平行四边形所有知识点总结和常考题型练习题

平行四边形知识点一、四边形相关1、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的外角和定理:。

推论:多边形的内角和定理:多边形的外角和定理:。

2、多边形的对角线条数的计算公式设多边形的边数为n ,则多边形的对角线条数为___________。

二、平行四边形1.定义: 2.平行四边形的性质: 平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的.(1)角:(2)边:(3)对角线:(4)面积:①_________________; ②平行四边形的对角线将四边形分成_____个面积相等的三角形.3.平行四边形的判别方法三、矩形1. 矩形定义:2. 矩形性质3. 矩形的判定:4. 矩形的面积四、菱形 1. 菱形定义:2. 菱形性质3. 菱形的判定:.4. 菱形的面积五、正方形1. 正方形定义:它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形。

2. 正方形性质3. 正方形的判定:4. 正方形的面积平行四边形练习2.一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是( )A .75º B.115º C.65º D.105ºA BDO C C DB A O 12(第2题图) 第3题图 第4题图B (第7题图)3.如图3,在□ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,▱ABCD 的周长是在14,则DM 等于)是( )6.过□ABCD 对角线交点O 作直线m ,分别交直线AB 于点E ,交直线CD 于点F ,若AB=4,AE=6,则DF 的长是 .7. 如图7,□ABCD 中,∠ABC=60°,E 、F 分别在CD 、BC 的延长线上,AE∥BD,EF⊥BC ,DF=2,则EF= .8. 在□ABCD 中,AD=BD ,BE 是AD 边上的高,∠EBD=20°,则∠A 的度数为 .9. 在□ABCD 中,AB <BC ,已知∠B=30°,AB=2,将△ABC 沿AC 翻折至△AB ′C ,使点B ′落在□ABCD 所在的平面内,连接B ′D .若△AB ′D 是直角三角形,则BC 的长为.10.如图,已知:□ABCD 中,∠BCD 的平分线CE 交AD 于点E ,∠ABC 的平分线BG 交CE 于点F ,交AD 于点G .求证:AE=DG .11.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE=∠BAD ,AE ⊥AC .(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长.C . 36D . 3613.如图,将矩形纸带ABCD ,沿EF 折叠后,C 、D 两点分别落在C ′、D′的位置,经测量得∠EFB=65°,第12题图 第14题图 第5题图 第13题图 第15题图A B C DEF G14.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则的16.如图,已知在梯形ABCD 中,AD ∥BC ,BC=2AD ,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作S 1、S 2、S 3、S 4,那么下列结论中,不正确的是( )A .S 1=S 3B .S 2=2S 4C .S 2=2S 1 D.S 1•S 3=S 2•S 417.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE=1,F 为AB 上一点,AF=2,P 为AC 上一点,则PF+PE 的最小值为 .18.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为 或 秒时.△ABP 和△DCE 全等.19.已知,如图,在四边形ABCD 中,AB∥CD,E ,F 为对角线AC 上两点,且AE=CF ,DF∥BE,AC平分∠BAD.求证:四边形ABCD 为菱形.20.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB ,AD=CD .对角线AC ,BD 相交于点O ,OE⊥AB,OF⊥CB,垂足分别是E ,F .求证OE=OF .21. 如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,第17题图 第16题图 第18题图然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.22. 如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC;(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.。

