浙教版八年级数学上册知识点汇总

合集下载

浙教版八年级数学上册知识点总结

浙教版八年级数学上册知识点总结

三角形1、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

注:三角形具有稳定性。

2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

3、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

4、三角形的面积三角形的面积注:同底等高的三角形面积相等。

三角形中的主要线段1、三角形中的主要线段有:三角形的角平分线、中线和高线。

2、这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握。

并且对这三条线段必须明确三点:(1)三角形的角平分线、中线、高线均是线段,不是直线,也不是射线。

(2)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部。

而三角形的高线在当△ABC是锐角三角形时,三条高都是在三角形内部,钝角三角形的高线中有两个垂足落在边的延长线上,这两条高在三角形的外部,直角三角形中有两条高恰好是它的两条直角边。

(3)在画三角形的三条角平分线、中线、高时可发现它们都交于一点。

在以后我们可以给出具体证明。

今后我们把三角形三条角平分线的交点叫做三角形的内心,三条中线的交点叫做三角形的重心,三条高的交点叫做三角形的垂心。

全等三角形1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

2、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

浙教版八年级上数学知识点

浙教版八年级上数学知识点

浙教版八年级上数学知识点第一章 三角形的初步知识 复习总目1、掌握三角形的角平分线、中线和高线2、理解三角形的两边之和大于第三边的性质3、掌握三角形全等的判定方法 知识点概要1、 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC,三角形ABC 的边AB可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义.2、 三角形的分类: (1)按角分类: (2)按边分类:三角形直角三象形斜三角形锐角三角形钝角三角形_C_B _A 三角形等腰三角形不等边三角形底边和腰不相等的等腰三角形 等边三角形21DC BAD CB ADC BA3、 三角形的主要线段的定义: (1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:是△ABC 的BC 上的中线.=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:是△ABC 的∠BAC 的平分线.2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; ④用量角器画三角形的角平分线.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.表示法:是△ABC 的BC 上的高线.⊥BC 于D.3.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点.4、三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.5、三角形的角与角之间的关系:(1)三角形三个内角的和等于180?;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.6、三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性.注意:(1)三角形具有稳定性;(2)四边形没有稳定性.7、全等三角形(1)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

八年级上数学知识点归纳 浙教

八年级上数学知识点归纳 浙教

八年级上数学知识点归纳浙教一、整数1. 整数的定义整数是正整数、负整数和0的统称。

2. 整数的比较比较两个整数大小时,可以先比较它们的绝对值大小,再看它们的正负号。

同号比大小时,取绝对值比较;异号比大小时,正数大于负数。

3. 整数的加减法加减法的实现可以参照小学所学的竖式,注意同样位数上的数字要竖列对齐,进位、借位等操作要正确执行。

4. 整数的乘法整数乘法的基本原理是将两个整数的每个位上的数逐个相乘,按位加和,最后确定结果的符号。

5. 整数的除法当除数和被除数的符号相同时,可以把它们的符号忽略,可以按正数除法的方法进行运算。

当除数和被除数的符号不同时,商的符号就与负整数的符号相同。

6. 整数的四舍五入四舍五入的形式为:当舍去部分小于5时,直接舍去;当舍去部分等于5且舍去部分后面没有数或者后面的数全为0时,将要舍去部分末位数加1,舍去其他部分;当舍去部分等于5且舍去部分后面还有数时,将要舍去部分末位数加1,并根据加1后数字舍位原则舍去后面的数字。

二、图形1. 直线、射线、线段直线是指两个方向相反的点之间无限延伸的轨迹;射线是一条起点固定的、只有一个方向的直线;线段是直线上的两个端点及它们之间的一段。

2. 角角是由两条射线公共端点所组成的图形。

按度数可分为锐角(小于90°)、直角(等于90°)、钝角(大于90°)和平角(等于180°)。

3. 三角形三角形的三个内角之和为180°。

分类依据可分为锐角三角形、直角三角形、钝角三角形。

4. 正方形、长方形、平行四边形正方形是指四个边长相等且四个角都是直角的四边形;长方形是指四个角都是直角的四边形,但不要求四边长相等;平行四边形是对边平行的四边形。

