直拉法生产单晶硅

合集下载

单晶小知识直拉法

单晶小知识直拉法
生长界面形状(固液界面)
固液界面形状对单晶均匀性、完整性有重要影响,正常情况下,固液界面的宏观形状应该与热场所确定的熔体等温面相吻合。在引晶、放肩阶段,固液界面凸向熔体,单晶等径生长后,界面先变平后再凹向熔体。通过调整拉晶速度,晶体转动和坩埚转动速度就可以调整固液界面形状。
生长过程中各阶段生长条件的差异
3,磁控直拉技术与直拉法相比所具有的优点在于:
减少了熔体中的温度波度。一般直拉法中固液界面附近熔体中的温度波动达10 C以上,而施加0.2 T的磁场,其温度波动小于1℃。这样可明显提高晶体中杂质分布的均匀性,晶体的径向电阻分布均匀性也可以得到提高;
降低了单晶中的缺陷密度;
减少了杂质的进入,提高了晶体的纯度。这是由于在磁场作用下,熔融硅与坩锅的作用减弱,使坩锅中的杂质较少进入熔体和晶体。将磁场强度与晶体转动、坩锅转动等工艺参数结合起来,可有效控制晶体中氧浓度的变化;
1,在直拉法中,氧含量及其分布是非常重要而又难于控制的参数,主要是熔体中的热对流加剧了熔融硅与石英坩锅的作用,即坩锅中的O2,、B、Al等杂质易于进入熔体和晶体。热对流还会引起熔体中的温度波动,导致晶体中形成杂质条纹和旋涡缺陷。
2,半导体熔体都是良导体,对熔体施加磁场,熔体会受到与其运动方向相反的洛伦兹力作用,可以阻碍熔体中的对流,这相当于增大了熔体中的粘滞性。在生产中通常采用水平磁场、垂直磁场等技术。
直拉法的引晶阶段的熔体高度最高,裸露坩埚壁的高度最小,在晶体生长过程直到收尾阶段,裸露坩埚壁的高度不断增大,这样造成生长条件不断变化(熔体的对流、热传输、固液界面形状等),即整个晶锭从头到尾经历不同的热历史:头部受热时间最长,尾部最短,这样会造成晶体轴向、径向杂质分布不均匀。
直拉法-技术改进
一,磁控直拉技术

直拉单晶硅

直拉单晶硅

方式称为“自然对流”。自然对流的
程度大小可由格拉斯霍夫常数来判定:
熔体
Gr agT d 3
Vk 2
对于硅而言,α=1.43×10-4℃-1,vk=3 ×10-3cm2/sec,
因此,Gr=1.56 ×104△Td3。此外,Gr的临界值为105,
而根据估计实际的Gr值高达108。除非靠其它的对流方式
籽晶
单晶硅棒
石英坩埚 水冷炉壁 绝热石墨 加热器 石墨坩埚 石墨底盘 石墨轴承 电极
在熔体结晶过程中, 温度下降时,将产生由液态 转变成固态的相变化。为什 么温度下降,会导致相变化 的产生呢?这个问题的答案 可由热力学观点来解释。
一个平衡系统将有最低的自由能,假如一个系统的自由能 G高于最低值,它将设法降低G(即△G < 0)以达到平衡 状态。因此我们可以将△G < 0视为结晶的驱动力。
判断 Bo Ra d 2g
Ma
所以在表面上较大的长晶系统
主要受自然对流控制。而表面张力对流在低重力状态(例
如太空中)及小的长晶系统,才会凸现其重要性。
思考题
1、直拉单晶炉由几大部分组成? 2、什么叫直拉单晶炉的热场 ? 3、直拉单晶炉的合理热场条件是什么? 4、直拉单晶硅的工艺步骤? 5、直拉单晶硅通常选择那些晶体生长方向,为什么? 6、直拉单晶硅中如何实现无位错生长? 7、直拉单晶硅中熔体的对流分哪几种情况,分别用什么 常数来判断其对流的程度?
自然对流、晶轴旋转和坩埚旋转三种方式相互作用对熔体 流动的影响。
表面张力引起的对流
由液体的温度梯度,所造成的
表面张力的差异,而引起的对流形
态,称为表面张力对流。其对流程
度大小可由Marangoni常数来判断

