天津中考数学培优专题复习二次函数练习题
初中数学天津市中考模拟数学题型专项复习训练含答案二次函数与线段问题.docx
![初中数学天津市中考模拟数学题型专项复习训练含答案二次函数与线段问题.docx](https://img.taocdn.com/s3/m/4e0b95b8844769eae109ed88.png)
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx 分)试题1:已知抛物线经过点A(-1,0)、B(3,0)、C(0,-3).(Ⅰ)求抛物线的解析式及其顶点D的坐标;(Ⅱ)直线CD交x轴于点E,过抛物线上在对称轴右边的点P,作y轴的平行线交x轴于点F,交直线CD于点M,使PM=EF,请求出点P的坐标;(Ⅲ)将抛物线沿对称轴平移,要使抛物线与(Ⅱ)中的线段EM总有交点,那么抛物线向上最多平移多少个单位长度?向下最多平移多少个单位长度?试题2:已知抛物线y=(x-3)2-1与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(Ⅰ)试求点A,B,D的坐标;(Ⅱ)连接CD,过原点O作OE⊥CD与抛物线的对称轴交于点E,求OE的长;(Ⅲ)以(Ⅱ)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标.试题3:已知抛物线y=-x2-x+与x轴交于A,C两点(点A在点C的左边),直线y=kx+b(k≠0)分别交x轴,y轴于A,B两点,且除了点A之外,该直线与抛物线没有其他任何交点.(Ⅰ)求A,C两点的坐标;(Ⅱ)求k,b的值;(Ⅲ)设点P是抛物线上的动点,过点P作直线y=kx+b(k≠0)的垂线,垂足为H,交抛物线的对称轴于点D,求PH+DH的最小值,并求出此时点P的坐标.试题4:.已知,一抛物线过原点和点A(1,),与x轴交于点B,△AOB的面积为.(Ⅰ)求过点A、O、B的抛物线解析式;(Ⅱ)在抛物线的对称轴上找到一点M,使得△AOM的周长最小,求△AOM周长的最小值;(Ⅲ)点F为x轴上一动点,过点F作x轴的垂线,交直线AB于点E,交抛物线于点P,是否存在点F,使线段PE=?若存在,直接写出点F的坐标;若不存在,请说明理由.试题5:.已知直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(Ⅰ)求二次函数的表达式;(Ⅱ)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(Ⅲ)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F、E的坐标.试题6:已知抛物线y=-x2+bx+c与x轴交于A(-1,0),B(-3,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;(Ⅲ)点Q是直线BC上方抛物线上的动点,求点Q到直线BC的距离最大时点Q的坐标.试题7:已知,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(-4,0)、B(0,3),抛物线y=-x2+2x+1与y轴交于点C.(Ⅰ)求直线y=kx+b的函数解析式;(Ⅱ)若点P(m,t)是抛物线y=-x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时m的值;(Ⅲ)若点E在抛物线y=-x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.试题8:.已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N,若-1≤a≤-,求线段MN长度的取值范围;试题9:已知二次函数的解析式为y=-x2+4x,该二次函数交x轴于O、B两点,A为抛物线上一点,且横纵坐标相等(原点除外),P为二次函数上一动点,过P作x轴垂线,垂足为D(a,0)(a>0),并与直线OA交于点C.(Ⅰ)求A、B两点的坐标;(Ⅱ)当点P在线段OA上方时,过P作x轴的平行线与线段OA相交于点E,求△PCE周长的最大值及此时P点的坐标;(Ⅲ)当PC=CO时,求P点坐标.试题10:已知抛物线y=ax2+bx+c经过点A(-3,0)、B(0,3)、C(1,0)三点.(Ⅰ)求抛物线的解析式和它的顶点坐标;(Ⅱ)若在该抛物线的对称轴l上存在一点M,使MB+MC的值最小,求点M的坐标以及MB+MC的最小值;(Ⅲ)若点P、Q分别是抛物线的对称轴l上两动点,且纵坐标分别为m,m+2,当四边形CBQP周长最小时,求出此时点P、Q 的坐标以及四边形CBQP周长的最小值.试题11:已知二次函数y=ax2+bx+c(a≠0)的图象交x轴于A,B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(Ⅰ)求二次函数的解析式和直线BD的解析式;(Ⅱ)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(Ⅲ)在抛物线上是否存在异于B,D的点Q,使△BDQ中BD边上的高为,若存在,求出点Q的坐标;若不存在,请说明理由.试题1答案:解:(Ⅰ)设抛物线解析式为y=a(x+1)(x-3),把点C(0,-3)代入得:a×1×(-3)=-3,解得a=1,∴抛物线解析式为y=(x+1)(x-3),即y=x2-2x-3,∵y=x2-2x-3=(x-1)2-4,∴顶点D的坐标为(1,-4);(Ⅱ)如解图,设直线CD的解析式为y=kx+b,把点C(0,-3),D(1,-4)代入得,解得,∴直线CD的解析式为y=-x-3,当y=0时,-x-3=0,解得x=-3,则E(-3,0),设P(t,t2-2t-3)(t>1),则M(t,-t-3),F(t,0),∴EF=t+3,PM=t2-2t-3-(-t-3)=t2-t,而PM=EF,∴t2-t=(t+3),整理得5t2-7t-6=0,解得t1=-(舍去),t2=2,当t=2时,t2-2t-3=22-2×2-3=-3,∴点P坐标为(2,-3);第1题解图(Ⅲ)当t=2时,点M的坐标为(2,-5),设平移后的抛物线解析式为y=x2-2x-3+m,当抛物线y=x2-2x-3+m与直线y=-x-3有唯一公共点时,令方程x2-2x-3+m=-x-3,即x2-x+m=0有两个相等的实数解, 则b2-4ac=1-4m=0,解得m=;若抛物线y=x2-2x-3+m经过点M(2,-5),则4-4-3+m=-5,解得m=-2;若抛物线y=x2-2x-3+m经过点E(-3,0),则9-2×(-3)-3+m=0,解得m=-12,∴抛物线向上最多平移个单位长度,向下最多平移12个单位长度.试题2答案:解:(Ⅰ)由y=0得(x-3)2-1=0,解得x1=3-,x2=3+,又∵点A在点B的左侧,∴A点坐标为(3-,0),B点坐标为(3+,0),由抛物线解析式y=(x-3)2-1可得顶点D的坐标为(3,-1);(Ⅱ)如解图①,过点D作DG⊥y轴于点G,设CD与x轴交于点F,ED交x轴于点M,由题意可得,∠DCG+∠COF=90°,∠EOM+∠COF=90°,∴∠DCG=∠EOM,又∵∠CGD=∠OME=90°,∴△CDG∽△OEM,∴=,即=,∴EM=2,∴E点坐标为(3,2),∴OE==;(Ⅲ)如解图②,由⊙E的半径为1,由勾股定理得PQ2=EP2-1,要使切线长PQ最小,只需EP长最小,即EP2最小, 设P点坐标为(x,y),则PQ=x-3,EQ=2-y,∴由勾股定理得EP2=(x-3)2+(2-y)2,∵y=(x-3)2-1,∴(x-3)2=2y+2,∴EP2=2y+2+y2-4y+4=(y-1)2+5,当y=1时,EP2为最小值,将y=1代入y=(x-3)2-1,得x1=5,x2=1, ∴P点坐标为(1,1)或(5,1).∵点P在对称轴右侧的抛物线上,∴x2=1舍去,∴P(5,1).图①图②第2题解图试题3答案:解:(Ⅰ)令y=0,即-x2-x+=0,解得x1=-3,x2=1,∵点A在点C的左边,∴A(-3,0),C(1,0); (Ⅱ)把A(-3,0)代入y=kx+b,得-3k+b=0, 解得b=3k,联立,得-x2-x+=kx+b,即x2+(2+4k)x-3+4b=0,∵直线y=kx+b与抛物线有唯一公共点,∴由根的判别式得(2+4k)2-4(4b-3)=0,把b=3k代入(2+4k)2-4(4b-3)=0,得(2+4k)2-4(12k-3)=0,解得k=1,∴b=3;(Ⅲ)如解图,过点H作HG⊥对称轴于点G,过点P作PF⊥对称轴于点F,设直线AB与抛物线的对称轴交于点E,对称轴与x 轴交于点M,由题意知,抛物线对称轴为x=-1,由(Ⅱ)知,直线AB的解析式为y=x+3,由直线AB知∠EAO=∠EHG=∠AEM=∠FPD=∠PDF=45°.当x=-1时,y=x+3=2,即E(-1,2).设P(x,-x2-x+),则PF=FD=-1-x,ED=EM+MF+FD=2-(-x2-x+)+(-1-x)=x2-x+,PD=FD=(-1-x),∴DH=HE=ED=(x2-x+),∴PH+DH=DH-PD+DH=2DH-PD=(x2-x+)-(-x-1)=x2+x+,当x=-=-1时,PH+DH取得最小值,最小值为=,此时点P的坐标为(-1,1).试题4答案:解:(Ⅰ)过点A作AC⊥x轴于点C,如解图①,∵A(1,),∴AC=,∵S△AOB=BO·AC=BO×=,∴BO=2,∴B(-2,0).由题意可设抛物线解析式为y=ax2+bx,把A、B坐标代入可得,解得,∴过A、B、O三点的抛物线的解析式为y=x2+x; (Ⅱ)由(Ⅰ)可求得抛物线的对称轴为直线x=-1,设直线AB交对称轴于点M,如解图②,连接OM,∵OA长为定值,∴△AOM周长的最小值即为OM+AM的最小值,∵B、O两点关于对称轴对称,∴MO=MB.∴A,M,B三点共线时,OM+AM最小.设直线AB的解析式为y=kx+b,把A、B两点的坐标代入可得,解得,∴直线AB的解析式为y=x+,当x=-1时,y=,∴点M的坐标为(-1,).由勾股定理可求得AB=,AO=,∴△AOM周长的最小值为AM+MO+AO=AB+AO=2+2;(Ⅲ)存在.点F的坐标为(0,0)或(-1,0)或(,0)或(,0).【解法提示】假设存在满足条件的点F,设其坐标为(x,0),则E(x, x+),P(x,x2+x),如解图③,①当-2≤x≤0时,PE=PF+EF=-(x2+x)+x+=x2-x+,由PE=得-x2-x+=,解得x1=0,x2=-1,当x=0时,点P与点F重合,点F的坐标为(0,0);当x=-1时,点F的坐标为(-1,0);②当0<x≤1时,此时PE恒小于;③当x>1或x<-2时,PE=PF-EF=x2+x-(x+)=x2+x-, 由PE=得x2+x-=,解得x1=,x2=,∴点F的坐标为(,0)或(,0).