主动激光锁模技术原理.

合集下载

固体锁模激光器

固体锁模激光器
11
四、被动锁模原理
在激光谐振腔中插入可饱和吸收体(半导体可饱和吸收镜、碳纳米管、硫化钨、黑磷)来调
节腔内的损耗.当满足锁模条件时,就可获得一系列的锁模脉冲。根据锁模形成过程的机理和特 点,被动锁模分为固体激光器的被动锁模和染料激光器的被动锁模两种类型。
1. 工作原理
由于吸收体的可饱和吸收系数随光强的增加而下降,所以高增益激光器所产生的高强度 激光能使吸收体吸收饱和。图示出了激光通过吸收体的透过率T随激光强度 I 的变化情况。 强信号的透过率较弱信号的为大,只有小部分为吸收体所吸收。强、弱信号大致以吸收体的 饱和光强 Is来划分。大于Is的光信号为强信号,否则为弱信号。
v3
v1
技术”。
3 E02 /2
0
time
未 锁相 前的 三个 光 波 的 叠加
二、实现锁模的方 法
三. 声光驻波场振幅调制主动锁模
1.时域分析
设在t1时刻通过调制器的光信 号受到的损耗为 t ,在经过 2L/c时间往返一周后,这部分 光信号受到的损耗为 t1 2 L / c , 如果 t 的周期 Tm 2 L / c ,则这 部分信号每往返一次受到相同 的损耗。则有:
固体锁模激光器

锁模原理 实现锁模的方法 主动锁模 被动锁模




锁模:调Q技术得到的脉宽有所极限,为了得到更窄的脉冲在 光纤通讯、医学、激光精细微加工、高密度信息存储和记录及 非线性光学等领域的应用,从而诞生锁模技术。

激光器的分类方法有很多种,一般按照产生激光的工作物质不 同分类,或者按照工作方式分类。用激光二极管(LD)泵浦固体工 作物质的激光器(简称DPSSL)就是所谓的全固态激光器。

锁模技术

锁模技术

a2=Ωt2+α
2π 2πL′ 2L′ T= = = Ω πc c
T 1 τ= = N ∆νT
a2 – a1 =Ω(t2-t1)= ΩT=2π
2π a2 − a1 = Ωτ = N
∆νT N= ∆νq
3、脉宽(光脉冲持续时间的一半 、脉宽 光脉冲持续时间的一半 光脉冲持续时间的一半)

2π T τ= = NΩ N
ω0-Ω ω0 ω0+Ω Ω Ω
④两个边模再产生新边模,直至振荡线宽内所有 两个边模再产生新边模, 纵模都被耦合形成脉冲系列输出。 纵模都被耦合形成脉冲系列输出。
3、相位(频率 调制模锁 电光锁模 、相位 频率 调制模锁:电光锁模 频率)调制模锁
(1)概念 概念 使用电光晶体折射率随外加电压的变化对激光进 行相位调制,调制频率为f=c/2L′时,可以获重复 行相位调制,调制频率为 ′ 频率也为f的激光脉冲系列 频率也为 的激光脉冲系列 z (2)装置 装置
ln 2 ln 2
c 3×108 =100M Hz ∆νq = = 2L 2×1.5
∆q = [
∆νT 950 ] +1 = [ ] +1 =10 ∆νq 100
m ② Iν = Is (α2 −1) = 50×(22 -1) =150w/m 2
0
Pν0 = 1 STI ν0 = 1 ×1×0.01×150 = 0.75w 2 2 P = ∆q ⋅ Pν0 =10×0.75 = 7.5w
腔平均损耗率, 损耗率变化幅度, 损耗频率 δo:腔平均损耗率 ∆δ 损耗率变化幅度 Ω:损耗频率 腔平均损耗率 ∆δ:损耗率变化幅度 调制电信号为零时,损耗最小, 调制电信号为零时,损耗最小,调制电信号为极 值时,损耗最大, 值时,损耗最大,故损耗频率是调制频率的两倍

锁模原理

锁模原理
在腔内插入一个受外界信号控制的调制器,周期 性改变振荡模式的某个参量而实现锁模的方法
2、振幅(损耗)调制锁模:声光锁模 (1)概念
使用声光调制器调制谐振腔损耗,当电调制频率 为f=c/4L时,损耗调制频率为f=c/2L,可获重复 频率也为f的激光脉冲系列
(2)装置 激光
输出镜
激光介质 声光器件 全反镜
P0
1 2
STI
0
1 2
1
0.01150
0.75w
P q P0 10 0.75 7.5w
③ Pm=N2P0=1000.75=75w
T
2L c
2 1.5 3108
108 s
T 108 109s N 10

1
T
1 950 106
1.05109 s
§2 锁模激光器
一、主动式锁模
1、定义
T 2 2L 2L c c
3、脉宽(光脉冲持续时间的一半)

a2
a1
2
N
2 T
N N
T 1 N T
另有
N T q
T 1
q
1 q 1 q T T
1
2
3
4
5
6
7
8
9
123456789
(N=4)
例1 He-Ne激光器的谐振腔长L=1.5m, 截面积S=1 mm2,输出镜透过率为T=0.01, 激活介质的多普勒 线宽为=950MHz, 饱和参数为Is=50 w/mm2,现将此 激光器激活,激发参数=2,求:①满足起振条件的 模式数②总输出功率(无模式竞争,各模式输出功
eina[1 eia(2n1) ]
e
i
a 2