直拉法单晶硅 -回复

直拉法单晶硅 -回复

直拉法单晶硅-回复单晶硅是一种具有高纯度的硅晶体,具有优异的光电性能和热电性能,广泛应用于电子器件和太阳能电池等领域。

本文将以“直拉法单晶硅”为主题,详细介绍直拉法制备单晶硅的步骤和工艺。

一、什么是直拉法单晶硅?直拉法单晶硅是一种通过直接拉取的方法制备的高纯度硅晶体。

该方法通过溶解高纯度的多晶硅在熔融的硅熔体中,然后逐渐拉伸出一根单晶硅柱。

得到的单晶硅柱可以被切割成具有特定晶向的晶圆,用于制备半导体器件和太阳能电池等。

二、直拉法制备单晶硅的步骤:1. 原材料准备:选择高纯度的多晶硅作为原材料,通常其纯度需达到99.9999以上。

这种高纯度的多晶硅块通常是由卤化硅还原法制备而来。

2. 熔炼硅熔体:将高纯度多晶硅块放入石英玻璃坩埚中,然后将坩埚放入电阻加热炉中进行熔炼。

在特定的温度和保温时间下,多晶硅逐渐熔化成硅熔体。

3. 准备拉晶装置:将石英棒固定在拉晶装置上,调整装置的温度和拉伸速度等参数,使其适合拉晶过程。

4. 开始拉晶:将熔融的硅熔体与石英棒接触,通过向上拉伸石英棒,使熔体附着在棒的一端,并由此逐渐形成硅晶体。

拉晶过程中需要控制温度、拉伸速度以及拉伸方向等参数,以保证拉晶产生单晶硅。

5. 晶柱切割:拉晶结束后,得到的硅晶体为一根长柱状,可以根据具体需要切割成不同规格和方向的晶圆。

切割过程需要使用专业的切割设备和切割工艺,以获得所需的单晶硅片。

三、直拉法制备单晶硅的工艺特点:1. 高纯度:直拉法制备的单晶硅可以达到非常高的纯度要求,这对于一些对杂质含量极为敏感的电子器件非常重要。

2. 大尺寸:直拉法制备的单晶硅柱可以达到较大的尺寸,使得每次拉晶得到的单晶硅片面积更大,提高了生产效率。

3. 较低的缺陷密度:直拉法制备的单晶硅的晶界和缺陷密度较低,有利于提高电子器件的性能。

4. 可重复性好:直拉法制备单晶硅的过程相对稳定,能够实现较好的生产批量一致性和可重复性。

四、直拉法制备单晶硅的应用:1. 半导体器件:直拉法制备的单晶硅片广泛应用于集成电路、晶体管、场效应晶体管等半导体器件的制造。

单晶硅的生长方法

单晶硅的生长方法

单晶硅的生长方法1. 直拉法呀,就像我们小时候搭积木一样,一点点把单晶硅拉起来。

你看,在一个高温的坩埚里,把多晶硅熔化,然后用一根细细的籽晶去慢慢往上提拉,哇,单晶硅就这么神奇地生长出来啦!就像盖高楼一样,一层一层的。

2. 区熔法呢,这可有意思了,就好比是在一个局部区域进行一场特殊的“培育”。

把一根多晶硅棒固定,然后用一个加热环在上面移动,加热的地方就熔化啦,慢慢移动过去,单晶硅不就长出来了嘛!是不是很神奇呀!3. 外延生长法,哎呀呀,就好像给单晶硅穿上一件新衣服一样。

在一个已经有单晶硅的衬底上,让气态的反应物沉积上去,形成新的单晶硅层,这就像给它装饰打扮一番呢!4. 气相沉积法,就如同是在空中“变魔术”,让那些气体中的硅原子乖乖地聚集在一起变成单晶硅。

比如把含硅的气体通入反应室,它们就会乖乖地在合适的地方沉积下来成为单晶硅啦,多奇妙呀!5. 分子束外延法,这可是个精细活儿呀,就像一个细心的工匠在雕琢一件艺术品。