三、方程1. 方程的定义方程就是含有未知数的等式,方程中含有未知数的项叫做未知数项,不含未知数的项叫做常数项。

2. 一元一次方程一元一次方程是指只含有一个未知数、该未知数的最高次数为1的方程,例如:ax+b=0(其中a和b为实数且a≠0)。

浙教版八年级上数学知识点

浙教版八年级上数学知识点

A浙教版八年级上数学知识点第一章 三角形的初步知识复习总目1、掌握三角形的角平分线、中线和高线2、理解三角形的两边之和大于第三边的性质3、掌握三角形全等的判定方法知识点概要1、 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形AB C用符号表示为△ABC,三角形ABC 的边AB可用边A B所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形; (3)△ABC 是三角形ABC 的符号标记,单独的△没有意义.2、 三角形的分类:(1)按角分类:(2)按边分类:3、 三角形的主要线段的定义:(1)三角形的中线三角形中,连结一个顶点和它对边中点的线段.三角形 直角三象形 斜三角形 锐角三角形钝角三角形 _C_B _A 三角形 等腰三角形 不等边三角形 底边和腰不相等的等腰三角形 等边三角形21D C B A D CB A 表示法:1.AD 是△ABC 的B C上的中线.2.BD =DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部;③三角形三条中线交于三角形内部一点;④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:1.AD 是△ABC的∠BAC 的平分线.2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;④用量角器画三角形的角平分线.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.表示法:1.A D是△ABC 的BC 上的高线.2.AD⊥BC 于D.3.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点.4、三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.5、 三角形的角与角之间的关系:(1)三角形三个内角的和等于180 ;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.6、三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性.注意:(1)三角形具有稳定性;(2)四边形没有稳定性.7、全等三角形(1)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

