第六章液压基本回路
第六讲 液压基本回路
液压基本回路—增压回路
四、增压回路
使系统某一支路获得 较系统调定压力高的工作
压力
其特征是由增压缸供 油,从而使执行元件2有
较大的出力。
液压基本回路--平衡回路
五、平衡回路
平衡回路的功用在于使执行元件 的回油路上保持一定的背压值,以平 衡重力负载,使之不会因重力而自行 下降。 1.采用单向顺序阀的平衡回路 调整顺序阀的开启压力,使其和 液压缸下腔承压面积的乘积略大于垂 直运动部件的重力,则在重力的作用 下液压缸活塞不能自行下降,这时的 单向顺序阀称为平衡阀。适用于工作 负载固定且活塞闭锁要求不高的场合。
液压基本回路锁紧回路
2.采用液控单向阀的锁紧 回路 当系统停止工作时, 液控单向阀将执行元件的
进出油口关闭,执行元件
被锁紧。
液压基本回路多执行元件控制回路
第四节 多执行元件 控制回路 通过压力、流 量、行程控制来实 现多执行元件的预 定动作要求。 一、顺序动作回路 1.压力控制的顺序动 作回路 1)由顺序阀控制的顺 序动作回路
单 向 顺 序 阀
液压基本回路--平衡回路
2.采用液控制单向阀的平衡回路 不工作时液控制单向阀关 闭,油缸下腔的油液无法排出, 油缸无法下降。当油液上腔通 压力油时,控制油液进入液控 单向阀,使其打开,油缸下腔 的油液排出,油缸下降。
在回路中用液控单向阀闭 锁油液,泄漏少,闭锁性好。 单向节流阀可保证活塞下行运 动的平稳性。
变量泵油缸容积调速回路
速度控制回路--快速和速度换接回路
二、快速动作回路和速度换接回路
(一)快速运动回路
功能:使执行元件获得尽可能大的
工作速度,以提高生产效率,并使
功率得到合理的利用。 1.液压缸差动连接快速运动回路 差动连接和非差动连接的速度之比:
液压系统基本回路(识图)
3.2减压回路
、二级减压回路
二级减压回路
说明:在减压阀2的遥控口通过电磁阀4接入小规格调压阀3,便可获得两种 稳定的低压,减压阀2的出口压力由其本身来调定。当电磁阀4通电时,减 压阀2的出口压力就由调压阀3进行设定。
3.2减压回路
、多路减压回路
多路减压回路
说明:在同一液压源供油的系统里可以设置多个不同工作压力的减压回 路。如图所示:两个支路分别以15Mpa和8Mpa压力工作时可分别用各自的 减压阀进行控制。
卸荷阀卸荷回路
3.6平衡回路
、用液控单向阀的平衡回路
说明:液压缸停止运动时,依靠 液控单向阀的反向密封性,能锁 紧运动部件,防止自行下滑。回 路通常都串入单向节流阀2,起 到控制活塞下行速度的作用。以 防止液压缸下行时产生的冲击及 振荡。
用液控单向阀的平衡回路
3.6平衡回路
、用远控平衡阀的平衡回路
用单向节流阀的平衡回路
四、速度控制回路
在液压系统中,一般液压源是共用的,要解决各执行元件的 不同速度要求,只能用速度控制回路来调节。
4.1节流调速回路
节流调速装置都是通过改变节流口的大小来控制流量,故调速范围 大,但由节流引起的能量损失大、效率低、容易引起油液发热;
以节流元件安装在油路上的位置不同,可分为进口节流调速、出口节 流调速、旁路节流调速及双向节流调速。
旁路节流调速回路
4.2增速回路
差动连接增速回路
说明:当手动换向阀处于左 位时,液压缸为差动连接,活 塞快速向右运行。液压泵供 给液压缸的流量为qv,液压缸 无杆腔和有杆腔的有效作用 面积分别为A1和A2,则液压缸 活塞运动速度为V=qv/(A1-A2)
差动连接增速回路
4.2增速回路
第六章 液压传动系统的速度调节
节流调速回路--出口节流调速回路
③功率特性与回路效率
泵的输出功率为
Pp p pQp
(6-27)
执行元件的有效功率为 P p pQ1 p2Q2 1 F ( p1 A 1 p2 A 2)
功率损失为
P Pp P 1 p p Qp p p Q1 p2 Q2 p p Q1 Qy p p Q1 p2Q2 p y p j p p Qy p2Q2 p p Qy p jQ 2
按式(6-32)、(6-33)及图6-7可知:
a.随着负载的增加,运动速度下降很快,其速度-负载特性
比进、出口节流调速回路更软;
节流调速回路--旁路节流调速回路
b.在节流阀通流截面积一定时,负载愈大速度刚性愈大;
c.负载一定时,节流阀通流面积愈小,速度刚性愈好;
d.增大执行元件有效工作面积,减小节流阀指数,可以提高速 度刚性;
节流调速回路--出口节流调速回路
执行元件的运动速度,由通过节流阀从执行元 件回油腔排出的流量Q2决定,即
Q2 CA j p2 CA j p p A1 F 1 A2 A2 A2
(6-24)
节流调速回路--出口节流调速回路
②速度-负载特性 由式(6-24)可求得出口节流调速回路的速度刚性为
节流调速回路--进口节流调速回路
速度-负载特性可用速度刚性这一指标来评定,
其定义为曲线上某一点处切线斜率的倒数,表示意义 为:负载变化时,系统抗阻速度变化的能力。即
F A1 1 kv CA j p p A1 F 1