通过精确控制分子束的流量和方向,让单晶硅完美地生长出来,厉害吧!6. 固相晶体生长法,这就像是在一个安静的角落默默努力的小伙伴。

在固体状态下,通过一些特殊的条件,让单晶硅悄悄地生长,给人一种很踏实的感觉呢!7. 助熔剂法,好比是有了一个好帮手一样。

加入助熔剂来帮助单晶硅生长,就像有人在旁边助力,让单晶硅长得更好更快呢!8. 水热法,哇哦,就如同在一个温暖的水中“孕育”着单晶硅。

在特定的温度和压力下,让单晶硅在水中生长,是不是很特别呀!9. 熔盐法,这就好像是在一个充满魔法的盐世界里让单晶硅现身。

利用熔盐作为介质,单晶硅就神奇地冒出来啦,真的好有趣呀!10. 等离子体增强化学气相沉积法,就像有一股神奇的力量在推动着单晶硅生长。

利用等离子体来增强反应,让单晶硅快快长大,太有意思啦!我觉得呀,这些单晶硅的生长方法都好神奇,各有各的独特之处,都为我们的科技发展做出了重要贡献呢!。

硅的直拉法单晶生长

硅的直拉法单晶生长

直拉法单晶硅生长:凝固结晶的驱动力
• 在熔体长成晶体的过程中(Melt Growth),藉由熔 体温度下降,将产生由液态转换成固态的相变化 (Phase Transformation)。这要从热力学观点来解 释。对于发生在等温等压的相变化,不同相之间 的相对稳定性,可有自由能G来决定。G=H—TS
• 其中H是焓,T是绝对温度,而S是熵。一个平衡 系统将具有最低的自由能。加入一个系统的自由 能△G高于最低值,它将设法降低△G以达到平衡 状态。因此我们可以将△G视为结晶的驱动力, 如图1.5所示。在温度T时,液固二相的自由能可 表示为: •
• 因此在温度T时 △G= △H-T△S • 另外在平衡的熔化温度Tm时,液固二相的 自由能是相等的,即△G=0,因此 • △G= △H-T△S=0 △S= △H/T • 其中△H即是所谓的结晶潜热。可得到 • △G= △H△T/T=△S△T • 其中△T=Tm- T,亦即所谓的过冷度,由于 凝固时,△S是个负值常数,所以△T可 • 被视为唯一的驱动力。
end
谢谢பைடு நூலகம்
• 直拉法是运用熔体的冷凝结晶驱动原理, 在固液界面处,藉由熔体温度下降,将 产生由液态转换成固态的相变化。当前 国际上供应单晶硅生长设备的主要著名 厂商是美国KAYEX公司和德国CGS公司。 这两个公司能供应生长不同直径的单晶 硅生长设备,尤其是生长直径大于 200ram的单晶硅生长设备系统。
• 为了生长质量合格(硅单晶电阻率、氧含量及氧浓度分布、 碳含量、金属杂质含量、缺陷等)的单晶硅棒,在采用直 拉法生长时,必须考虑以下问题。首先是根据技术要求, 选择使用合适的单晶生长设备;其次是要掌握一整套单 晶硅的制备工艺、技术,包括: (1)单晶硅系统内的热场 设计,确保晶体生长有合理稳定的温度梯度;(2)单晶硅 生长系统内的氩气气体系统设计; (3)单晶硅夹持技术系 统的设计;(4)为了提高生产效率的连续加料系统的设计; (5)单晶硅制备工艺的过程控制。

