fft快速傅里叶变换 c语言实现
快速傅里叶变换fft的c程序代码实现
快速傅里叶变换fft的c程序代码实现标题:一种高效实现快速傅里叶变换(FFT)的C语言程序代码导言:快速傅里叶变换(Fast Fourier Transform,FFT)是一种在信号处理、图像处理、通信系统等领域广泛应用的重要算法。
它通过将输入信号从时域转换到频域,实现了对信号的频谱分析和频率成分提取。
在实际应用中,为了获得高效的FFT计算过程,我们需要使用合适的算法和优化技巧,并将其转化为高质量的C语言代码。
本文将介绍一种基于Cooley-Tukey算法的快速傅里叶变换的C语言程序代码实现。
我们将从原理开始详细讲解FFT算法,然后逐步引入代码实现的步骤,并进行相关优化。
我们将总结整个实现过程,并分享一些个人对FFT算法的理解和观点。
一、快速傅里叶变换(FFT)的原理(1)傅里叶级数与离散傅里叶变换傅里叶级数是将一个周期函数分解为一系列正弦和余弦函数的和的方法。
然而,实际数字信号往往是离散的。
我们需要离散傅里叶变换(Discrete Fourier Transform,DFT)来对离散信号进行频谱分析。
(2)DFT的定义及其计算复杂度离散傅里叶变换通过对离散信号的变换矩阵进行乘法运算,得到其频谱表示。
然而,直接使用定义式计算DFT的时间复杂度为O(N^2),其中N为信号长度,这对于大规模信号计算是不可接受的。
(3)引入快速傅里叶变换 (FFT)Cooley-Tukey算法是一种最常用的FFT算法,通过将DFT分解为多个较小规模的DFT计算来降低计算复杂度。
FFT的时间复杂度为O(NlogN),大大提高了计算效率。
二、快速傅里叶变换(FFT)的C语言实现(1)算法流程和数据结构设计以一维FFT为例,我们需要定义合适的数据结构来表示复数和存储输入输出信号,同时设计实现FFT的主要流程。
(2)递归实现方法递归实现是最直观的FFT实现方法,基于Cooley-Tukey算法的思想。
将输入信号分为偶数和奇数两部分,然后递归计算它们的FFT。
C语言实现FFT(快速傅里叶变换)
#include <iom128.h>#include <intrinsics.h>/*********************************************************************快速福利叶变换C函数函数简介:此函数是通用的快速傅里叶变换C语言函数,移植性强,以下部分不依赖硬件。
此函数采用联合体的形式表示一个复数,输入为自然顺序的复数(输入实数是可令复数虚部为0),输出为经过FFT变换的自然顺序的复数使用说明:使用此函数只需更改宏定义FFT_N的值即可实现点数的改变,FFT_N的应该为2的N次方,不满足此条件时应在后面补0函数调用:FFT(s);时间:2010-2-20版本:Ver1.0参考文献:**********************************************************************/#include<math.h>#define PI 3.1415926535897932384626433832795028841971 //定义圆周率值#define FFT_N 128 //定义福利叶变换的点数struct compx {float real,imag;}; //定义一个复数结构struct compx s[FFT_N]; //FFT输入和输出:从S[1]开始存放,根据大小自己定义/*******************************************************************函数原型:struct compx EE(struct compx b1,struct compx b2)函数功能:对两个复数进行乘法运算输入参数:两个以联合体定义的复数a,b输出参数:a和b的乘积,以联合体的形式输出*******************************************************************/struct compx EE(struct compx a,struct compx b){struct compx c;c.real=a.real*b.real-a.imag*b.imag;c.imag=a.real*b.imag+a.imag*b.real;return(c);}/*****************************************************************函数原型:void FFT(struct compx *xin,int N)函数功能:对输入的复数组进行快速傅里叶变换(FFT)输入参数:*xin复数结构体组的首地址指针,struct型*****************************************************************/void FFT(struct compx *xin){int f,m,nv2,nm1,i,k,l,j=0;struct compx u,w,t;nv2=FFT_N/2; //变址运算,即把自然顺序变成倒位序,采用雷德算法nm1=FFT_N-1;for(i=0;i<nm1;i++){if(i<j) //如果i<j,即进行变址{t=xin[j];xin[j]=xin[i];xin[i]=t;}k=nv2; //求j的下一个倒位序while(k<=j) //如果k<=j,表示j的最高位为1{j=j-k; //把最高位变成0k=k/2; //k/2,比较次高位,依次类推,逐个比较,直到某个位为0 }j=j+k; //把0改为1}{int le,lei,ip; //FFT运算核,使用蝶形运算完成FFT运算f=FFT_N;for(l=1;(f=f/2)!=1;l++) //计算l的值,即计算蝶形级数;for(m=1;m<=l;m++) // 控制蝶形结级数{ //m表示第m级蝶形,l为蝶形级总数l=log(2)Nle=2<<(m-1); //le蝶形结距离,即第m级蝶形的蝶形结相距le点lei=le/2; //同一蝶形结中参加运算的两点的距离u.real=1.0; //u为蝶形结运算系数,初始值为1u.imag=0.0;w.real=cos(PI/lei); //w为系数商,即当前系数与前一个系数的商w.imag=-sin(PI/lei);for(j=0;j<=lei-1;j++) //控制计算不同种蝶形结,即计算系数不同的蝶形结{for(i=j;i<=FFT_N-1;i=i+le) //控制同一蝶形结运算,即计算系数相同蝶形结{ip=i+lei; //i,ip分别表示参加蝶形运算的两个节点t=EE(xin[ip],u); //蝶形运算,详见公式xin[ip].real=xin[i].real-t.real;xin[ip].imag=xin[i].imag-t.imag;xin[i].real=xin[i].real+t.real;xin[i].imag=xin[i].imag+t.imag;}u=EE(u,w); //改变系数,进行下一个蝶形运算}}}}/************************************************************函数原型:void main()函数功能:测试FFT变换,演示函数使用方法输入参数:无输出参数:无************************************************************/void main(){int i;for(i=0;i<FFT_N;i++) //给结构体赋值{s[i].real=sin(2*3.141592653589793*i/FFT_N); //实部为正弦波FFT_N点采样,赋值为1 s[i].imag=0; //虚部为0}FFT(s); //进行快速福利叶变换for(i=0;i<FFT_N;i++) //求变换后结果的模值,存入复数的实部部分s[i].real=sqrt(s[i].real*s[i].real+s[i].imag*s[i].imag);while(1);}#include <iom128.h>#include <intrinsics.h>/*********************************************************************快速福利叶变换C程序包函数简介:此程序包是通用的快速傅里叶变换C语言函数,移植性强,以下部分不依赖硬件。