综上所述:点F的坐标为(0,0)或(-1,0)或(,0)或(,0).图①图②图③试题5答案:解:(Ⅰ)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(-1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=-x2+4x+5;(Ⅱ)如解图①,∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=-x2+4x+5得点B的坐标为B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=-x+5,设ND的长为d,N点的横坐标为n,则N点的坐标为(n,-n+5),D点的坐标为(n,-n2+4n+5),则d=|-n2+4n+5-(-n+5)|,由题意可知:-n2+4n+5>-n+5,∴d=-n2+4n+5-(-n+5)=-n2+5n=-(n-)2+,∴当n=时,线段ND长度的最大值是;(Ⅲ)∵点M(4,m)在抛物线y=-x2+4x+5上,∴m=5,∴M(4,5).∵抛物线y=-x2+4x+5=-(x-2)2+9,∴顶点坐标为H(2,9),如解图②,作点H(2,9)关于y轴的对称点H1,则点H1的坐标为H1(-2,9);作点M(4,5)关于x轴的对称点M1,则点M1的坐标为M1(4,-5),连接H1M1分别交x轴于点F,y轴于点E,∴H1M1+HM的长度是四边形HEFM的最小周长,则点F,E即为所求的点.设直线H1M1的函数表达式为y=mx+n,∵直线H1M1过点H1(-2,9),M1(4,-5),∴,解得,∴y=-x+,∴当x=0时,y=,即点E坐标为(0,),当y=0时,x=,即点F坐标为(,0),故所求点F,E的坐标分别为(,0),(0,).图①图②试题6答案:解:(Ⅰ)∵抛物线y=-x2+bx+c经过A(-1,0),B(-3,0),∴,解得,∴抛物线的解析式为y=-x2-4x-3;(Ⅱ)由y=-x2-4x-3可得D(-2,1),C(0,-3),∴OB=3,OC=3,OA=1,AB=2,可得△OBC是等腰直角三角形,∴∠OBC=45°,CB=3,如解图①,设抛物线的对称轴与x轴交于点F,∴AF=AB=1,设直线BC与对称轴的交点为E,连接AE,AC,∵EF=1=AF,则有∠BAE=∠OBC=45°, ∴∠AEB=90°,∴BE=AE=,CE=2.在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,∴△AEC∽△AFP,∴,即,解得PF=2.∵点P在抛物线的对称轴上,∴点P的坐标为(-2,2)或(-2,-2);(Ⅲ)设直线BC的解析式为y=kx+b(k≠0),直线BC经过B(-3,0),C(0,-3),∴,解得,∴直线BC的解析式为y=-x-3.如解图②,设点Q(m,n),过点Q作QH⊥BC于点H,并过点Q作QS∥y轴交直线BC于点S,则S点坐标为(m,-m-3), ∴QS=n-(-m-3)=n+m+3.∵点Q(m,n)在抛物线y=-x2-4x-3上,∴n=-m2-4m-3,∴QS=-m2-4m-3+m+3=-m2-3m=-(m+)2+,当m=时,QS有最大值.∵BO=OC,∠BOC=90°,∴∠OCB=45°,∵QS∥y轴,∴∠QSH=∠OCB=45°,∴△QHS是等腰直角三角形,∴当斜边QS最大时,QH最大.∵当m=-时,QS最大,此时n=-m2-4m-3=-+6-3=,即Q(-,),∴当点Q的坐标为(-,)时,点Q到直线BC的距离最大.图①图②试题7答案:解:(Ⅰ)∵直线y=kx+b经过点A(-4,0),B(0,3),∴,解得,∴直线的解析式为y=x+3;(Ⅱ)如解图,过点P作PM⊥AB于点M,作PN∥y轴交直线AB于点N. ∵PN∥y轴,∴∠PNM=∠ABO,∵∠AOB=∠NMP=90°,∴△AOB∽△PMN,∴=,∵OA=4,OB=3,∴AB==5,∴PM=PN,∵点P是抛物线上的点,PN∥y轴,∴P(m,-m2+2m+1),N(m,m+3),∴PN=m+3-(-m2+2m+1)=m2-m+2=(m-)2+,∴PM=d=(m-)2+,∴当m=时,d取得最小值;(Ⅲ)∵抛物线y=-x2+2x+1与y轴交于点C,∴C(0,1),对称轴为x=-=1,点C关于对称轴的对称点为K(2,1),∴点K到直线AB的距离即为CE+EF的最小值,最小值为d=×(2-)2+=.试题8答案:解:(Ⅰ)∵抛物线过点M(1,0),∴a+a+b=0,即b=-2a,∵y=ax2+ax+b=ax2+ax-2a=a(x+)2-,∴抛物线顶点Q的坐标为(-,-);(Ⅱ)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=-2,把y=2x-2代入y=ax2+ax-2a,得ax2+(a-2)x-2a+2=0①,∴Δ=(a-2)2-4a(-2a+2)=9a2-12a+4,又∵a<b,b=-2a,∴a<0,b>0,∴Δ=9a2-12a+4>0,∴方程①有两个不相等的实数根,∴直线与抛物线有两个交点;(Ⅲ)把y=2x-2代入y=ax2+ax-2a,得ax2+(a-2)x-2a+2=0, 即x2+(1-)x-2+=0,∴[x+(-)]2=(-)2,解得x1=1,x2=-2,将x=-2代入y=2x-2得y=-6,∴点N(-2,-6),根据两点间的距离公式得,MN 2=[(-2)-1]2+(-6)2=-+45=20(-)2, ∵-1≤a≤-,则-2≤≤-1,∴-<0,∴MN=2(-)=3-,又∵-1≤a≤-,∴5≤MN≤7.试题9答案:解:(Ⅰ)令y=0,则-x2+4x=0,解得x1=0,x2=4,∴点B坐标为(4,0),设点A坐标为(x,x),把A(x,x)代入y=-x2+4x得,x=-x2+4x,解得x1=3,x2=0(舍去),∴点A的坐标为(3,3);(Ⅱ)如解图①,设点P的坐标为(x,-x2+4x),∵点A坐标为(3,3);∴∠AOB=45°,∴OD=CD=x,∴PC=PD-CD=-x2+4x-x=-x2+3x,∵PE∥x轴,∴△PCE是等腰直角三角形,∴当PC取最大值时,△PCE周长最大.∵PE与线段OA相交,∴0≤x≤1,由PC=-x2+3x=-(x-)2+可知,抛物线的对称轴为直线x=,且在对称轴左侧PC随x的增大而增大, ∴当x=1时,PC最大,PC的最大值为-1+3=2,∴PE=2,CE=2,∴△PCE的周长为CP+PE+CE=4+2,∴△PCE周长的最大值为4+2,把x=1代入y=-x2+4x,得y=-1+4=3,∴点P的坐标为(1,3);(Ⅲ)设点P坐标为(x,-x2+4x),则点C坐标为(x,x),如解图②,①当点P在点C上方时,P1C1=-x2+4x-x=-x2+3x,OC1=x,∵P1C1=OC1,∴-x2+3x=x,解得x1=3-,x2=0(舍去).把x=3-代入y=-x2+4x得,y=-(3-)2+4(3-)=1+2,∴P1(3-,1+2),②当点P在点C下方时,P2C2=x-(-x2+4x)=x2-3x,OC2=x,∵P2C2=OC2,∴x2-3x=x,解得x1=3+,x2=0(舍去),把x=3+代入y=-x2+4x,得y=-(3+)2+4(3+)=1-2,∴P2(3+,1-2). 综上所述,P点坐标为(3-,1+2)或(3+,1-2).图①图②试题10答案:解:(Ⅰ)将A、B、C的坐标代入抛物线的解析式,得,解得,∴抛物线的解析式为y=-x2-2x+3,配方,得y=-(x+1)2+4,即顶点坐标为(-1,4);(Ⅱ)如解图①,连接AB交对称轴于点M,连接MC,由A、C关于对称轴对称,得AM=MC,∴MB+MC=AM+MB=AB,此时,MB+MC的值最小,由勾股定理,得AB==3,即MB+MC=3,设AB的解析式为y=kx+b,将A、B两点坐标代入,得,解得,∴直线AB的解析式为y=x+3,当x=-1时,y=2,即M(-1,2),此时MB+MC的最小值为3;(Ⅲ)如解图②,将B点向下平移两个单位,得D点,连接AD交对称轴于点P,作BQ∥PD交对称轴于点Q, ∵PQ∥BD,BQ∥PD,∴四边形BDPQ是平行四边形,∴BQ=PD,PQ=BD=2,∴BQ+PC=PD+AP=AD,由勾股定理,得AD===,BC===,∴四边形CBQP周长的最小值=BC+BQ+PQ+PC=BC+PQ+(BQ+PC)=BC+PQ+AD=+2+=2+2,设AD的解析式为y=kx+b,将A、D点坐标代入得,,解得,∴直线AD的解析式为y=x+1,当x=-1时,y=,即P(-1,),由|PQ|=2,且Q点纵坐标大于P点纵坐标得Q(-1,),故当四边形CBQP周长最小时,点P的坐标为(-1,),点Q的坐标为(-1,),四边形CBQP周长的最小值是2+2.图①图②试题11答案:解:(Ⅰ)设二次函数的解析式为y=a(x-1)2+4,∵点B(3,0)在该二次函数的图象上,∴0=a(3-1)2+4,解得a=-1,∴二次函数的解析式为y=-x2+2x+3,∵点D在y轴上,∴令x=0,解得y=3,∴点D的坐标为(0,3),设直线BD的解析式为y=kx+3,把(3,0)代入得3k+3=0,解得k=-1,∴直线BD的解析式为y=-x+3;(Ⅱ)设P点的横坐标为m(0<m<3),则P(m,-m+3),M(m,-m2+2m+3),∴PM=-m2+2m+3-(-m+3)=-m2+3m=-(m-)2+,∴当m=时,PM取最大值,∴PM长度的最大值为;(Ⅲ)存在.如解图,过点Q作QG∥y轴交BD于点G,作QH⊥BD交BD于点H, 设Q(x,-x2+2x+3),则G(x,-x+3)∴QG=|-x2+2x+3-(-x+3)|=|-x2+3x|,∵△DOB是等腰三角形,∴∠3=45°,∴∠2=∠1=45°,∴sin∠1==,∴QG=4,得|-x2+3x|=4,当-x2+3x=4时,b2-4ac=9-16=-7<0,方程无实数根,当-x2+3x=-4时,解得x1=-1,x2=4,∴Q1(-1,0),Q2(4,-5),综上所述,存在满足条件的点Q,点Q的坐标为(-1,0)或(4,-5).。
天津市东丽中学九年级数学上册第二十二章《二次函数》测试题(培优练)
![天津市东丽中学九年级数学上册第二十二章《二次函数》测试题(培优练)](https://img.taocdn.com/s3/m/ae43ee8e8e9951e79a89272c.png)