浙教版八年级数学上册知识点梳理

浙教版八年级数学上册知识点梳理

浙教版八年级数学上册知识点梳理【浙教版八年级数学上册知识点梳理】一、有理数的认识与运算1. 有理数的概念:有理数是整数和分数的统称。

2. 有理数的分类:正有理数、负有理数和零。

3. 绝对值的概念:一个数与零之间的距离。

4. 有理数的比较:绝对值越大,数值越大;同号比较大小。

二、实数的认识与运算1. 无理数的概念:无理数是不能写成两个整数的比例。

2. 实数的分类:有理数和无理数。

3. 实数的运算:加法、减法、乘法、除法、乘方等。

4. 分数的运算:加法、减法、乘法、除法等。

三、代数式1. 代数式的定义:用字母和数的组合表示数学关系的式子。

2. 简化与展开:将代数式进行合并或展开。

3. 等式的性质:等式两边加(减)一个相等的数仍相等。

4. 代数式的运算:加法、减法、乘法、除法等。

四、一元一次方程1. 方程的概念:含有未知数的等式。

2. 解方程的基本思路:变量相互抵消,化简为等价的方程。

3. 方程解的概念:使等式成立的未知数的值。

4. 解一元一次方程的方法:等式两边逐步变等,通解与特解。

五、比例与比例方程1. 比例的概念:相同量类的两个比值。

2. 比例的性质:比例脱离比例量可以推出三者成比例。

3. 比例的应用:计算长度、面积、体积等。

4. 比例方程:两个比例关系的等式。

六、直线和角的认识1. 平面直线的特征:无限延伸,包含任意两点。

2. 直线的表示方法:点斜式、一般式等。

3. 角的基本概念:由两个射线公共端点构成的图形。

4. 角的分类:锐角、钝角、直角等。

七、平面图形的认识与计算1. 多边形的分类:三角形、四边形、五边形等。

2. 三角形的分类:锐角三角形、直角三角形、钝角三角形。

3. 四边形的分类:矩形、正方形、菱形、平行四边形等。

4. 平行线与平行四边形的性质:中位线、对角线等。

八、圆的认识与计算1. 圆的概念:平面上距离一个给定点相等的点的集合。

2. 圆的要素:圆心、半径、直径等。

3. 圆的计算:圆的面积与周长。

八年级上数学知识点浙教版

八年级上数学知识点浙教版

八年级上数学知识点浙教版八年级数学知识点浙教版数学一直都是中学生们心中的一大绊脚石,特别是对于初中八年级的同学,数学知识点更是困扰着他们。

本篇文章将为大家系统性地总结八年级上数学知识点浙教版,帮助大家更好地掌握这门学科。

一、数字的认识1. 自然数与整数:自然数就是从1开始,没有结束的数。

整数包括自然数和0以及负整数。

2. 有理数与无理数:有理数是可以用两个整数的比表示出来的数,而无理数则不能表示成有理数的形式。

3. 小数的四舍五入:当小数点后一位数小于5时,舍去;当小数点后一位数大于等于5时,进位。

二、代数式的认识1. 代数式:代数式是由数字、变量及运算符号组合而成的式子。

2. 代数式的化简:将同一类项合并,消去分母,再运用公式进行化简。

三、一次函数的认识1. 一次函数的特征:一次函数的图像是一条直线,函数的解析式为y=kx+b,其中k 为斜率,b为截距。

2. 直线的斜率:斜率可以表示为纵坐标的增量与横坐标的增量的比值。

3. 相关系数:相关系数代表着两个变量之间线性关系的强度,相关系数越接近于1或者-1,说明两个变量之间的关系越密切。

四、平面图形的认识1. 几何图形的基本概念:几何图形包括点、线、面。

线和面都可以分成直线、线段、射线、角、平行线、垂线、相交线等等。

2. 三角形的性质:三角形是由三条线段构成的平面图形,有三个内角和三个外角。

三角形的内角和相等于180度,不同类型的三角形有不同的特征。

3. 直线的关系:直线包括相交、平行、垂直等不同的关系,我们可以通过这些关系来解决平面几何问题。

五、数据的统计和分析1. 统计数据的分类:统计数据可以分为连续性数据和离散性数据,它们的特征和表现形式也有所不同。

2. 统计数据的分布:根据统计数据的情况,我们可以将数据分为正态分布、偏态分布等等,不同类型的数据分布有不同的统计特征和应用方法。

以上是八年级上数学知识点浙教版的系统总结,希望对大家有所帮助。

数学是一个需要不断练习的学科,只有通过不断的练习和掌握基本知识点,才能在数学这条路上越走越稳健。

浙教版八年级关于上数学知识点

浙教版八年级关于上数学知识点

浙教版八年级上数学知识点第一章三角形的初步知识复习总目1、掌握三角形的角均分线、中线和高线2、理解三角形的两边之和大于第三边的性质3、掌握三角形全等的判断方法知识点纲要1、三角形的定义:由不在同向来线上的三条线段首尾按序相接构成的图形叫做三角形.三角形有三条边,三个内角,三个极点.构成三角形的线段叫做三角形的边;相邻两边所构成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点,三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角AC的小写字母c表示,AC可用b表示,BC可用a表示.注意:(1)三条线段要不在同向来线上,且首尾按序相接;B C2)三角形是一个关闭的图形;3)△ABC是三角形ABC的符号标志,独自的△没存心义.2、三角形的分类:按角分类:直角三象形三角形锐角三角形斜三角形钝角三角形按边分类:底边和腰不相等的等腰三角形等腰三角形三角形等边三角形不等边三角形3、三角形的主要线段的定义:(1)三角形的中线A三角形中,连结一个极点和它对边中点的线段.B D C表示法:1.AD 是△ABC 的BC 上的中线. 12.BD=DC=BC.2注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点;④中线把三角形分红两个面积相等的三角形.(2)三角形的角均分线A2 1三角形一个内角的均分线与它的对边订交, 这个角极点与交点之间的线段BDC表示法:1.AD 是△ABC 的∠BAC 的均分线.2.∠1=∠2=1∠BAC.2注意:①三角形的角均分线是线段;②三角形三条角均分线全在三角形的内部; ③三角形三条角均分线交于三角形内部一点; ④用量角器画三角形的角均分线. (3)三角形的高 A从三角形的一个极点向它的对边所在的直线作垂线,极点和垂足之 间的线段.BDC表示法:1.AD 是△ABC 的BC 上的高线. 2.AD ⊥BC 于D.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点. 4、三角形的三边关系三角形的随意两边之和大于第三边 ;随意两边之差小于第三边 . 注意:(1)三边关系的依照是:两点之间线段是短; (2)围成三角形的条件是随意两边之和大于第三边. 5、三角形的角与角之间的关系:三角形三个内角的和等于180;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角.直角三角形的两个锐角互余.6、三角形的稳固性:三角形的三边长确立,则三角形的形状就独一确立,这叫做三角形的稳固性.注意:(1)三角形拥有稳固性;2)四边形没有稳固性.7、全等三角形1)全等三角形的观点能够完整重合的两个三角形叫做全等三角形。