c语言快速傅里叶变
c语言快速傅里叶变快速傅里叶变换的实现可以使用递归或迭代两种方式:1. 递归实现递归版本的快速傅里叶变换(FFT)是一种标准实现方法,它的时间复杂度为O(n * log2(n))。
快速傅里叶变换的代码实现如下:```void fft(double complex* x, int n){if(n == 1)return;double complex odd[n/2], even[n/2];for(int i=0, j=0; i<n; i+=2, j++){even[j] = x[i];odd[j] = x[i+1];}fft(even, n/2);fft(odd, n/2);for(int i=0; i<n/2; i++){double complex t = cexp(-I * 2 * M_PI * i / n) * odd[i];x[i] = even[i] + t;x[i+n/2] = even[i] - t;}}```2. 迭代实现迭代实现 FFT 的主要思路是根据蝴蝶定理将一次变换的复杂度降为 O(n),多次迭代后复杂度为 O(n*logn)。
代码实现如下:```void fft(double complex* x, int n){int k = log2(n);double complex w[n/2];for (int i=0; i<n/2; i++)w[i] = cexp(-I * 2 * M_PI * i / n);for (int i=0; i<k; i++)for (int j=0; j<n; j++)if (!(j & (1<<i))){int x1 = j, x2 = j | (1<<i);double complex t = x[x2] * w[x2 & ((1<<i)-1)];x[x2] = x[x1] - t;x[x1] += t;}}```以上两种方式都是可行的,但是迭代实现方式更加快速。
C语言实现FFT
C语言实现FFT快速傅里叶变换(Fast Fourier Transform, FFT)是一种高效进行离散傅里叶变换(Discrete Fourier Transform, DFT)计算的算法。
它通过利用对称性和递归的方法,将O(n^2)的计算复杂度优化为O(nlogn)。
本文将介绍C语言实现FFT的基本步骤和代码。
首先,需要定义一个复数结构体来表示复数,包含实部和虚部两个成员变量:```ctypedef structdouble real; // 实部double imag; // 虚部```接着,需要实现FFT的关键函数,包括以下几个步骤:1. 进行位逆序排列(bit-reversal permutation):FFT中的输入数据需要按照位逆序排列,这里使用蝶形算法来实现位逆序排列。
先将输入序列按照索引位逆序排列,再将复数序列按照实部和虚部进行重新排列。
```cint i, j, k;for (i = 1, j = size / 2; i < size - 1; i++)if (i < j)temp = data[j];data[j] = data[i];data[i] = temp;}k = size / 2;while (j >= k)j=j-k;k=k/2;}j=j+k;}```2. 计算旋转因子(twiddle factor):FFT中的旋转因子用于对复数进行旋转变换,这里采用的旋转因子为e^( -2*pi*i/N ),其中N为DFT点数。
```cint i;double angle;for (i = 0; i < size; i++)angle = -2 * M_PI * i / size;twiddleFactors[i].real = cos(angle);twiddleFactors[i].imag = sin(angle);}```3.执行蝶形算法计算DFT:蝶形算法是FFT算法的核心部分,通过递归地将DFT问题一分为二,并将计算结果根据旋转因子进行两两合并,最终得到FFT结果。
快速傅里叶变换(FFT)算法C++实现代码
快速傅里叶变换(FFT)算法C++实现代码#include <math.h>#define DOUBLE_PI 6.283185307179586476925286766559// 快速傅里叶变换// data 长度为 (2 * 2^n), data 的偶位为实数部分, data 的奇位为虚数部分// isInverse表示是否为逆变换void FFT(double * data, int n, bool isInverse = false){int mmax, m, j, step, i;double temp;double theta, sin_htheta, sin_theta, pwr, wr, wi, tempr, tempi;n = 2 * (1 << n);int nn = n >> 1;// 长度为1的傅里叶变换, 位置交换过程j = 1;for(i = 1; i < n; i += 2){if(j > i){temp = data[j - 1];data[j - 1] = data[i - 1];data[i - 1] = temp;data[j] = temp;data[j] = data[i];data[i] = temp;}// 相反的二进制加法m = nn;while(m >= 2 && j > m){j -= m;m >>= 1;}j += m;}// Danielson - Lanczos 引理应用mmax = 2;while(n > mmax){step = mmax << 1;theta = DOUBLE_PI / mmax;if(isInverse){theta = -theta;}sin_htheta = sin(0.5 * theta);sin_theta = sin(theta);pwr = -2.0 * sin_htheta * sin_htheta;wr = 1.0;wi = 0.0;for(m = 1; m < mmax; m += 2){for(i = m; i <= n; i += step){j = i + mmax;tempr = wr * data[j - 1] - wi * data[j];tempi = wr * data[j] + wi * data[j - 1];data[j - 1] = data[i - 1] - tempr;data[j] = data[i] - tempi;data[i - 1] += tempr;data[i] += tempi;}sin_htheta = wr;wr = sin_htheta * pwr - wi * sin_theta + wr;wi = wi * pwr + sin_htheta * sin_theta + wi;}mmax = step;}}输入数据为data,data是一组复数,偶数位存储的是复数的实数部分,奇数位存储的是复数的虚数部分。
C语言编写FFT程序
