微波测量实验报告四
南京大学实验报告[大三下学期] - 微波测量
南京大学实验报告实验名称:微波测量XXX 161120xxx 物理学院一、引言微波检测根据接收到的电磁波回波信号来判断、获取需要的信息。
介电常数是表征地物介质内部特征最重要的参数,回波信号的参数大小完全取决于介电常数。
因此,对微波技术检测介电常数的方法进行研究具有十分重要的意义。
二、实验目的1、了解和掌握微波开路和短路的含意和实现方法。
2、掌握测量材料微波介电常数和磁导率的原理和方法。
3、了解微波测试系统元部件的作用。
三、实验原理1) 微波技术是近代发展起来的一门尖端科学技术,它在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用。
微波的研究方法和测试设备都与无线电波的不同。
从下图可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。
与无线电波相比,微波有下述几个主要特点:1、波长短(1m—1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。
2.频率高:微波的电磁振荡周期(10-9一10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。
另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻,电容,电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。
3.微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。
微波测量实验报告
微波测量实验报告一、实验背景微波测量是指利用微波技术对被测物体进行测量的一种方法。
微波是一种电磁波,其频率范围在300MHZ至300GHz之间。
微波测量广泛应用于通信、测距、雷达、卫星等领域。
本实验旨在通过对微波信号的发射、传播和接收进行实验,了解微波测量的基本原理和方法。
二、实验原理微波测量实验主要依赖于微波发射器和接收器的配合。
首先,发射器通过产生一个特定频率和幅度的微波信号,将信号输入到一个导波器(如开放式传输线)中。
信号在导波器中通过传播,并且可以根据特定的设计进行传播路径的调整。
接收器用来接收由被测物体反射或传播过来的微波信号,通过对信号进行处理,可以得到关于被测物体的信息。
在微波测量中,由于微波的特殊性质,测距、测速和测向等参数可以通过对微波信号的相位、频率和幅度进行分析来实现。
例如,利用多普勒频移原理,可以通过测量微波信号的频率变化来计算目标物体的速度;利用相位差原理,可以通过测量微波信号的相位差来计算目标物体的位置。
三、实验设备和材料1.微波发射器:用来产生微波信号的设备;2.导波器:用来传输微波信号的导向装置;3.微波接收器:用来接收被测物体反射或传播过来的微波信号并进行参数分析的设备;4.被测物体:用来反射或传播微波信号的物体。
四、实验步骤1.连接微波发射器和接收器,并对其进行相位校准;2.将被测物体放置在适当位置,调整微波接收器的位置和角度,以便接收到反射或传播过的微波信号;3.运行微波发射器和接收器,记录并分析接收到的微波信号的相位、频率和幅度等参数;4.根据参数分析的结果,计算并得出被测物体的测量结果。
五、实验结果与分析在实验中,我们成功地利用微波发射器和接收器对一块金属板进行了微波测量。
通过对接收到的微波信号的相位、频率和幅度进行实验结果的分析,我们得出了金属板的尺寸和位置等测量结果。
六、实验总结通过本实验,我们了解了微波测量的基本原理和方法。
微波测量广泛应用于通信、测距、雷达、卫星等领域,具有重要的实际应用价值。
微波测量实验报告
电子科技大学UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA微波测量实验报告报告题目:微带带通滤波器的测量学科专业:电磁场与无线技术指导教师:作者姓名:联系方式:班级学号:一实验目的:1.掌握矢量网络分析仪的操作步骤以及测量方法。
2.掌握矢量网络分析仪的校准步骤。
3.利用矢量网络分析仪对滤波器的实际端口性能进行测量,并分析结果。
二实验内容:1.熟悉适量网络分析仪的控制面板和初始设置。
2.对矢量网络分析仪进行校准。
3.基于矢量网络分析仪对微带带通滤波器的测量。
三实验步骤及结果:1.矢量网络分析仪的初始设置:(1)开启RS公司生产的3GHz的矢量网络分析仪,按下Preset键初始还原。
(2)设置起始和终止等频率参数。
(3)Power BW A VG>>Bandwidth>>1KHz。
Average>>Factor>>10>>on。
(5)设置显示网格参数。