(6-10)
或
A1 F kv pp A1
液压基本回路
在不考虑液压油的压缩性和泄漏的情况下
液压缸的运动速度 V = q / A 液压马达的转速 n = q / Vm 式中: q——输入液压执行元件的流量; A——液压缸的有效面积; Vm——液压马达的排量。
由以上两式可知,要想调速,改变进入液压 执行元件的流量或改变变量液压马达的排量 的方法来实现。为了改变进入液压执行元件 的流量,可有三种方法:
六、增压回路
1. 增压原理 2. 增压回路
二、 速度控制回路
速度控制回路:是调节和变换执行元件运 动速度的回路。 速度控制回路包括:调速回路、快速运动回 路,速度换接回路,其中调速回路是液压系 统用来传递动力的,它在基本回路中占有重 要地位。
(一)调速回路
调速回路:用于调节液压执行元件速度的回 路。
(2)特点 ①速度负载特性曲线在横坐标上并不汇交, 其最大承载能力随 AT 的增大而减小,即旁路 节流调速回路的低速承载能力很差,调速范围 也小。 ②旁路节流调速只有节流损失,无溢流损失, 发热少,效率高些。 ③由于旁路节流调速回路负载特性很软,低 速承载能力又差,故其应用比前两种回路少, 只用于高速、负载变化较小、对速度平稳性要 求不高而要求功率损失较小的系统中。
1 2 1 2 1 2
i
if p
p
A 2 A , then
1 2
F p 2p p A
0 c 2
i
p :液压泵出口至差动后合成管路前的压力损失;
i
p :液压缸出口至合成管路前的压力损失;
0
p :合成管路的压力损失;
c
3. 采用蓄能器的快速运动回路
(1)回路组成 (2)回路原理 (3)特点 ①可用小流量泵获快 速运动 ②只适用于短期需要 大流量的场合。
液压基本回路
第六章液压基本回路本章重点:1. 远程调压回路,卸荷回路2. 进油节流调速回路,节流阀进油节流调速回路的速度负载特性3. 恒扭矩、恒功率调速回路4. 差动快速回路,双泵供油快速回路5. 速度换接回路6. 互不干涉回路本章难点:1. 平衡回路2. 节流阀进油路节流调速回路的速度负载特性3. 差压式变量泵与节流阀组成的容积节流调速回路4. 防干扰回路基本回路是由若干液压元件有机的组成,能够完成某些特定的功能。
第一节 压力控制回路液压系统中,为满足设备的某些要求,经常要限制或控制系统中整体或某一部分的压力,把实现这些功能的回路称作压力控制回路。
这类回路包括调压、卸荷、释压、保压、增压、减压、平衡等多种回路。
一、调压回路液压系统的优点之一是易于实现安全保护。
常在泵的出口安装溢流阀限制系统最高压力,溢流阀作安全阀使用时其调定压力一般为系统最大工作压力的1.1倍,调整以后用螺母锁紧调节手轮。
有时为了防止液压泵变量机构失灵引起事故,可在泵出口安装一个溢流阀作安全阀用。
调压回路分有级调压和无级调压。
图6-1采用溢流阀调压,图中阀1起安全作用,阀2用于调压。
图6-2是采用先导式溢流阀的远程调压回路。
在先导式溢流阀1的遥控口接远程调压阀2,阀2可安装在工作台上,在阀1的调压范围内调节阀2,从而调节泵口的压力。
图6-3是采用比例溢流阀的调压回路,该回路按电器信号控制方式不同,可完成多级调压或无级调压。
图示为四级调压该回路压力转换平稳,元件少,简单可靠,易于自动控制。
液压系统中的控制油路、夹紧油路等,往往要求系统中某一部分油路具有低于系统压力的稳定压力。
减压回路一般由减压阀实现。
图6-4是二级减压回路之一。
在先导式减压阀的遥控口接远程调压阀2和换向阀3。
阀3关闭,压力由阀1调定;阀3开启,压力由阀2调定,阀2调定压力低于阀1调定压力。
在减压回路中,为了防止系统压力降低时对减压回路的影响,常在减压阀后安装单向阀。
三、卸荷回路当设备短时间不工作时,在液压系统中有卸荷回路,避免电机的频繁起动。
液压 基本回路分析
q1 q2 v A1 A2
图 回油节流调速回路
1)回路结构和主要液压参数
图 回油节流调速回路
p1 A1 F p2 A2
Δp p2
2)速度负载特性
A1 F KA T pp A A q2 2 2 v A2 A2
m
KAT p p A1 F q2 v A2 A21 m
以v为纵坐标,FL为横坐 标,将式子按不同节流 阀通流面积AT作图,可 得一组抛物线,称为进 油路节流调速回路的速 度负载特性曲线。
q1
v 与AT ,pp ,F 有关, 当AT 一定,F↑,v↓; 当F一定,AT↑,v↑。
这组曲线表示液压缸运 动速度随负载变化的规 律,曲线越陡,说明负 载变化对速度的影响越 大,即速度刚性越差。 当AT一定时,重载区 域比轻载区域的速度刚 性差; 在相同负载条件下, AT大时,亦即速度高时 速度刚性差。 所以这种调速回路适 用于低速轻载的场合。 用于低速轻载的场合
式中: qt——变量泵的理论流量; 理论流量 k1——变量泵的泄漏系数; 泄漏系数
改变变量泵的排量即可调节活塞的 运动速度v。若不考虑液压泵以外 的元件和管道的泄漏,这种回路的 活塞运动速度为 : F qt k1 qp A1 v A1 A1