锁模

锁模

主动锁模与被动锁模的比较
2.相同点 调制器和燃料盒都紧靠全反镜。 主动锁模和被动锁模都具有标准具效应。 经过调制器和燃料盒后各纵模之间相
1、不同点 主动锁模使用调制器对光波的振幅和相位 进行调制;被动锁模是自身辐射和燃料盒 进行周期性调制。 主动锁模运用电光和声光效应进行锁模; 被动锁模运用燃料的可饱和吸收效应进行 锁模。 主动锁模和被动锁模的物理过程不同。 被动锁模比主动锁模更容易失谐。
被动锁模
非线性吸收阶段 特点: 强脉冲使染料饱和,弱脉冲不能使染料 饱和-实现非线性吸收。

结果:实现相位固定
被动锁模
非线性放大阶段(主要压缩脉宽阶段) 特点: 染料饱和,增益饱和-非线性放大

结果: 对于激活介质来说,介质增益饱和,强脉 冲通过放大介质时,前沿中心部位放大的多, 脉冲后沿可能放大的少,经过几次放大过程- 前后沿变陡-脉冲变窄。弱脉冲进一步受到抑 制,最后腔中剩下一个脉冲振荡。
主动锁模与被动锁模
主动锁模 被动锁模

主要内容
主动锁模与被动锁模的比较
一、主动锁模
1、主动锁模是在自由运转的激光器中加入调 制器,调制光波的振幅和相位进行锁模。
主动锁模结构示意图
主动锁模
2、调制器的作用 调制光波,产生边频 3、根据调制方法可分为两类: 振幅调制 相位调制
二、被动锁模
1、在激光器中放一个装有机燃料的燃料盒, 依靠有机燃料的饱和吸收过程对光波进行 锁模。
被动锁模
2、物理过程: 线性放大阶段 非线性吸收阶段 非线性放大阶段
被动锁模

线性放大阶段
特点:初始阶段,有机染料未饱和-非线性 吸收光波场-自发辐射的荧光-G> 时,产 生激光,在激光介质中线性放大-增益未饱和。

第六讲激光的调Q与锁模

第六讲激光的调Q与锁模

27
1968年开始横模锁定的研究,稍后又开 始了纵横模同时锁定的研究,70年代后又发 展了主动加被动双锁模(损耗调制加相位调 制)、主动加调Q及同步锁模等方法 。 纵模锁定的方法主要有,自锁、主动锁 模(内调制包括损耗调制和相位调制)及被 动锁模(可饱和吸收染料锁模),下面分别 加以讨论。
28
1、纵模锁定
1 t1 2 2 I ( t ) E ( t ) 0 E ( t ) dt t1 q 因为 1 t1 2 1 2 2 0 Eq cos (qt q ) dt Eq t1 q q2 1 t1 0 Eq E cos( t ) cos( t ) dt 0 q q q q q t1 q q 所以 N 1 2 I ( t )= Eq q 0 2
15
下面用数学形式来定量地分析激光输出与 相位锁定的关系。若多模激光器的所有振荡 模均有相等的振幅E0。超过阈值的纵模共有 2N+1个,各相邻模的相位差都是n ,并设处 在介质增益曲线中心的模(q=0),其角频率为 0,其相位为0,即以中心模的相位为参考相 位。
16
振幅特性
对于一个腔长为L的平行平面腔,如果忽 略了腔的非线性色散效应,则两相邻纵模的 频率间隔相等,由(1)式
5
在多模振荡时,如果使振荡模的频率间隔 保持一定,并且使各模之间只有确定的相位 关系,这时激光输出是一系列周期脉冲,这 种激光器叫做“锁模”激光器,相应的技术 叫做“锁模技术”。
6
假设在激光工作物质的净增益线宽内包 含有N个纵模,那么,这时激光器输出的光波 电场是N个纵模电场的和: N (2) E ( t ) E cos( t )
第六讲 激光的锁模 技术
1
6.1 锁模技术

激光锁模技术ppt课件

激光锁模技术ppt课件

冲在腔内往返运动,每当此脉冲行进到输出反射镜时,便有一
个锁模脉冲输出。
➢脉冲宽度,即脉冲峰值与第一个光强为零的谷值间的时间间隔
sin[(2N 1) t ] 0但sin(t ) 0 t (m n )
2
2
2
2N 1
2 T 1
为锁模激光器的线宽
(2N 1) 2N 1
4.7.1 锁模原理

所以
(t1) (t1
2L) c
,以后这束光波每次通过调制器时损耗
相同。若损耗大于增益,这部分光波终将消失,而在损耗等于
零时通过的光每次都能无损耗的通过,会不断被放大,满足阈
值条件形成振荡,如果腔内损耗和增益控制得当,最终将形成
脉宽很窄,周期为T的脉冲序列输出。
损耗内调制锁模
➢从频率域模式耦合的角度来说明损耗调制锁模的原理。假设中心 频率 ν0 处的模首先振荡,其振幅调制后的电矢量为:
彼此独立的、随机的,所以总光场是各个模式光场的非相
干叠加。输出总光强是各个振荡模式光强之和,即 I Iq
输出光强随时间无规则起伏。
q
4.7.1 锁模原理
核心思想:锁模技术让谐振腔中存在的纵模同步振荡,让各模的频率 间隔保持相等并使各模的初位相保持为常数,激光器输出在时间上有 规则的等间隔的短脉冲序列。
实现锁模的方法
在一般激光器中,各纵模振荡互不相关,各纵模 相位没有确定的关系。并且,由于频率牵引效应, 相邻纵模的频率间隔并不严格相等。因此为了得到 锁模超短脉冲,须采取措施强制各纵模初位相保持 确定关系,并使相邻模频率间隔相等。
• 主动锁模 • 被动锁模 • 自锁模
4.7.2 主动锁模
在自由运转的激光器谐振腔中加入受外界信号控制的调制器, 对激光输出进行振幅或相位调制,实现各个纵模振动同步,叫 作主动锁模。 1. 振幅调制(损耗内调制锁模) ➢如图(4-31)所示,在谐振腔中插入一个电光或声光损耗调制器。 设调制周期为 Tm 2 Ω 2L c ,调制频率 νm c 2L (恰为纵 模频率间隔)