Scale>>Scale/div>>20dB。
22.矢量网络分析仪的校准步骤:(1).按CAL键激活校准菜单。
(2).按“start cal”键进入下一级校准菜单。
(3).按“Two-Port- P1 P2”键,选择2端口校准,并进入下一级菜单。
(4).按“TOSM”键选择TOSM校准方式,选择正确的接头形式,以及正:确的校准件(Calibration Kit)型号(如图所示)a.在1端口接开路校准件接口,用鼠标点击“开路OPEN”。
b.在1端口接短路校准件接口,用鼠标点击“短路SHORT”。
c.在1端口接负载校准件接口,用鼠标点击“负载LORD”。
d.在2端口接开路校准件接口,用鼠标点击“开路OPEN”。
e.在2端口接短路校准件接口,用鼠标点击“短路SHORT”。
f.在2端口接负载校准件接口,用鼠标点击“负载LORD”。
微波测量技术实验报告
一、实验目的1. 理解微波测量技术的基本原理和实验方法;2. 掌握微波测量仪器的操作技能;3. 学会使用微波测量技术对微波元件的参数进行测试;4. 分析实验数据,得出实验结论。
二、实验原理微波测量技术是研究微波频率范围内的电磁场特性及其与微波元件相互作用的技术。
实验中,我们主要使用矢量网络分析仪(VNA)进行微波参数的测量。
矢量网络分析仪是一种高性能的微波测量仪器,能够测量微波元件的散射参数(S参数)、阻抗、导纳等参数。
其基本原理是:通过测量微波信号在两个端口之间的相互作用,得到微波元件的散射参数,进而分析出微波元件的特性。
三、实验仪器与设备1. 矢量网络分析仪(VNA)2. 微波元件(如微带传输线、微波谐振器等)3. 测试平台(如测试夹具、测试架等)4. 连接电缆四、实验步骤1. 连接测试平台,将微波元件放置在测试平台上;2. 连接VNA与测试平台,进行系统校准;3. 设置VNA的测量参数,如频率范围、扫描步进等;4. 启动VNA,进行微波参数测量;5. 记录实验数据;6. 分析实验数据,得出实验结论。
五、实验数据与分析1. 实验数据(1)微波谐振器的Q值测量:通过扫频功率传输法,测量微波谐振器的Q值,得到谐振频率、品质因数等参数;(2)微波定向耦合器的特性参数测量:通过测量输入至主线的功率与副线中正方向传输的功率之比,得到耦合度;通过测量副线中正方向传输的功率与反方向传输的功率之比,得到方向性;(3)微波功率分配器的传输特性测量:通过测量输入至主线的功率与输出至副线的功率之比,得到传输损耗。
2. 实验数据分析(1)根据微波谐振器的Q值测量结果,分析谐振器的频率选择性和能量损耗程度;(2)根据微波定向耦合器的特性参数测量结果,分析耦合器的性能指标,如耦合度、方向性等;(3)根据微波功率分配器的传输特性测量结果,分析功率分配器的传输损耗。
六、实验结论1. 通过实验,掌握了微波测量技术的基本原理和实验方法;2. 熟练掌握了矢量网络分析仪的操作技能;3. 通过实验数据,分析了微波元件的特性,为微波电路设计和优化提供了依据。
规范版微波测量实验报告
(规范版)微波测量实验报告微波测量实验报告引言:微的用途极为广泛,已经成为我们日常生活中不可缺少的一项技术。
微通常是指波长从1米(300MHZ)到1毫米(300GHZ)范围内的电磁波,其低频段与超短波波段相衔接,高频端与远红外相邻,由于它比一般无线电波的波长要短的多,故把这一波段的无线电波称为微,可划分为分米波、厘米波和毫米波。
微的基本特性明显,如波长极短、频率极高、具有穿透性、似光性等。
基本特性明显使得微被广泛应用于各类领域。
微技术不仅在国防、通讯、工农业生产的各个方面有着广泛的应用,而且在当代尖端科学研究中也是一种重要手段,如高能粒子加速器、受控热核反应、射电天文与气象观测、分子生物学研究、等离子体参量测量、遥感技术等方面。
近年来,微技术与各类学科交叉衍生出各类微边缘学科,如微超导、微化学、微生物学、微医学等,在各自领域都得到了长足的发展。
微技术是一门独特的现代科学技术,其重要地位不言而喻,因此掌握它的基本知识和实验方法变得尤为重要。
一、实验目的:1、了解微传输系统的组成部分2、了解微工作状态及传输特性3、掌握微的基本测量:频率、功率、驻波比和波导波长二、实验原理:1.微的传输特性.在微波段中,为了避免导线辐射损耗和趋肤效应等的影响,一般采用波导作为微传输线。
微在波导中传输具有横电波(TE波)、横磁波(TM 波)和横电波与横磁波的混合波三种形式。
微实验中使用的标准矩形波导管,通常采用的传输波型是TE10波。
波导中存在入射波和反射波,描述波导管中匹配和反射程度的物理量是驻波比或反射系数。
依据终端负载的不同,波导管具有三种工作状态:(1)当终端接"匹配负载"时,反射波不存在,波导中呈行波状态;(2)当终端接"短路片"、开路或接纯电抗性负载时,终端全反射,波导中呈纯驻波状态;(3)一般情况下,终端是部分反射,波导中传输的既不是行波,也不是纯驻波,而是呈混波状态。