初二上册数学知识点归纳浙教版

初二上册数学知识点归纳浙教版

初二上册数学知识点归纳浙教版一、三角形1、三角形的定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的三边关系三角形任意两边之和大于第三边,任意两边之差小于第三边。

3、三角形的内角和三角形的内角和为 180°。

4、三角形的外角三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

三角形的一个外角等于与它不相邻的两个内角的和。

三角形的一个外角大于与它不相邻的任何一个内角。

5、三角形的分类(1)按角分类:锐角三角形、直角三角形、钝角三角形。

(2)按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。

6、三角形的中线、高线、角平分线(1)中线:连接三角形一个顶点和它对边中点的线段叫做三角形的中线。

(2)高线:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线。

(3)角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

二、全等三角形1、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质(1)全等三角形的对应边相等,对应角相等。

(2)全等三角形的周长相等,面积相等。

3、全等三角形的判定(1)“边边边”(SSS):三边对应相等的两个三角形全等。

(2)“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

(3)“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

(4)“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。

(5)“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

三、轴对称1、轴对称图形如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

2、轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

浙教版八年级上册数学知识点(汇编)

浙教版八年级上册数学知识点(汇编)

浙教版八年级数学上册知识点第一章三角形的初步认识一、三角形的基本概念三角形:不在同一条直线上的三条线段首尾相接所组成的图形。

二、三角形的分类:1.按角分:锐角三角形、直角三角形、钝角三角形(定义,区别)。

2.按边分:不等边三角形、等腰三角形、等边三角形。

三、三角形的基本性质1.三角形的内角和是180°。

2.三角形的任何两边的和大于第三边(由两点之间线段最短得到)。

三角形的任何两边的差小于第三边三角形的任何两边之和大于第三边大于两边之差。

应用:知两条确定第三条范围;知三条判断能否组成三角形;知四条及以上3.三角形的外角:由三角形一条边的延长线和另一条相邻的边组成的角。

三角形的一个外角等于和他不相邻的两个内角的和(教材P7做一做)。

四、几条重要的线1.三角形的角平分线:一个角的平分线与这个角的对边相交,这个角的顶点和对边中点;三条角平分线都在三角形内且相交于一点;等量关系式∠1=∠2=二分之一∠α;2.三角形的中线:连接一个顶点和它对边的中点的线段;三条中线都在三角形内且相交于一点;等量关系式AP=BP=二分之一AB 。

等积三角形;周长差三角形3.三角形的高;从三角形的一个顶点向它对边所在的直线作垂线段。

锐角三角形的三条高在三角形的内部相交于一点。

直角三角形的直角边上的高分别与另一条直角边重合,三条高在三角形的直角顶点处相交于一点。

钝角三角形中,夹钝角两边上的高都在三角形的外部,三条高在三角形的外部相交于一点。

会带来面积问题、直角、直角三角形4. 线段的垂直平分线(中垂线):垂直并平分一条线段的直线。

中垂线性质:线段的中垂线上的点到线段两端点的距离相等。

逆定理:到线段两端的距离相等的点在这条线段的垂直平分线上。

5. 角平分线的性质定理:角平分线上的点到角两边的距离相等。

逆定理:角的内部,到角两边距离相等的点在这个角的平分线上。

五、全等三角形1.全等图形:能够完全重合的两个图形。

形状相同、大小相等的图形;2.全等三角形:能够完全重合的两个三角形。

八上数学知识点总结(浙教版)(打印版)

八上数学知识点总结(浙教版)(打印版)

八上数学知识点总结已往知识:1、垂线的性质1:过一点有且只有一条直线与已知直线垂直。

性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。

2、点到直线的距离:直线外一点到这条直线的垂线段的长度。

3、整式的乘法公式:22))((b a b a b a -=-+;2222)(b ab a b a ++=+;2222)(bab a b a +-=-知识点、三角形1、三角形的概念由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形中的主要线段(1)三角形的一个角的平分线与此角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