人教版八年级下册数学平行四边形知识点归纳及练习

人教版八年级下册数学平行四边形知识点归纳及练习

平行四边形复习1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°.2.多边形的内角和与外角和定理:(1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°.3.平行四边形的性质:因为ABCD 是平行四边形?⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(4.平行四边形的判定:是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫.5.矩形的性质:因为ABCD 是矩形?⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所(6. 矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321?四边形ABCD 是矩形.7.菱形的性质: 因为ABCD 是菱形?⎪⎩⎪⎨⎧.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所(A BCD 1234A B CDABDOCCD BAOABDOCCDAOA DBCADBCADB COAD B CO8.菱形的判定:⎪⎭⎪⎬⎫+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321?四边形四边形ABCD 是菱形.9.正方形的性质: 因为ABCD 是正方形?⎪⎩⎪⎨⎧.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所( CDAB(1) A BCD O(2)(3)10.正方形的判定:⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321?四边形ABCD 是正方形.(3)∵ABCD 是矩形 又∵AD=AB∴四边形ABCD 是正方形11.等腰梯形的性质:因为ABCD 是等腰梯形?⎪⎩⎪⎨⎧.321)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)(12.等腰梯形的判定:⎪⎭⎪⎬⎫+++对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321?四边形ABCD 是等腰梯形 (3)∵ABCD 是梯形且AD ∥BC ∵AC=BD ∴ABCD 四边形是等腰梯形14.三角形中位线定理: 三角形的中位线平行第三边,并且等于它的一半.15.梯形中位线定理:A BC D OABC DOCD AB梯形的中位线平行于两底,并且等于两底和的一半.一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的有关定理※1.关于中心对称的两个图形是全等形.※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:※1.若n 是多边形的边数,则对角线条数公式是:2)3n (n .2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系.4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.练习:一、填空:(每小题2分,共24分)1、对角线_____平行四边形是矩形。

初二数学八下平行四边形所有知识点总结和常考题型练习题

初二数学八下平行四边形所有知识点总结和常考题型练习题

平行四边形知识点一、四边形相关1、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n 边形的内角和等于•-)2(n 180°;多边形的外角和定理:任意多边形的外角和等于360°。

2、多边形的对角线条数的计算公式设多边形的边数为n ,则多边形的对角线条数为2)3(-n n 。

二、平行四边形1.定义:两组对边分别平行的四边形是平行四边形. 平行四边形的定义既是平行四边形的一条性质,又是一个判定方法. 2.平行四边形的性质:平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的.(1)角:平行四边形的对角相等,邻角互补;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S ==⨯底高ah ; ②平行四边形的对角线将四边形分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形 ②方法1:两组对边分别相等的四边形是平行四边形③方法2:一组对边平行且相等的四边形是平行四边形 ④方法3:两组对角分别相等的四边形是平行四边形 ⑤方法4: 对角线互相平分的四边形是平行四边形三、矩形1. 矩形定义:有一个角是直角的平行四边形是矩形。

2. 矩形性质①边:对边平行且相等; ②角:对角相等、邻角互补,矩形的四个角都是直角; ③对角线:对角线互相平分且相等; ④对称性:轴对称图形(对边中点连线所在直线,2条).3. 矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形; ②对角线相等的平行四边形; ③四个角都相等识别矩形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的任意一个角为直角.② 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的对角线相等.③ 说明四边形ABCD 的三个角是直角.4. 矩形的面积① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab .四、菱形 1. 菱形定义:有一组邻边相等的平行四边形是菱形。