微波基本测量实验报告
微波基本测量实验报告微波基本测量实验报告引言:微波技术是现代通信、雷达、天文学等领域的重要组成部分。
为了更好地了解微波的特性和应用,本实验旨在通过基本的测量实验,探索微波的传输、反射和干涉等现象,并对实验结果进行分析和讨论。
一、实验装置和原理本实验使用的实验装置包括微波发生器、微波导波管、微波检波器、微波衰减器等。
微波发生器产生微波信号,经由微波导波管传输到被测物体,再通过微波检波器接收并测量微波信号的强度。
微波衰减器用于调节微波信号的强度,以便进行不同强度的测量。
二、实验过程和结果1. 传输实验将微波发生器与微波检波器分别连接到微波导波管的两端,调节发生器的频率和功率,记录检波器的读数。
随着发生器功率的增加,检波器读数也相应增加,说明微波信号能够稳定传输。
2. 反射实验将微波发生器与微波检波器连接到微波导波管的同一端,将导波管的另一端暴露在空气中,调节发生器的功率,记录检波器的读数。
随着功率的增加,检波器读数也增加,表明微波信号在导波管与空气之间发生了反射。
3. 干涉实验将两根微波导波管分别连接到微波发生器和微波检波器上,将两根导波管的另一端合并在一起,调节发生器的功率,记录检波器的读数。
随着功率的增加,检波器读数呈现周期性的变化,表明微波信号在导波管之间发生了干涉。
三、实验结果分析1. 传输实验结果表明,微波信号能够稳定传输,说明微波导波管具有良好的传输特性。
传输实验中,微波信号的强度与发生器功率呈正相关关系,这与微波信号的传输损耗有关。
2. 反射实验结果表明,微波信号在导波管与空气之间发生了反射。
反射实验中,微波信号的强度与发生器功率呈正相关关系,说明反射信号的强度与输入信号的强度相关。
3. 干涉实验结果表明,微波信号在导波管之间发生了干涉。
干涉实验中,微波信号的强度呈现周期性的变化,这与导波管的长度和微波信号的频率有关。
当导波管的长度等于微波信号的波长的整数倍时,干涉现象最为明显。
四、实验总结通过本次微波基本测量实验,我们对微波的传输、反射和干涉等现象有了更深入的了解。
微波测量实验报告
《微波测量实验报告》指导老师:**专业:班级:学号:姓名:实验一微波测试系统的认识与调试一、实验目的1. 了解微波测试系统。
2. 三厘米波导系统的安装与调试。
二、实验原理1. 微波测试系统微波测试系统常用的有同轴和波导两种系统。
同轴系统频带宽,一般用在较低的微波频段(二厘米波段以下);波导系统(常用矩形波导)损耗低、功率容量大,一般用在较高频段(厘米波段直至毫米波段)。
微波测试系统通常由三部分组成,如图 1 - 1 ( a )所示。
图 1 - 1 微波测试系统(1)等效电源部分(即发送端)这部分包括微波信号源,隔离器,功率、频率监视单元。
信号源是微波测试系统的心脏。
测量技术要求具有足够功率电平和一定频率的微波信号,同时要求一定的功率和频率稳定度。
功率和频率监视单元是由定向耦合器取出一小部分微波能量,经过检测指示来观察源的稳定情况,以便及时调整。
为了减小负载对信号源的影响,电路中采用了隔离器。
( 2 )测量装置部分(即测量电路)包括测量线、调配元件、待测元件、辅助器件(如短路器、匹配负载等),以及电磁能量检测器(如晶体检波架、功率计探头等)。
( 3 )指示器部分(即测量接收器)指示器是显示测量信号特性的仪表,如直流电流表、测量放大器、功率计、示波器、数字频率计等。
当对微波信号的功率和频率稳定度要求不太高时,测量系统可简化如图 1 - 1 ( b )所示,微波信号源直接与测量装置连接,其工作频率可由波长计测得。
2. 微波信号源通常,微波信号源有电真空和固态的两种。
3. 测量指示器常用指示器有指示等幅波的直流微安表、光点检流计、微瓦功率计,有指示调制波的测量放大器、选频放大器。
此外,还可用示波器、数字电压表等作指示器。
实验室常用测量放大器和选频放大器作指示器,因为这类仪表灵敏度高,能对微弱信号进行宽带或选频放大,接在测量线、晶体检波器、热敏电阻架及其它测试设备的输出端可进行各类测量。
三、实验内容和步骤了解微波测试系统:1. 观看按图 1 - 1 ( a )装置的微波测试系统。
完整微波基本参数测量实验报告
(完整)微波基本参数测量实验报告微波基本参数测量实验报告【引言】微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,微波的基本性质通常呈现为穿透、反射、吸收三个特性。
微波成为一门技术科学,开始于20世纪30年代。
微波技术的形成以波导管的实际应用为其标志,若干形式的微波电子管(速调管、磁控管、行波管等)的发明,是另一标志。
在第二次世界大战中,微波技术得到飞跃发展。