该线段称为三角形的一条角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

该线段称为三角形的对边上的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

该线段称为三角形的对边上的高线。

3、三角形的稳定性当三角形的三条边长确定时,三角形的形状、大小完全被确定,三角形的这个性质叫做三角形的稳定性。

三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

4、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

5、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形任何两边的和大于第三边。

推论:三角形任何两边的差小于第三边。

(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

浙教版初中数学八年级上下册知识点及典型例题汇总

浙教版初中数学八年级上下册知识点及典型例题汇总

数学八年级上册知识点及典型例题第一章 平行线1.1同位角、内错角、同旁内角如图:直线l 1 , l 2 被直线l 3 所截,构成了八个角。

a1a2a3876543211. 观察∠ 1与∠5的位置:它们都在第三条直线l 3 的同旁,并且分别位于直线l 1 , l 2 的相同一侧,这样的一对角叫做“同位角”。

2. 观察∠ 3与∠5的位置:它们都在第三条直线l 3的异侧,并且都位于两条直线l 1 , l 2 之间,这样的一对角叫做“内错角”。

3. 观察∠ 2与∠5的位置:它们都在第三条直线l 3的同旁,并且都位于两条直线l 1 , l 2之间,这样的一对角叫做“同旁内角”。

想一想问题1.你觉得应该按怎样的步骤在“三线八角”中确定关系角?确定前提(三线)寻找构成的角(八角) 确定构成角中的关系角问题2:在上面同位角、内错角、同旁内角中任选一对,请你看看这对角的四条边与“前提”中的“三线”有什么关系?结论:两个角的在同一直线上的边所在直线就是前提中的第三线。

1.2 平行线的判定(1)L3 L1 L2复习画两条平行线的方法:提问:(1)怎样用语言叙述上面的图形? (直线l 1,l 2被AB 所截) (2)画图过程中,什么角始终保持相等? (同位角相等,即∠1=∠2) (3)直线l 1,l 2位置关系如何? ( l 1∥l 2) (4)可以叙述为:∵∠1=∠2∴l 1∥l 2 ( ? )语言叙述:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单地说:同位角相等,两直线平行。

几何叙述:∵∠1=∠2∴l 1∥l 2 (同位角相等,两直线平行) 想一想oo ABL 1L 2(图形的平移变换)抽象成几何图形AB21L 1L 212acb平行线判定方法的特殊情形:在同一平面内,垂直于同一条直线的两条直线互相平行。

1.2 平行线的判定(2)图中,直线AB 与CD 被直线EF 所截,①若∠3=∠4,则AB 与CD 平行吗?②若∠2+∠4=180°,则AB 与CD 平行吗?①∵∠3=∠4,∠1=∠4 ②∵∠2+∠4=180°,∠2+∠3=180° ∴∠1=∠3 ∴∠3=∠4∴ AB ∥CD ( ) ∴ AB ∥CD ( ) ① 两条直线被第三条直线所截,如果内错角相等,则两条直线平行。