初二数学八下平行四边形所有知识点总结和常考题型练习题

初二数学八下平行四边形所有知识点总结和常考题型练习题

平行四邊形知識點一、四邊形相關1、四邊形的內角和定理及外角和定理四邊形的內角和定理:四邊形的內角和等于360°。

四邊形的外角和定理:四邊形的外角和等于360°。

推論:多邊形的內角和定理:n 邊形的內角和等于•-)2(n 180°; 多邊形的外角和定理:任意多邊形的外角和等于360°。

2、多邊形的對角線條數的計算公式設多邊形的邊數為n ,則多邊形的對角線條數為2)3(-n n 。

二、平行四邊形1.定義:兩組對邊分別平行的四邊形是平行四邊形. 平行四邊形的定義既是平行四邊形的一條性質,又是一個判定方法.2.平行四邊形的性質:平行四邊形的有關性質和判定都是從 邊、角、對角線 三個方面的特征進行簡述的.(1)角:平行四邊形的對角相等,鄰角互補;(2)邊:平行四邊形兩組對邊分別平行且相等;ABDO C(3)對角線:平行四邊形的對角線互相平分;(4)面積:①S ==⨯底高ah ; ②平行四邊形的對角線將四邊形分成4個面積相等的三角形.3.平行四邊形的判別方法①定義:兩組對邊分別平行的四邊形是平行四邊形 ②方法1:兩組對邊分別相等的四邊形是平行四邊形③方法2:一組對邊平行且相等的四邊形是平行四邊形 ④方法3:兩組對角分別相等的四邊形是平行四邊形⑤方法4: 對角線互相平分的四邊形是平行四邊形三、矩形1. 矩形定義:有一個角是直角的平行四邊形是矩形。

2. 矩形性質①邊:對邊平行且相等; ②角:對角相等、鄰角互補,矩形的四個角都是直角;③對角線:對角線互相平分且相等; ④對稱性:軸對稱圖形(對邊中點連線所在直線,2條).3. 矩形的判定:滿足下列條件之一的四邊形是矩形①有一個角是直角的平行四邊形; ②對角線相等的平行四邊A DB CO形; ③四個角都相等識別矩形的常用方法① 先說明四邊形ABCD 為平行四邊形,再說明平行四邊形ABCD 的任意一個角為直角.② 先說明四邊形ABCD 為平行四邊形,再說明平行四邊形ABCD 的對角線相等.③ 說明四邊形ABCD 的三個角是直角.4. 矩形的面積① 設矩形ABCD 的兩鄰邊長分別為a,b ,則S 矩形=ab .四、菱形1. 菱形定義:有一組鄰邊相等的平行四邊形是菱形。

初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)

A C BD 初二平行四边形所有知识点总结和常考题知识点:1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质:⑴平行四边形的对边相等;⑵平行四边形的对角相等:⑶平行四边形的对角线互相平分。

3平行四边形的判定:⑴.两组对边分别相等的四边形是平行四边形; ⑵对角线互相平分的四边形是平行四边形;⑶两组对角分别相等的四边形是平行四边形; ⑷一组对边平行且相等的四边形是平行四边形。