一、选择题1.抛物线y =ax 2+bx +c (a ≠0)的图象大致如图所示,下列说法: ①2a +b =0;②当﹣1<x <3时,y <0;③若(x 1,y 1)(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2; ④9a +3b +c =0, 其中正确的是( )A .①②④B .①④C .①②③D .③④2.已知()()()112233,,,,,x y x y x y 是抛物线245y x x =--+图像上的任意三点,在以下哪个取值范围中,分别以1y 、2y 、3y 为长的三条线段不一定能围成一个三角形的是( )A .5122x -<<B .7122x -<<- C .30x -<< D .41x -<<-3.二次函数(2)(3)y x x =--与x 轴交点的个数为( )A .1个B .2个C .3个D .4个4.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示: x … 0 1 2 3 4 … y…﹣3﹣13…接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是( )A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .30x y =⎧⎨=⎩D .43x y =⎧⎨=⎩5.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个6.下列函数关系式中,属于二次函数的是( ) A .21y x =+ B .21y x x=+C .()()221y x x x=+--D .21y x =-7.已第二次函数()2240y ax ax a =-+->图象上三点()11,A y -、()21,B y 、()32,C y ,则1y ,2y ,3y 的大小关系为( )A .132y y y <<B .312y y y <<C .123y y y <<D .213y y y <<8.抛物线2(2)3y x =-+的对称轴是( ) A .直线2x =-B .直线3x =C .直线1x =D .直线2x =9.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .410.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( ) A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>11.如果将抛物线23y x =+先向下平移2个单位,再向左平移1个单位,那么所得新抛物线的表达式是( ) A .2(1)2y x =-+ B .2(1)1y x =++ C .21y x =+D .2(1)1y x =-+12.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =-+13.已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是( )A .B .C .D .14.在平面直角坐标系中,将函数25y x =-的图象先向右平移1个单位长度,再向上平移3个单位长度,得到的解析式是( )A .25(1)3y x =-++B .25(1)3y x =--+C .25(1)3y x =-+-D .25(1)3y x =---15.对于二次函数2(2)7y x =---,下列说法正确的是( ) A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小二、填空题16.有一个二次函数的图象,三位同学分别说了它的一些特点: 甲:与x 轴只有一个交点; 乙:对称轴是直线x =4;丙:与y 轴的交点到原点的距离为3.满足上述全部特点的二次函数的解析式为_____.17.如图,在平面直角坐标系中,菱形ABCD 的顶点A 的坐标为(5,0),顶点B 在y 轴正半轴上,顶点D 在x 轴负半轴上.若抛物线y =-x 2-13x +c 经过点B 、C ,则菱形ABCD 的面积为________.18.将抛物线2(3)2y x =--向左平移3个单位后的解析式为______. 19.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________20.已知点A (1,y 1),B (2,y 2)在抛物线y =﹣(x +1)2+3的图象上,则y 1_____y 2(填“<”或“>”或“=”).21.已知二次函数2y ax bx c =++自变量x 的部分取值和对应函数值y 如表:x2- 1- 0 1 23y831-3则在实数范围内能使得成立的x 取值范围是_______.22.已知二次函数()232y x m x m =-+-+的顶点在y 轴上,则其顶点坐标为___________.23.已知点P (m ,n )在抛物线2y ax x a =--上,当1m 时,总有1n ≥-成立,则实数a 的取值范围是_______.24.过点()0,2,()2,2,()2,1--的二次函数图象开口向_______(填“上”或“下”) 25.如图,在平面直角坐标系中抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan ∠DCB =3,则点D 的坐标为_____.26.如图,在平面直角坐标系xOy 中,抛物线y =-2x 2+bx +c 与x 轴交于A ,B 两点.若顶点C 到x 轴的距离为6,则线段AB 的长为______.三、解答题27.某水果店批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售将减少20千克. (1)现要保证每天盈利5520元,同时又要让顾客得到实惠,那么每千克应涨价多少元? (2)要使每天获利不少于6000元,求涨价x 的范围.28.在“万众创业、大众创新”的新时代下,大学毕业生小张响应国家号召,开办了家饰品店,该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:售价每下降1元每月要多卖20件,为了获得更大的利润且让利给顾客,现将饰品售价降价x (元/件)(且x 为整数),每月饰品销量为y (件),月利润为w (元). (1)写出y 与x 之间的函数解析式;(2)如何确定销售价格才能使月利润最大?求最大月利润; (3)为了使每月利润等于6000元时,应如何确定销售价格. 29.已知二次函数2(21)3y x m x m =-+-.(1)若2m =,写出该函数的表达式,并求出函数图象的对称轴.(2)已知点()1,P m y ,()24,Q m y +在该函数图象上,试比较1y ,2y 的大小. (3)对于此函数,在13x -≤≤的范围内函数最大值为-2,求m 的值. 30.有一块缺角矩形地皮ABCDE (如下图),其中110m AB =,80m BC =,90m CD =,135EDC ∠=︒,现准备用此地建一座地基为长方形(图中用阴影部分表示)的数学大楼,建筑公司在接受任务后,设计了A 、B 、C 、D 四种方案,请你研究探索应选用哪一种方案,才能使地基面积最大?(1)求出A、B两种方案的面积.(2)若设地基的面积为S,宽为x,写出方案C(或D)中S与x的关系式.(3)根据(2)完成下表x506070757879808182地基的宽()m地基的面积(2m)(5)用配方法对(2)中的S与x之间的关系式进行分析,并检验你的猜测是否正确.(6)你认为A、B、C、D中哪一种方案合理?。
天津市中考数学能力提升分类专题训练试卷(带答案带解析)分类之二次函数--专题3(共5专题)
![天津市中考数学能力提升分类专题训练试卷(带答案带解析)分类之二次函数--专题3(共5专题)](https://img.taocdn.com/s3/m/b11f22dc951ea76e58fafab069dc5022abea465b.png)
天津市中考数学能力提升分类专题训练试卷(带答案带解析)分类之二次函数--专题3(共5专题)源自天津历年真题整理21.如图中实线所示,函数y=|a(x﹣1)2﹣1|的图象经过原点,小明同学研究得出下面结论:①a=1;②若函数y随x的增大而减小,则x的取值范围一定是x<0;③若方程|a(x﹣1)2﹣1|=k有两个实数解,则k的取值范围是k>1;④若M(m1,n),N(m2,n),P(m3,n),Q(m4,n)(n>0)是上述函数图象的四个不同点,且m1<m2<m3<m4,则有m2+m3﹣m1=m4.其中正确的结论有()A.4个B.3个C.2个D.1个【答案】C【分析】①根据函数图像经过原点|a(x﹣1)2﹣1|=0,可得a=1;②由函数的图像可知:顶点坐标(1,1),与x轴的交点坐标(0,0),(2,0),当x<0或1<x<2时,函数y随x的增大而减小;③若方程|a(x﹣1)2﹣1|=k有两个实数解,k>1或k=0;④由函数的图像可知,直线y=n(0<n<1)与函数y=|a(x﹣1)2﹣1|的图像有四个交点,由m1<m2<m3<m4可知m1+m4=m2+m3,移项可得m4=m2+m3−m1.【详解】解:(1)∵函数y=|a(x﹣1)2﹣1|图像经过原点,∴|a(0﹣1)2﹣1|=0,解得:a=1,故①正确;(2)由函数图像可知顶点坐标(1,1),与x轴的交点坐标(0,0),(2,0),∵函数y随x的增大而减小,∴x<0或1<x<2,故②错误;(3)∵方程|a(x﹣1)2﹣1|=k有两个实数解,∴k>1或k=0,故③错误;(4)∵M(m1,n),N(m2,n),P(m3,n),Q(m4,n)(n>0)是上述函数图象的四个不同点,∴直线y=n自变量取值范围为(0<n<1)∴m1与m4,m2与m3关于x=1对称,∴m1+m4=m2+m3,即m4=m2+m3−m1,故④正确;故答案为C.【点睛】本题考查函数图像与性质.关键利用数形结合的思想,将函数解析式与图像结合分析,利用一次函数与二次函数的相关知识解题.二、解答题22.已知抛物线y=ax2+2x+c(a≠0)与x轴交于点A(−1,0)和点B,与直线y=−x+3交于点B和点C,M为抛物线的顶点,直线ME是抛物线的对称轴.(1)求抛物线的解析式及点M的坐标.(2)点P为直线BC上方抛物线上一点,设d为点P到直线CB的距离,当d有最大值时,求点P的坐标.(3)若点F为直线BC上一点,作点A关于y轴的对称点A′,连接A′C,A′F,当△FA′C是直角三角形时,直接写出点F的坐标.23.