单晶硅的详细工艺流程

单晶硅的详细工艺流程

单晶硅的详细工艺流程单晶硅可是个超级有趣的东西呢!那我就来给你唠唠它的详细工艺流程吧。

一、原料准备。

单晶硅的原料那就是多晶硅啦。

多晶硅就像是一群小伙伴聚在一起,但是呢,为了得到单晶硅,得把它们变成更适合加工的状态。

这就好比要把一群有点乱乱的小朋友排好队一样。

多晶硅要先被加工成块状或者棒状,而且纯度得特别高才行哦。

纯度高就像是小朋友们都干干净净、整整齐齐的。

要是纯度不够,那后面做出来的单晶硅可就不那么完美啦。

二、晶体生长。

1. 直拉法。

这是一种很常用的方法呢。

就好像是从一群小伙伴里拉出来一个小领袖一样。

把多晶硅原料放到一个石英坩埚里,然后用加热器把它加热到超级热,热到都融化成液态了,就像把一块糖加热融化成糖浆一样。

然后呢,在这个液态的多晶硅里放入一颗小小的单晶硅籽晶,这颗籽晶就像是一个小种子。

慢慢地把籽晶往上拉,液态的多晶硅就会按照籽晶的样子一层一层地凝固,最后就长成了一根长长的单晶硅棒。

这个过程可不能着急哦,要是拉得太快或者太慢,都会影响单晶硅的质量呢。

就像种小树苗一样,浇水太多或者太少都不行。

2. 区熔法。

这个方法也很特别。

它是把多晶硅棒的一部分加热融化,然后让这个融化的区域慢慢移动,就像一个小火球在多晶硅棒上滚动一样。

在这个过程中,也是靠着籽晶来引导晶体的生长。

这种方法做出来的单晶硅纯度会更高一些,就像是经过了更严格训练的小战士一样,质量那是相当不错的。

三、加工处理。

1. 切割。

长出来的单晶硅棒可不能就这么直接用,得把它切成一片片的。

这个切割就像是切面包一样,不过可不能切得歪歪扭扭的哦。

现在有很多很厉害的切割技术,比如用金刚线切割。

切割出来的硅片要薄厚均匀,要是有的地方厚有的地方薄,就像做出来的饼干有的地方厚有的地方薄一样,是不合格的。

2. 研磨和抛光。

切好的硅片表面还不够光滑,就像刚从地里挖出来的土豆,表面坑坑洼洼的。

这时候就需要研磨和抛光啦。

研磨就像是用小砂纸轻轻地打磨,把那些不平整的地方磨掉。

直拉单晶硅工艺流程

直拉单晶硅工艺流程

直拉单晶硅工艺流程1. 原料准备直拉单晶硅工艺的第一步是原料准备。

通常使用的原料是高纯度的二氧化硅粉末。

这些二氧化硅粉末需要经过精细的加工和净化,以确保最终制备出的单晶硅质量优良。

2. 熔炼接下来是熔炼过程。

将经过净化的二氧化硅粉末与掺杂剂(通常是磷或硼)混合,然后放入石英坩埚中,在高温高压的环境下进行熔炼。

熔炼过程中,二氧化硅和掺杂剂会发生化学反应,形成多晶硅。

3. 晶棒拉制在熔炼完成后,需要进行晶棒拉制。

这一步是直拉单晶硅工艺的核心步骤。

首先,将熔融的多晶硅放入拉棒机中,然后慢慢地将晶棒拉出。

在拉制的过程中,需要控制温度和拉速,以确保晶棒的质量和直径的均匀性。

4. 晶棒切割拉制完成后,晶棒需要进行切割。

通常使用线锯或者线切割机对晶棒进行切割,将其切成薄片,即所谓的晶圆。

晶圆的直径和厚度可以根据具体的需要进行调整。

5. 晶圆抛光切割完成后,晶圆表面会有一定的粗糙度,需要进行抛光。

晶圆抛光是为了去除表面的缺陷和提高表面的光洁度,以便后续的加工和制备。

6. 接触式氧化晶圆抛光完成后,需要进行接触式氧化。

这一步是为了在晶圆表面形成一层氧化层,以改善晶圆的电学性能和机械性能。

7. 晶圆清洗最后,晶圆需要进行清洗。

清洗过程中,会使用一系列的溶剂和超声波设备,将晶圆表面的杂质和污垢清洗干净,以确保晶圆的纯净度和光洁度。

通过以上步骤,直拉单晶硅工艺就完成了。

最终得到的单晶硅晶圆可以用于制备太阳能电池、集成电路和光电器件等各种应用。

直拉单晶硅工艺流程虽然复杂,但可以制备出质量优良的单晶硅,为半导体产业的发展提供了重要的支持。

直拉法单晶硅的工艺流程

直拉法单晶硅的工艺流程

直拉法单晶硅的工艺流程
直拉法生长单晶硅的主要工艺流程为:准备→开炉→生长→停炉。

准备阶段先清洗和腐蚀多晶硅,去除表面的污物和氧化层,放人坩埚内。

K4T51163QG-HCE6再准备籽晶,籽晶作为晶核,必须挑选晶格完整性好的单晶,其晶向应与将要拉制的单晶锭的晶向一致,籽晶表面应无氧化层、无划伤。

最后将籽晶卡在拉杆卡具上。

开炉阶段是先开启真空设各将单晶生长室的真空度抽吸至高真空,一般在102Pa以上,通入惰性气体(如氩)及所需的掺杂气体,至一定真空度。

然后,打开加热器升温,同时打开水冷装置,通入冷却循环水。

硅的熔点是1417℃,待多晶硅完全熔融,坩埚温度升至约14⒛℃。

生长过程可分解为5个步骤:引晶→缩颈→放肩→等径生长→收尾。

引晶又称为下种,是将籽晶与熔体很好地接触。

缩颈是在籽晶与生长的单晶锭之问先收缩出晶颈,晶颈最细部分直径只有2~3mm。

放肩是将晶颈放大至所拉制晶锭的直径尺寸,再等径生长硅锭.直至耗尽坩埚内的熔体硅。

最后收尾结束单晶生长。

晶体生长中,控制拉杆提拉速度和转速、坩埚温度及坩埚反向转速是很重要的,硅锭的直径和生长速度与上述囚素有关。

在坩埚温度、坩埚反向转速一定时,主要通过控制拉杆提拉速度来控制硅锭的生长。

即籽晶熔接好后先快速提拉进行缩颈,再渐渐放慢提拉度进行放肩至所需直径,最后等速拉出等径硅锭。

cz直拉法原理

cz直拉法原理

CZ直拉法,又称为柴可拉斯基法,是一种常用的单晶硅制造方法。

其原理是将高
纯度的多晶硅原料放置在石英坩埚中,在高纯惰性气体的保护下加热熔化,再将单晶硅籽晶插入熔体表面,待籽晶与熔体达到熔化点后,随着籽晶的提拉晶体逐渐生
长形成单晶硅棒。