4、矩形的定义:有一个角是直角的平行四边形。

5、矩形的性质:⑴矩形的四个角都是直角;⑵矩形的对角线相等。

6、矩形判定定理:⑴ 有三个角是直角的四边形是矩形;⑵对角线相等的平行四边形是矩形。

7、中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

(连接三角形两边中点的线段叫做三角形的中位线。

)8、菱形的定义 :有一组邻边相等的平行四边形。

9、菱形的性质:⑴菱形的四条边都相等;⑵菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

S 菱形=1/2×ab (a 、b 为两条对角线长)10、菱形的判定定理:⑴四条边相等的四边形是菱形。

⑵对角线互相垂直的平行四边形是菱形。

11、正方形定义:一个角是直角的菱形或邻边相等的矩形。

12正方形判定定理:⑴ 邻边相等的矩形是正方形。

⑵有一个角是直角的菱形是正方形。

(矩形+菱形=正方形)常考题:一.选择题(共14小题)1.矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相平分D .两组对角分别相等2.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形4.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形5.在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)6.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.117.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.168.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°9.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.1010.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.1711.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.812.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.1913.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF ⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣414.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°二.填空题(共13小题)15.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.16.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.17.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO 的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.18.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD 和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.19.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是.20.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.21.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是.22.如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.23.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.24.如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C (0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为.25.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D的坐标.26.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.27.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三.解答题(共13小题)28.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.29.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.30.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.31.如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.32.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.33.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.34.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?35.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.36.如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.37.如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.(1)求证:△ABD≌△EBD;(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.38.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.39.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.40.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2013•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分 D.两组对角分别相等【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.2.(2014•河池)平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.3.(2008•扬州)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.4.(2011•张家界)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【分析】顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.【点评】本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半.5.(2006•南京)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)【分析】因为D点坐标为(2,3),由平行四边形的性质,可知C点的纵坐标一定是3,又由D点相对于A点横坐标移动了2,故可得C点横坐标为2+5=7,即顶点C的坐标(7,3).【解答】解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.【点评】本题主要是对平行四边形的性质与点的坐标的表示及平行线的性质和互为余(补)角的等知识的直接考查.同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高.6.(2014•河南)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.7.(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16【分析】在矩形ABCD中根据AD∥BC得出∠DEF=∠EFB=60°,由于把矩形ABCD 沿EF翻折点B恰好落在AD边的B′处,所以∠EFB=∠DEF=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中可知∠DEF=∠EFB=∠EB′F=60°故△EFB′是等边三角形,由此可得出∠A′B′E=90°﹣60°=30°,根据直角三角形的性质得出A′B′=AB=2,然后根据矩形的面积公式列式计算即可得解.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠DEF=∠EFB=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故选D.【点评】本题考查了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补,两直线平行,内错角相等的性质,解直角三角形,作辅助线构造直角三角形并熟记性质是解题的关键.8.(2013•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.9.(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC 于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.10.(2013•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.17【分析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选C.【点评】本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.11.(2013•泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC 的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF 为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD 与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF 与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.12.(2013•菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19【分析】由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3×3=9,∴S1+S2=8+9=17.故选:B.【点评】本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.13.(2013•连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣4【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选:C.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.14.(2014•福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE 相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.【解答】解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.【点评】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.二.填空题(共13小题)15.(2008•恩施州)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24cm2.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.【点评】此题主要考查菱形的面积等于两条对角线的积的一半.16.(2015•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD 的周长等于20.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AB=CD,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.【点评】本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.17.(2013•厦门)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=3厘米.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF 是△OAB的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3.【点评】本题考查了三角形的中位线定理,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.18.(2007•临夏州)如图,矩形ABCD的对角线AC和BD相交于点O,过点O 的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为3.【分析】根据矩形是中心对称图形寻找思路:△AOE≌△COF,图中阴影部分的面积就是△BCD的面积.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE =S△COF,∴图中阴影部分的面积就是△BCD的面积.S△BCD=BC×CD=×2×3=3.故答案为:3.【点评】此题主要考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的一半,是解决问题的关键.19.(2014•宿迁)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B 的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是(5,4).【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D 在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为:(5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.20.(2015•黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65度.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE 全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.21.(2013•十堰)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是1.【分析】根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=,∴CE==2,∴AB=1,故答案为:1.【点评】本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.22.(2013•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF ⊥CD于F,∠B=60°,则菱形的面积为.【分析】根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.【解答】解:∵菱形ABCD的边长为4,∴AB=BC=4,∵AE⊥BC于E,∠B=60°,∴sinB==,∴AE=2,∴菱形的面积=4×2=8,故答案为8.【点评】本题考查了菱形的性质:四边相等以及特殊角的三角函数值和菱形面积公式的运用.23.(2013•鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是11.【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.【点评】本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.24.(2015•攀枝花)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为(2.5,4),或(3,4),或(2,4),或(8,4).【分析】由矩形的性质得出∠OCB=90°,OC=4,BC=OA=10,求出OD=AD=5,分情况讨论:①当PO=PD时;②当OP=OD时;③当DP=DO时;根据线段垂直平分线的性质或勾股定理即可求出点P的坐标.【解答】解:∵四边形OABC是矩形,∴∠OCB=90°,OC=4,BC=OA=10,∵D为OA的中点,∴OD=AD=5,①当PO=PD时,点P在OD得垂直平分线上,∴点P的坐标为:(2.5,4);②当OP=OD时,如图1所示:则OP=OD=5,PC==3,∴点P的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠PED=90°,DE==3;分两种情况:当E在D的左侧时,如图2所示:OE=5﹣3=2,∴点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,∴点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故答案为:(2.5,4),或(3,4),或(2,4),或(8,4).【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的判定、勾股定理;本题有一定难度,需要进行分类讨论才能得出结果.25.(2013•阜新)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D 的坐标(3,2),(﹣5,2),(1,﹣2).【分析】首先根据题意画出图形,分别以BC,AB,AC为对角线作平行四边形,即可求得答案.【解答】解:如图:以A,B,C为顶点的平行四边形的第四个顶点D的坐标分别为:(3,2),(﹣5,2),(1,﹣2).故答案为:(3,2),(﹣5,2),(1,﹣2).【点评】此题考查了平行四边形的性质.注意坐标与图形的关系.26.(2014•丹东)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.【分析】延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF 是等边三角形,再利用菱形的边长为4求出时间t的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形知识点一、四边形相关1、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n 边形的内角和等于•-)2(n 180°;多边形的外角和定理:任意多边形的外角和等于360°。