DSP 课程作业用C 语言编写FFT 程序1,快速傅里叶变换FFT 简介快速傅氏变换(FFT ),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。
它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。
我们假设 x(n)为N 项的复数序列,由DFT 变换,任一X (m )的计算都需要N 次复数乘法和N-1次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出N 项复数序列的X (m ),即N 点DFT 变换大约就需要N^2次运算。
当N=1024点甚至更多的时候,需要N2=1048576次运算,在FFT 中,利用WN 的周期性和对称性,把一个N 项序列(设N=2k,k 为正整数),分为两个N/2项的子序列,每个N/2点DFT 变换需要(N/2)2次运算,再用N 次运算把两个N/2点的DFT 变换组合成一个N 点的DFT 变换。
这样变换以后,总的运算次数就变成N+2(N/2)2=N+N2/2。
继续上面的例子,N=1024时,总的运算次数就变成了525312次,节省了大约50%的运算量。
而如果我们将这种“一分为二”的思想不断进行下去,直到分成两两一组的DFT 运算单元,那么N 点的DFT 变换就只需要Nlog2N 次的运算,N 在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是FFT 的优越性。
2,FFT 算法的基本原理FFT 算法的基本思想:利用DFT 系数的特性,合并DFT 运算中的某些项,吧长序列的DFT —>短序列的DFT ,从而减少其运算量。
FFT 算法分类:时间抽选法DIT: Decimation-In-Time ;频率抽选法DIF: Decimation-In-Frequency按时间抽选的基-2FFT 算法1、算法原理设序列点数 N = 2L ,L 为整数。
快速傅里叶变换FFT的C程序代码实现
快速傅⾥叶变换FFT的C程序代码实现标签:傅⾥叶变换(27)C程序(60) ⼀、彻底理解傅⾥叶变换 快速傅⾥叶变换(Fast Fourier Transform)是离散傅⾥叶变换的⼀种快速算法,简称FFT,通过FFT可以将⼀个信号从时域变换到频域。
模拟信号经过A/D转换变为数字信号的过程称为采样。
为保证采样后信号的频谱形状不失真,采样频率必须⼤于信号中最⾼频率成分的2倍,这称之为采样定理。
假设采样频率为fs,采样点数为N,那么FFT结果就是⼀个N点的复数,每⼀个点就对应着⼀个频率点,某⼀点n(n从1开始)表⽰的频率为:fn=(n-1)*fs/N。
举例说明:⽤1kHz的采样频率采样128点,则FFT结果的128个数据即对应的频率点分别是0,1k/128,2k/128,3k/128,…,127k/128 Hz。
这个频率点的幅值为:该点复数的模值除以N/2(n=1时是直流分量,其幅值是该点的模值除以N)。
⼆、傅⾥叶变换的C语⾔编程 1、对于快速傅⾥叶变换FFT,第⼀个要解决的问题就是码位倒序。
假设⼀个N点的输⼊序列,那么它的序号⼆进制数位数就是t=log2N. 码位倒序要解决两个问题:①将t位⼆进制数倒序;②将倒序后的两个存储单元进⾏交换。
如果输⼊序列的⾃然顺序号i⽤⼆进制数表⽰,例如若最⼤序号为15,即⽤4位就可表⽰n3n2n1n0,则其倒序后j对应的⼆进制数就是n0n1n2n3,那么怎样才能实现倒序呢?利⽤C语⾔的移位功能! 程序如下,我不多说,看不懂者智商⼀定在180以下! 复数类型定义及其运算 #define N 64 //64点 #define log2N 6 //log2N=6 /*复数类型*/ typedef struct { float real; float img; }complex; complex xdata x[N]; //输⼊序列 /*复数加法*/ complex add(complex a,complex b) { complex c; c.real=a.real+b.real; c.img=a.img+b.img; return c; } /*复数减法*/ complex sub(complex a,complex b) { complex c; c.real=a.real-b.real; c.img=a.img-b.img; return c; } /*复数乘法*/ complex mul(complex a,complex b) { complex c; c.real=a.real*b.real - a.img*b.img; c.img=a.real*b.img + a.img*b.real; return c; } /***码位倒序函数***/ void Reverse(void) { unsigned int i,j,k; unsigned int t; complex temp;//临时交换变量 for(i=0;i<N;i++)//从第0个序号到第N-1个序号 { k=i;//当前第i个序号 j=0;//存储倒序后的序号,先初始化为0 for(t=0;t<log2N;t++)//共移位t次,其中log2N是事先宏定义算好的 { j<<=1; j|=(k&1);//j左移⼀位然后加上k的最低位 k>>=1;//k右移⼀位,次低位变为最低位 } if(j>i)//如果倒序后⼤于原序数,就将两个存储单元进⾏交换(判断j>i是为了防⽌重复交换) { temp=x; x=x[j]; x[j]=temp; } } } 2、第⼆个要解决的问题就是蝶形运算 ①第1级(第1列)每个蝶形的两节点“距离”为1,第2级每个蝶形的两节点“距离”为2,第3级每个蝶形的两节点“距离”为4,第4级每个蝶形的两节点“距离”为8。
fft 滤波算法 c
FFT(快速傅里叶变换)滤波算法是一种在信号处理中常用的技术,用于分析信号的频谱。
它是一种快速算法,可以有效地计算离散傅里叶变换(DFT)和其逆变换。
以下是一个使用C语言实现的基本FFT滤波算法:```c#include <stdio.h>#include <math.h>#include <complex.h>#include <math_constants.h>void fft(double complex buf[], int n, int step) {if (step < n) {fft(buf, n, step * 2);fft(buf + step, n, step * 2);for (int i = 0; i < n; i += 2 * step) {double complex t = cexp(-I * M_PI * i / n) * buf[i + step];buf[i / 2] = buf[i] + t;buf[(i + n)/2] = buf[i] - t;}}}void ifft(double complex buf[], int n, int step) {if (step < n) {ifft(buf, n, step * 2);ifft(buf + step, n, step * 2);for (int i = 0; i < n; i += 2 * step) {double complex t = cexp(I * M_PI * i / n) * buf[i + step];buf[i / 2] = buf[i] + t;buf[(i + n)/2] = buf[i] - t;}}}```以上代码中,`fft`函数实现了正向FFT变换,`ifft`函数实现了逆向FFT变换。
这两个函数都接受一个复数数组`buf`,数组的长度`n`以及递归的深度`step`。