已知抛物线y=ax2+bx+5(a,b为常数,a≠0)与x轴交于点A(−5,0),B(−1,0)顶点为D,且过点C(−4,m).(1)求抛物线解析式和点C,D的坐标;(2)点P在该抛物线上(与点B,C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②连接BD ,当∠PCB =∠CBD 时,求点P 的坐标. 【答案】(1)y =x 2+6x +5,D (−3,−4),C (−4,−3)(2)①278,②点P 的坐标为P (−32,−74)或(0,5).【分析】(1)把点A (−5,0),点B (−1,0)代入y =ax 2+bx +5,求出抛物线解析式,进一步可求出D (−3,−4),C (−4,−3);(2)①由题意可知点P 坐标为(t,t 2+6t +5),过点P 作PH ⊥x 轴于点H ,交直线BC 于点E ,求出直线BC 的解析式为y =x +1.利用点P 的坐标可知−4<t <−1,故点E 的坐标为(t,t +1).进一步可求出S △PBC =−32(t +52)2+278,所以当t =−52时,△PBC 的面积的最大值为278;②分情况讨论:当点P 在直线BC 的上方,求出直线BD 的解析式为y =2x +2,和直线PC 的解析式为y =2x +5.即可求出点P 的坐标为(0,5);当点P 在直线BC 的下方时,设直线PC 与BD 交于点M ,设M (m,2m +2),求出m =−2.求出直线CM 的解析式为y =12x −1,进一步可求出P (−32,−74).【详解】(1)解:把点A (−5,0),点B (−1,0)代入y =ax 2+bx +5,可得:{a −b +5=025a −5b +5=0,解得{a =1b =6 ∴抛物线解析式为y =x 2+6x +5,y =x 2+6x +5=(x +3)2−4,∴顶点D (−3,−4).把C (−4,m )代入在y =x 2+6x +5,得m =−3,∴点C (−4,−3).(2)解:由题意可知点P 坐标为(t,t 2+6t +5),①如图,过点P 作PH ⊥x 轴于点H ,交直线BC 于点E ,设直线DB 的解析式为y =k 1x +b 1(k 1≠0),将B (−1,0),点D (−3,−4)代入,得{−k 1+b 1=0−3k 1+b 1=−4 ,解得{k 1=2b 1=2. ∴直线BD 的解析式为y =2x +2.∵PC ∥BD ,∴设直线PC 的解析式为y =2x +n .∵C (−4,−3),∴−3=−8+n .∴n =5.∴直线PC 的解析式为y =2x +5.∴x 2+6x +5=2x +5.解得x 1=0,x 2=−4(舍).当x =0时,y =2x +5=5.∴点P 的坐标为(0,5).如图②,当点P 在直线BC 的下方时,设直线PC 与BD 交于点M ,∵∠PCB=∠CBD,∴MB=MC.设M(m,2m+2),∵MC=√(m+4)2+(2m+2+3)2,MB=√(m+1)2+(2m+2−0)2,∴(m+4)2+(2m+5)2=(m+1)2+(2m+2)2解得m=−2.∴点M的坐标为(−2,−2).由点C(−4,−3)和点M(−2,−2)可得直线CM的解析式为y=12x−1,由x2+6x+5=12x−1,解得x1=−32,x2=−4(舍).所以点P(−32,−74).综上,点P的坐标为P(−32,−74)或(0,5).【点睛】本题考查二次函数与一次函数的综合,解题的关键是掌握待定系数法求函数解析式,会求两直线的交点坐标,掌握二次函数的图象及性质.24.如图,抛物线y=−x2+bx+c与x轴交于A(1,0),B(−3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大?若存在,求出△PBC 面积的最大值.若没有,请说明理由. 【答案】(1)抛物线的解析式为:y =−x 2−2x +3(2)存在,点Q 的坐标为(−1,2)(3)存在,S △PBC 最大值为278【分析】(1)根据题意可知,将点A 、B 的坐标代入函数解析式,列出方程组即可求得b 、c 的值,求得函数解析式;(2)根据题意可知,边AC 的长是定值,要想△QAC 的周长最小,即是AQ +CQ 最小,所以此题的关键是确定点Q 的位置,找到点A 的对称点B ,求得直线BC 的解析式,求得与对称轴的交点即是所求;(3)设P(x ,−x 2−2x +3)(−3<x <0),过点P 作PE ⊥x 轴交于点E ,连接BP 、CP 、BC ,根据S △PBC =S 四边形BPCO −S △BOC =S 四边形BPCO −12×3×3=S 四边形BPCO −92,将S △PBC 表示成二次函数,再根据二次函数的性质,即可求得S △PBC 的最大值.(1)解:将A(1,0),B(−3,0)代入y =−x 2+bx +c 中,可得:{−1+b +c =0−9−3b +c =0, 解得:{b =−2c =3,∴抛物线的解析式为:y =−x 2−2x +3;(2)解:存在,理由如下:如图,∵A 、B 两点关于抛物线的对称轴x =−1对称,∴直线BC 与x =−1的交点即为Q 点,此时△AQC 周长最小,连接AC 、AQ , ∵点C 是抛物线与y 轴的交点,∴C 的坐标为(0,3),又∵B(−3,0),∴直线BC 解析式为:y =x +3,∴Q 点坐标即为{x =−1y =x +3, 解得:{x =−1y =2, ∴Q(−1,2);(3)解:存在,理由如下:如图,设P(x ,−x 2−2x +3)(−3<x <0),过点P 作PE ⊥x 轴交于点E ,连接BP 、CP 、BC , ∵S △PBC =S 四边形BPCO −S △BOC =S 四边形BPCO −12×3×3=S 四边形BPCO −92, 若S 四边形BPCO 有最大值,则S △PBC 就最大,∴S 四边形BPCO =S △BPE +S 直角梯形PEOC ,∵S △BPE =12BE ⋅PE =12(x +3)(−x 2−2x +3),两点,与y轴交于点N,其顶点为D(2)若点P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)点H(n,t)为抛物线上的一个动点,H关于y轴的对称点为H1,当点H1落在第二象限内,且H1A2取得最小值时,求n的值【答案】(1)y=﹣x2+2x+3;D(1,4)(2)S △APC 最大=278;P (12,154) (3)2+√142【分析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得b ,c 的值,从而得到抛物线的解析式, 在配成顶点式即可;(2)设直线AC 的解析式为y =kx+b .将点A 和点C 的坐标代入可求得k 、b 的值,从而得到直线AC 的解析式;设点P 的坐标,进而表示出PQ ,进而得出S △APC =-32(m -12)2+278,即可得出结论;(3)用n 表示出H 1的坐标,从而表示出H 1A 2,利用二次函数的性质可求得其最大值时n 的值.【详解】(1)∵将点A 和点C 的坐标代入抛物线的解析式得:{−1−b+c=0−4+2b+c=3,解得:b =2,c =3.∴抛物线的解析式为y =-x 2+2x+3 . ∴y =-x 2+2x+3=-(x -1)2+4 ∴抛物线的顶点坐标为,(2)设直线AC 的解析式为y =kx+b .∵将点A 和点C 的坐标代入得{−k+b=02k+b=3,解得k =1,b =1.∴直线AC 的解析式为y =x+1.如图,设点P (m ,-m 2+2m+3) , ∴Q (m ,m+1),∴PQ=(-m2+2m+3)-(m+1)=-m2+m+2=-(m-12)2+94,∴S△APC=12PQ×|x C-x A|S△APC=12[-(m-12)2+94]×3=-32(m-12)2+278,∴当m=12时,S△APC最大=278,y=-m2+2m+3=154,∴P(12,154);(3)∵H1落在第二象限内,H关于y轴的对称点为H1∴点H(n,t)在第一象限,即n>0,t>0.y=-x2+2x+3=-(x-1)2+4∵抛物线的顶点坐标为(1,4),∴0<t≤4,∵H(n,t)在抛物线上,∴t=-n2+2n+3,∴n2-2n=3-t,∵A(-1,0),H1(-n,t),∴H1A2=(-n+1)2+(t)2=n2-2n+1+t2=t2-t+4=(t-12)2+154;∴当t=12时,H1A2有最小值,即H1A2有最小值,∴12=-n2+2n+3,解得n=2-√142或n=2+√142,∵n>0,∴n=2-√142不合题意,舍去,∴n的值为2+√142.【点睛】此题是二次函数综合题,主要考查的了待定系数法求一次函数、二次函数的解析式、轴对称路径最短、关于原点对称的点的坐标,难度较大,综合性较强.26.如图,已知抛物线y=a(x-3)(x+6)过点A(-1,5)和点B(-5,m),与x轴的正半轴交于点C.(1)求a,m的值和点C的坐标;(2)若点P是x轴上的点,连接PB,PA,当P A=PB时,求点P的坐标;(3)在抛物线上是否存在点M,使A,B两点到直线MC的距离相等?若存在,求出满足条件的点M的横坐标;若不存在,请说明理由.27.已知抛物线y=ax2+bx+4(a,b为常数,a≠0)经过点A(−4,0),B(1,0),与y轴交于点C.点P为第二象限内抛物线上一点,连接BP,与y轴相交于点D.(1)求该抛物线的解析式;(2)连接BC,当∠ODB=2∠BCO时,求直线PB的解析式;(3)连接AC,与PB相交于点Q,当PQQB取得最大值时,求点P的坐标.【答案】(1)y=−x2−3x+4(2)y=−158x+158(3)点P的坐标为 (−2,6) 【分析】(1)利用待定系数法即可求出答案;(2)由∠ODB =2∠BCO 以及三角形外角的性质可得∠CBD =∠BCO ,则BD =CD ,设OD =a ,则CD =4−a ,BD =4−a ,运用勾股定理可求得a =158,得出D(0,158),再利用待定系数法即可求出答案;(3)过点P 作PE ⊥x 轴于E ,与AC 交于点N ,过点B 作y 轴的平行线与AC 相交于点M ,利用待定系数法求出直线AC 表达式,再利用BM//PN ,可得ΔPNQ ∽ΔBMQ ,进而得出PQQB =PNBM =PN 5,设P(t ,−t 2−3t +4)(−4<t <0),则N(t,t +4),从而得到PQQB=−t 2−3t+4−(t+4)5=−(t+2)2+45,利用二次函数的性质即可求得答案.(1)根据题意,{a ⋅(−4)2+b ⋅(−4)+4=0,a +b +4=0, 解得{a =−1,b =−3. ∴ 抛物线的解析式为y =−x 2−3x +4. (2)如图.