激光技术调Q与锁模

激光技术调Q与锁模

激光振荡的建立条件是增益G大于损耗
G = i + m+ d
○ 其中i为激光在腔内传输由于散射、吸收产
生的损耗, m为反射镜产生的损耗; d为谐 振腔中由衍射产生的损耗。

选择横模的两个原则
○ 必须尽量增大高阶模与基模的衍射损耗比 ○ 尽量减少腔内其他损耗i和镜面损耗m, 从而
输出光束发散角和光强分布为主要目的的横 模选择技术,以及以获得窄线宽为主要目的 纵模选择技术。
3
横模选择及其意义

激光器的横模决定了输出光束的光强分布和发散角 从工业的钻孔、焊接到光通信,从激光医疗到激光 测距,横模输出的选择都非常重要
TEM00 TEM10
TEM20
TEM11
4
横模选择技术
相对增大衍射损耗d在总损耗中的比例
5
1)光阑法选横模

在激光谐振腔内插入小孔光阑相当于减小腔镜尺寸,增 加了衍射损耗。适当控制光阑尺寸,使腔内只有基模能 够振荡。

小孔光阑方法最简单易行,且有效。但同时须考虑模体 积问题。
腔镜1
小孔光栏
腔镜2
6
小孔光阑选横模腔型举例
7
2)介稳腔和非稳腔选模

增益
损耗

实际振荡的纵模
10
纵模选择技术

短腔法选纵模 F-P标准具法


色散腔法粗选波长
行波腔选纵模
11
短腔法选纵模


短腔法选纵模 F-P标准具法 色散腔法粗选波长 行波腔选纵模
谐振腔模间隔=c/2L 如果设计腔长L使模间 隔 >= 增益曲线宽度, 即: >= g 则可以实现单纵模工作

主动激光锁模技术原理

主动激光锁模技术原理

E3 = E0cos(2π) = E0 , 三波叠加的结果是:
E = E1 + E 2 + E3 = 0; 同理可得,t=2/(3ν1 )时,E = 0;t = 1/ν1时,
E = 3E0 …… 。这样就会出现一系列周期性的脉冲,见下图。 当 各光波振幅同时达到最大值处时,由于“建设性”的干涉作用,
峰值功率增大了2N+1倍。
注意:
0
(3.1-6)
q=-N
(4)多模(ω0+q△ωq )激光器相位锁定的结果,实现了q+1 - q=常数, 导致输出一个峰值功率高,脉冲宽度窄的序列冲。因此多纵模激 光器锁模后,各振荡模发生功率耦合而不再独立。每个模的功率 应看成是所有振荡模提供的。##
三、锁模的方法 1.主动锁模
因为
所以
q=-N
(3.1-6)
该式说明了平均光强是各个纵模光强之和 (除以2)。
如果采用适当的措施使这些各自独立的纵模在时间上同步,
即把它们的相位相互联系起来,使之有一确定的关系(φq+1 -φq= 常数),那么就会出现一种与上述情况有质的区别而有趣的现象;
激光器输出的将是脉宽极窄、峰值功率很高的光脉冲,如图3.12(b)所示。
为讨论方便,假定α = 0,则
(3.1-11)
上式分子、分母均为周期函数,因此A(t)也是周期函数。只要得到 它的周期、零点,即可以得到A(t)的变化规律。
1 由(3.1-11)式可求出A(t) 的周期为 2 L (令分母 sin 2 t c 1 2
0 →
个周期内2N个零值点及2N+1个极值点。
E(t)
E0
v3=3v1,
v2=2v1, 初相 无规律 位

克尔透镜锁模的原理及应用

克尔透镜锁模的原理及应用

克尔透镜锁模原理及应用杨兴摘要:产生激光超短脉冲的技术常称为锁模技术(mode locking)。

这是因为一台自由运转的激光器中往往会有很多个不同模式或频率的激光脉冲同时存在,而只有在这些激光模式相互间的相位锁定时,才能产生激光超短脉冲或称锁模脉冲。

实现锁模的方法有很多种,但一般可以分成两大类:即主动锁模和被动锁模。

主动锁模指的是通过由外部向激光器提供调制信号的途径来周期性地改变激光器的增益或损耗从而达到锁模目的;而被动锁模则是利用材料的非线性吸收或非线性相变的特性来产生激光超短脉冲。

科尔透镜锁(KLM)模实际上是利用了材料的折射率随光强变化的特性使得激光器运转中的尖峰脉冲得到的增益高出连续的背景激光增益,从而最终实现短脉冲输出。

关键字:被动锁模 KLM 飞秒技术一台激光器实现锁模运转后,在通常情况下,只有一个激光脉冲在腔内来回传输,该脉冲每到达激光器的输出镜时,就有一部分光通过输出镜耦和到腔外。