fft快速傅里叶变换c语言实现
fft快速傅里叶变换c语言实现#include#include#include#define N 1000/*定义复数类型*/typedef struct{double real;double img;}complex;complex x[N], *W; /*输入序列,变换核*/int size_x=0; /*输入序列的大小,在本程序中仅限2的次幂*/ double PI; /*圆周率*/void fft(); /*快速傅里叶变换*/void initW(); /*初始化变换核*/void change(); /*变址*/void add(complex ,complex ,complex *); /*复数加法*/void mul(complex ,complex ,complex *); /*复数乘法*/void sub(complex ,complex ,complex *); /*复数减法*/void output();int main(){int i; /*输出结果*/system("cls");PI=atan(1)*4;printf("Please input the size of x:\n");scanf("%d",&size_x);printf("Please input the data in x[N]:\n");for(i=0;i<size_x;i++)< p="">scanf("%lf%lf",&x[i].real,&x[i].img);initW();fft();output();return 0;}/*快速傅里叶变换*/void fft(){int i=0,j=0,k=0,l=0;complex up,down,product;change();for(i=0;i< log(size_x)/log(2) ;i++){ /*一级蝶形运算*/ l=1<<i;< p="">for(j=0;j<="" p="">for(k=0;k<="" p="">mul(x[j+k+l],W[size_x*k/2/l],&product);add(x[j+k],product,&up);sub(x[j+k],product,&down);x[j+k]=up;x[j+k+l]=down;}}}}/*初始化变换核*/void initW(){int i;W=(complex *)malloc(sizeof(complex) * size_x); for(i=0;i<size_x;i++){< p="">W[i].real=cos(2*PI/size_x*i);W[i].img=-1*sin(2*PI/size_x*i);}}/*变址计算,将x(n)码位倒置*/void change(){complex temp;unsigned short i=0,j=0,k=0;double t;for(i=0;i<size_x;i++){< p="">k=i;j=0;t=(log(size_x)/log(2));while( (t--)>0 ){j=j<<1;j|=(k & 1);k=k>>1;}if(j>i){temp=x[i];x[i]=x[j];x[j]=temp;}}}/*输出傅里叶变换的结果*/void output(){int i;printf("The result are as follows\n");for(i=0;i<size_x;i++){< p="">printf("%.4f",x[i].real);if(x[i].img>=0.0001)printf("+%.4fj\n",x[i].img); else if(fabs(x[i].img)<0.0001)printf("\n");else printf("%.4fj\n",x[i].img);}}void add(complex a,complex b,complex *c){ c->real=a.real+b.real;c->img=a.img+b.img;}void mul(complex a,complex b,complex *c){ c->real=a.real*b.real - a.img*b.img;c->img=a.real*b.img + a.img*b.real;}void sub(complex a,complex b,complex *c){ c->real=a.real-b.real;c->img=a.img-b.img;}</size_x;i++){<></size_x;i++){<></size_x;i++){<></i;<></size_x;i++)<>。
快速傅里叶变换(fft)及其逆变换(iff)的c代码实现
快速傅⾥叶变换(fft)及其逆变换(iff)的c代码实现#define float sample_t// data的长度为n,必须是2的指数倍,result的长度为2n,其中奇数项保存虚数,偶数项保存的是实数int fft(sample_t *data, int sample_number, sample_t *result){// 需要给奇数部分填充虚数0for(int i = 0; i < sample_number; ++i){result[2*i] = data[i];result[2*i+1] = 0;}int flag = 1;flag = fft_ifft_implement(result, sample_number, flag);return flag;}// data的长度是2n,result的长度为n,n必须是2的指数倍int ifft(sample_t *data, int sample_number, sample_t *result){int flag = -1;flag = fft_ifft_implement(data, sample_number, flag);// 奇数部分是虚数,需要舍弃for (int i = 0; i < sample_number; i++){result[i] = data[2*i] / sample_number;}return flag;}static int fft_ifft_implement(sample_t *data, int sample_number, int flag){// 判断样本个数是不是2的指数倍,如果不是能否补零成指数倍?sample_t number_log = log(sample_number) / log(2);int mmax = 2, j=0;int n = sample_number<<1;int istep, m;sample_t theta, wtemp, wpr, wpi, wr, wi, tempr, tempi;if (((int)number_log - number_log) != 0){return 0;}for(int i = 0; i < n-1; i=i+2){if(j > i){swap(data, j ,i);swap(data, j + 1 ,i + 1);}m = n / 2;while(m >= 2 && j >= m){j = j - m;m = m / 2;}j = j + m;}while(n > mmax){istep = mmax<<1;theta = -2 * PI / (flag * mmax);wtemp = sin(0.5 * theta);wpr = -2.0 * wtemp * wtemp;wpi = sin(theta);wr = 1.0;wi = 0.0;for(int m = 1; m < mmax; m = m + 2){for(int i = m; i < n + 1; i = i + istep){int j = i + mmax;tempr = wr * data[j-1] - wi * data[j];tempi = wr * data[j] + wi * data[j-1];data[j-1] = data[i-1] - tempr;data[j] = data[i] - tempi;data[i-1] += tempr;data[i] += tempi;}wtemp = wr;wr += wr * wpr - wi * wpi;wi += wi * wpr + wtemp * wpi;}mmax = istep;}return 1;}static void swap(sample_t *data ,int m, int n) {sample_t temp = data[m];data[m] = data[n];data[n] = temp;}。