2、多边形的对角线条数的计算公式设多边形的边数为n ,则多边形的对角线条数为2)3(-n n 。

二、平行四边形1.定义:两组对边分别平行的四边形是平行四边形. 平行四边形的定义既是平行四边形的一条性质,又是一个判定方法. 2.平行四边形的性质:平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的.(1)角:平行四边形的对角相等,邻角互补;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S ==⨯底高ah ; ②平行四边形的对角线将四边形分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形 ②方法1:两组对边分别相等的四边形是平行四边形③方法2:一组对边平行且相等的四边形是平行四边形 ④方法3:两组对角分别相等的四边形是平行四边形 ⑤方法4: 对角线互相平分的四边形是平行四边形三、矩形1. 矩形定义:有一个角是直角的平行四边形是矩形。

2. 矩形性质①边:对边平行且相等; ②角:对角相等、邻角互补,矩形的四个角都是直角; ③对角线:对角线互相平分且相等; ④对称性:轴对称图形(对边中点连线所在直线,2条).3. 矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形; ②对角线相等的平行四边形; ③四个角都相等识别矩形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的任意一个角为直角.② 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的对角线相等.③ 说明四边形ABCD 的三个角是直角.4. 矩形的面积① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab .四、菱形 1. 菱形定义:有一组邻边相等的平行四边形是菱形。

2. 菱形性质①边:四条边都相等; ②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).3. 菱形的判定:满足下列条件之一的四边形是矩形 A B DO C A D BC O C DB A O①有一组邻边相等的平行四边形; ②对角线互相垂直的平行四边形; ③四条边都相等. 识别菱形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的任一组邻边相等.② 先说明四边形ABCD 为平行四边形,再说明对角线互相垂直.③ 说明四边形ABCD 的四条相等.4. 菱形的面积 ①设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;②若菱形的两对角线的长分别为a,b ,则S 菱形=12ab .五、正方形 1. 正方形定义:有一组邻边相等且有一个直角的平行四边形叫做正方形。

它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形。

2. 正方形性质①边:四条边都相等; ②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450; ④对称性:轴对称图形(4条).3. 正方形的判定:满足下列条件之一的四边形是正方形.① 有一组邻边相等且有一个直角的平行四边形② 有一组邻边相等的矩形; ③ 对角线互相垂直的矩形.④ 有一个角是直角的菱形 ⑤ 对角线相等的菱形;识别正方形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的一个角为直角且有一组邻边相等. ② 先说明四边形ABCD 为平行四边形,再说明对角线互相垂直且相等.③ 先说明四边形ABCD 为矩形,再说明矩形的一组邻边相等.④ 先说明四边形ABCD 为菱形,再说明菱形ABCD 的一个角为直角.4. 正方形的面积① 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a .六、梯形1. 梯形定义:一组对边平行而另一组对边不平行的四边形叫做梯形。