具体来说,CZ直拉法的原理可以分为以下几个步骤:
1.将高纯度的多晶硅原料放入石英坩埚中,加热至熔化。

2.将单晶硅籽晶插入熔体表面,籽晶的插入角度和深度都有严格的要求,以确保晶体
生长的质量。

3.通过控制温度和熔体的流动,使籽晶与熔体达到熔化点,并保持一定的时间,使籽
晶与熔体发生一定的界面反应。

4.在一定的拉速下,通过控制系统使籽晶以一定的速度向上提拉,同时保持一定的温
度梯度,使晶体逐渐生长。

5.随着提拉高度的增加,逐渐减小拉速,使晶体生长速度逐渐减小,直至晶体生长结
束。

在整个CZ直拉法过程中,需要严格控制温度、熔体流动、籽晶插入角度和深度、
拉速等参数,以确保晶体生长的质量和稳定性。

此外,还需要对单晶硅棒进行加工和切割,以满足不同领域的需求。

《直拉法生产单晶硅用籽晶》标准

《直拉法生产单晶硅用籽晶》标准

《直拉法生产单晶硅用籽晶》标准一、范围本标准规定了直拉法生产单晶硅用籽晶的技术要求、试验方法、检验规则、标志、包装、运输、贮存和订货单及交付记录格式。

本标准适用于直拉法生产单晶硅用籽晶的生产和检验。

二、规范性引用文件下列文件对于本文件的应用是必不可少的。

凡是注日期的引用文件,仅注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

三、术语和定义下列术语和定义适用于本标准。

1. 籽晶seed crystal:用于直拉法生长单晶硅的引头晶体。

2. 直径diameter:籽晶的直径通常指晶体主轴的最大尺寸。

3. 长度length:籽晶的长度通常指晶体主轴的最长尺寸。

4. 弯曲度bending:籽晶弯曲的程度,通常用弯曲的最大弧度表示。

5. 翘曲度warpage:籽晶翘曲的程度,通常用翘曲的最大弧度表示。

6. 晶体取向crystal orientation:籽晶中原子排列的方向。

7. 杂质含量impurity content:籽晶中杂质的含量。

四、分类与标记1. 籽晶按直径分为不同规格,通常有3英寸(76.2mm)、4英寸(101.6mm)、6英寸(152.4mm)等。

2. 每个规格的籽晶应按其直径、长度、弯曲度、翘曲度、晶体取向和杂质含量进行标记。

五、要求1. 直径:籽晶直径应符合相关规定或客户要求。

2. 长度:籽晶长度应符合相关规定或客户要求。

3. 弯曲度:籽晶弯曲度应不大于0.5°。

4. 翘曲度:籽晶翘曲度应不大于0.2°。

5. 晶体取向:籽晶晶体取向应符合相关规定或客户要求。

6. 杂质含量:籽晶杂质含量应符合相关规定或客户要求。

7. 其他要求:根据订货单或客户要求,可对籽晶的其他性能指标进行约定。

六、试验方法1. 直径测量:采用精度不低于±0.05mm的量具进行测量。

测量时,应尽量减小测量误差。

2. 长度测量:采用精度不低于±0.1mm的量具进行测量。

简述熔体直拉法制备单晶硅的工艺流程

简述熔体直拉法制备单晶硅的工艺流程

简述熔体直拉法制备单晶硅的工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!熔体直拉法:揭秘单晶硅的制造工艺在半导体行业中,单晶硅是制造集成电路和太阳能电池的关键材料。

直拉单晶硅的制备

直拉单晶硅的制备

直拉单晶硅的制备硅、锗等单晶制备,就是要实现由多晶到单晶的转变,即原子由液相的随机排列直接转变为有序阵列;由不对称结构转变为对称结构。

但这种转变不是整体效应,而是通过固液界面的移动而逐渐完成的。

为实现上述转化过程,多晶硅就要经过由固态到熔融态,然后又由熔融态硅到固态晶体硅的转变。

这就是从熔体硅中生长单晶硅所遵循的途径。

从熔体中生长硅单晶的方法,目前应用最广泛的主要有两种:有坩埚直拉法和无坩埚悬浮区熔法。

在讨论这两种制备方法之前,还应讨论在制备单晶过程中必不可少的一些准备工序。

包括掺杂剂的选择、坩埚的选择、籽晶的制备等,分别介绍如下:一、掺杂在制备硅、锗单晶时,通常要加入一定数量杂质元素(即掺杂)。

加入的杂质元素决定了被掺杂半导体的导电类型、电阻率、少子寿命等电学性能。

掺杂元素的选择必须以掺杂过程方便为准,又能获得良好的电学性能和良好晶体完整性为前提。

1掺杂元素的选择(1)根据导电类型和电阻率的要求选择掺杂元素制备N型硅、锗单晶,必须选择Ⅴ族元素(如P、As、Sb、Bi);制备P型硅、锗单晶必须选择Ⅲ族元素(如B、Al、Ga、In、Ti)。