浙教版八年级上册数学知识点

浙教版八年级上册数学知识点

浙教版八年级上册数学知识点在八年级上册的数学学习中,我们将接触到众多重要的知识点,为后续的数学学习打下坚实的基础。

接下来,让我们一同来梳理这些关键的知识。

第一章:三角形的初步知识三角形是最基本的几何图形之一。

首先,我们要了解三角形的定义,即由不在同一直线上的三条线段首尾顺次相接所组成的图形。

三角形的内角和定理是一个重要的知识点,三角形的内角和为180°。

我们可以通过剪拼法或推理证明来理解这一定理。

三角形的外角性质也不容忽视。

三角形的一个外角等于与它不相邻的两个内角的和,且三角形的外角大于任何一个与它不相邻的内角。

在判断三条线段能否构成三角形时,只需满足任意两边之和大于第三边,任意两边之差小于第三边即可。

全等三角形也是这一章的重点。

全等三角形的对应边相等,对应角相等。

全等三角形的判定方法有“SSS”(边边边)、“SAS”(边角边)、“ASA”(角边角)、“AAS”(角角边)以及“HL”(斜边、直角边,仅适用于直角三角形)。

第二章:特殊三角形等腰三角形具有独特的性质。

等腰三角形的两腰相等,两底角相等。

等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合,简称“三线合一”。

等边三角形是特殊的等腰三角形,它的三条边都相等,三个角都等于 60°。

直角三角形中,有一个重要的定理——勾股定理。

如果直角三角形的两条直角边长分别为 a、b,斜边长为 c,那么 a²+ b²= c²。

直角三角形的性质也很多,比如直角三角形两锐角互余;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

第三章:一元一次不等式不等式的基本性质是解决不等式问题的基础。

例如,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变。

解一元一次不等式的一般步骤与解一元一次方程类似,包括去分母、去括号、移项、合并同类项、系数化为 1 等。

浙教版八年级数学上册知识点梳理

浙教版八年级数学上册知识点梳理

第一章 三角形初步[定义与命题]定义:规定某一名称或术语的意义的句子。

命题:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。

命题一般由条件和结论组成,可以改为“如果……”,“那么……”的形式。

正确的命题叫真命题,不正确的命题叫假命题。

基本事实:人们在长期反复实践中证明是正确的,不需要再加证明的命题。

定理:用逻辑的方法判断为正确并作为推理的根据的真命题。

注意:基本事实和定理一定是真命题。

[证明]在一个特定的公理系统中,根据一定的规则或标准,由公理和定理推导出某些命题的过程。

[三角形]由三条不在同一直线上的线段首尾顺次相接组成的图形叫做三角形[三角形按边分类]三角形()⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形 [三角形按内角分类] 三角形 锐角三角形:三个内角都是锐角直角三角形:有一个内角是直角钝角三角形:有一个内角是钝角[三角形的性质]三角形任意两边之和大于第三边,任意两边之差小于第三边。

三角形三内角和等于180°。

三角形的一个外角等于与它不相邻的的两个内角之和。

[三角形的三种线]顶角的角平分线:三条,交于一点三角形的中线:三条,交于一点三角形的高线:三条,交于一点。

思考:锐角、直角、钝角三角形高线的交点分别在什么位置[全等形]能够完全重合的两个图形叫做全等形.[全等三角形]能够完全重合的两个三角形叫做全等三角形.重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.[全等三角形的性质]全等三角形的对应边相等,全等三角形的对应角相等。

还有其它推出来的性质:全等三角形的周长相等、面积相等。

全等三角形的对应边上的对应中线、角平分线、高线分别相等。

[三角形全等的证明]边边边:三边对应相等的两个三角形全等.(SSS)边角边:两边和它们的夹角对应相等的两个三角形全等.(SAS)角边角:两角和它们的夹边对应相等的两个三角形全等.(ASA)角角边:两个角和其中一个角的对边对应相等的两个三角形全等.(AAS)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等.(HL)证明两个三角形全等的基本思路:方法指引证明两个三角形全等的基本思路:(1):已知两边----找第三边(SSS )找夹角(SAS )(2):已知一边一角---已知一边和它的邻角找是否有直角(HL )已知一边和它的对角找这边的另一个邻角(ASA )找这个角的另一个边(SAS)找这边的对角(AAS )找一角(AAS )已知角是直角,找一边(HL )(3):已知两角---找两角的夹边(ASA)找夹边外的任意边(AAS )练习 [角平分线的作法]尺规作图 [角平分线的性质] 在角平分线上的点到角的两边的距离相等.∵OP 平分∠AOB ,PM ⊥OA 于M ,PN ⊥OB 于N , ∴PM=PN[角平分线的判定]角的内部到角的两边的距离相等的点在角的平分线上。