C语言实现FFT变换
C语言实现FFT变换FFT(快速傅里叶变换)是一种高效的算法,用于将时域信号转换为频域信号。
在C语言中,可以使用以下步骤实现FFT变换。
1.首先,需要定义复数结构体,用于表示实部和虚部。
```ctypedef structdouble real;double imag;```2.实现一个函数来进行复数的乘法操作。
```cresult.real = a.real * b.real - a.imag * b.imag;result.imag = a.real * b.imag + a.imag * b.real;return result;```3.编写一个函数来执行FFT变换。
```c//基线条件if (n == 1)return;}//分解信号for (int i = 0; i < n / 2; i++) even[i] = x[2 * i];odd[i] = x[2 * i + 1];}//递归计算FFTfft(even, n / 2, is_inverse);fft(odd, n / 2, is_inverse);//合并结果double angle = 2 * PI / n;if (is_inverse)angle = -angle;}for (int k = 0; k < n / 2; k++)x[k] = add(even[k], t);x[k + n / 2] = subtract(even[k], t); w = multiply(w, wn);}//释放内存free(even);free(odd);```4.编写一个函数来计算FFT结果的模值。
```cdouble* magnitude = (double*)malloc(n * sizeof(double));for (int i = 0; i < n; i++)magnitude[i] = sqrt(x[i].real * x[i].real + x[i].imag * x[i].imag);}return magnitude;```5.在主函数中使用上述函数进行FFT变换。
fft c语言程序
fft c语言程序快速傅里叶变换(Fast Fourier Transform,FFT)是一种计算机算法,它能够将一个离散的时间域信号转换为频谱域信号。
FFT算法是一种高效的计算傅里叶变换的方法,可以大大加快计算速度。
FFT算法是由高效的分治策略设计得来的。
它将傅里叶变换的计算分解为多个较小规模的子问题,然后逐步合并这些子问题的计算结果,最终得到原始问题的解。
因此,FFT算法的时间复杂度为O(n log n),其中n表示信号的长度。
相比之下,传统的傅里叶变换算法的时间复杂度为O(n^2),因此FFT算法在处理大规模信号时具有较大的优势。
在C语言中,我们可以使用库函数来实现FFT算法。
这些库函数通常提供了一些基本的操作,例如初始化FFT对象、进行离散傅里叶变换、进行逆变换等。
以下是一个简单的C语言程序,用于实现FFT算法:```c#include <stdio.h>#include <stdlib.h>#include <math.h>#include <complex.h>//计算离散傅里叶变换void fft(double complex buf[], int n){if (n <= 1)return;double complex *even = malloc(n / 2 * sizeof(double complex));double complex *odd = malloc(n / 2 * sizeof(double complex));for (int i = 0; i < n / 2; i++){even[i] = buf[2 * i];odd[i] = buf[2 * i + 1];}fft(even, n / 2);fft(odd, n / 2);for (int k = 0; k < n / 2; k++){double complex t = cexp(-I * 2 * M_PI * k / n) * odd[k]; buf[k] = even[k] + t;buf[k + n / 2] = even[k] - t;}free(even);free(odd);}//打印复数数组void print_complex(double complex buf[], int n){for (int i = 0; i < n; i++){printf("%.2f + %.2fi\n", creal(buf[i]), cimag(buf[i]));}}int main(void){int n = 8;double complex buf[] = {1.0 + 0.0 * I, 1.0 + 0.0 * I, 1.0 + 0.0 * I, 1.0 + 0.0 * I,0.0 + 0.0 * I, 0.0 + 0.0 * I, 0.0 + 0.0 * I, 0.0 + 0.0 * I};fft(buf, n);print_complex(buf, n);return 0;}```这个程序定义了两个函数:`fft`和`print_complex`。
fft快速傅里叶变换c语言
fft快速傅里叶变换c语言快速傅里叶变换(FFT)是一种在计算离散傅里叶变换(DFT)及其逆变换时非常有效的算法。
在C语言中实现FFT,需要理解FFT的基本原理和步骤,包括位反转、分治和蝶形运算等。
以下是一个简单的FFT实现,使用了Cooley-Tukey的算法:```cinclude <>include <>include <>define PIvoid fft(complex double a, int n) {if (n <= 1) return;complex double a0[n/2], a1[n/2];for (int i = 0; i < n/2; i++) {a0[i] = a[i2];a1[i] = a[i2 + 1];}fft(a0, n/2);fft(a1, n/2);for (int k = 0; k < n/2; k++) {complex double t = cexp(-IPIk/n) a1[k];a[k] = a0[k] + t;a[k + n/2] = a0[k] - t;}}int main() {int N = 8; // 输入的点数,必须是2的幂complex double x[N]; // 输入数据,即要进行FFT的序列for (int i = 0; i < N; i++) {x[i] = i; // 例如,输入为简单的等差序列 0, 1, 2, 3, 4, 5, 6, 7}fft(x, N); // 进行FFT变换for (int i = 0; i < N; i++) {printf("%f + %fi\n", creal(x[i]), cimag(x[i])); // 输出FFT的结果,即序列的频域表示}return 0;}```这个程序首先定义了一个`fft`函数,它接受一个复数数组和数组的大小作为参数。