当x =0时,y =4,得C (0,4 ),有OC =4.∵∠ODB =2∠BCO ,∠ODB =∠BCO +∠DBC , ∴ ∠BCD =∠CBD . ∴ DC =DB .设OD =m ,则CD =4−m , ∴ BD =4−m .在Rt △OBD 中,由勾股定理得BD 2=OD 2+OB 2, ∴ (4−m )2=m 2+12. 解得m =158. ∴ D (0,158 ).设直线PB 的解析式为y =kx +e (k ≠0). ∴ {e =158,k +e =0, 解得{k =−158,e =158. ∴ 直线PB 的解析式为y =−158x +158.(3)如图,过点P 作PE ⊥x 轴于E ,与AC 交于点N ,过点B 作y 轴的平行线与AC 相交于点M ,设直线AC 表达式为y =mx +n , ∵A(−4,0),C(0,4), ∴{−4m +n =0n =4,解得:{m =1n =4,∴直线AC 表达式为y =x +4, ∴M 点的坐标为(1,5), ∴BM =5, ∵BM//PN , ∴ΔPNQ ∽ΔBMQ ,28.已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(−1,0)和点B.(1)若b=−2,c=−3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(2)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.【答案】(1)①(1,−4);②点M的坐标为(2,−3),点G的坐标为(2,−2);(2)点E(57,0)和点F(0,−2021);【分析】(1)①将b、c的值代入解析式,再将A点坐标代入解析式即可求出a的值,再用配方法求出顶点坐标即可;②先令y=0得到B点坐标,再求出直线BP的解析式,设点M的坐标为(m,m2−2m−3),则点G的坐标为(m,2m−6),再表示出MG的长,配方求出最值得到M、G的坐标;(2)根据3b=2c,解析式经过A点,可得到解析式:y=ax2−2ax−3a,再表示出P点坐标,N点坐标,接着作点P关于y轴的对称点P′,作点N关于x轴的对称点N′,再把P′和N′的坐标表示出来,由题意可知,当PF+FE+EN取得最小值,此时PF+FE+EN=P′N′= 5,将字母代入可得:P′N′2=P′H2+HN′2=9+49a2=25,求出a的值,即可得到E、F 的坐标;(1)①∵抛物线y=ax2+bx+c与x轴相交于点A(−1,0),∴a−b+c=0.又b=−2,c=−3,得a=1.∴抛物线的解析式为y=x2−2x−3.∵y=x2−2x−3=(x−1)2−4,∴点P的坐标为(1,−4).②当y=0时,由x2−2x−3=0,解得x1=−1,x2=3.∴点B的坐标为(3,0).设经过B,P两点的直线的解析式为y=kx+n,有{3k+n=0,k+n=−4.解得{k=2,n=−6.∴直线BP的解析式为y=2x−6.∵直线x=m(m是常数,1<m<3)与抛物线y=x2−2x−3相交于点M,与BP相交于点G,如图所示:∴点M的坐标为(m,m2−2m−3),点G的坐标为(m,2m−6).∴MG=(2m−6)−(m2−2m−3)=−m2+4m−3=−(m−2)2+1.∴当m=2时,MG有最大值1.此时,点M的坐标为(2,−3),点G的坐标为(2,−2).(2)由(1)知a−b+c=0,又3b=2c,∴b=−2a,c=−3a.(a>0)∴抛物线的解析式为y=ax2−2ax−3a.∵y=ax2−2ax−3a=a(x−1)2−4a,∴顶点P的坐标为(1,−4a).∵直线x=2与抛物线y=ax2−2ax−3a相交于点N,∴点N的坐标为(2,−3a).作点P关于y轴的对称点P′,作点N关于x轴的对称点N′,如图所示:得点P′的坐标为(−1,−4a),点N′的坐标为(2,3a).当满足条件的点E,F落在直线P′N′上时,PF+FE+EN取得最小值,此时,PF+FE+EN=P′N′=5.延长P′P与直线x=2相交于点H,则P′H⊥N′H.在Rt△P′HN′中,P′H=3,HN′=3a−(−4a)=7a.∴P′N′2=P′H2+HN′2=9+49a2=25.解得a1=47,a2=−47(舍).∴点P′的坐标为(−1,−167),点N′的坐标为(2,127).则直线P′N′的解析式为y=43x−2021.∴点E(57,0)和点F(0,−2021).【点睛】本题考查二次函数的几何综合运用,熟练掌握待定系数法求函数解析式、配方法求函数顶点坐标、勾股定理解直角三角形等是解决此类问题的关键.29.如图,抛物线y=−x2+bx+c与x轴相交于A,B两点(点A位于点B的左侧),与y 轴相交于点C,M是抛物线的顶点,直线x=1是抛物线的对称轴,且点C的坐标为(0,3).(1)求抛物线的解析式;(2)已知P为线段MB上一个动点,过点P作PD⊥x轴于点D.若PD=m,△PCD的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②当S取得最大值时,求点P的坐标.(3)在(2)的条件下,在线段MB上是否存在点P,使△PCD为等腰三角形?如果存在,直接写出满足条件的点P的坐标;如果不存在,请说明理由.30.将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0,0),点A(2,0),点B在第一象限,∠OAB=90°,∠B=30°,点P在边OB上(点P不与点O,B重合).(1)如图①,当OP=1时,求点P的坐标;(2)如图②,折叠该纸片,使折痕PH所在的直线经过点P,并与x轴垂直,点O的对应点为O′,设OH=t.△PHO′与△OAB重叠部分的面积为S.①若折叠后△PHO′与△OAB重叠部分的面积为四边形时,PO′与AB相交于点C,试用含有t 的式子表示S,并直接写出t的取值范围;②当23≤t≤53时,求S的取值范围(直接写出结果即可).。
天津中考数学培优专题复习二次函数练习题
![天津中考数学培优专题复习二次函数练习题](https://img.taocdn.com/s3/m/0cdc5514b84ae45c3a358c42.png)
天津中考数学培优专题复习二次函数练习题一、二次函数1.(6分)(2015•牡丹江)如图,抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E (2,m )在抛物线上,抛物线的对称轴与x 轴交于点H ,点F 是AE 中点,连接FH ,求线段FH 的长.注:抛物线y=ax 2+bx+c (a≠0)的对称轴是x=﹣.【答案】(1)y=-2x-3;(2).【解析】 试题分析:(1)把A,B 两点坐标代入,求待定系数b,c ,进而确定抛物线的解析式;(2)连接BE ,点F 是AE 中点,H 是AB 中点,则FH 为三角形ABE 的中位线,求出BE 的长,FH 就知道了,先由抛物线解析式求出点E 坐标,根据勾股定理可求BE ,再根据三角形中位线定理求线段HF 的长.试题解析:(1)∵抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0),∴把A,B 两点坐标代入得:,解得:,∴抛物线的解析式是:y=-2x-3;(2)∵点E (2,m )在抛物线上,∴把E 点坐标代入抛物线解析式y=-2x-3得:m=4﹣4﹣3=﹣3,∴E (2,﹣3),∴BE==.∵点F 是AE 中点,点H 是抛物线的对称轴与x 轴交点,即H 为AB 的中点,∴FH 是三角形ABE 的中位线,∴FH=BE=×=.∴线段FH 的长.考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理.2.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D .(1)求该二次函数的解析式及点C ,D 的坐标;(2)点(,0)P t 是x 轴上的动点,①求PC PD -的最大值及对应的点P 的坐标;②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2||23y a x a x =-+的图像只有一个公共点,求t 的取值范围.【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或332t ≤<或72t =. 【解析】【分析】(1)先利用对称轴公式x=2a 12a--=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标;(3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ 过点(0,3),即点Q 与点C 重合时,两图象有一个公共点,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,两函数有两个公共点,写出t 的取值;②线段PQ 与当函数y=a|x|2-2a|x|+c (x≥0)时有一个公共点时,求t 的值;③当线段PQ 过点(-3,0),即点P 与点(-3,0)重合时,线段PQ 与当函数y=a|x|2-2a|x|+c (x <0)时也有一个公共点,则当t≤-3时,都满足条件;综合以上结论,得出t 的取值.【详解】解:(1)∵2a x 12a-=-=, ∴2y ax ax 3=-+的对称轴为x 1=.∵2y ax ax 3=-+人最大值为4,∴抛物线过点()1,4.得a 2a 34-+=,解得a 1=-.∴该二次函数的解析式为2y x 2x 3=-++.C 点坐标为()0,3,顶点D 的坐标为()1,4.(2)①∵PC PD CD -≤,∴当P,C,D 三点在一条直线上时,PC PD -取得最大值.连接DC 并延长交y 轴于点P ,PC PD CD -===∴PC PD -.易得直线CD 的方程为y x 3=+.把()P t,0代入,得t 3=-.∴此时对应的点P 的坐标为()3,0-.②2y a |x |2a x 3=-+的解析式可化为22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩ 设线段PQ 所在直线的方程为y kx b =+,将()P t,0,()Q 0,2t 的坐标代入,可得线段PQ 所在直线的方程为y 2x 2t =-+.