因战争需要,微波研究的焦点集中在雷达方面,由此而带动了微波元件和器件、高功率微波管、微波电路和微波测量等技术的研究和发展。
至今,微波技术已成为一门无论在理论和技术上都相当成熟的学科,又是不断向纵深发展的学科。
【实验设计】一、实验原理1、微波微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热,微波炉就是利用这一特点制成的,而对金属类东西,则会反射微波。
2、微波的似声似光性微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多。
使得微波的特点与几何光学相似,即所谓的似光性。
因此使用微波工作,能使电路元件尺寸减小,使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。
由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。
3、波导管波导管是一种空心的、内壁十分光洁的金属导管或内敷金属的管子。
微波实验四
中南大学微波四实验报告学院学生姓名专业班级学生学号2015年6月8日实验四 阻抗测量及匹配技术(一)实验目的1.掌握利用驻波测量线测量阻抗的原理和方法。
2.熟悉利用调配器对终端负载条匹配的方法。
3.熟悉Smith 圆图的应用。
(二)实验原理微波元件的阻抗参数或者天线的输入阻抗是微波工程中的主要参数,因而阻抗测量也是重要测量内容之一,本实验着重应用测量线技术测量终端型微波元件的阻抗。
由传输线理论可知,传输线的输入阻抗in Z 与其终端负载阻抗l Z 关系为: ltg jZ ljtg Z Z l l in ββ++=1 (4.1)设传输线上第一个电压驻波最小点离终端负载的距离l min ,电压驻波最小点处的输入阻抗在数值上等于1/ρ,即 ρ1|min =l in Z (4.2)代l=min l 及in Z =1/ρ到上式。
整理得 minmin1l jtg l tg j Z l βρβρ--=(4.3)所以负载阻抗的测量实质上归结为电压驻波系数ρ及驻波相位min l 值的测量,当测出ρ及min l 后,就能有上式计算负载阻抗l Z 。
但是,这是一个复数运算,但在工程上通常由ρ和min l 从圆图上求出阻抗或导纳来。
电压驻波系数ρ的测量,在实验二中已经讨论过了,现在来讨论min l 的测量方法。
由于测量线结构的限制,直接测量终端负载l Z 端面到第一个驻波最小点的距离min l 是比较困难的。
因此实际测量中常用等效截面法首先将测量线终端短路,沿线的驻波分布如图4—1所示。
可用测量线测的某一驻波节点位置T D (任一驻波节点与终端的距离都是半波长的整数倍2/g n λ,n=1,2,3…),此位置即为终端负载的等效位置T D .而后去掉短路片该接被测负载,系统的驻波分布如图3-1b 所示,用测量线测得T D 左边第一个驻波最小点的位置A D 及ρ,则min l =|T D -A D |,驻波最小点截面处的阻抗为纯电阻,其电阻值是以0为圆心,ρ为半径,作一圆与纯电阻相交A 点。
微波基本参数测量实验报告
(实验报告)微波基本参量测量【摘要】微波技术是一门独特的现代科学技术, 我们应掌握它的基本知识和测量的方法。
对微波测试系统的工作原理的分析研究与基本参量的测量, 能使我们掌握微波的基本知识, 了解其传播的特点, 并且我们还能学会对功率、驻波比和频率等量的测量方法。
另外, 在实验过程中我们还能熟悉功率计等实验器材的工作原理和物理学中对有关物理量的测量的思想方法。
【关键词】微波、功率、驻波比、频率、测量【引言】微波是指频率为300MHz-300GHz的电磁波, 是无线电波中一个有限频带的简称, 即波长在1米(不含1米)到1毫米之间的电磁波, 是分米波、厘米波、毫米波和亚毫米波的统称。
微波频率比一般的无线电波频率高, 通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器, 微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热。
而对金属类东西, 则会反射微波。
微波的特点有以下几点:第一.微波波长很短。
具有直线传播的性质, 能在微波波段制成方向性极强的无线系统, 也可以接收到地面和宇宙空间各种物体发射回来的微弱回波, 从而确定物体的方向和距离。
这使微波技术广泛的应用于雷达中。
第二.微波的频率很高, 电磁振荡周期很短。
比电子管中电子在电极经历的时间还要小。
普通电子管不能用作微波振荡器、放大器和检波器, 而必须用原理上完全不同的微波电子管来代替。
第三.许多原子和分子发射和吸收的电磁波的波长正好处在微波波内。
用这特点研究分子和原子的结构, 发展了微波波谱学和量子无线电物理学等尖端学科, 还研制了低噪音的量子放大器和极为准确的分子钟与原子钟。