快速傅里叶变换 FFT 上机程序 c语言
#include<math.h>#include<iostream.h>#include<iomanip.h>#define swap(a,b) {float T; T=(a);(a)=b;(b)=T;}void fft(float A[],float B[],unsigned M) //蝶形运算程序,A存实部,B存虚部,M是级数{unsigned long N,I,J,K,L,LE,LE1,P,Q,R;float Wr,Wi,Wlr,Wli,WTr,WTi,theta,Tr,Ti;N=1<<M;//N=1<<M表示N=2^MJ=0;for (I=0;I<N-1;I++)//for循环负责码位倒置存储{if(J<I){swap(A[I],A[J]);swap(B[I],B[J]);}K=N>>1;// K=N>>1表示K=N/2while (K>=2&&J>=K)//while循环表示须向次高位进一位{J-=K;K>>=1;//K>>=1表示K=K/2}J+=K;}for(L=1;L<=M;L++)//for循环为M级FFT运算,外层循环由级数L控制,执行M次{LE=1<<L;// LE=1<<L表示2^L,是群间隔LE1=LE/2; //每个群的系数W数目Wr=1.0;Wi=0.0;theta=(-1)*3.1415926536/LE1;Wlr=cos(theta);Wli=sin(theta);for(R=0;R<LE1;R++)//中层循环由群系数控制{for(P=R;P<N-1;P+=LE)//R是群系数的编号,P、Q是基本蝶形运算两个输入数据在数组中的编号,循环每次完成同一个系数的蝶形运算{Q=P+LE1;Tr=Wr*A[Q]-Wi*B[Q];Ti=Wr*B[Q]+Wi*A[Q];A[Q]=A[P]-Tr;B[Q]=B[P]-Ti;A[P]+=Tr;B[P]+=Ti;}WTr=Wr;WTi=Wi;Wr=WTr*Wlr-WTi*Wli;Wi=WTr*Wli+WTi*Wlr;}}return;}}void main()//主程序{int i,M,N,lb;cout<<"请输入转换类别(若为FFT,请输入1;若为IFFT,请输入0)"<<endl;//确定转换类别cin>>lb;cout<<"请输入序列长度N"<<endl;cin>>N;float *A= new float[N];float *B= new float[N];M=log(N)/log(2);cout<<"请输入序列的实部"<<endl;//输入序列实部for(i=0;i<N;i++){cin>>A[i];}cout<<"请输入序列的虚部"<<endl;//输入序列虚部for(i=0;i<N;i++){cin>>B[i];}cout << setiosflags(ios::fixed);//输出格式控制cout<<"您输入的序列为"<<endl;cout << setiosflags(ios::fixed);for(i=0;i<N;i++)cout<<A[i]<<"+j"<<B[i]<<endl;cout<<endl;if(lb==0){for(i=0;i<N;i++){B[i]=B[i]*(-1);}fft(A,B,M);for(i=0;i<N;i++){B[i]=B[i]*(-1);}for(i=0;i<N;i++){A[i]=A[i]/N;B[i]=B[i]/N;}}if(lb==1)fft(A,B,M);cout<<"转换后的序列为"<<endl;//输出序列for(i=0;i<N;i++)cout<<A[i]<<"+j("<<B[i]<<")"<<endl;cout<<endl;delete []A;delete []B;}。
C语言实现FFT变换..
#include <iom128.h>#include <intrinsics.h>/*********************************************************************快速福利叶变换C函数函数简介:此函数是通用的快速傅里叶变换C语言函数,移植性强,以下部分不依赖硬件。
此函数采用联合体的形式表示一个复数,输入为自然顺序的复数(输入实数是可令复数虚部为0),输出为经过FFT变换的自然顺序的复数使用说明:使用此函数只需更改宏定义FFT_N的值即可实现点数的改变,FFT_N的应该为2的N次方,不满足此条件时应在后面补0函数调用:FFT(s);时间:2010-2-20版本:Ver1.0参考文献:**********************************************************************/#include<math.h>#define PI 3.1415926535897932384626433832795028841971 //定义圆周率值#define FFT_N 128 //定义福利叶变换的点数struct compx {float real,imag;}; //定义一个复数结构struct compx s[FFT_N]; //FFT输入和输出:从S[1]开始存放,根据大小自己定义/*******************************************************************函数原型:struct compx EE(struct compx b1,struct compx b2)函数功能:对两个复数进行乘法运算输入参数:两个以联合体定义的复数a,b输出参数:a和b的乘积,以联合体的形式输出*******************************************************************/struct compx EE(struct compx a,struct compx b){struct compx c;c.real=a.real*b.real-a.imag*b.imag;c.imag=a.real*b.imag+a.imag*b.real;return(c);}/*****************************************************************函数原型:void FFT(struct compx *xin,int N)函数功能:对输入的复数组进行快速傅里叶变换(FFT)输入参数:*xin复数结构体组的首地址指针,struct型*****************************************************************/void FFT(struct compx *xin){int f,m,nv2,nm1,i,k,l,j=0;struct compx u,w,t;nv2=FFT_N/2; //变址运算,即把自然顺序变成倒位序,采用雷德算法nm1=FFT_N-1;for(i=0;i<nm1;i++){if(i<j) //如果i<j,即进行变址{t=xin[j];xin[j]=xin[i];xin[i]=t;}k=nv2; //求j的下一个倒位序while(k<=j) //如果k<=j,表示j的最高位为1{j=j-k; //把最高位变成0k=k/2; //k/2,比较次高位,依次类推,逐个比较,直到某个位为0 }j=j+k; //把0改为1}{int le,lei,ip; //FFT运算核,使用蝶形运算完成FFT运算f=FFT_N;for(l=1;(f=f/2)!