(1)当线段PQ 过点()3,0-,即点P 与点()3,0-重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时t 3=-. ∴当t 3≤-时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (2)当线段PQ 过点()0,3,即点Q 与点C 重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时3t 2=. 当线段PQ 过点()3,0,即点P 与点()3,0重合时,t 3=,此时线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像有两个公共点. 所以当3t 32≤<时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (3)将y 2x 2t =-+带入()2y x 2x 3x 0=-++≥,并整理,得2x 4x 2t 30-+-=. ()Δ1642t 3288t =--=-.令288t 0-=,解得7t 2=. ∴当7t 2=时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. 综上所述,t 的取值范围为t 3≤-或3t 32≤<或7t 2=. 【点睛】本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.3.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.【答案】(1)y=x2﹣4x+3;(2)94;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣3).【解析】试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴93010b cb c++=⎧⎨++=⎩,解得43bc=-⎧⎨=⎩,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣32)2+94.∵a=﹣1<0,∴当x=32时,线段PD的长度有最大值94;(3)①∠APD 是直角时,点P 与点B 重合,此时,点P (1,0),②∵y =x 2﹣4x +3=(x ﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A (3,0),∴点P 为在抛物线顶点时,∠PAD =45°+45°=90°,此时,点P (2,﹣1).综上所述:点P (1,0)或(2,﹣1)时,△APD 能构成直角三角形;(4)由抛物线的对称性,对称轴垂直平分AB ,∴MA =MB ,由三角形的三边关系,|MA ﹣MC |<BC ,∴当M 、B 、C 三点共线时,|MA ﹣MC |最大,为BC 的长度,设直线BC 的解析式为y =kx +b (k ≠0),则03k b b +=⎧⎨=⎩,解得:33k b =-⎧⎨=⎩,∴直线BC 的解析式为y =﹣3x +3.∵抛物线y =x 2﹣4x +3的对称轴为直线x =2,∴当x =2时,y =﹣3×2+3=﹣3,∴点M (2,﹣3),即,抛物线对称轴上存在点M (2,﹣3),使|MA ﹣MC |最大.点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD 的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M 的位置是解题的关键.4.如图所示,抛物线2y ax bx c =++的顶点为()2,4M --,与x 轴交于A 、B 两点,且()6,0A -,与y 轴交于点C .()1求抛物线的函数解析式;()2求ABC V 的面积;()3能否在抛物线第三象限的图象上找到一点P ,使APC V 的面积最大?若能,请求出点P 的坐标;若不能,请说明理由.【答案】()1 2134y x x =+-;()212;()27334APC x S =-V 当时,有最大值,点P 的坐标是153,4P ⎛⎫-- ⎪⎝⎭. 【解析】【分析】 (1)设顶点式并代入已知点()6,0A -即可;(2)令y=0,求出A 、B 和C 点坐标,运用三角形面积公式计算即可;(3)假设存在这样的点,过点P 作PE x ⊥轴于点E ,交AC 于点F ,线段PF 的长度即为两函数值之差,将APC V 的面积计算拆分为APF CPF S S +V V 即可.【详解】()1设此函数的解析式为2()y a x h k =++,∵函数图象顶点为()2,4M --,∴2(2)4y a x =+-,又∵函数图象经过点()6,0A -,∴20(62)4a =-+-解得14a =, ∴此函数的解析式为21(2)44y x =+-,即2134y x x =+-; ()2∵点C 是函数2134y x x =+-的图象与y 轴的交点, ∴点C 的坐标是()0,3-,又当0y =时,有21304y x x =+-=, 解得16x =-,22x =,∴点B 的坐标是()2,0,则11831222ABC S AB OC =⋅=⨯⨯=V ; ()3假设存在这样的点,过点P 作PE x ⊥轴于点E ,交AC 于点F .设(),0E x ,则21,34P x x x ⎛⎫+- ⎪⎝⎭,设直线AC 的解析式为y kx b =+,∵直线AC 过点()6,0A -,()0,3C -,∴603k b b -+=⎧⎨-=⎩, 解得123k b ⎧=-⎪⎨⎪=-⎩,∴直线AC 的解析式为132y x =--, ∴点F 的坐标为1,32F x x ⎛⎫-- ⎪⎝⎭, 则221113332442PF x x x x x ⎛⎫=---+-=-- ⎪⎝⎭, ∴1122APC APF CPF S S S PF AE PF OE =+=⋅+⋅V V V 2221113393276(3)22424244PF OA x x x x x ⎛⎫=⋅=--⨯=--=-++ ⎪⎝⎭, ∴当3x =-时,APC S V 有最大值274, 此时点P 的坐标是153,4P ⎛⎫-- ⎪⎝⎭. 【点睛】本题第3问中将所求三角形拆分为两个小三角形进行求解,从而将面积最大的问题转化为PF 最大进行理解.5.如图,抛物线y =﹣x 2﹣2x+3的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.(1)求点A 、B 、C 的坐标;(2)点M(m ,0)为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N ,可得矩形PQNM .如图,点P 在点Q 左边,试用含m 的式子表示矩形PQNM 的周长;(3)当矩形PQNM 的周长最大时,m 的值是多少?并求出此时的△AEM 的面积;(4)在(3)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G(点G 在点F 的上方).若FG =,求点F 的坐标.【答案】(1)A(﹣3,0),B(1,0);C(0,3) ;(2)矩形PMNQ的周长=﹣2m2﹣8m+2;(3) m=﹣2;S=12;(4)F(﹣4,﹣5)或(1,0).【解析】【分析】(1)利用函数图象与坐标轴的交点的求法,求出点A,B,C的坐标;(2)先确定出抛物线对称轴,用m表示出PM,MN即可;(3)由(2)得到的结论判断出矩形周长最大时,确定出m,进而求出直线AC解析式,即可;(4)在(3)的基础上,判断出N应与原点重合,Q点与C点重合,求出DQ=DC=2,再建立方程(n+3)﹣(﹣n2﹣2n+3)=4即可.【详解】(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).令y=0,则0=﹣x2﹣2x+3,解得,x=﹣3或x=l,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.∵M(m,0),∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,∴矩形的周长最大时,m=﹣2.∵A(﹣3,0),C(0,3),设直线AC的解析式y=kx+b,∴303k bb-+=⎧⎨=⎩解得k=l,b=3,∴解析式y=x+3,令x=﹣2,则y=1,∴E(﹣2,1),∴EM=1,AM=1,∴S =12AM×EM =12. (4)∵M(﹣2,0),抛物线的对称轴为x =﹣l ,∴N 应与原点重合,Q 点与C 点重合,∴DQ =DC ,把x =﹣1代入y =﹣x 2﹣2x+3,解得y =4,∴D(﹣1,4),∴DQ =DC =2.∵FG =22DQ ,∴FG =4.设F(n ,﹣n 2﹣2n+3),则G(n ,n+3),∵点G 在点F 的上方且FG =4,∴(n+3)﹣(﹣n 2﹣2n+3)=4.解得n =﹣4或n =1,∴F(﹣4,﹣5)或(1,0).【点睛】此题是二次函数综合题,主要考查了函数图象与坐标轴的交点的求法,待定系数法求函数解析式,函数极值的确定,解本题的关键是用m 表示出矩形PMNQ 的周长.6.如图,过()A 1,0、()B 3,0作x 轴的垂线,分别交直线y 4x =-于C 、D 两点.抛物线2y ax bx c =++经过O 、C 、D 三点.()1求抛物线的表达式;()2点M 为直线OD 上的一个动点,过M 作x 轴的垂线交抛物线于点N ,问是否存在这样的点M ,使得以A 、C 、M 、N 为顶点的四边形为平行四边形?若存在,求此时点M 的横坐标;若不存在,请说明理由;()3若AOC V 沿CD 方向平移(点C 在线段CD 上,且不与点D 重合),在平移的过程中AOC V 与OBD V 重叠部分的面积记为S ,试求S 的最大值.【答案】(1)2413y x x 33=-+;(2)32或32+或32-;(3)13. 【解析】【分析】 (1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3.设点M 的横坐标为x ,则求出MN =|43x 2﹣4x |;解方程|43x 2﹣4x |=3,求出x 的值,即点M 横坐标的值;(3)设水平方向的平移距离为t (0≤t <2),利用平移性质求出S 的表达式:S 16=-(t ﹣1)213+;当t =1时,s 有最大值为13. 【详解】(1)由题意,可得C (1,3),D (3,1). ∵抛物线过原点,∴设抛物线的解析式为:y =ax 2+bx ,∴3931a b a b +=⎧⎨+=⎩,解得43133a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为:y 43=-x 2133+x . (2)存在.