杂质元素在硅、锗晶体中含量的多少决定了硅、锗单晶的电阻率。

电阻率不仅与杂质浓度有关,而且与载流子的迁移率有关。

当杂质浓度较大时,杂质对载流子的散射作用,可使载流子的迁移率大大降低,从而影响材料的导电能力。

考虑到以上因素,从理论上计算了电阻率与杂质浓度的关系曲线,如图9-5所示。

在生产工艺上按电阻率的高低分档。

掺杂有三档:轻掺杂(适用于大功率整流级单晶)、中掺杂(适用于晶体管级单晶)、重掺杂(适用于外延衬底级单晶)。

(2)根据杂质元素在硅、锗中溶解度选择掺杂元素各种杂质元素在硅、锗中溶解度相差颇大。

例如,采用大溶解度的杂质,可以达到重掺杂的目的,又不会使杂质元素在晶体中析出影响晶体性能。

下表列出了常用掺杂元素在硅、锗单晶生长时掺入量的极限,超过了极限量,单晶生长不能进行。

直拉单晶硅工艺流程

直拉单晶硅工艺流程

直拉单晶硅工艺流程直拉单晶硅工艺流程直拉单晶硅是一种用于制备硅片的工艺流程,常用于太阳能电池板制造。

下面将介绍直拉单晶硅的工艺流程。

首先,制备源硅材料。

该工艺流程需要用到高纯度的硅材料,通常采用电石法或气相法制备。

电石法中,将优质的石英矿石与煤、木炭等还原剂混合,在电弧炉中高温还原制备气体硅烷。

气相法则通过加热二氯硅烷等有机硅物质,制备出高纯度的单晶硅。

接下来,准备单晶硅材料。

将制备好的高纯度硅材料溶解在溶剂中,形成单晶硅溶液。

然后将溶液倒入特制的石英坩埚中,并在高温下进行晶体生长。

在晶体生长过程中,控制好温度和浓度,使得硅原子有序排列,最终形成单晶硅。

然后,进行单晶硅块切割。

将生长好的单晶硅块取出,经过去刺槽和打磨处理,将边界去除,得到整齐的单晶硅块。

接下来,使用线锯将单晶硅块切割成厚度约为200至300微米的硅片。

接下来是表面处理。

将切割好的硅片进行去氧化处理,去除表面的氧化层。

然后使用化学或机械方法对硅片表面进行抛光处理,使其表面光洁度达到要求。

随后是掺杂过程。

通过扩散、离子注入或气相外延等方法,在硅片上注入掺杂剂,以改变硅片的电学性质。

例如,在太阳能电池板制造中,通常将硼或磷等掺杂剂注入硅片,形成PN结构。

最后是光刻和化学蚀刻。

光刻是将光引进硅片中,通过掩膜技术在硅片上形成微观结构。

然后使用化学蚀刻液将不需要的部分腐蚀掉。

通过光刻和化学蚀刻的反复过程,可以制备出太阳能电池板的各种结构和电路。

总结起来,直拉单晶硅的工艺流程包括制备源硅材料、单晶硅生长、切割、表面处理、掺杂、光刻和化学蚀刻等步骤。

这个工艺流程是制备太阳能电池板所必须的,通过不断探索和改进工艺,可以提高单晶硅的质量和效率,推动太阳能电池板的发展。

直拉单晶硅工艺技术

直拉单晶硅工艺技术

直拉单晶硅工艺技术直拉单晶硅工艺技术是一种生产单晶硅材料的工艺方法,它能够高效地制备高纯度、高质量的单晶硅。

在电子、光伏等领域有着广泛的应用。

下面我将介绍一下直拉单晶硅工艺技术的基本原理和步骤。

直拉单晶硅工艺技术基本原理是利用熔融态下的硅液形成的“剪切层”和拉伸过程中形成的“湍流鞍点”来减小晶体发生成核的机会,实现快速生长大尺寸单晶硅。

直拉单晶硅工艺技术的步骤如下:1、硅原料准备:选择高纯度的硅原料,通常采用电石炉法或氯气法制备。

2、硅液制备:将硅原料放入特殊的熔化炉中,在高温下将硅原料熔化成液态硅。

3、净化处理:通过添加掺杂剂和进行化学处理等方式,对硅液进行净化,去除杂质和不纯物质。

4、晶体成核:将净化后的硅液脱氧,并添加少量的晶种,形成晶体的初步成核。

5、晶体生长:将晶种固定在拉伸机上,通过控制温度和拉拔速度,使晶体逐渐生长。

6、晶体拉伸:在晶体生长过程中,通过拉伸机的拉拔和旋转,将晶体朝着一个方向上不断拉长,直到达到目标长度。

7、光洁处理:将拉伸后的晶体进行光洁处理,使其表面变得光滑。

8、切割整理:将拉伸后的晶体切割成适当大小的小晶体,用于制造半导体晶体管等器件。

直拉单晶硅工艺技术的优点在于能够生长大尺寸的单晶硅,提高了生产效率和晶体质量。

同时,它还具有晶体控制性好、成本低等特点,为单晶硅领域的发展提供了重要的技术支持。

然而,直拉单晶硅工艺技术也存在一些问题。

首先,大尺寸单晶的生产周期较长,需要耗费大量的能源和物资。

其次,工艺要求严格,操作技术要求高,一旦出现操作失误,就会导致晶体质量下降。

总而言之,直拉单晶硅工艺技术是一种优质、高效的制备单晶硅材料的方法。

通过不断的技术创新和工艺改进,相信直拉单晶硅工艺技术能够继续优化,提高生产效率和质量,为电子、光伏等领域的应用提供更好的支持。

直拉法制备单晶硅的原理

直拉法制备单晶硅的原理

直拉法制备单晶硅的原理宝子,今天咱来唠唠直拉法制备单晶硅这个超酷的事儿。

你知道单晶硅不?那可是个超级重要的材料呢。

就像是科技世界里的小明星,好多高科技产品都离不开它。

那这个直拉法呀,就像是一场神奇的魔法表演,把硅变成我们想要的单晶硅。