=1;l++) //计算l的值,即计算蝶形级数;for(m=1;m<=l;m++) // 控制蝶形结级数{ //m表示第m级蝶形,l为蝶形级总数l=log(2)Nle=2<<(m-1); //le蝶形结距离,即第m级蝶形的蝶形结相距le点lei=le/2; //同一蝶形结中参加运算的两点的距离u.real=1.0; //u为蝶形结运算系数,初始值为1u.imag=0.0;w.real=cos(PI/lei); //w为系数商,即当前系数与前一个系数的商w.imag=-sin(PI/lei);for(j=0;j<=lei-1;j++) //控制计算不同种蝶形结,即计算系数不同的蝶形结{for(i=j;i<=FFT_N-1;i=i+le) //控制同一蝶形结运算,即计算系数相同蝶形结{ip=i+lei; //i,ip分别表示参加蝶形运算的两个节点t=EE(xin[ip],u); //蝶形运算,详见公式xin[ip].real=xin[i].real-t.real;xin[ip].imag=xin[i].imag-t.imag;xin[i].real=xin[i].real+t.real;xin[i].imag=xin[i].imag+t.imag;}u=EE(u,w); //改变系数,进行下一个蝶形运算}}}}/************************************************************函数原型:void main()函数功能:测试FFT变换,演示函数使用方法输入参数:无输出参数:无************************************************************/void main(){int i;for(i=0;i<FFT_N;i++) //给结构体赋值{s[i].real=sin(2*3.141592653589793*i/FFT_N); //实部为正弦波FFT_N点采样,赋值为1 s[i].imag=0; //虚部为0}FFT(s); //进行快速福利叶变换for(i=0;i<FFT_N;i++) //求变换后结果的模值,存入复数的实部部分s[i].real=sqrt(s[i].real*s[i].real+s[i].imag*s[i].imag);while(1);}#include <iom128.h>#include <intrinsics.h>/*********************************************************************快速福利叶变换C程序包函数简介:此程序包是通用的快速傅里叶变换C语言函数,移植性强,以下部分不依赖硬件。
用c语言实现的FFT
一、对FFT得介绍1、 FFT(Fast Fourier Transformation),即为快速傅里叶变换,就是离散傅里叶变换得快速算法,它就是根据离散傅里叶变换得奇、偶、虚、实等特性,对离散傅里叶变换得算法进行改进获得得。
2、FFT算法得基本原理FFT算法就是把长序列得DFT逐次分解为较短序列得DFT。
按照抽取方式得不同可分为DIT-FFT(按时间抽取)与DIF-FFT(按频率抽取)算法。
按蝶形运算得构成不同可分为基2,基4,基8,以及任意因子得类型。
3、迭代关系4、本次程序得基本过程我们这次所研究得就是数字信号处理中得FFT算法,我们这次所用得数字信号就是复数类型得。
(1)所以首先,我们先定义了一个复数结构体,因为就是进行复数得运算,我们又相继定义复数得加减乘运算得函数。
(2)紧接着,我们定义了进行FFT计算得fft()快速傅里叶变换函数initW() 初始化变换核函数即旋转因子得计算,change() 变址函数,output()输出傅里叶变换得结果得函数。
(3)定义主函数,并调用定义好得相关子函数,利用fft()中得蝶形运算以及change()函数来完成从时间域上选取得DIT-FFT。
EbodE。
二、FFT中码位倒置排序1、码位倒置得实现方法:(1)简单得利用按位与、或循环实现(2)利用公式推导得迭代方法2、为什么要进行码位倒置因为由于FFT得计算特性,如果按照正常顺序输入,而没有进行码位倒置得话,就会以乱序输出,就不便于我们后续对信号得相关性质进行研究了,所以DIT-FFT算法就就是在进行FFT计算之前,进行分奇偶后得码位倒置运算,即二进制数得倒位。
3、倒位序由奇偶分组造成,以N=8为例,说明如下:rAY2v。
三、蝶形运算由按照上述公式得规律进行逐级分解,直到2点DFT,如下就是N=8时得蝶形算法分析图:四、FFT算法中蝶形算法得基本思想分析(1)我们知道N点FFT运算可以分成log2(N)级,每一级都有N/2个碟形,FFT得基本思想就是用3层循环完成全部运算(N点FFT)。
实验七快速傅立叶变换(FFT)算法的DSP实现(C语言)
实验七快速傅⽴叶变换(FFT)算法的DSP实现(C语⾔)实验七快速傅⽴叶变换(FFT )算法的DSP 实现(C 语⾔)⼀、实验⽬的1.掌握FFT 算法的基本思想。
2.掌握利⽤ CCS 软件中的dsplib 库进⾏fft 算法的程序设计⼆、实验环境1.奔腾IV 计算机2.Code Composer Studio (CCS)软件三、实验原理1.FFT 算法的基本思想对于序列 x[n](0≤n ≤N-1),其频谱为:X(k)=DFT[x(n)]=∑-=10)(N n kn N Wn x (0≤n ≤N-1),其中:旋转因⼦---=-N j N e W π2在x[n]为复数序列的情况下,完全可以直接运算N 点DFT 需要(N-1)2次复数乘法和N (N-1)次复数加法。
因此,对于⼀些相当⼤的N 值来说,直接计算它的DFT 所需计算量很⼤。
FFT (快速傅⽴叶变换)的基本思想为:将原来的N 点序列最终分成分成两点为⼀组序列,并将这些序列的DFT 通过蝶形运算(见下图)组合起来得到原序列的DFT 。
N 点FFT 仅需 N N 2log 2次复数乘法和N N 2log 次复数加法。
图1 8点FFT 运算流图2. ccs 软件中dsplib (信号处理库)简介TMS320C54X 系列函数库(DSPLIB )是对C 语⾔编程可调⽤优化的DSP 函数库,它含有50个通⽤⽬的的信号处理程序,全部由汇编语⾔编写,并可由C 语⾔调⽤,⽅便C 语⾔与汇编语⾔混合编程。
这些程序⽤在计算强度⼤、执⾏速度重要的实时运算中。
通过使⽤这些程序,可以取得较⽤C 语⾔编写的相关程序快的多的运⾏速度,另外通过使⽤现成的程序可以使开发速度⼤⼤加快。
DSPLIB 可进⾏的运算有:FFT 运算、滤波与卷积运算、⾃适应滤波运算、相关运算、数学函数运算、三⾓函数运算、矩阵运算等。
dsplib 位于C:\ti\c5400\dsplib其⽤户⼿册为:TMS320C54x dsp library programer's reference.pdf三、实验内容1.信号x(n)是2个频率分别为1kHz 和2kHz 余弦信号的合成,取样频率为fs=16000Hz,采⽤FFT 对该信号进⾏频域分析。
c语言快速傅里叶变换处理数据
c语言快速傅里叶变换处理数据快速傅里叶变换(FFT)是一种用于处理数字信号的强大算法。
在C语言中,使用FFT可以对声音、图像、视频等数字信号进行处理和分析。
本文将介绍如何使用C语言进行快速傅里叶变换处理数据。
第一步是导入必要的头文件。
在C语言中,我们使用math.h头文件来进行数学运算,使用stdio.h头文件进行输入输出。
同时,我们需要使用一个专门的FFT库,例如FFTW或KISSFFT。
这些库可以在网上下载并导入到我们的程序中。
第二步是定义并初始化数据。
我们可以通过输入或读取文件来获取数据。
在本例中,我们将使用以下数组作为示例数据:float data[8] = {0, 1, 2, 3, 4, 3, 2, 1};第三步是使用FFT库进行FFT变换。