因此,锁模激光器的输出是一个等间隔的激光脉冲序列。

相邻脉冲间的时间间隔等于光脉冲在激光腔内的往返时间,即所谓腔周期。

一台锁模激光器所产生的激光脉冲的宽度是否短到飞秒量级主要取决于腔内色散特性、非线性特性及两者间的相互平衡关系。

而最终的极限脉宽则受限于增益介质的光谱范围。

衡量一台飞秒激光器的重要技术指标为:脉冲宽度、平均功率和脉冲重复频率。

此外,还有谱宽与脉宽积,脉冲的中心波长,输出光斑大小,偏振方向等。

脉冲重复频率实际上告诉我们了激光脉冲序列中两相邻脉冲间的间隔。

由平均功率和脉冲重复频率可求出单脉冲能量,由单脉冲能量和脉冲宽度可求出脉冲的峰值功率。

克尔透镜锁模固体激光器产生飞秒超短光脉冲的新进展。

促使人们去研究在这种激光器中脉冲的形成和压缩机制,并建立了自锁模的克尔透镜模型。

该模型就是利用增益介质自聚焦效应引起的快自幅度调制(SAM)与腔内硬孔或软孔相[]结合,导致了脉冲的形成和压缩。

软孔是指当激光的模体积大于泵浦光的模体积时,脉冲中央由于强的自聚焦几乎全部进入泵浦光的模体积内而被放大,而脉冲两翼弱的自聚焦只有部分进入泵浦光的模体积内被放大,故脉冲中央的放大倍数大于两翼的放大倍数,脉冲被压缩。

4.7激光锁模技术

4.7激光锁模技术

钕玻璃
7.5×1012
1.33×10-13
4×10-13
若丹明 6G
5×1012~3×1013
GaAlAs (0.85m)
1013
InGaAsP (1.55m)
1012~1013
2×10-13~3×10-14 10-13
10-12~10-13
3×10-14 0.5~30×10-12 4~50×10-12
]
ei0t
2
输出光强
I (t)
E02
sin2 (2N sin2
1)
t 2
t 2
振幅随时 间而变化
光强随时 间而变化
E(t)
N
E0 (
N
eiqt )ei0t
E0
s
in[1 (2N 1)t 2 sin 1 (t)
]
e
i0t
A(t )ei0t
2
下图为(2N+1)=7时I(t)随时间变化的示意图。
假设在激光工作物质的净
增益线宽内包含有N个纵模,
每个纵模输出的电场分量可用
下式表示:
Eq
(t)
E ei(qtq q
)
那么激光器输出的光波电场 是N个纵模电场的和,即
E (t)
E ei(qtq ) q
q
Eq
(t)
E ei(qtq q
)
E (t)
E ei(qtq ) q
q
Eq、ωq、φq为第q个模式的振幅、角频率及初位相。各个模式的振幅Eq、
设光信号在t1时刻通过调制器,并且δ(t1)=0,则在(t1+T0)时刻此信号将再次无 损地通过调制器。对于t2时刻通过调制器的光信号而言,若δ(t2)≠0,则每次经过 调制器时都要损失一部分能量。这就意味着只有在损耗为零的时刻通过调制 器的那部分光信号能形成振荡,而光信号的其余部分因损耗大而被抑制,因此 形成周期为2L/c的窄脉冲输出。

激光原理 锁模原理_主动锁模技术

激光原理 锁模原理_主动锁模技术

这些都是当时的国际最高指标。
目前正进入as 1018 s


6
二、超短脉冲特性
28.1 概述
高时间分辨率:超短脉冲的脉宽在ps、fs甚至更短,能够作 为测量固体物理、化学、生物材料等领域超快物理过程 的测量工具。 高空间分辨率:超短光脉冲空间长度是脉冲宽度与光速的乘
积,随着光脉宽的缩短,其空间长度也不断缩短,已经达 到微米量级,这在显微成象方面有很大用途。




2N 1 sin q t 2 A t E0 1 sin q t 2




15
28.3 锁模原理
E t E0 cos 0 qq t 0 A t cos(0 t 0 ) q N
总光场为 : E t
q N

N
Eq
E0 cos 0 qq t 0 q N

N






2N 1 sin q t 2 cos t A t cos t E0 0 0 0 0 1 sin q t 2
3、外界温度变化, 机械振动和光腔标准具效应等随机条件引起 光学频率起伏与“跳模”等。 d t d q 1 t const . 4、各纵模非相干叠加: dt dt
10
28.2自由运转多纵模激光器
以上各点互相关联,由于色散造成的 q m 和各纵模初始 相位随机分布造成了 t 的随机分布, 最终造成输出的光场
N

N


令0 0, 0 0,则有:

第28讲 锁模原理&主动锁模技术

第28讲 锁模原理&主动锁模技术

, 为常量
q q
则意味着激光器各纵模之间实现了同步输出,即锁模, 锁模技术就是要实现各纵模之间的同步。
这种时域上的“干涉”效应,将导致以线宽为倒数的超短激 光脉冲输出,即时域上的“干涉”
13
28.3 锁模原理
一、锁模条件
1、2 N 1 3
g q
1 3

N
N


令0 0, 0 0,则有:
E0 cos 0 qq t 0 A t cos(0 t 0) q N N cos 0 t 0 代表载波 A t E0 cos qq t q N A t 为调制包络
3、外界温度变化, 机械振动和光腔标准具效应等随机条件引起 光学频率起伏与“跳模”等。 d t d const . 4、各纵模非相干叠加: q 1 t dt dt
10
28.2自由运转多纵模激光器
以上各点互相关联,由于色散造成的 q m 和各纵模初始 相位随机分布造成了 t 的随机分布, 最终造成输出的光场 在时域随时间做无规则起伏,属于非相干叠加,没有干涉项,
E t
q N
Hale Waihona Puke NEq cos q t q

E
N q N
q
cos t
9
28.2自由运转多纵模激光器
多纵模激光器有如下输出特性:
1、线性极化有关的色散效应,使得激光器出现纵模间距不严 格相等的“频率牵引”效应: c c c 1 1 q q q q q m q 1 2 Lq 2 L0 nq 2 L0 nq 1 nq 2、非同步的受激辐射导致的各纵模之间没有确定的相位关系 各纵模初始相位随机分布: q 1 q const .