设直线OD 解析式为y =kx ,将D (3,1)代入,求得k 13=,∴直线OD 解析式为y 13=x . 设点M 的横坐标为x ,则M (x ,13x ),N (x ,43-x 2133+x ),∴MN =|y M ﹣y N |=|13x ﹣(43-x 2133+x )|=|43x 2﹣4x |. 由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3,∴|43x 2﹣4x |=3. 若43x 2﹣4x =3,整理得:4x 2﹣12x ﹣9=0,解得:x =或x = 若43x 2﹣4x =﹣3,整理得:4x 2﹣12x +9=0,解得:x 32=,∴存在满足条件的点M ,点M 的横坐标为:32. (3)∵C (1,3),D (3,1),∴易得直线OC 的解析式为y =3x ,直线OD 的解析式为y 13=x . 如解答图所示,设平移中的三角形为△A 'O 'C ',点C '在线段CD 上. 设O 'C '与x 轴交于点E ,与直线OD 交于点P ; 设A 'C '与x 轴交于点F ,与直线OD 交于点Q .设水平方向的平移距离为t (0≤t <2),则图中AF =t ,F (1+t ,0),Q (1+t ,1133+t ),C '(1+t ,3﹣t ).设直线O 'C '的解析式为y =3x +b ,将C '(1+t ,3﹣t )代入得:b =﹣4t ,∴直线O 'C '的解析式为y =3x ﹣4t ,∴E (43t ,0). 联立y =3x ﹣4t 与y 13=x ,解得:x 32=t ,∴P (32t ,12t ). 过点P 作PG ⊥x 轴于点G ,则PG 12=t ,∴S =S △OFQ ﹣S △OEP 12=OF •FQ 12-OE •PG 12=(1+t )(1133+t )12-•43t •12t 16=-(t ﹣1)213+当t =1时,S 有最大值为13,∴S 的最大值为13.【点睛】本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题的关键是根据平行四边形定义,得到MN =AC =3,由此列出方程求解;第(3)问中,解题的关键是求出S 的表达式,注意图形面积的计算方法.7.已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【答案】(1)223y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;(3)点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,3⎛⎫- ⎪⎝⎭. 【解析】 【分析】()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;()3设点M 的坐标为()1,m ,则22CM (10)(m 3)=-+-,()22AC [01](30)10=--+-=,()22AM [11](m 0)=--+-,分AMC 90∠=o 、ACM 90∠=o 和CAM 90∠=o 三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【详解】解:()1将()1,0A -、()0,3C 代入2y x bx c =-++中,得:{103b c c --+==,解得:{23b c ==,∴抛物线的解析式为223y x x =-++.()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.当0y =时,有2230x x -++=, 解得:11x =-,23x =,∴点B 的坐标为()3,0.Q 抛物线的解析式为2223(1)4y x x x =-++=--+, ∴抛物线的对称轴为直线1x =.设直线BC 的解析式为()0y kx d k =+≠, 将()3,0B 、()0,3C 代入y kx d =+中, 得:{303k d d +==,解得:{13k d =-=,∴直线BC 的解析式为3y x =-+. Q 当1x =时,32y x =-+=,∴当PA PC +的值最小时,点P 的坐标为()1,2.()3设点M 的坐标为()1,m ,则CM =,AC ==AM =分三种情况考虑:①当90AMC ∠=o 时,有222AC AM CM =+,即22101(3)4m m =+-++,解得:11m =,22m =,∴点M 的坐标为()1,1或()1,2;②当90ACM ∠=o 时,有222AM AC CM =+,即224101(3)m m +=++-,解得:83m =, ∴点M 的坐标为81,3⎛⎫⎪⎝⎭;③当90CAM ∠=o 时,有222CM AM AC =+,即221(3)410m m +-=++,解得:23m =-, ∴点M 的坐标为21,.3⎛⎫- ⎪⎝⎭综上所述:当MAC V 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,.3⎛⎫- ⎪⎝⎭【点睛】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=o 、ACM 90∠=o 和CAM 90∠=o 三种情况,列出关于m 的方程.8.在平面直角坐标系xOy 中,抛物线y =x 2﹣2x +a ﹣3,当a =0时,抛物线与y 轴交于点A ,将点A 向右平移4个单位长度,得到点B . (1)求点B 的坐标;(2)将抛物线在直线y =a 上方的部分沿直线y =a 翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M ,若图形M 与线段AB 恰有两个公共点,结合函数的图象,求a 的取值范围.【答案】(1)A (0,﹣3),B (4,﹣3);(2)﹣3<a ≤0; 【解析】 【分析】(1)由题意直接可求A ,根据平移点的特点求B ;(2)图形M 与线段AB 恰有两个公共点,y =a 要在AB 线段的上方,当函数经过点A 时,AB 与函数两个交点的临界点; 【详解】解:(1)A (0,﹣3),B (4,﹣3); (2)当函数经过点A 时,a =0, ∵图形M 与线段AB 恰有两个公共点, ∴y =a 要在AB 线段的上方, ∴a >﹣3 ∴﹣3<a ≤0; 【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.9.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(2,2).【解析】【分析】(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D的坐标,利用待定系数法求出直线BD的解析式,设出点P的坐标为(x,﹣2x+6),利用勾股定理表示出PC2和PE2,根据题意列出方程,解方程求出x的值,计算求出点P的坐标.【详解】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴10930b cb c--+=⎧⎨-++=⎩,解得23bc=⎧⎨=⎩,∴所求的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图,连接PC,PE.抛物线的对称轴为x=222(1)ba-=-⨯-=1.当x=1时,y=4,∴点D的坐标为(1,4).设直线BD的解析式为y=kx+b,则430 k bk b+=⎧⎨+=⎩,解得26kb=-⎧⎨=⎩.∴直线BD的解析式为:y=2x+6,设点P的坐标为(x,﹣2x+6),又C(0,3),E(1,0),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC =PE ,∴x 2+(3+2x ﹣6)2=(x ﹣1)2+(﹣2x +6)2, 解得,x =2, 则y =﹣2×2+6=2, ∴点P 的坐标为(2,2).【点睛】本题考查的是二次函数的图象和性质、待定系数法求函数解析式,掌握二次函数的图象和性质、灵活运用待定系数法是解题的关键.10.如图1,抛物线2:C y ax bx =+经过点(4,0)A -、(1,3)B -两点,G 是其顶点,将抛物线C 绕点O 旋转180o ,得到新的抛物线'C .(1)求抛物线C 的函数解析式及顶点G 的坐标; (2)如图2,直线12:5l y kx =-经过点A ,D 是抛物线C 上的一点,设D 点的横坐标为m (2m <-),连接DO 并延长,交抛物线'C 于点E ,交直线l 于点M ,2DE EM =,求m 的值;(3)如图3,在(2)的条件下,连接AG 、AB ,在直线DE 下方的抛物线C 上是否存在点P ,使得DEP GAB ∠=∠?若存在,求出点P 的横坐标;若不存在,请说明理由.【答案】(1)24y x x =--,顶点为:(2,4)G -;(2)m 的值为﹣3;(3)存在,点P 的横坐标为:-. 【解析】 【分析】(1)运用待定系数法将(4,0)A -、(1,3)B -代入2y ax bx =+中,即可求得a 和b 的值和抛物线C 解析式,再利用配方法将抛物线C 解析式化为顶点式即可求得顶点G 的坐标; (2)根据抛物线C 绕点O 旋转180o ,可求得新抛物线'C 的解析式,再将(4,0)A -代入125y kx =-中,即可求得直线l 解析式,根据对称性可得点E 坐标,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,由2DE EM =,即可得13ME MD =,再证明MEK ∆∽MDH ∆,即可得3DH EK =,建立方程求解即可; (3)连接BG ,易证ABG ∆是Rt ∆,90ABG ∠=o ,可得1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH 上截取13OH OE ==E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点;通过建立方程组求解即可. 