节流调速:
由定量泵供油,由流量控制阀控制流入或流出执行 元件的流量来调节速度。
容积调速:
改变变量泵或变量马达的排量来调节速度。
容积节流调速:
采用变量泵供油,由流量控制阀控制流入或流出执 行元件的流量来调节速度,同时又使变量泵的输出流量 与通过流量控制阀的流量相适应。
(一) 节流调速回路 节流
3.旁路节流调速回路 旁路节流
1)回路结构和主要液压参数
第六章液压基本回路
速度控制回路
速度控制回路是讨论液压执行元件速度的调节和变换的 问题。
1、调速回路 调节执行元件运动速度的回路。
定量泵供油系统的节流调速回路 变量泵(变量马达)的容积调速回路 容积节流调速回路
2、快速回路 使执行元件快速运动的回路。 3、速度换接回路 变换执行元件运动速度的回路。
第六章液压基本回路
▪ 采用液控单向阀的保压回路
适用于保压时间短、对保压稳定
性要求不高的场合。
▪ 液压泵自动补油的保压回
路采用液控单向阀、电接触式
压力表发讯使泵自动补油。
第六章液压基本回路
泄压回路
功用 使执行元件高压腔中的压力缓慢地释放,以免泄压过快引
起剧烈的冲击和振动。
▪ 延缓换向阀切换时间的泄压回
▪ 用顺序阀控制的泄压回路
定量泵节流调速回路
回路组成:定量泵,流量控制阀(节流阀、调速阀等), 溢流阀,执行元件。其中流量控制阀起流量调节作用,溢 流阀起压力补偿或安全作用。
▪ 按流量控制阀安放位置的不同分: 进油节流调速回路 将流量控制阀串联在液压泵与液 压缸之间。 回油节流调速回路 将流量控制阀串联在液压缸与油 箱之间。 旁路节流调速回路 将流量控制阀安装在液压缸并联 的支路上。 下面分析节流调速回路的速度负载特性、功率特性。分析
在工作过程不同阶段实现多级压力变换。一般用溢流阀来实现这 一功能。
▪ 单级调压回路
▪ 系统中有节流阀。当执行
元件工作时溢流阀始终开 启,使系统压力稳定在调 定压力附近,溢流阀作定 压阀用。
▪ 系统中无节流阀。当
系统工作压力达到或超 过溢流阀调定压力时, 溢流阀才开启,对系统 起安全保护作用。
▪ 利用先导型溢流阀遥
控口远程调压时,主溢 流阀的调定压力必须大 于远程调压阀的调定压 力。
第六章 液压基本回路
图6-10 增压回路
图6-10所示,原理:在图示位置,油泵输出的低压油进入增压 器大缸的左腔,推动活塞右移,使增压器小缸右腔输出高压油,进 入工作液压缸。换向后,换向阀的阀心移到右端,油泵输出的压力 油进入增压器大缸的活塞杆腔,使活塞右移推回,工作液压缸的活 塞在弹簧的作用下返回。油箱中的油液可通过单向阀进入增压器小 缸右腔,以补充这部分管路的泄露。
图6-9 减压回路
第六章 液压基本回路
三、增压回路
增压回路是使系统中某一部分具有较 高的稳定压力。它能使系统中的局部压力 原高于液压泵的输出压力。 在某些机械的液压系统中,有时需要 使局部油路或某个液压缸获得比油泵供给 压力高得多,但流量不大的压力油时,就 可采用增压回路。增压器利用有杆腔的油 压高,即:
图6-6 旁路节流调速回路
图6-7 双压力回路
第六章 液压基本回路
4. 远程调压回路
它是用远程调压阀或小流量溢流阀 接在先导式溢流阀的遥控口上进行远程 控制回路。能供给系统三种压力。给系 统的压力由先导式溢流阀调定压力决定; 当电磁换向阀2通电时溢流阀1的遥控口 和远程调压阀4相通,这时油泵的供油压 力由远程调压阀4的调定压力决定;2和3 通电,由5决定。利用电磁换向阀是否与 先导式溢流阀遥控口相同,进行远程遥 控。注意,远程调压阀的调定压力应小 于先导式溢流阀所调定压力。 要求负载和泵后压力基本一致,减少系 统的功率消耗。
图6-15 平衡回路
第六章 液压基本回路
七、释压回路
为使高压大容量液压缸中存储的能 量缓慢释放,以免在突然释放时产生很大 的液压冲击,可采用释压回路。一般在液 压缸的直径较大、压力较高时,其高压油 缸在排油前就需释压,如压力机液压系统。 左图为使用节流阀的释压回路。由图 可见,液压缸上腔的高压油在换向阀处于 中立时通过节流阀、单向阀和换向阀释压, 释压快慢由节流阀调节。当上腔的压力降 至压力继电器的调定压力时,换向阀切换 至左位,液控单向阀打开,使液压缸上腔 的液体通过该阀排到液压缸顶部的副油箱。
6.液压基本回路
液压传动——6.液压基本回路(74)
26
②速度负载特性v=f(FL) 活塞力平衡方程: pS • A1 = p 2 • A 2 + FL
pS • A1 - FL ∴ p2 = A2 pS • A1 - FL 节流阀两端压差: ∆p = p 2 0 = A2
q 通过节流阀的流量: 2 = K • A T • ∆p
A1 液压缸输入功率:P1 = p1 • q1 - p 2 • q 2 = p1 • q1 = • qP
回路的功率损失:
∆P = PP - P1 = p1 • q P - p1 • q1 = p1 • (q P - q1 ) = p1 • ∆q = 节流损失 P1 p1 • q1 q1 = 回路的效率: η = = PP p1 • q P q P
42
2) 液压泵-液压马达的容积调速回路 开式回路中马达的回油直接通回油 箱,工作油在油箱中冷却及沉淀过滤后再 由液压泵送入系统循环。 闭式回路中马达的回油直接与泵的吸 油口相连,结构紧凑,油液和大气隔绝,减 少了空气进入的机会,但油液的冷却条件 差,需设辅路,它能 连续输出高压 油,适用于增 压行程要求较 长的场合。
液压传动——6.液压基本回路(74)
12
6.1.5 平衡回路 1) 采用单向顺序阀的平衡回路 这种回路适用于 工作负载固定且活 塞闭锁要求不高的 场合。
液压传动——6.液压基本回路(74)
13
2) 采用液控单向阀的平衡回路 由于液控单向阀 是锥面密封,泄漏量 小,故其闭锁性能好, 活塞能够较,长时间 停止不动。回油路上 串联单向节流阀2,用 于保证活塞下行运动 的平稳。
∴适用于小功 率场合。
2 1 12 K • A T • pS = •( ) • 3 3 qP
液压基本回路【课件讲稿】
当qp ﹤ q1时→泵的供油压力↓→
变量泵的流量↑→ qp≈q1;
当qp > q1时→泵的油压力↑→ 变量泵的流量自动↓→ qp≈ q1;
(4) 调速阀的作用 使进入缸中的流量保持恒定; 使泵的供油压力,供油量基本上不变,种特定功能的
典型回路。 一些液压设备的液压系统虽然很复杂,但它通常
都由一些基本回路组成,所以掌握一些基本回路的组 成、原理和特点将有助于认识分析一个完成的液压系 统。 液压基本回路分类: 压力控制回路 速度控制回路 多缸工作控制回路 其它回路 液压系统
3.利用溢流阀远程控制口 卸荷的回路(电磁溢溢阀)
•二位二通阀只需采用小流 量规格。 在实际产品中,常将电磁换 向阀与先导式溢流阀组合在 一起,这种组合称电磁溢流 阀。实际上采用电磁溢流阀, 管路连接更方便。
动画演示
4、采用复合泵的卸荷回路:
五、保压回路
有的机械设备在工作过程中,常常要求液压执行机构在其行程终 止时,保持压力一段时间,这时需采用保压回路。所谓保压回路,也 就是使系统在液压缸不动或仅有工件变形所产生的微小位移下稳 定地维持住压力,最简单的保压回路是使用三位换向阀的中位机能, 或密封性能较好的液控单向阀的回路,但是阀类元件处的泄漏使得 这种回路的保压时间不能维持太久。常用的保压回路有以下几种:
动画演示
四、卸荷回路
在执行元件停止工作时,为避免液压泵电机频繁启动而 采用。卸荷回路指的是在执行元件短时间停止工作时, 让泵在低载或空载的情况下运转的回路。
目的是减小△P,降低发热、减小泵和电机负载, 延长泵的寿命。
1.利用换向阀中位机能卸荷的回路 2.利用二位二通阀卸荷的回路
速度控制回路
2.采用蓄能器的快速补油回 路:
对于间歇运转的液压机 械,当执行元件间歇或 低速运动时,泵向蓄能 器充油。而在工作循环 中某一工作阶段执行元 件需要快速运动时,蓄 能器作为泵的辅助动力 源,可与泵同时向系统 提供压力油。
3.利用双泵供油的快速运动回路:
二、容积调速回路
容积调速回路是用改变泵或马达的排量来实现调速的。
优点:没有节流损失和回流损失,因而效率高,油液 温升小,适用于高速、大功率调速系统。
缺点:变量泵和变量马达的结构较复杂,成本较高。
三种基本形式: (1)变量泵和定量液压执行元件的容积调速回 (2)定量泵和变量马达容积调速回路 (3)变量泵和变量马达的容积调速回路
1、快速与慢速的换接回路
例:电磁阀的换接回路(用二位二通电磁阀与调 速阀并联)
动画演示
2、二次进给的回路
(1)调速阀串联的换接回路
动画演示
特点:第一次工作进给时液压缸的工作速度通过调速
阀A调定,第二次工作进给时液压缸的工作速度通过调 速阀A 后再由调速阀B调定,速度大小受调速阀A的限 制。
(2)调速阀并联的换接回路
(c)速度稳定性差。
(d)运动平稳性差。
(2)功率和效率 液压泵输出功率:
P pPq
液压缸输入功率: P1 p1qV1
回路中功率损失: P P P 1p P q p 1 q V 1
结论:液压泵输出功率中很大部分消耗在溢流阀 (流量损耗)和可调节流阀(压力损耗)上,系 统的效率很低。
2、回油节流调速回路
为了提高回路的综合性能,一般常采用进油节流调 速,并在回油路上加背压阀的回路,使其兼具两者 的优点。
3旁油路节流调速回路
旁油路节流调速回 路负载特性很软, 低速承载能力又差, 故其应用比前两种 回路少,只用于高 速、重载,对速度 平稳性要求不高的 较大功率系统中。
液压基本回路(有图)_图文
类型: 调速回路、增速回路、速度换接回路等
一、调速回路
节流调速回路
类 型
容积调速回路
进油节流调速回路 回油节流调速回路
旁路节流调速回路
变量泵-定量执行元件 定量泵-变量执行元件 变量泵-变量执行元件
容积节流调速回路:变量泵+流量阀
(一)节流调速回路
1、进油节流调速回路
回路组成方式:
将流量控制阀串接在执行元件 的进油路上,且在泵与流量阀 之间有与之并联的溢流阀 。
:
速度刚度 活塞运动速度随负载变化而变化的程度。用T表示
:
。
速度负载特性曲线(v-R曲线)
v AT1
AT2 AT3
0
分析:
AT1 > AT2 > AT3
Rmax
R
① R一定时,v与AT成正比 ;高速时的速度刚度比低速 时的小; ② AT一定时,R增加则速 度减小;重载区域的速度刚 度比轻载时的小。
(2)特点
PP qP (1)速度-负载特性分析
※ 列活塞受力平衡方程 ※ 求出节流阀前后压差:ΔP ※ 求出活)
v
AT1< AT2< AT3 AT1
0
分析:
AT3 AT2
Rmax3 Rmax2 Rmax1
R
① R一定时, AT越大,v越小,速度刚度越差;
2、回油节流调速回路
A1 A2
Py
qy
P1
q1
P2
q2
qp
Pp
回路组成方式:
将流量控制阀串接 在执行元件的回油 路上,且在泵与执 行元件之间有与之 并联的溢流阀。
(1)速度-负载特性分析
系统稳定工作时,活塞受力平衡方程:
第6章液压基本回路
动画演示
3. 用压力继电器控制的连续往复运动回路
其工作原理,见动画演示。 • 这种回路适用于要求实现 自动连续往复直线运动且 对换向精度和换向平稳性 要求不高的液压系统中。 • 需要注意的是,系统中的 安全阀2的调定压力要高于 系统的工作压力,以防止 系统压力达不到压力继电 器的动作压力使执行元件 无法工作。
动画演示
图6.11 用压力继电器控制的连续往复运动回路 1-定量油泵;2-溢流阀;3-电磁换向阀;4--液压 缸;5、6-压力继电器
6.2 压力控制回路
压力控制回路主要是借助各种压力控制元件来控 制液压系统中各条油路的工作压力,以求达到能够 满足各执行机构所需的力或力矩的要求,或者达到 系统的调压、减压、增压、保压、卸荷、平衡、缓 冲等动作的要求,能合理使用功率以及保证系统工 作安全等目的。
6.1.2 复杂换向回路
• 当需要频繁、连续自动地作往复运动且对换向过程有很多附加要 求时,则需采用复杂换向回路。
•
对于换向要求高的主机(如各类磨床),若用手动换向阀就不能 实现自动往复运动。
• 采用机动换向阀,利用工作台上的行程块推动(联接在换向阀杆 上的)拨杆来实现自动换向,但工作台慢速运动时,当换向阀移 至中间位置时,工作台会因失去动力而停止运动(称“换向死 点”),不能实现自动换向; • 当工作台高速运动时,又会因换向阀芯移动过快而引起换向冲击。 • 若采用电磁换向阀由行程挡块推动行程开关发出换向信号,使电 磁阀动作推动换向,可避免“死点”,但电磁阀动作一般较快, 存在换向冲击,而且电磁阀还有换向频率不高、寿命低、易出故 障等缺陷。
第六章液压基本回路ppt课件
(1) 该 回路速度负载特性、最大承载 能力、损失功率和效率基本相同。
(2) 与进油节流调速回路的比较
a. 承受负值负载的能力 b.运动平稳性 c.发热及泄漏的影响 d.实现压力控制的方便性 e.停车后的起动性能
3.旁路节流调速回路(动画演示)
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
动画演示
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
3.采用液控单向阀的平衡回路 4.采用远控平衡阀的平衡回路
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
(四)卸荷回路
1.功用
是在液压泵不停止 转动时,使其输出的 流量或压力在很低的 情况下工作。
2.类型
(1)换向阀卸荷回路
M、H、K型中位机能的三位换向阀处于中位时,泵即卸荷 。 (动画)
(2)二通插装阀卸荷回路(动画)
当二位二通电磁阀通电后,主阀上腔接通油箱,主阀口全开,泵 即卸荷。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
(七)泄压回路
1.功用 液压系统在保压过程中,由
于油液压缩和机械部分产生弹 性变形,因而储存了相当的能 量,若立即换向,则会产生压 力冲击。因而对容量大的液压 缸和高压系统应在保压与换向 之间采取泄压措施。
液压技术第四版教学课件第六章 液压基本回路
为较高的压力进入液压缸左腔。
(2)当三位四通换向阀在右位工作时,活塞
作空行程返回,油泵的出口油液压力由溢流阀3调
定为较低压力进入液压缸右腔。
(3)活塞退到终点后,油泵在低压下卸荷。
中国劳动社会保障出版社
§6-2
压力控制回路
4.支路减压回路
系统工作压力由溢流阀2调定,在
液压缸6的进油路上串联单向减压阀5。
路、卸荷回路、平衡回路和保压回路等。
一、调压回路
控制系统的工作压力,使其不超过某一预先调定好的数值,或者
使工作机构在运动过程的各个阶段具有不同压力的回路称为调压回路。
中国劳动社会保障出版社
§6-2
压力控制回路