直拉法的舞台呢,是一个特制的坩埚。

这个坩埚就像是一个小房子,里面住着硅原料。

这些硅原料可不是随随便便的硅哦,它们得是纯度比较高的多晶硅。

就像一群小伙伴,在这个坩埚小房子里等着被变成更厉害的单晶硅。

然后呢,有一个籽晶,这个籽晶就像是一颗种子。

你想啊,种子是能长出大树的,这个籽晶呢,就能“长”出单晶硅。

把籽晶小心翼翼地放到硅原料的上面,就像是把种子种到土里一样。

不过这个“土”可是滚烫的硅原料呢。

接下来呀,就开始加热啦。

哇,那温度升得可高了,就像给这个坩埚里的硅原料和籽晶开了一场超级热的派对。

在这么高的温度下,硅原料就开始慢慢融化,变成了液态的硅。

这时候的硅就像是一滩超级热的小湖,亮晶晶的。

这时候神奇的事情发生啦。

因为籽晶是晶体结构的,它就像一个小队长,对周围那些液态的硅说:“小伙伴们,按照我的样子来站队吧。

”那些液态的硅就很听话地在籽晶的下面开始一层一层地排列起来,就像小朋友们排队一样整整齐齐。

这个过程就像是搭积木,不过是超级微观的积木哦。

随着时间的推移,这个按照籽晶结构排列的硅就越来越长,就像小树苗慢慢长成大树一样。

这个不断生长的单晶硅会被慢慢地往上拉,就像从井里打水一样,一点一点地把它拉出来。

在这个过程中,周围的环境要控制得特别好呢。

比如说温度,就像我们要给这个正在生长的单晶硅宝宝一个特别舒适的温度环境,不能太热也不能太冷,不然它就会长得不好啦。

而且呀,在拉的过程中,还得让单晶硅转圈圈呢。

就像小朋友跳舞一样,一边转一边往上长。

这样做是为了让单晶硅长得更均匀,就像我们做蛋糕的时候要把面糊搅拌均匀一样,这样做出来的蛋糕才好吃,这个单晶硅才长得好呢。

当这个单晶硅长到我们想要的长度的时候,就像小树苗长到合适的高度了,就可以把它从坩埚里取出来啦。

直拉单晶硅的八个过程

直拉单晶硅的八个过程

直拉单晶硅的八个过程直拉单晶硅是一种制备高纯度硅材料的重要方法,其过程包括八个步骤。

本文将从这八个步骤入手,详细介绍直拉单晶硅的制备过程。

第一步:原料准备直拉单晶硅的原料是高纯度硅,通常采用三氯化硅还原法制备。

在这个过程中,三氯化硅和氢气在高温下反应,生成高纯度的硅。

这个过程需要严格控制反应条件,以确保生成的硅具有足够的纯度。

第二步:熔炼将高纯度硅原料放入熔炉中,加热至高温,使其熔化。

在这个过程中,需要控制熔炉的温度和气氛,以确保硅的纯度和均匀性。

第三步:晶体种植将晶体种植棒浸入熔融硅中,使其表面形成一层硅晶体。

这个过程需要控制种植棒的温度和位置,以确保晶体的生长方向和均匀性。

第四步:晶体生长通过拉扯种植棒,使硅晶体逐渐生长。

这个过程需要控制拉扯速度和温度,以确保晶体的生长速度和均匀性。

第五步:晶体形成当晶体生长到一定长度时,将其从熔融硅中取出,形成一根硅晶棒。

这个过程需要控制取出的速度和位置,以确保晶体的形状和尺寸。

第六步:切割将硅晶棒切成一定长度的硅晶棒坯。

这个过程需要控制切割的位置和角度,以确保硅晶棒坯的尺寸和形状。

第七步:研磨将硅晶棒坯进行研磨,使其表面光滑。

这个过程需要控制研磨的压力和速度,以确保硅晶棒坯的表面质量。

第八步:抛光将硅晶棒坯进行抛光,使其表面更加光滑。

这个过程需要控制抛光的压力和速度,以确保硅晶棒的表面质量。

通过以上八个步骤,就可以制备出高纯度、高质量的直拉单晶硅。

这种材料在半导体、太阳能电池等领域有着广泛的应用。

直拉法单晶硅工艺过程和技术改进

直拉法单晶硅工艺过程和技术改进

直拉法单晶硅工艺过程和技术改进直拉法单晶硅工艺过程-引晶:通过电阻加热,将装在石英坩埚中的多晶硅熔化,并保持略高于硅熔点的温度,将籽晶浸入熔体,然后以一定速度向上提拉籽晶并同时旋转引出晶体;-缩颈:生长一定长度的缩小的细长颈的晶体,以防止籽晶中的位错延伸到晶体中;-放肩:将晶体控制到所需直径;-等径生长:根据熔体和单晶炉情况,控制晶体等径生长到所需长度;-收尾:直径逐渐缩小,离开熔体;-降温:降底温度,取出晶体,待后续加工直拉法-几个基本问题最大生长速度晶体生长最大速度与晶体中的纵向温度梯度、晶体的热导率、晶体密度等有关。

提高晶体中的温度梯度,可以提高晶体生长速度;但温度梯度太大,将在晶体中产生较大的热应力,会导致位错等晶体缺陷的形成,甚至会使晶体产生裂纹。

为了降低位错密度,晶体实际生长速度往往低于最大生长速度。

熔体中的对流相互相反旋转的晶体(顺时针)和坩埚所产生的强制对流是由离心力和向心力、最终由熔体表面张力梯度所驱动的。

所生长的晶体的直径越大(坩锅越大),对流就越强烈,会造成熔体中温度波动和晶体局部回熔,从而导致晶体中的杂质分布不均匀等。

实际生产中,晶体的转动速度一般比坩锅快1-3倍,晶体和坩锅彼此的相互反向运动导致熔体中心区与外围区发生相对运动,有利于在固液界面下方形成一个相对稳定的区域,有利于晶体稳定生长。