浙教版初中数学八年级上册

浙教版初中数学八年级上册

浙教版初中数学八年级上册一、三角形的初步知识。

1. 三角形的有关概念。

- 三角形由不在同一条直线上的三条线段首尾顺次相接所组成的图形。

- 三角形的基本要素:边、角、顶点。

- 三角形的表示方法:用符号“△”表示,如△ABC,其中A、B、C为三角形的顶点。

2. 三角形的分类。

- 按角分类:- 锐角三角形:三个角都是锐角的三角形。

- 直角三角形:有一个角是直角的三角形,直角三角形可以用“Rt△”表示,如Rt△ABC,其中∠C = 90°,直角所对的边叫斜边,夹直角的两条边叫直角边。

- 钝角三角形:有一个角是钝角的三角形。

- 按边分类:- 不等边三角形:三边都不相等的三角形。

- 等腰三角形:有两边相等的三角形,相等的两边叫腰,另一边叫底边,两腰的夹角叫顶角,腰与底边的夹角叫底角。

- 等边三角形:三边都相等的三角形,等边三角形是特殊的等腰三角形。

3. 三角形的性质。

- 三角形的内角和等于180°。

可以通过作平行线等方法进行证明,如在△ABC 中,∠A+∠B +∠C = 180°。

- 三角形的外角性质:- 三角形的一个外角等于与它不相邻的两个内角的和。

例如在△ABC中,∠ACD是∠ACB的外角,则∠ACD=∠A +∠B。

- 三角形的一个外角大于任何一个与它不相邻的内角。

- 三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。

例如,在△ABC中,AB + BC>AC,AB - BC<AC。

4. 三角形中的重要线段。

- 角平分线:- 在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线。

- 三角形的三条角平分线相交于一点,这一点叫三角形的内心,内心到三角形三边的距离相等。

- 中线:- 在三角形中,连接一个顶点与它对边中点的线段叫三角形的中线。

- 三角形的三条中线相交于一点,这一点叫三角形的重心。

- 高线:- 从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫三角形的高线(简称三角形的高)。

浙教版初二上册数学总复习知识点

浙教版初二上册数学总复习知识点

a三角形的初步知识1一、三角形的基本概念:1、三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形。

三角形ABC 记作:△ABC 。

2、相关概念: 三角形的边:组成三角形的三条线段。

记作: AB 、AC 、BC 。

三角形的内角:每两条边所组成的角(简称三角形的角)。

记作:∠A 、∠B 、 ∠C3、三角形的分类:⎪⎩⎪⎨⎧⎩⎨⎧等边三角形一般等腰三角形等腰三角形不等腰三角形按边分:三角形)1(⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧钝角三角形等腰直角三角形一般直角三角形直角三角形锐角三角形按角分:三角形)2(二、三角形三边关系:1、三角形任何两边的和大于第三边。

几何语言:若a 、b 、c 为△ABC 的三边,则a+b>c,a+c>b, b+c>a. 这个在实际解题中该怎样应用?2、三边关系也可表述为:三角形任何两边的差都小于第三边。

三、三角形的内角和定理:三角形三个内角的和等于1800。

几何语言:△ABC 中,∠A+∠B+∠C=1800。

四、三角形的三线: 问题1、如何作三角形的高线、角平分线、中线?问题2、三角形的高线、角平分线、中线各有多少条,它们的交点在什么位置?问题3、三角形的中线有什么应用?C B A例题与练习例1、如图,在△ABC 中,D 、E 是BC 、AC 上的两点,连接BE 、AD 交于点F 。

问:(1)、图中有多少个三角形?把它们表示出来。

(2)、△AEF 的三条边是什么?三个角是什么?练习:右图中有几个三角形例2、已知线段a b c 满足a+b+c=24cm, a:b=3:4, b+2a=2c ,问能否以a 、b 、 c 为三边组成三角形,如果能,试求出这三边,如果不能,请说明理由。

练习1、四组线段的长度分别为2,3,4;3,4,7; 2,6,4;7,10,2。

其中能摆成三角形的有( ) A .一组 B .二组 C .三组 D .四组2、已知三角形两条边长分别为13厘米和6厘米,那么第三边长应是多少厘米?3、已知三角形两条边长分别为19厘米和8厘米,第三边与其中一边相等,那么第三边长应是多少厘米?例3、在△ABC 中,∠A :∠B :∠C=1:2:3,求三角形各角的度数,并判断它是什么三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(上册)
1. 三角形的初步知识
1.1. 认识三角形三角形内角和为180 度。

三角形任何两边之和大于第三边。

在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

连结三角形的一个顶点与该顶点的对边中点的线段,叫做三角形的中线。

从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线。

1.2. 定义与命题定义:能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义。

命题:判断
某一件事情的句子叫命题。

在数学上,命题一般由条件和结论两部分组成,条件是已知事项,结论由已知事项得到的事项。

可以写成“如果............... 那么.. ”的形式,其中以“如果”开始的部分是条件,“那么”后面的部分是结
论。

正确的命题成为真命题,不正确的命题称为假命题。

用推理的方法判断为正确的命题叫做定理,定理也可以作为判断其他命题真假的依据。

1.3. 证明
要判断一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、基本事实、定理(包括推
论),一步步推得结论成立。

这样的推理过程叫做证明。

三角形一边的延长线和另一条相邻的边组成的角,叫做该三角形的外角。

三角形的外角和等于它不相邻的两个内角的和。

1.4. 全等三角形能够重合的两个图形称为全等图形。

能够重合的两个三角形叫做全等三角形。

两个全等三角形重合时,能互相重合的顶点叫做全等三角形的对应顶点,互相重合的边叫做全等三角形的对应边,互相重合的角叫做全等三角形的对应角。

全等三角形的对应边相等,对应角相等。

1.5. 三角形全等的判定
三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)
当三角形的三条边长确定时,三角形的形状、大小完全确定,这个性质叫做三角形的稳定性,这是三角形特有的性质。