1.二级调压回路
(1)电磁换向阀3断电时,先导式溢流阀4
工作,系统压力由阀4的先导阀控制,系统在较
当压力超过溢流阀5的调定值时,溢流5溢流,
液压缸左腔通过单向阀6从油箱补油。
(2)活塞向左运动突然切换换向阀至中位时,
溢流阀4起缓冲作用,单向阀7从油箱补油。
中国劳动社会保障出版社
第六章 液压基本回路
§6-2
压力控制回路
利用压力控制阀来调节系统或其中某一
部分压力的回路称为压力控制回路。
压力控制回路主要有调压回路、增压回
§6-2
压力控制回路
油泵继续供油,压力上升,电接
点压力表的控制系统使电磁铁CB1断电,
换向阀处于中位,液压泵卸荷。液压
缸由液控单向阀保压。
当液压缸上腔的压力降到电接触
式压力表的下限值时,压力表发出信
号,使电磁铁CB1通电,液压泵再次向
系统供油,使系统压力升高。
中国劳动社会保障出版社
第六章 液压基本回路
液压系统基本回路
压力控制回路
功用
控制系统整体或系统某一部分旳压 力,满足执行元件对力或力矩所提 出旳要求。
分类
调压*、减压*、卸荷*、保压* 、
平衡等多种回路。
要求:
熟悉和掌握:
调压 减压 卸荷 保压等回路
了解:平衡回路
1.调压回路
功用
为了使系统旳压力与负载相适应并 保持稳定,或为了安全而限定系统 旳最高压力不超出某一数值。
双向调压
分类 <
多级调压
双向调压回路
动画演示
多级调压回路
2.减压回路
功用
使某一支路取得低于泵压旳稳定压力。
分类
单级减压——用一种减压阀即可 二级减压——减压阀+远程调压阀即可
单级减压回路
二级减压回路
3. 卸荷回路
卸荷:卸荷回路旳功能是在液压泵不断
止转动旳情况下,使液压泵在零压或很 低压力下运转,以减小功率损耗、降低 系统发烧、延长液压泵和驱动电动机旳 使用寿命。
容积调速——变化泵和马达旳V
经过变化变量泵或(和)变量马达旳排量来调整速度。优点是无节流损失 和溢流损失、发烧较小、效率高;缺陷是速度稳定性较差。
容积节流调速——既可变化q,又可变化V
用能够自动变化流量旳变量泵与流量控制阀联合来调整速度。缺陷是有节 流损失、优点是无溢流损失、发烧较低、效率较高。
容积调速
3. 容积节流调速回路
go
迅速回路
功用:使执行元件取得必要旳
高速,以提升效率,充分利用 功率。
分类 :1.液压缸差动连接增速
* 2.双泵供油增速
1.液压缸差动连接迅速回路构成
液压缸差动连接迅速回路工作原理
电磁铁动作顺序表
液压系统的基本回路
(1) 进油节流调速回路
进油节流调速回路是将节流 阀装在执行机构的进油路上, 调速原理如图6-20所示。
根据进油节流调速回路的特 点,节流阀进油节流调速回路 适用于低速、轻载、负载变化 不大和对速度稳定性要求不高 的场合。
图6-20 进油节流调速回路
(2) 回油节流调速回路
回油节流调速回路将节流阀安装
活塞的液压作用力Fa推动大 小活塞一起向右运动,液压
缸b的油液以压力pb进入工作 液压缸,推动其活塞运动。
其关系如下:
pb
pa
Aa Ab
三、增压回路
2.双作用增压回路
四、保压回路
有些机械设备在工作过程中,常常要求液压执行机构在 工作循环的某一阶段内保持一定压力,这时就需要采用保 压回路。保压回路可在执行元件停止运动或仅仅有工件变 形所产生的微小位移的情况下使系统压力基本保持不变。
一、启停回路
当执行元件需要频繁地启动或停止时,系统中经常采用 启、停回路来实现这一要求。
二、换向回路 1. 简单换向回路
简单换向回路是指在液压泵和执行元件之间加装普通换向 阀,就可实现方向控制的回路。如图6-2、6-3所示。
2.复杂换向回路
采用特殊设计的机液换向阀,以行程挡块推动机动 先导阀,由它控制一个可调式液动换向阀来实现工作 台的换向,既可避免“换向死点”,又可消除换向冲 击。这种换向回路,按换向要求不同可分为 时间控制 制动式 和 行程控制制动式 两种。
图6-19 采用顺序阀的平衡回路
第三节 速度控制回路
速度控制回路是调节和变换执行元件运动速度的回路,它包 括调速回路、快速回路和速度换接回路。
一、调速回路
调速回路主要有以下三种方式: (1)节流调速回路 (2)容积调速回路 (3)容积节流调速回路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章液压基本回路授课班级:083012103/4 授课日期:18教学课题:速度控制回路教学目的及要求:1.掌握节流调速回路、容积调速回路、容积节流调速回路的组成、调速原理、特点及应用。
2.掌握快速运动回路、速度转换回路的组成、调速原理、特点及应用。
教学重点:节流调速回路教学难点:容积调速回路教学方法:采用启发式、讨论式教学方法,辅助使用多媒体教学手段一般讲授。
教具:黑板、投影仪教学过程及内容:一、节流调速回路定义:在定量泵供油系统中,用流量控制阀对执行元件的运动速度进行调节的回路。
联接方式:可以串联在执行元件的进、回油路上,也可以与执行元件并联,实现速度调节与控制,但必须与起溢流稳压作用的溢流阀配合使用。