第四.微波可以畅通无阻的穿过地球上空的电离层。
微波波段为宇宙通讯、导航、定位及射电天文学的研究和发展提供了广阔的前景。
【正文】本实验中, 我们首先要引入两个基本概念: 反射系数与驻波比。
微波测量技术实训报告
一、实训目的本次实训旨在让学生了解微波测量技术的基本原理、测量方法及设备,掌握微波测量技术的实际操作技能,提高学生对微波测量技术的认识和应用能力。
二、实训内容1. 微波测量技术基本原理(1)微波定义:微波是指频率在300MHz至300GHz之间的电磁波。
(2)微波传播特性:微波具有直线传播、反射、折射、散射等特性。
(3)微波测量方法:微波测量方法主要有反射法、传输法、干涉法等。
2. 微波测量设备(1)网络分析仪:用于测量微波网络的S参数、反射系数、驻波比等。
(2)频谱分析仪:用于测量微波信号的频率、功率、调制方式等。
(3)功率计:用于测量微波功率。
(4)示波器:用于观察微波信号的波形、频率、幅度等。
3. 实训项目(1)微波反射系数测量①连接网络分析仪和待测微波网络;②设置网络分析仪的测量频率和带宽;③启动测量,记录反射系数S11;④分析测量结果,判断微波网络的性能。
(2)微波驻波比测量①连接网络分析仪和待测微波网络;②设置网络分析仪的测量频率和带宽;③启动测量,记录驻波比S11;④分析测量结果,判断微波网络的性能。
(3)微波功率测量①连接功率计和待测微波网络;②设置功率计的测量频率和带宽;③启动测量,记录微波功率;④分析测量结果,判断微波网络的性能。
(4)微波信号频谱分析①连接频谱分析仪和待测微波网络;②设置频谱分析仪的测量频率和带宽;③启动测量,观察微波信号的频谱;④分析测量结果,判断微波信号的调制方式、频率成分等。
三、实训结果与分析1. 微波反射系数测量通过测量待测微波网络的反射系数S11,分析微波网络的性能。
根据测量结果,判断微波网络是否存在故障或性能下降。
2. 微波驻波比测量通过测量待测微波网络的驻波比S11,分析微波网络的性能。
根据测量结果,判断微波网络是否存在故障或性能下降。
3. 微波功率测量通过测量待测微波网络的功率,分析微波网络的性能。
根据测量结果,判断微波网络是否存在故障或性能下降。
微波基本参数的测量实验报告
微波基本参数的测量【目的要求】1.学习微波的基本知识,了解波导测量系统,熟悉基本微波元件的作用;2.了解微波在波导中传播的特点,掌握微波基本测量技术;3.掌握驻波测量线的正确使用方法;4.掌握电压驻波系数的测量原理和方法。
【仪器用具】微波参数测试系统,包括:三厘米固态信号源,三厘米驻波测量线,选频放大器,精密衰减器,隔离器,谐振式频率计(波长表),匹配负载,晶体检波器,单螺调配器等。
【原理】微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。
从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。
与无线电波相比,微波有下述几个主要特占八、、A /it |钏1 I「F X-io®LU 1 1 1 1 1i I J KT* IN JQ-U1 1 』」1p\\r in 1 1 1 n i 1 1 II P1 卿]□'"阿見充¥卅电恢图1电磁波的分类1 •波长短(1m1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。
2 •频率高:微波的电磁振荡周期(10-9—10-12s)很短,已经和电子管中电子在电极间-9器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。
另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻、电容、电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。
微波实验报告频率测量
一、实验目的1. 理解微波的基本特性及其在实验中的应用。
2. 掌握微波频率测量的原理和方法。
3. 通过实验,验证微波频率测量方法的有效性。
4. 提高对微波测量仪器的操作能力。
二、实验原理微波是一种高频电磁波,其频率范围在300MHz到300GHz之间。
微波的频率测量对于雷达、通信、电子对抗等领域至关重要。
微波频率的测量通常采用以下几种方法:1. 波长-频率关系法:根据微波的波长和光速,通过公式 \( f =\frac{c}{\lambda} \) 计算频率,其中 \( f \) 为频率,\( c \) 为光速,\( \lambda \) 为波长。
2. 示波器测量法:利用示波器观察微波信号的周期,通过公式 \( f =\frac{1}{T} \) 计算频率,其中 \( T \) 为周期。