激光器主动锁模相位调制_概述说明以及解释

激光器主动锁模相位调制_概述说明以及解释

激光器主动锁模相位调制概述说明以及解释1. 引言1.1 概述激光器是一种非常重要的光学设备,其具有高度的相干性和单色性。

激光器主动锁模相位调制是一种对输出激光进行调控的技术,通过改变激光的相位来实现对其空间和时间特性的调节。

这一技术在现代光通信、激光雷达、激光医疗等领域中得到了广泛应用。

1.2 文章结构本文将首先介绍激光器原理,包括其基本结构和工作原理。

接着将详细阐述主动锁模相位调制的原理,包括其工作机制和相关理论。

然后将探讨该技术在各个应用领域中的优势和特点。

最后,我们将介绍与该技术相关的实验设备与材料,并详细描述实验步骤与参数设置。

最后,在结果分析与讨论部分,我们会展示实验结果并进行深入讨论。

1.3 目的本文旨在全面介绍激光器主动锁模相位调制这一重要技术,并深入探讨其工作原理和应用领域。

通过对实验设备与材料的描述以及实验步骤与参数设置的讨论,我们将为读者提供一个全面理解该技术并能够在实际应用中运用的基础。

同时,我们也将展望该技术未来的研究方向和发展趋势,希望能够激发更多人对于这一领域的兴趣和研究热情。

2. 正文:2.1 激光器原理简介:激光器是一种能够产生高度聚焦和定向的准单色光束的装置。

其工作原理基于电子在外部能级间跃迁时放出能量,从而激发介质中的原子或分子进入激发态。

当这些激发态粒子回到基态时,会发出特定频率和相位的光子。

因为这些光子具有高度的相干性和定向性,所以形成了一束激光。

2.2 主动锁模相位调制原理:主动锁模相位调制是一种控制激光束特性的技术,在传统的激光器基础上引入了相位调制装置。

通过改变该装置对激光腔中光场的干涉条件,可以实现对输出激光波前形状和振荡模式进行精确控制。

主要实现方法是通过在激光腔内加入一个可调谐相位调制元件,如电偶极体或压电晶体等。

该元件可以根据控制信号改变其局域折射率并改变输出波前形状。

当施加不同的电压信号时,相位调制元件会引入不同程度的相位扰动。

利用这种方式,可以实现激光器输出波前在时间和空间上的精确调节。

锁模激光器实验报告

锁模激光器实验报告

锁模激光器实验报告1.引言1.1 概述概述部分的内容可以包括以下几个方面:1. 锁模激光器的定义和基本原理:介绍锁模激光器是一种利用谐振腔中的光学滤波特性来维持单纵模输出的激光器。

通过谐振腔中的光学滤波效应,锁模激光器可以抑制其他模式的干扰,使输出光束呈现出高纵模纯度和窄光谱宽度的特性。

2. 锁模激光器的特点和应用:说明锁模激光器具有较高的光谱纯度、较窄的光谱宽度、较高的相干性和光束质量等特点。

由于其优秀的性能,锁模激光器在光通信、光谱分析、光学测量、光纤传感等领域有着广泛的应用。

3. 实验背景和研究意义:介绍进行锁模激光器实验的背景和动机。

锁模激光器作为一种重要的光学器件,对于理解光学滤波原理、探索光学谐振腔性质以及应用于光学系统中具有重要的理论和实验意义。

4. 本实验报告的结构和内容安排:简要说明本实验报告的结构和内容安排,使读者对整篇文章有个整体的了解。

本实验报告包括引言部分、正文部分和结论部分,其中引言部分介绍了锁模激光器的概述和目的,正文部分主要包括锁模激光器原理和实验过程,结论部分对实验结果进行分析和总结。

以上是概述部分的内容,根据具体的实验内容和要求,可以适当增加和调整部分内容。

1.2 文章结构文章结构部分的内容应该是对整篇文章的组织和内容进行简要介绍,以让读者对文章有个整体的了解。

可以按照以下方式编写:在本实验报告中,我们将会详细介绍锁模激光器的原理和实验过程。

文章主要分为三个部分:引言、正文和结论。

引言部分主要包括三个方面的内容。

首先是对锁模激光器的概述,介绍了锁模激光器的基本特点和应用领域。

接着是文章的结构安排,即对本篇实验报告的整体框架进行介绍。

最后是对本次实验的目的进行说明,明确实验的目标和意义。

正文部分是本篇实验报告的核心内容,包括锁模激光器的原理和实验过程两个方面。

在锁模激光器原理部分,我们将详细介绍锁模激光器的工作原理、基本结构以及关键技术。

在锁模激光器实验过程部分,我们将详细描述实验所采用的具体步骤、实验条件和实验装置,并对实验进行了详细的记录和数据分析。

锁模激光器的工作原理及其特性

锁模激光器的工作原理及其特性

锁模激光器的工作原理及其特性摘要: 本文主要介绍了锁模的基本原理和实现方法,并简单介绍了锁模激光器。

关键词:锁模,速率方程,工作原理一、引言如果在激光谐振腔内不加入任何选模装置,那么激光器的输出谱线是由许多分立的,由横纵模确定的频谱组成的。

锁模就是将多纵模激光器中各纵模的初相位关系固定,形成等时间间隔的光脉冲序列。

使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极窄、峰值功率很高的超短脉冲。

二、锁模的概念一般非均匀加宽激光器,如果不采取特殊选模措施,总是得到多纵模输出。

并且,由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模。

每个纵模输出的电场分量可用下式表示])-([),(q q z t i q q e E t z E ϕυω+= (2.1)式中,q E 、q ω、q ϕ为第q 个模式的振幅、角频率及初相位。