调速阀也可与变量泵组成容积节流调速回路,在提高速度稳定性的同时,提高系统效率。
特点:结构简单,成本低,使用维护方便,但有节流损失,且流量损失较大,发热多,效率低,仅适用于小功率液压系统。
种类:进油路、回油路和旁油路节流调速回路三种。
1.进、回油路节流调速回路(1)回路组成:在执行元件的进油路上串接一个流量阀,即构成进油路节流调速回路。
在执行元件的回油路上串接一个流量阀,即构成回油路节流调速回路。
如图6-32所示。
(2)调速原理:在这两种回路中,定量泵的供油压力均由溢流阀调定。
液压缸的速度都靠调节流量阀开口的大小来控制,泵多余的流量由溢流阀溢回油箱。
(3)应用:根据速度特性曲线可知,当流量阀为节流阀时,进、回油路节流调速回路用于低速、轻载、且负载变化较小的液压系统,能使执行元件获得平稳的运动速度。
当流量阀为调速阀时,进、回油路节流调速回路用于速度较高,且负载变化较大的液压系统,但效率更低。
(4)进、回油路节流调速回路的不同点:回油路节流调速回路,其流量阀能使液压缸的回油腔形成背压,使液压缸运动平稳且能承受一定的负值负载。
进油路节流调速回路容易实现压力控制。
采用单杆液压缸的液压系统,将流量阀设置在进油路上能获得更低的运动速度。
综合上述两种回路的优点,实际应用中,常采用进油路节流调速回路,并在其回油路上加背压阀。
2.旁油路节流调速回路组成:将流量阀设置在与执行元件并联的旁油路上,即构成旁油路节流调速回路。
原理分析:如图所示,调节节流阀的开口就调节了执行元件的运动速度,同时也调节了液压泵流回油箱流量的多少,从而起到了溢流的作用。
它不需要溢流阀“常开”溢流,只在过载时才打开。
液压泵出口的压力与液压缸的工作压力相等,直接随负载的变化而改变,不为定值。
流量阀进、出油口的压差也等于液压缸进油腔的压力(出口压力视为零)。
回路特点:节流阀开口越大,活塞运动速度越低;节流阀开口一定时,速度刚性更软,且负载较大时,速度刚性较好;相同负载下,阀口较小,活塞运动速度较高时,刚性好;速度高时最大承载能力较大,速度越低其承载能力越小。
有节流损失,但无溢流损失,发热较少,其效率比进、回油路节流调速回路高一些。
应用:负载较大,速度较高,且速度平稳性要求不高的中等功率的液压系统。
二、容积调速回路调速原理及功能:利用改变变量泵或变量液压马达的排量来调节执行元件运动速度。
特点:无溢流损失和节流损失,效率高、发热少。
应用:高压大流量的大型机床、液压压力机、工程机械、矿山机械等大功率设备。
种类:按油液循环方式,有开式和闭式。
开式回路中,虽然油液冷却好,便于油中杂质的沉淀和气体逸出,但油箱尺寸较大,污物容易侵入;闭式回路,结构紧凑,运动平稳,空气和污物不易侵入,噪声小,但其散热条件较差,且需设置补油装置。
根据液压泵和执行元件组合方式有:1.变量泵-定量执行元件的容积调速回路(1)变量泵-液压缸容积调速回路(2)变量泵-定量液压马达容积调速回路2.定量泵-变量液压马达容积调速回路3.变量泵-变量液压马达容积调速回路三、容积节流调速回路调速原理及功能;利用变量泵供油,用调速阀或节流阀改变进入液压缸的流量,实现执行元件速度的调节。
特点:无溢流损失,效率高、高压大负载时运动速度平稳。
应用:常用于空载时需快速,承载时需稳定低速的各种中等功率机械设备的液压系统中。
如组合机床、车床、铣床等的液压系统。
特点:无溢流损失,其效率比节流调速回路高,又可改善低速稳定性。
四、速度转换回路功能:能够实现液压缸不同速度之间的换接。
1.快慢速转换回路(1)用电磁换向阀的快慢速转换回路(2)用行程阀实现的快慢速转换回路2.两种慢速的转换回路(1)调速阀串联的慢速转换回路(2)调速阀并联的二次进给回路小结:容积调速回路、容积—节流调速回路、快速运动回路和速度转换回路的功能、组成、原理、特点及应用。
授课班级:083012103/4 授课日期:19教学课题:压力及方向控制回路教学目的及要求:掌握调压回路、减压回路、顺序动作回路的应用教学难点:调压回路教学方法:采用启发式、讨论式教学方法,辅助使用多媒体教学手段一般讲授。
教具:黑板、投影仪教学过程及内容:复习:速度控制回路6.2 压力控制回路功用:压力控制回路是利用压力控制阀来控制系统整体或系统某一部分的压力,以满足执行元件对力或力矩所提出的要求。
分类:调压回路、卸荷回路、卸压回路、减压回路、增压回路、保压回路、平衡回路6.2.1 调压回路功用:对整个系统或某一局部的压力进行控制,使之既满足使用要求。
分类:单级调压回路、双向调压回路、多级调压回路1、单级调压回路:在定量泵系统中,液压泵的供油压力可以通过溢流阀来调节。
在变量泵系统中,用安全阀来限定系统的最高压力,防止系统过载。
工作特征:回路简单,调节方便,若将溢流阀换为比例溢流阀,则可实现无级调压,还可远距离控制,但无功损耗较大。
若系统中需要二种以上的力,则可以采用多级调压回路。