3. 频谱分析仪测量法:利用频谱分析仪直接测量微波信号的频率。
三、实验仪器与设备1. 微波信号发生器2. 波导3. 检波器4. 示波器5. 频谱分析仪6. 波长计7. 量角器8. 计时器四、实验步骤1. 波长-频率关系法:- 将微波信号发生器输出信号通过波导传输。
- 利用波长计测量微波信号在波导中的波长。
- 根据公式 \( f = \frac{c}{\lambda} \) 计算微波频率。
2. 示波器测量法:- 将微波信号发生器输出信号通过波导传输。
- 将微波信号连接到示波器上。
- 观察示波器上的波形,测量信号周期。
- 根据公式 \( f = \frac{1}{T} \) 计算微波频率。
3. 频谱分析仪测量法:- 将微波信号发生器输出信号通过波导传输。
- 将微波信号连接到频谱分析仪上。
- 观察频谱分析仪上的频谱图,找到微波信号的频率峰。
- 读取频率值。
五、实验结果与分析1. 波长-频率关系法:测量得到微波信号的波长为 \( \lambda = 10 \) cm,根据公式 \( f = \frac{c}{\lambda} \),计算得到微波频率为 \( f = 3 \times10^8 \) Hz。
微波测量专题实验报告
一、实验目的1. 理解微波测量的基本原理和方法。
2. 掌握微波测量仪器的基本操作。
3. 学习微波传输线、微波元件和微波系统的测量技术。
4. 分析实验数据,验证微波测量理论。
二、实验原理微波测量是指对微波频率、功率、相位、阻抗等参数的测量。
微波测量通常采用矢量网络分析仪(VNA)进行,VNA可以测量微波系统的S参数,通过S参数可以计算出微波系统的各种参数。
三、实验设备1. 矢量网络分析仪(VNA)2. 微波信号源3. 微波功率计4. 微波传输线5. 微波元件(如衰减器、定向耦合器、滤波器等)6. 微波测试平台四、实验内容1. 微波传输线测量- 测量目标:测量微波传输线的特性阻抗、衰减和反射系数。
- 实验步骤:1. 将微波传输线连接到VNA。
2. 调整信号源频率,使用VNA测量传输线的S11和S21参数。
3. 根据S参数计算传输线的特性阻抗、衰减和反射系数。
4. 分析实验数据,验证微波传输线理论。
2. 微波元件测量- 测量目标:测量微波元件的插入损耗、隔离度和方向性。
- 实验步骤:1. 将微波元件连接到VNA。
2. 调整信号源频率,使用VNA测量元件的S21、S12、S31和S41参数。
3. 根据S参数计算元件的插入损耗、隔离度和方向性。
4. 分析实验数据,验证微波元件理论。
3. 微波系统测量- 测量目标:测量微波系统的增益、带宽和线性度。
- 实验步骤:1. 将微波系统连接到VNA。
2. 调整信号源频率,使用VNA测量系统的S21参数。
3. 根据S参数计算系统的增益、带宽和线性度。
4. 分析实验数据,验证微波系统理论。
五、实验结果与分析1. 微波传输线测量结果- 实验测得微波传输线的特性阻抗为50Ω,与理论值相符。
- 实验测得微波传输线的衰减为0.1dB/m,与理论值相符。
- 实验测得微波传输线的反射系数为0.02,与理论值相符。
2. 微波元件测量结果- 实验测得微波衰减器的插入损耗为1dB,与理论值相符。
微波测量报告_北邮
由该图形可以看出,随着频率的增大,该s12曲线差不多等于一个固定值,并不随频率的改变发生明显变化,该值约为-14dB,由此可见,该器件应该是个全通滤波器。
实验总结
这次实验让我第一次接触到了矢量网络分析仪,我第一眼就觉得这个分析仪特别神奇,与平时接触到的示波器之类的测量仪器不同,它看起来更像一台电脑,但又可以进行测量,后来听助教说才知道原来我们学校只有这一台矢量网络分析仪。所以在实验的时候就更加小心。
北京邮电大学
微波测量实验报告
学校:北京邮电大学
学院:电子工程学院
班级:
姓名:
学号:
班内序号:
《微波射频测量技术基础》课程实验
实验一微波同轴测量系统的熟悉
一、实验目的
1、了解常用微波同轴测量系统的组成,熟悉各部分构件的工作原理,熟悉其操作和特性。
2、熟悉矢量网络分析仪的操作以及测量方法。
二、实验内容
1、常用微波同轴测量系统的认识,简要了解其工作原理。
SYSTEM OPTIONS:系统选项。
(5)PRESET
(复位)
复位仪器。
(6)CONFIGURE
(配置)
SCALE:设置垂直方向的分辨率和参考位置等。
DISPLAY:显示设置。
CAL:校准菜单。
MARKER:频标功能键。
FORMAT:数据显示格式。
AVG:平均功能设置和中频带宽设置。
(7)SOURSE
b)然后经过SOLT校准,消除系统误差;
c)在矢量网络分析仪上调处S参数测量曲线,读出相应的二端口网络的S参量,保存为s2p数据格式和cst数据格式的文件。
三、思考题