各个模式的初相位q ϕ无确定关系,各个模式互不相干,因而激光输出是它们的无规叠加的结果,输出强度随时间无规则起伏。

但如果使各振荡模式的频率间隔保持一定,并具有确定的相位关系,则激光器将输出一列时间间隔一定的超短脉冲。

这种激光器称为锁模激光器。

假设只有相邻两纵模振荡,它们的角频率差Ω='=L cq q πωω1-- (2.2)它们的初相位始终相等,并有01-==q q ϕϕ。

为分析简单起见,假设二模振幅相等,二模的行波光强I I I q q ==1-。

现在来讨论在激光束的某一位置(设为0=z )处激光场随时间的变化规律。

不难看出,在0=t 时,二纵模的电场均为最大值,合成行波光强是二模振幅和的平方。

由于二模初相位固定不变,所以每经过一定的时间0T 后,相邻模相位差便增加了π2,即πωω2-01-0=T T q q (2.3)因此当0mT t =时(m 为正整数),二模式电场又一次同时达到最大值,再一次发生二模间的干涉增强。

于是产生了具有一定时间间隔的一列脉冲,脉冲峰值光强为I 4,由式(2.3)可求出脉冲周期为cL T '=Ω=220π 如果二纵模初相位随机变化,则在0=z 处,合成行波光强在I 2附近无规涨落。

激光锁模技术

激光锁模技术

激光锁模技术作者:付永旭摘要:自由运转激光器的输出一般包含若干个超过阈值的纵模,锁模技术让谐振腔中可能存在的纵模同步振荡,让各模的频率间隔保持相等并使各模的初位相保持为常数,激光器输出在时间上有规则的等间隔的短脉冲序列。

激光锁模主要有主动锁模、被动锁模、同步锁模、注入锁模及碰撞锁模等几种。

典型锁模技术声光调制锁模是在腔内插入一个受外界信号控制的调制器,周期性改变振荡模式的某个参量而实现锁模的方法,属于主动锁模。

随着波分复用和光时分复用技术的飞速发展,锁模光纤激光器以其优越的性能将在未来高速光通信系统中发挥重要作用。

正文:一.激光锁模概念产生激光超短脉冲的技术常称为锁模技术(mode locking)。

这是因为一台自由运转的激光器中往往会有很多个不同模式或频率的激光脉冲同时存在,而只有在这些激光模式相互间的相位锁定时,才能产生激光超短脉冲或称锁模脉冲。

世界上是在1964年底首先对He-Ne激光器实现锁模并获得了910--s的10~10光脉冲列。

此后,激光锁模的理论和方法不断推陈出新,相继出现了红宝石、)量级的窄脉冲。

八十YAG、钦玻璃及有机染料等锁模激光器,获得了ps(1210-年代初,Fork等人又发展了碰撞锁模的理论,使锁模光脉冲进入了fs(1510-)量级,这是至今在实验室利用其它手段尚不能实现的最短时标。

这就为研究物质微观世界超快速过程提供了新的工具,并将开阔这些领域的新前景。

.二.激光锁模原理自由运转激光器的输出一般包含若干个超过阈值的纵模,如图所示。

这些模的振幅及相位都不固定,激光输出随时间的变化是它们无规则叠加的结果,是一种时间平均的统计值。

假设在激光工作物质的净增益线宽内包含有N 个纵模,每个纵模输出的电场分量可用下式表示:那么激光器输出的光波电场是N 个纵模电场的和,即E q 、ωq 、φq 为第q 个模式的振幅、角频率及初位相。

各个模式的振幅E q 、初位φq 均无确定关系,各个模式互不相干,因而激光输出是它们的无规叠加的结果,输出强度随时间无规则起伏。

激光锁模

激光锁模

1. 损耗内调制锁模
如图(4-31)所示,在谐振腔中插入一个电光或声光损耗调制器。设调
制周期为 Tm 2,Ω调 2制L频c 率
(恰ν为m 纵c模2L频率间隔)
由于损耗调制的周期正好是脉冲在腔内往 返一次所需的时间T0 ,因而调制器的损耗δ(t)是 一周期为T0 的函数
图(4-31) 锁模调制示意图
4.7.3被动锁模
➢被动锁模装置很简单,只需在腔内插入一个装有饱和吸收染料的“盒”即可
➢染料必须具备以下几个条件:第一,染料的吸收线应和激光波长很接近;第 二,吸收线的线宽要大于或等于激光线宽;第三,其驰豫时间应短于脉冲在 腔内往返一次的时间,否则就成为被动调Q激光器了。
信息(2004): 中科院上海光学精密机械研究所在其建所40周
4.7.2 主动锁模
在一般激光器中,各纵模振荡互不相关,各纵模相位没有确定的关系。并且,由 于频率牵引和频率推斥效应,相邻纵模的频率间隔并不严格相等。因此为了得到锁 模超短脉冲,须采取措施强制各纵模初位相保持确定关系,并使相邻模频率间隔相 等。目前采用的锁模方法可分为主动锁模与被动锁模两类。
一、主动锁模 主动锁模又可分为振幅调制锁模和相位调制锁模。
2
2
L
所以
1 2L
2 2L
t=0 , 2N 1 c , 2N 1 c
, L 2L c
是 A(t)的0 点.
2. 分母为0 的 点:
sin[1 t] 0 1 t m ,
2
2
m 0,2,3...... t 0, 2L , 4L ,L 2Ln
cc
c
3.因A(t)的分子、分母同时为零,利用罗彼塔法则可求得此时A(t)的最大值
式中M=Em/E0 称调幅系数,它的大小决定于调制信号的大小。将上式展开得