2、双向调压回路二级调压回路可实现两种不同的系统压力控制。
由先导式溢流阀2和直动式溢流阀4各调一级。
当二位二通电磁阀3处于图示位置时,系统压力由2调定,当阀3得电后处于右位时,系统压力由阀4调定。
其工作特征:第一次调压很高,第二次远程调压较低。
注意:当系统压力由阀4调定时,先导型溢流阀2的先导阀口关闭,但主阀开启,液压泵溢流流量经主阀回油箱。
3、多级调压回路由一个先导式溢流阀和两个直动式溢流阀分别控制系统的压力,组成三级调压回路。
(1)当电磁换向阀两边都不得电处于中位时,系统压力由先导式溢流阀调定。
(2)当左右两边电磁铁通电使电磁阀处于右位或左位工作时,系统压力分别由两个直动式溢流阀调定。
注意:两直动式溢流阀的调定压力小于先导式溢流阀的调定压力,但两直动式溢流阀的调定压力之间没有关系。
工作特征:用几个溢流阀分别调出多级压力。
6.2.2 减压回路功用:使系统中的某一支路获得低于泵压的稳定压力。
分类:单级减压:通过定值减压阀与主油路相连,见书119页图6.9减压回路。
多级减压利用先导型减压阀1的外控口接直动式溢流阀2,则由阀1、阀2各调一种低压。
注意:阀2的调定压力值一定要低于阀1的调定压力值。
无级减压:增压回路当液压系统中的某一支油路需要压力较高但流量又不大的压力油,若采用高压泵又不经济,或者根本就没有这样高压力的液压泵时,就要采用增压回路。
功用:低压输入,高压输出,节约能耗。
分类:单作用增压缸的增压回路双作用增压缸的增压回路例:单作用增压缸的增压回路工作原理:增压原理:卸荷回路卸荷回路是在液压泵驱动电动机不频繁启闭的情况下,使液压泵在功率损耗接近于零的情况下运转,以减少功率损耗,降低系统发热,延长液压泵和电动机的寿命。
因为液压泵的输出功率为其流量和压力的乘积,两者任一近似为零,功率损耗即近似为零。
卸荷回路:是油泵在无负荷或低负荷下运转的回路。
卸荷回路目的:压力损失小、系统发热量少、泵和电机的动力消耗小,并可延长泵的使用寿命。
液压泵的卸荷有流量卸荷和压力卸荷两种,前者主要是使用变量泵,使泵仅为补偿泄漏而以最小流量运转,此方法比较简单,但泵仍处在高压状态运行,损耗严重。
压力卸荷的方法是使泵接近零压下运转,而油液可通过换向阀、溢流阀或卸荷阀直接回油箱。
常见压力卸荷方式有:换向阀卸荷回路、溢流阀卸荷回路等一、用换向阀卸荷的回路1、用三位换向阀的中位机能卸荷:卸荷原理:利用主阀处于中位时M.H.K型机能,使p→T,属零压式卸荷。
这种回路切换时压力冲击力小。
2、用二位二通阀卸荷:卸荷原理:利用二位二通电磁换向阀的通电,使泵和油箱连通卸荷。
二、电磁溢流阀卸荷回路卸荷原理:利用压力继电器来指挥电磁换向阀通电,使先导式溢流阀的先导阀进油腔(主阀上腔的外控口)通油箱而卸荷。
这种卸荷回路卸荷压力小,切换时冲击小。
另外,还有几种卸荷回路,如油缸末端自动卸荷回路、卸荷阀卸荷回路和二通插装阀卸荷回路等就不一一介绍了。
6.2.5 平衡回路功用:防止垂直或倾斜放置的液压缸和与之相连的工作部件因自重而下滑或下行超速。
组成:见书122页图6.16平衡回路工作原理:(1)当工件静止时,顺序阀关闭,单向阀反方向不能流动,液压缸两腔锁紧。
(2)当电磁阀左位工作时,液压油进入液压缸上腔,下腔回油从顺序阀流过。
顺序阀产生的背压可使活塞带动工作部件平稳下落。
(3)当电磁阀右位工作时,液压油经单向阀进入液压缸下腔使活塞带动工作部件上行。
平衡原理:调定顺序阀的开启压力大于立式液压缸带动的垂直部件因自重在油缸下腔所形成的压力,这样都不会因自重而下落。
此回路的缺点是当活塞向下快速运动进功率损失大,锁住时活塞和与之相连的工作部件因顺序阀和换向阀的泄漏而缓慢下降。
6.3 方向控制回路定义:液压系统中,通过控制液流通、断及改变流向,使执行元件启动、停止(包括锁紧)及变换运动方向。
分类:换向回路、锁紧回路6.3.1 换向回路换向回路是通过各类换向阀给运动部件实现换向的。
(1)手动换向阀换向回路:换向精度和平稳性不高,常用于换向不频繁且无需自动化的场合。
如:一般机床夹具、工程机械。
(2)电磁换向阀换向回路:使用方便,易于实现自动化,是液压系统中应用最广泛的回路。
但换向时间短,冲击大,交流电磁铁尤甚,一般用于小流量、平稳性要求不高处。
如自动化要求较高的组合机床的液压系统。
(3)机动换向阀换向回路:可靠情性较好,换向精度高(因为是执行元件通过工作台上的挡块和杠杆直接使阀换向,没有中间环节)。
一般用于速度和惯性较大的系统中。
(4)机—液动换向阀换向回路:用于换向频繁、换向平稳性要求较高机床的液压系统。
6.3.2 锁紧回路功用:使执行元件在任意位置上停留,且停留后不会在外力作用下移动位置。
常用的闭锁回路有:(1)采用滑阀的中位封闭的闭锁回路(2)采用液控单向阀的闭锁回路1、采用滑阀机能为中位封闭的闭锁回路采用换向阀O、M机能的锁紧回路特点:由于滑阀式换向阀泄漏不可避免,所以锁紧效果差。
故只能用于锁紧时间短,锁紧要求不高场合。