在这个例子中,我们使用FFTW库。
我们需要定义一个FFTW计划,然后使用fftw_plan_dft_1d 函数将数据传递给计划。
fftw_complex *fft_result;fftw_plan plan;fft_result = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * n);plan = fftw_plan_dft_1d(n, in, fft_result, FFTW_FORWARD, FFTW_ESTIMATE);fftw_execute(plan);第四步是对FFT结果进行后处理。
一般来说,处理后的FFT结果包括幅度谱和相位谱。
幅度谱表示信号中不同频率成分的强度,而相位谱表示这些频率成分之间的相对相位差。
我们可以使用以下代码来计算幅度谱:for (i = 0; i < n; i++) {double amplitude = sqrt(pow(fft_result[i][0], 2) +pow(fft_result[i][1], 2));printf('%d Hz: %f', i*fs/n, amplitude);}这段代码将输出不同频率成分的幅度。
fft c语言代码
以下是使用C语言实现快速傅里叶变换(FFT)的示例代码:c复制代码#include<stdio.h>#include<math.h>#define PI 3.14void fft(double* x, double* out, int n) {if (n == 1) {out[0] = x[0];return;}double w_n = 2 * PI / n;double w_m = exp(-1j * w_n / 2);double w = 1.0;for (int k = 0; k < n / 2; k++) {double t = w * x[2 * k];out[k] = t + x[2 * k + 1];out[k + n / 2] = t - x[2 * k + 1];w *= w_m;}fft(x, out, n / 2);fft(&x[n / 2], &out[n / 2], n / 2);}int main() {int n = 8; // 输入序列长度为8double x[] = {1, 1, 1, 1, 0, 0, 0, 0}; // 输入序列double out[n]; // 输出序列fft(x, out, n); // 进行FFT变换for (int i = 0; i < n; i++) {printf("%f ", out[i]); // 输出FFT变换结果}printf("\n");return0;}以上代码中,fft函数实现了快速傅里叶变换,main函数用于测试。
在fft函数中,首先判断序列长度是否为1,如果是则直接返回序列本身;否则,将序列分为奇数位和偶数位两个子序列,分别进行FFT变换,然后将两个子序列的FFT结果进行合并。
在循环中,使用w表示旋转因子,w_n表示旋转角度,w_m表示旋转因子的乘积因子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define N 1000
/*定义复数类型*/
typedef struct{
double real;
double img;
}complex;
complex x[N], *W; /*输入序列,变换核*/
int size_x=0; /*输入序列的大小,在本程序中仅限2的次幂*/ double PI; /*圆周率*/
void fft(); /*快速傅里叶变换*/
void initW(); /*初始化变换核*/
void change(); /*变址*/
void add(complex ,complex ,complex *); /*复数加法*/
void mul(complex ,complex ,complex *); /*复数乘法*/
void sub(complex ,complex ,complex *); /*复数减法*/
void output();
int main(){
int i; /*输出结果*/
system("cls");
PI=atan(1)*4;
printf("Please input the size of x:\n");
scanf("%d",&size_x);
printf("Please input the data in x[N]:\n");
for(i=0;i<size_x;i++)
scanf("%lf%lf",&x[i].real,&x[i].img);
initW();
fft();
output();
return 0;
}
/*快速傅里叶变换*/
void fft(){
int i=0,j=0,k=0,l=0;
complex up,down,product;
change();
for(i=0;i< log(size_x)/log(2) ;i++){ /*一级蝶形运算*/ l=1<<i;
for(j=0;j<size_x;j+= 2*l ){ /*一组蝶形运算*/
for(k=0;k<l;k++){ /*一个蝶形运算*/
mul(x[j+k+l],W[size_x*k/2/l],&product);
add(x[j+k],product,&up);
sub(x[j+k],product,&down);
x[j+k]=up;
x[j+k+l]=down;
}
}
}
}
/*初始化变换核*/
void initW(){
int i;
W=(complex *)malloc(sizeof(complex) * size_x); for(i=0;i<size_x;i++){
W[i].real=cos(2*PI/size_x*i);
W[i].img=-1*sin(2*PI/size_x*i);
}
}
/*变址计算,将x(n)码位倒置*/
void change(){
complex temp;
unsigned short i=0,j=0,k=0;
double t;
for(i=0;i<size_x;i++){
k=i;j=0;
t=(log(size_x)/log(2));
while( (t--)>0 ){
j=j<<1;
j|=(k & 1);
k=k>>1;
}
if(j>i){
temp=x[i];
x[i]=x[j];
x[j]=temp;
}
}
}
/*输出傅里叶变换的结果*/
void output(){
int i;
printf("The result are as follows\n");
for(i=0;i<size_x;i++){
printf("%.4f",x[i].real);
if(x[i].img>=0.0001)printf("+%.4fj\n",x[i].img);
else if(fabs(x[i].img)<0.0001)printf("\n");
else printf("%.4fj\n",x[i].img);
}
}
void add(complex a,complex b,complex *c){ c->real=a.real+b.real;
c->img=a.img+b.img;
}
void mul(complex a,complex b,complex *c){ c->real=a.real*b.real - a.img*b.img;
c->img=a.real*b.img + a.img*b.real;
}
void sub(complex a,complex b,complex *c){ c->real=a.real-b.real;
c->img=a.img-b.img;
}。