锁模光纤激光器的工作原理

锁模光纤激光器的工作原理

锁模光纤激光器的工作原理The working principle of a fiber laser is based on the concept of using a rare earth doped fiber as the gain medium to generate laser light.光纤激光器的工作原理是基于使用掺杂了稀土元素的光纤作为增益介质来产生激光光。

This gain medium, typically made of materials such as ytterbium, erbium, or neodymium, is excited by a pump source to emit photons at a specific wavelength.这种增益介质通常由钇、铒或钕等材料制成,受到泵浦光源的激发,会以特定波长发射出光子。

The emitted photons then bounce back and forth between the two mirrors at the ends of the fiber, leading to stimulated emission and the generation of a coherent beam of light.这些发射的光子会在光纤两端的两面镜子之间来回反射,导致受激辐射并产生一束相干光。

The process of stimulated emission causes the photons to multiply and align in phase, resulting in the formation of a high-quality laser beam.受激辐射的过程导致光子数量倍增并保持同相,进而形成高质量的激光束。

One of the key components in a fiber laser is the fiber Bragg grating, which acts as the feedback mechanism to select the specific wavelength of the laser output.光纤激光器的一个关键组件是光纤布拉格光栅,它作为反馈机制来选择特定波长的激光输出。

锁模光纤激光器讲义

锁模光纤激光器讲义
其它纵模上去。因所有纵模都是由优势模给予激发的,所以它 们彼此间都保持着相位的同步,并经相干叠加,形成锁模脉冲。
Байду номын сангаас
主动锁模光纤激光器
主动锁模光纤激光器的典型结构示意图
谐波锁模
主动锁模光纤激光器
输出脉冲的波形
输出脉冲的光谱
被动锁模技术(染料锁模)
利用非线性元件对光强的依赖性,来产生光脉冲的锁模方式。
E(t)的振幅极大值A(t)max=(2n+1)E0,这说明在振幅出现极值的时
刻各振荡纵模的振幅同时到达极大值。(峰值功率)Pm=N2P0 锁模后所得脉冲的宽度为Δt=[(2n+1) q]-1=1/,式中:q为
器件的纵模间隔; 为器件的振荡线宽。所以激光的带宽越宽,
则所获得的脉冲宽度越窄。(脉冲宽度)
若共有(2n+1)个纵模,则激光的电场强度可表示为:
总的光强为:
由于各纵模之间相位彼此相互独立并呈无规则变化,所以各纵 模之间相干项在时间平均下为零,平均输出光强是纵模之和,不会 出现相干加强或相干减弱时域脉冲波输出,而是呈现出存在幅度和 相位噪声的连续光输出。
锁模激光器输出特性
若使 ,即使相邻纵模间的位相差均保持为某一常 数a(通常称此为相位锁定或锁模),则第q个纵模可以表示为:
激光 输出镜 激光介质 染料盒 全反镜
1、线性放大:泵浦刚开始,工作物质对产生的诸多光脉冲进行线 性放大。 2、非线性吸收:染料被漂白,强脉冲被迅速放大,弱脉冲被吸收。 3、非线性放大:工作物质对留下的强脉冲进行非线性放大,使脉 宽被压缩。
被动锁模技术(染料锁模)
P t 线性 放大 P 非线性 吸收 t P t
锁 模 方 式
主动锁模 通过外界信号周期性调制激光器谐振腔参量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
示。这些模的振幅及相 位都不固定,激光输出
荧光光谱
随时间的变化是它们无
规则叠加的结果,是一 种时间平均的统计值。 N=11
假设在激光工作物质
的净增益线宽内包含有N 个纵模,那么激光器输 出的光波电场是N个纵模 电场的和,即
(3.1-2)
(3.1-2)
式中,q=0, 1, 2,…, N是激光器内(2N+1)个振荡模中第q
垂直z的截面为xy平面。该截面内所产生的部分横模如图,标 记TEMmn 中的TEM代表电磁横波,m代表x方向的波节数,n代 表y方向的波节数。
图5.1-1
不同横模的光场强度
TEM TEM10 TEM 00 00 TEM10
TEM20 20 TEM
TEM 30 TEM 30
TEM40
TEM50
TEM21
一、多模激光器的输出特性