1、是否可以直接进行电路参数的测量,为什么?如何从测量的S参数导出电路参数。(给出S参数到Z参数的转换公式,以及如何在ADS中应用。)
微波实验报告四五doc
微波工程特性参数测量实验--阻抗匹配技术软件仿真 --阻抗测量及匹配技术实验四阻抗匹配技术软件仿真一、实验目的1、了解阻抗调配原理及调配方法2、熟悉单枝节匹配器的匹配原理3、了解微带线的工作原理和实际应用4、掌握Smith图解法设计微带线匹配网络5、通过枝节匹配的软件仿真理解螺钉调配器工作原理二、实验原理枝节匹配器分单枝节、双枝节和三枝节匹配。
这类匹配器时再主传输线上并联适当的电纳,用附加的反射来抵消主传输线上原来的反射波,已到达匹配的目的。
此电纳元件常用一终端短路或开路段构成。
下图为单枝节匹配器,其ZL为任意负载,假定主传输线和分支线的特性阻抗都是Z0,d为从负载到分支线所在位置的距离,Y和Z分别为在枝节处像负载方向看入的主线导纳和阻抗。
单枝节调谐时,有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。
Z0 dZ LZinl匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳时A+jB 形式。
然后,此短截线的电纳选择为-JB,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。
三、实验内容用软件仿真单枝节匹配过程。
假设:输入阻抗Zin=75欧姆负载阻抗Zl=(64+35)欧姆特性阻抗Z0=75欧姆介质基片Er=2.55,H=1mm假定负载在2GHz时实现匹配,利用图解法设计微带线单枝节匹配网络。
画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz的变化。
四、实验步骤将归一化输入阻抗和负载阻抗所在位置分别标在Y-Smith导纳圆图上归一化负载阻抗归一化输入阻抗设计并联短路单枝节:1、利用Smith Chart Utility分析a.选择Tools下的Smith Chart即可打开Smith Chart Utility:b.分别输入输入阻抗和负载阻抗的值,再进行并联短路单枝节匹配:2、得到电长度后,计算微带线尺寸:3、Schematic中仿真,仿真电路如下:4、在频率范围为0-2GHZ仿真,得到S(1,1)图:5、观察到输入端反射系数幅度从1.8GHz-2.2GHz的变化:的是微带线,所以存在一定误差,在允许范围内。
微波的测量实验报告
微波的测量实验报告微波的测量实验报告引言:微波技术是一门应用广泛的电磁波技术,它在通信、雷达、医疗等领域发挥着重要作用。
本实验旨在通过测量微波信号的传输特性和功率传输特性,探索微波的性质和应用。
实验一:微波信号的传输特性在实验一中,我们使用了一台微波信号发生器、一根微波传输线和一台微波功率计。
首先,我们将微波信号发生器的输出端连接到微波传输线的输入端,然后将微波传输线的输出端连接到微波功率计。
接下来,我们调节微波信号发生器的频率,并通过微波功率计测量微波信号的功率。
实验结果表明,微波信号的传输特性与频率密切相关。
当微波信号的频率增加时,传输线上的功率损耗也会增加。
这是因为微波信号在传输过程中会受到传输线的阻抗匹配、衰减和反射等因素的影响。
因此,在实际应用中,我们需要根据传输线的特性和工作频率来选择合适的传输线,以确保信号传输的稳定和可靠。
实验二:微波功率传输特性在实验二中,我们使用了一台微波信号发生器、一根微波传输线、一台微波功率计和一个负载。
首先,我们将微波信号发生器的输出端连接到微波传输线的输入端,然后将微波传输线的输出端连接到负载。
接下来,我们调节微波信号发生器的功率,并通过微波功率计测量微波信号在传输线和负载上的功率。
实验结果表明,微波功率的传输特性与功率和负载的阻抗匹配程度密切相关。
当功率和负载的阻抗匹配较好时,微波功率能够有效地传输到负载上,并且功率损耗较小。
然而,当功率和负载的阻抗不匹配时,微波功率会发生反射和衰减,导致功率损耗增加。
因此,在微波电路设计中,我们需要注意功率和负载的阻抗匹配问题,以提高功率传输效率。
实验三:微波的应用微波技术在通信、雷达、医疗等领域有着广泛的应用。
在通信领域,微波信号可以传输大量的数据,并且具有较高的传输速率和稳定性。
在雷达领域,微波信号可以用于探测和测量目标物体的距离、速度和方位。
在医疗领域,微波信号可以用于医学成像和治疗,如MRI和微波消融术等。
微波的测量 实验报告
微波的测量实验报告微波的测量实验报告引言:微波技术在现代通信、雷达、无线电频谱分析等领域中起着重要的作用。
测量微波信号的参数是了解和分析微波系统性能的基础。
本实验旨在通过一系列测量,探究微波的特性和性能,并分析测量结果的准确性和可靠性。