两边及其夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)
垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线。

线段垂直平分线上的点到线段两端的距离相等。

两个角及其夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)
两角及其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)
角平分线上的点到角两边的距离相等。

1.6. 尺规作图
把没有刻度的直尺和圆规作图,简称尺规作图
2. 特殊三角形
2.1. 图形的轴对称
如果把一个图形沿着一条直线折叠后,直线两侧部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

对称轴垂直平分连结两个对称点的线段。

由一个图形变成另一个图形,并使这两个图形沿某一条直线折叠后能够互相重合,这样的图形改变叫做图形的轴对称,这条直线叫做对称轴。

成轴对称的两个图形是全等图形。

2.2. 等腰三角形
有两边相等的三角形叫做等腰三角形。

等腰三角形是轴对称图形,顶角平分线所在的直线是它的对称轴。

三边都相等的三角形是全等三角形
2.3. 等腰三角形的性质定理
等腰三角形性质定理:
性质定理1:等腰三角形的两个底角相等。

(即:在同一个三角形中,等边对等角)
性质定理2:等腰三角形的顶角平分线、底边上的中线和高线互相重合,简称等腰三角形的三线合一。

等边三角形的各个内角都等于60 度。

2.4. 等腰三角形的判定定理
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形。

(即:在同一个三角形中,等角对等边)
等边三角形的判定定理:三个角都相等的三角形是等边三角形。

有一个角是60 度的等腰三角形是等边三角形。

2.5. 逆命题和逆定理在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是
第二个命题的条件,那么这两个命题叫做互逆命题。

如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。

每个命题都有它的逆命题,但每个真命题的逆命题不一定是真命题。

如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的逆定理,这两个定理叫做互逆定理。

如:定理:线段垂直平分线上的点到线段两端的距离相等。

逆定理:到线段两端距离相等的点在线段的垂直平分线上。

2.6. 直角三角形
直角三角形:有一个角是直角的三角形。

直角三角形的两个三角形互余。

直角三角形斜边上的中线等于斜边的一半。

有两个角互余的三角形是直角三角形。

2.7. 探索勾股定理
勾股定理:直角三角形两条直角边的平方和等于斜边的平方。

如果a,b 为直角三角形的两条直角边的长,c为斜边的长,则a2 + b2 = c2 勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

2.8. 直角三角形全等的判定
直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“
HL”)角的内部,到角两边距离相等的点,在这个角的平分线上。

3. 一元一次不等式
3.1. 认识不等式
像y ≥p+2,x≠3这样,用不等号“ <”、“>”、“≥”、“ ≤”、“ ≠”连接而成的数学式子,叫做不等式。

3.2. 不等式的基本性质
不等式的基本性质1: a b,b c a c;这个性质叫做不等式的传递性
不等式的基本性质2:不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立
a b a c b c,a-c b-c;
a b a c b c,a c b-c;
不等式的基本性质3:不等式的两边都乘(或都除以)同一个正数,所得的不等式仍成立;不等式的两边都乘(或都除以)同一个负数,必须改变不等号的方向,所得的不等式成立。

a b,且c 0 ac bc,a b;
cc
a b,且c 0 ac bc,a b;
cc
3.3. 一元一次不等式
不等号的两边都是整式,而且只含有一个未知数,未知数的最高次数是一次,这样的不等式叫做一元一次不等式。

能使不等式成立的未知数的值的全体叫做不等式的解集,简称不等式的解。

3.4. 一元一次不等式组
由几个含同一未知数的一元一次不等式所组成的一组不等式,叫做一元一次不等式组。

4. 图形与坐标
4.1. 探索确定位置的方法
确定物体在平面上位置的两种常用方法:
1.用有序数对确定物体的位置,如:12排8座;
2.用方向和距离来确定物体的位置(或称方位),如:航标灯在小岛的南偏西600方向的15km 处
4.2. 平面直角坐标系平面直角坐标系的建立:在平面内画两条互相垂直,并且有公共原点O 的数轴,其中
水平方向的一条叫做x轴(或横轴),竖直方向的一条叫做y轴(或竖轴);简称坐标平面,两坐标的公共原点O叫做直角坐标系的原点。

相关文档
最新文档