生长界面形状(固液界面)固液界面形状对单晶均匀性、完整性有重要影响,正常情况下,固液界面的宏观形状应该与热场所确定的熔体等温面相吻合。

在引晶、放肩阶段,固液界面凸向熔体,单晶等径生长后,界面先变平后再凹向熔体。

通过调整拉晶速度,晶体转动和坩埚转动速度就可以调整固液界面形状。

生长过程中各阶段生长条件的差异直拉法的引晶阶段的熔体高度最高,裸露坩埚壁的高度最小,在晶体生长过程直到收尾阶段,裸露坩埚壁的高度不断增大,这样造成生长条件不断变化(熔体的对流、热传输、固液界面形状等),即整个晶锭从头到尾经历不同的热历史:头部受热时间最长,尾部最短,这样会造成晶体轴向、径向杂质分布不均匀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直拉法生产单晶硅
设备:直拉单晶炉
直拉单晶炉
直拉单晶炉
直拉单晶炉
直拉单晶炉主要由炉体、电气部分、加热系统、水冷 系统、真空系统和氩气装置六大部分组成。 一、炉体
炉体包括主架、主炉室、副炉室等部件 。
主架由底座、立柱组成,是炉子的支撑机构。
主炉室是炉体的心脏,有炉底 盘、下炉筒、上炉筒以及炉盖组 成,他们均为不锈钢焊接而成的 双层水冷结构,用于安装生长单 晶的热系统、石英坩埚及原料等。
直拉法的特点
设备和工艺简单,生产效率高,易于制造大直径 单晶硅。 易于控制单晶中的杂质浓度,可以制备低阻单晶。
生产温度高,硅料易被坩埚污染,使晶体的纯度 下降。
直拉法生产单晶硅
1、清 炉
冷却停加热6-8 小时后,打开炉 膛清理挥发物。
2、装料
3、抽空、通氩气 4、加热、熔硅
5、种晶 籽晶相当于在硅熔体中加入了一个定向晶核,使晶体按 晶核的晶向定向生长,制得所需晶向单晶。
先将籽晶降至液面数毫米处暂停片刻,使籽晶温度尽量 接近熔硅温度,然后将籽晶浸入熔硅,使头部熔解,接 着籽晶上升,生长单晶硅。
6、缩颈(引晶) 将籽晶快速提升,缩小结晶直径 目的:抑制位错从籽晶向晶体延伸
7、放肩 放慢生长速度,晶体硅直径增大
8、等径
等直径生长
9、收尾 单晶拉完时,由于热应力作用,尾部会产生大量位错,并 沿着单晶向上延伸,延伸的长度约等于一个直径。
三、加热系统
四、水冷系统
水冷系统包括总进水管道、分水器、各路冷却水管 道以及回水管道。由循环水系统来保证水循环正常运 行。 水冷系统的正常运行非常重要,必须随时保持各部 位冷却水路畅通,不得堵塞或停水,轻者会影响成晶 率,严重会烧坏炉体部件,造成巨大损失。
五、真空系统
真空系统主要分两部分:主炉室真空系统和副炉室 真空系统。 六、氩气净化装置 氩气系统包括液氩储罐,汽化器、气阀、氩气流 量计等部件。氩气纯度为5N,在单晶生长过程中起 保护作用,一方面及时携带熔体中的挥发物经真空 泵排出;另一方面又及时带走晶体表面的热量,增 大晶体的纵向温度梯度,有利于单晶生长。
悬浮区熔法(FZ法)
特点: 可重复生长、提纯单晶,单晶纯度较CZ法高; 无需坩埚、石墨托,污染少; 单晶直径不及CZ法


重复
直拉法生产单晶硅(CZ法) 直拉法的特点 直拉单晶炉
直拉单晶炉主要由炉体、电气部分、加热系统、水冷 系统、真空系统和氩气装置六大部分组成。
悬浮区熔法(FZ法)


1.什么是直拉法?
副炉室包括副炉筒、籽晶旋转 机构、软轴提拉室等部件,是单 晶硅棒的接纳室。
籽晶旋转及提升机构,提供籽 晶的旋转及提升的动力和控制 系统。 坩埚的旋转及提升机构,提供 坩埚的旋转及上升的动力和控 制系统。 主、副炉室的升降机构,通过 液压对炉室进行升降。
二、电气部分
作用:控制晶体生长的基本工艺参数,如:熔 硅温度、籽晶轴和坩埚的升降速度及旋转速度,并 通过调节这些参数,控制单晶直径的变化。 单晶炉控制系统主要包括速度控制单元、加热控 制单元、等径生长控制单元、水温和设备运行巡检 及状态报警、继电控制单元等部分。
直拉法生产单晶硅(CZ法)
把原料(块状多晶硅)放入石英 坩埚中,在单晶炉中加热融化。 再将一根直径只有5mm的棒状晶 种(称籽晶)浸入硅汤中。 在合适的温度下,硅汤中的硅原 子会顺着晶种的硅原子排列结构 在固液交界面上形成规则的结晶, 成为单晶体。 把晶种微微的旋转向上提升,硅 汤中的硅原子会在前面形成的单 晶体上继续结晶,并延续其规则 的原子排列结构。
悬浮区熔法(FZ法)
方法: 依靠熔体表面张力,使熔区悬浮于多晶硅与 下方长出的单晶之间,通过熔区的移动而进行提纯和生 长单晶硅。
原料: ቤተ መጻሕፍቲ ባይዱ晶硅棒
悬浮区熔法(FZ法)
⑴ 将多晶料棒仅靠籽晶。
⑵ 将多晶料棒靠近籽晶一端形成 一个熔化区,并使籽晶微熔,熔化 区靠表面张力支持而不流淌 ⑶ 同速向下移动多晶料棒和晶 体,相当于熔化区向上移动,单 晶逐渐长大,而料棒不断缩短, 直至多晶料棒全部转变为单晶体。
2.什么是悬浮区熔法? 3.直拉单晶炉主要由哪几部分组成?
相关文档
最新文档