等腰梯形:是一种特殊的梯形,它是两腰相等的梯形。

特殊梯形还有直角梯形(有一个角是直角)。

2. 等腰梯形性质①边:上下底平行但不相等,两腰相等; ②角:同一底边上的两个角相等;对角互补;③对角线:对角线相等; ④对称性:轴对称图形(上下底中点所在直线). ⑤梯形中位线定理:梯形中位线平行于两底,并且等于两底和的一半。

3. 等腰梯形的判定:满足下列条件之一的梯形是等腰梯形① 同一底两个底角相等的梯形; ② 对角线相等的梯形.识别等腰梯形的常用方法① 先说明四边形ABCD 为梯形,再说明两腰相等.② 先说明四边形ABCD 为梯形,再说明同一底上的两个内角相等.③ 先说明四边形ABCD 为梯形,再说明对角线相等.4. 梯形的面积① 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h .A BC D OF E A B C D(第7题图) 平行四边形练习1、一个多边形的内角和为1620°,则这个多边形对角线的条数是( )A 27B 35C 44D 542.一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是( )A .75º B.115º C.65º D.105º3.如图3,在□ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,▱ABCD 的周长是在14,则DM 等于( )A . 1B . 2C . 3D . 44. 如图4,在□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF :FC 等于( )A 3:2B 3:1C 1:1D 1:25. □ABCD 中,对角线AC 与BD 交于点O ,∠DAC=42°,∠CBD=23°,则∠COD 是( )A 61°B 63°C 65°D 67°6.过□ABCD 对角线交点O 作直线m ,分别交直线AB 于点E ,交直线CD 于点F ,若AB=4,AE=6,则DF 的长是 .7. 如图7,□ABCD 中,∠ABC=60°,E 、F 分别在CD 、BC 的延长线上,AE∥BD,EF⊥BC,DF=2,则EF= .8. 在□ABCD 中,AD=BD ,BE 是AD 边上的高,∠EBD=20°,则∠A 的度数为 .9. 在□ABCD 中,AB <BC ,已知∠B=30°,AB=2,将△ABC 沿AC 翻折至△AB ′C ,使点B ′落在□ABCD 所在的平面内,连接B ′D .若△AB ′D 是直角三角形,则BC 的长为 .10.如图,已知:□ABCD 中,∠BCD 的平分线CE 交AD 于点E ,∠ABC 的平分线BG 交CE 于点F ,交AD 于点G .求证:AE=DG .11.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE=∠BAD ,AE ⊥AC .(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长.12(第2题图) 第3题图 第4题图 第5题图 A B C DEF G12.如图,在菱形ABCD 中,AB=6,∠ABD=30°,则菱形ABCD 的面积是( )A . 18B . 18C . 36D . 3613.如图,将矩形纸带ABCD ,沿EF 折叠后,C 、D 两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是( )A . 65°B . 55°C . 50°D . 25°14.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为( )A .B .C .D . 6 15.如图,菱形ABCD 中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E ,F ,连接EF ,则的△AEF 的面积是( )A . 4B . 3C . 2D . 16.如图,已知在梯形ABCD 中,AD ∥BC ,BC=2AD ,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作S 1、S 2、S 3、S 4,那么下列结论中,不正确的是( )A .S 1=S 3B .S 2=2S 4C .S 2=2S 1D .S 1•S 3=S 2•S 417.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE=1,F 为AB 上一点,AF=2,P 为AC 上一点,则PF+PE 的最小值为 .18.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为 或 秒时.△ABP 和△DCE 全等.19.已知,如图,在四边形ABCD 中,AB∥CD,E ,F 为对角线AC 上两点,且AE=CF ,DF∥BE,AC 平分∠BAD.求证:四边形ABCD 为菱形.20.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB ,AD=CD .对角线AC ,BD 相交于点O ,OE⊥AB,OF⊥CB,垂足分别是E ,F .求证OE=OF .第12题图 第14题图 第13题图 第15题图第17题图 第16题图 第18题图21.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.22. 如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC;(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.。

相关文档
最新文档