实验一:微波信号的频率测量在本实验中,我们使用频率计来测量微波信号的频率。
首先,将微波信号源与频率计连接,并设置频率计的测量范围。
然后,调节微波信号源的频率,记录频率计的测量结果。
通过多次测量,我们可以得到微波信号的频率范围和频率分布情况。
实验结果显示,微波信号的频率在特定范围内波动较小,表明微波信号源的频率稳定性较好。
同时,我们还发现微波信号的频率分布呈正态分布,符合统计规律。
这些结果对于微波系统的设计和优化具有重要的参考价值。
实验二:微波信号的功率测量微波信号的功率是衡量其强度和传输性能的重要指标。
在本实验中,我们使用功率计来测量微波信号的功率。
首先,将微波信号源与功率计连接,并设置功率计的测量范围。
然后,调节微波信号源的输出功率,记录功率计的测量结果。
通过多次测量,我们可以得到微波信号的功率范围和功率分布情况。
实验结果显示,微波信号的功率与微波信号源的输出功率呈线性关系,即功率随输出功率的增加而增加。
同时,我们还发现微波信号的功率分布呈正态分布,表明微波信号的功率稳定性较好。
这些结果对于微波系统的功率控制和传输性能的优化具有重要的参考价值。
实验三:微波信号的衰减测量在微波传输过程中,由于信号传播介质和传输线的损耗,信号的强度会逐渐减弱。
在本实验中,我们使用衰减器来模拟微波信号的衰减情况,并使用功率计测量衰减后的微波信号的功率。
通过调节衰减器的衰减量,我们可以探究微波信号的衰减规律和衰减程度。
实验结果显示,微波信号的衰减与衰减器的衰减量呈线性关系,即衰减随衰减量的增加而增加。
同时,我们还发现微波信号的衰减程度与传输介质和传输线的特性有关,不同介质和线路的衰减程度不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近代微波测量实验报告四
:学号:
学院:时间:年月
一实验名称
微波放大器测量
二实验目的
熟悉微波测试仪器;掌握微波放大器测试方法。
三实验容
1、用矢网测试放大器的增益和输入回波损耗;
2、用信号源和频谱分析仪测试放大器某频点上的输出1dB压缩点及压缩点的二
次和三次谐波抑制比。
四实验器材
矢量网络分析仪、放大器、频谱分析仪、信号源、微波同轴电缆、微波转接头。
五实验原理及实验步骤
1、放大器的增益和输入回波损耗测量
1)校准;
2)连接矢量网络分析仪和放大器,设置矢量网络分析仪的起始频率为100MHz,终止频率为6GHz,信号功率为-15dBm;
3)分别测试1G~6GHz频率点的增益S21,和回波损耗S11。
2、放大器输出1dB压缩点及谐波测量
1dB压缩点:当放大器的输入功率增加到使放大器的增益降低且引起输出功率呈非线性增大时,便发生增益压缩。
这定义为导致放大器增益有 1dB 减小(相对于放大器的小信号增益)的输入功率(或有时为输出功率)。
1)信号源产生频率为1GHz的信号;
2)连接信号源、频谱分析仪,将频谱仪所读参数与原信号比较即可得电缆和接头损耗;
3)接入放大器,改变信号源的信号功率,记录频谱仪上放大器输出功率数值,
计算放大器增益,直至放大器增益有1 dB衰减,便可得1 dB衰减点。
4)在输出1dB压缩点处,测量二次和三次谐波抑制。
六实验结果
1、增益及回波损耗测试结果
测试曲线S21、S11
增益:
回波损耗:
2、P-1及谐波测试结果
测试频率1000 MHz,测试电缆和接头的损耗大约为0.6dB。
(Pin和Pou分别是为信号
源输出功率和谱仪测试功率)
Pin(dBm)-20 -19 -18 -17 -16 -15 -14 -13 -12 -11 Pout(dBm)-3.33 -2.32 -1.33 -0.35 0.61 1.67 2.67 3.63 4.60
5.64
G(dB)18.37 18.38 18.37 18.35 18.31 18.37 18.37 18.33 18.30
18.34
Pin(dBm)-10 -9 -8 -7 -6 -5 -4
Pout(dBm)6.61 7.55 8.48 9.32 10.12 10.75 11.23
G(dB)18.31 18.25 18.18 18.02 17.82 17.45 16.93
由上表可得在1000MHz时该放大器输出1dB压缩点为 10.75 dBm,
在输出1dB压缩点处,二次和三次谐波抑制分别为 29.54 dB和 26.49 dB。
测试图片:
电缆和接头损耗:
-20dBm -19dBm
-18dBm -17dBm
-5dBm -4dBm
二次谐波、三次谐波
七讨论
放大器测试的注意事项主要有哪些?
答:理解各参数的意义及计算方法,以免计算错误。
频谱仪和网络分析仪在输入端口都有一个允许输入的最大安全功率,和最大输入电平。
若输入信号值超出了频谱仪和网络分析仪所允许的最大输入电平值,则会造成仪器损坏。