为了更好地理解锁模的原理,先讨论未经锁摸的多纵模自由 运转激光器的输出特性。腔长为L的激光器,其纵模的频率间隔为 (3.1-1) 自由运转激光器的输出一般包含若干个超过阀值的纵模,如图3.1-
1所示。这些模的振幅及相位都不固定,
自由运转激光器的输出 一般包含若干个超过阀
值的纵模,如图3.1-1所
定的90fs的光脉冲序列。采用光脉冲压缩技术后,获得了6fs的光 脉冲。90年代自锁模技术的出现,在掺钛蓝宝石自锁模激光器中 得到了8.5fs的超短光脉冲序列。
本章将讨论超短脉冲激光器的原理、特点、实现的方法,几
种典型的锁模激光器及有关的超短脉冲技术,如超短脉冲脉宽的
测量方法、超短脉冲的压缩技术等。
E(t)
E0
v3=3v1,
v2=2v1, 初相 位 无规律
同频率的光波的初位相 1 、
2
、 3 彼此无关,如左图,
-E0
I(t)
v2
v3
v1
由于破坏性的干涉叠加,所 形成的光波并没有一个地方
有很突出的加强。输出的光
3 E0 /2
0
2
强只在平均光强3 E02 /2级基 础上有一个小的起伏扰动。
个纵模的序数; Eq是纵模序数为q的场强; ωq及φq是纵模序数为q的 模的角频率及相位。图3.1-2给出了时间描述 和频率描述的非锁模激光脉冲和完全锁模
激光脉冲两种情况的图形。在频率域内光
脉冲可以写为
( ) ( ) exp[i ( )]
(3.1 3)
式中,α(ω)为幅度;φ(ω)为位相频 谱。当脉冲带宽△ω比平均光频ω0 窄,在时域内光脉冲可以写成
第七讲
超短脉冲技术
7.1 概述
所谓模,就是在腔内获得振荡的几种波长稍微不同的波型。 纵模,也叫轴模。 在两反射镜间沿轴进行的光束,由于腔长L与光波波长的比是 一个很大的数目,所以必然有数不清不同波长的光波,能符合加 强反射的条件, 2nL= kλ, 即 2nL= k1λ1 = k2λ2 = k3λ3 =…… ki(正整数)是纵模模数。 例如:L=800nm, n=1, 则 k=1时, 对应λ1=1600nm;
time
未 锁相 1-6)式
E(t)
E0
v3=3v1,
v2=2v1, 初相 位 无规律
-E0
I(t)
v2
v3
v1
0
time
未 锁相 前的 三个光波 的 叠加
但若设法使 1 =
2、工作物质的色散,
3、散射效应及腔内光束的衍射效应等,都对横模有影响。 下面只对情况 1 做简单地分析。除了严格平行光轴的光束 (名基模TEM00 )以外,总有一些偏离光轴而走Z字形的光束。 虽然经多次反射也未偏出腔外,仍能符合2nLcos θ =kλ的条件;
因而,在某一θ方向存在着加强干涉的波长。设z代表腔轴方向,
TEM22
TEM00
TEM10
TEM20
TEM01
TEM02
TEM03
图5.1-1
不同横模的光场强度
超短脉冲技术是物理学、化学、生物学、光电子学,以及激 光光谱学等学科对微观世界进行研究和揭示新的超快过程的重要 手段。超短脉冲技术的发展经历了主动锁模、被动锁模、同步泵
浦锁模、碰撞锁摸(CPM),以及90年代出现的加成脉冲锁模(APM)
因为
所以
q=-N
(3.1-6)
该式说明了平均光强是各个纵模光强之和 (除以2)。
如果采用适当的措施使这些各自独立的纵模在时间上同步,
即把它们的相位相互联系起来,使之有一确定的关系(φq+1 -φq= 常数),那么就会出现一种与上述情况有质的区别而有趣的现象;
激光器输出的将是脉宽极窄、峰值功率很高的光脉冲,如图3.12(b)所示。
(3.1-4)
式中,A(t)是脉冲的振幅;是φ(t) 相位。
图3.1-2 非锁模和理想锁模激光器的
信号结构, (a) 非锁模,(b)理想锁模
某一瞬时的输出光强为 (由3.1-2式
知)
[(2q+1) ×q项, 即 m(m-1)/2项, m=2q+1 ]
(3.1-5)
接收到的光强是在一段比1/ νq = 2π/ωq 大的时间(t1)内的平均值, 其平均光强为
该激光器各模的相位已
按照φq+1 -φq=常数的关 系被锁定,这种激光器
叫做锁模激光器,相应
的技术称为“锁模技 术”。 图3.1-2 (b) 理想锁模
二、锁模的基本原理 先看三个不同频率光波的叠加:Ei = E0cos(2π νi t+ i )
i=1,2,3
设三个振动频率分别为ν1 、 ν2 、 ν3 的三个光波沿同一方向传播, 且有关系式:ν3=3ν1, ν2= 2ν1 , E1 = E 2 =E3 = E0 若相位未锁定,则此三个不
600 800
荧光光谱
1000
λ
k=2, λ2=800nm; k=3, λ3=533nm
υ 1=1.875×1014 ,
注意:△υ =c/2nL; υ
υ 2=3.75×1014 ,
32= υ
υ 3=5.625×1014
14 = 1.875 × 10 21
横模? 横模易观察,但其产生的原因复杂:
1、偏离轴向的光束的干涉,
或耦合腔锁模(CCM)、自锁模等阶段。自60年代实现激光锁模以 来,锁模光脉冲宽度为皮秒(10-12s)量级,70年代,脉冲宽度达到 亚皮秒(10-13s)量级,到80年代则出现了一次飞跃,即在理论和实 践上都有一定的突破。1981年,美国贝尔实验室的R.L.Fork等人
提出碰撞锁模理论,并在六镜环形腔中实现了碰撞锁模,得到稳
相关文档
最新文档