【详解】(1)将(4,0)A -、(1,3)B -代入2y ax bx =+中,得16403a b a b -=⎧⎨-=⎩ 解得14a b =-⎧⎨=-⎩∴抛物线C 解析式为:24y x x =--,配方,得:224(2)4y x x x =--=-++,∴顶点为:(2,4)G -;(2)∵抛物线C 绕点O 旋转180o ,得到新的抛物线'C . ∴新抛物线'C 的顶点为:'(2,4)G -,二次项系数为:'1a = ∴新抛物线'C 的解析式为:22(2)44y x x x =--=- 将(4,0)A -代入125y kx =-中,得12045k =--,解得35k =-, ∴直线l 解析式为31255y x =--, ∵2(,4)D m m m --,∴直线DO 的解析式为(4)y m x =-+,由抛物线C 与抛物线'C 关于原点对称,可得点D 、V 关于原点对称, ∴2(,4)E m m m -+如图2,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,则312(,)55H m m --,312(,)55K m m --, ∴2231217124()5555DH m m m m m =-----=--+,2231217124()5555EK m m m m m =+--=++,∵2DE EM = ∴13ME MD =, ∵//DH y 轴,//EK y 轴∴//DH EK ∴MEK ∆∽MDH ∆ ∴13EK ME DH MD ==,即3DH EK = ∴22171217123()5555m m m m --+=++ 解得:13m =-,225m =-,∵2m <-∴m 的值为:﹣3; (3)由(2)知:3m =-,∴(3,3)D -,(3,3)E -,OE =如图3,连接BG ,在ABG ∆中,∵222(14)(30)18AB =-++-=,22BG =,220AG =∴222AB BG AG +=∴ABG ∆是直角三角形,90ABG ∠=o ,∴1tan3BG GAB AB ∠===, ∵DEP GAB ∠=∠ ∴1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH 上截取13OH OE == 过点E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点; ∵(3,3)E -, ∴45EOT ∠=o∵90EOH ∠=o ∴45HOT ∠=o∴(1,1)H --,设直线EH 解析式为y px q =+,则331p q p q +=-⎧⎨-+=-⎩,解得1232p q ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EH 解析式为1322y x =--, 解方程组213224y x y x x ⎧=--⎪⎨⎪=--⎩,得11773735x y ⎧--=⎪⎪⎨-⎪=⎪⎩,22773735x y ⎧-+=⎪⎪⎨+⎪=-⎪⎩, ∴点P 的横坐标为:773+-或737-.【点睛】本题考查了二次函数图象和性质,待定系数法求函数解析式,旋转变换,相似三角形判定和性质,直线与抛物线交点,解直角三角形等知识点;属于中考压轴题型,综合性强,难度较大.11.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y =at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s时,足球离地面最高,最大高度是4.5m;(2)能.【解析】试题分析:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t 2+5t+,∴当t=时,y 最大=4.5;(2)把x=28代入x=10t 得t=2.8, ∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门. 考点:二次函数的应用.12.在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A(1,4),B(3,0). (1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由; (3)应用:如图2,P(m ,n)是抛物线在第四象限的图象上的点,且m+n =﹣1,连接PA 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +).【答案】(1)y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由见解析;(3)点N(43,﹣73). 【解析】 【分析】(1)函数表达式为:y =a(x ﹣1)2+4,将点B 坐标的坐标代入上式,即可求解; (2)利用同底等高的两个三角形的面积相等,即可求解;(3)由(2)知:点N 是PQ 的中点,根据C,P 点的坐标求出直线PC 的解析式,同理求出AC,DQ的解析式,并联立方程求出Q点的坐标,从而即可求N点的坐标.【详解】(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式得:0=a(3﹣1)2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x﹣3;(2)OM将四边形OBAD分成面积相等的两部分,理由:如图1,∵DE∥AO,S△ODA=S△OEA,S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,∴S△OME=S△OBM,∴S四边形OMAD=S△OBM;(3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1,解得:m=﹣1或4,故点P(4,﹣5);如图2,故点D作QD∥AC交PC的延长线于点Q,由(2)知:点N是PQ的中点,设直线PC的解析式为y=kx+b,将点C(﹣1,0)、P(4,﹣5)的坐标代入得:45k bk b-+=⎧⎨+=-⎩,解得:11 kb=-⎧⎨=-⎩,所以直线PC的表达式为:y=﹣x﹣1…①,同理可得直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D(0,3),同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x=﹣43,即点Q(﹣43,13),∵点N是PQ的中点,由中点公式得:点N(43,﹣73).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N 是PQ 的中点,是本题解题的突破点.13.如图,已知抛物线经过点A (﹣1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 做x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M . (1)求该抛物线所表示的二次函数的表达式; (2)已知点F (0,12),当点P 在x 轴上运动时,试求m 为何值时,四边形DMQF 是平行四边形?(3)点P 在线段AB 运动过程中,是否存在点Q ,使得以点B 、Q 、M 为顶点的三角形与△BOD 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)y=﹣12x 2+32x+2;(2)m=﹣1或m=3时,四边形DMQF 是平行四边形;(3)点Q 的坐标为(3,2)或(﹣1,0)时,以点B 、Q 、M 为顶点的三角形与△BOD 相似. 【解析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD 解析式为y=12x-2,则Q (m ,-12m 2+32m+2)、M(m ,12m-2),由QM ∥DF 且四边形DMQF 是平行四边形知QM=DF ,据此列出关于m 的方程,解之可得;(3)易知∠ODB=∠QMB ,故分①∠DOB=∠MBQ=90°,利用△DOB ∽△MBQ 得12DO MB OB BQ ==,再证△MBQ ∽△BPQ 得BM BP BQ PQ=,即214 132222mm m -=-++,解之即可得此时m 的值;②∠BQM=90°,此时点Q 与点A 重合,△BOD ∽△BQM′,易得点Q 坐标.详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,得:-4a=2,解得:a=-12,则抛物线解析式为y=-12(x+1)(x-4)=-12x2+32x+2;(2)由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:402k bb+⎧⎨-⎩==,解得:122kb⎧⎪⎨⎪-⎩==,∴直线BD解析式为y=12x-2,∵QM⊥x轴,P(m,0),∴Q(m,--12m2+32m+2)、M(m,12m-2),则QM=-12m2+32m+2-(12m-2)=-12m2+m+4,∵F(0,12)、D(0,-2),∴DF=52,∵QM∥DF,∴当-12m2+m+4=52时,四边形DMQF是平行四边形,解得:m=-1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM ∥DF , ∴∠ODB=∠QMB , 分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB ∽△MBQ ,则21=42DO MB OB BQ ==, ∵∠MBQ=90°, ∴∠MBP+∠PBQ=90°, ∵∠MPB=∠BPQ=90°, ∴∠MBP+∠BMP=90°, ∴∠BMP=∠PBQ , ∴△MBQ ∽△BPQ ,∴BM BP BQ PQ=,即214 132222mm m -=-++,解得:m 1=3、m 2=4,当m=4时,点P 、Q 、M 均与点B 重合,不能构成三角形,舍去, ∴m=3,点Q 的坐标为(3,2);②当∠BQM=90°时,此时点Q 与点A 重合,△BOD ∽△BQM′, 此时m=-1,点Q 的坐标为(-1,0);综上,点Q 的坐标为(3,2)或(-1,0)时,以点B 、Q 、M 为顶点的三角形与△BOD 相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.14.如图,已知抛物线2(0)y ax bx a =+≠过点,-3) 和,0),过点A 作直线AC//x 轴,交y 轴与点C . (1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D ,连接OA ,使得以A ,D ,P 为顶点的三角形与△AOC 相似,求出对应点P 的坐标; (3)抛物线上是否存在点Q ,使得13AOC AOQ S S ∆∆=?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)213322y x x =-;(2)P 点坐标为(3)或(833,- 43);(3)Q 点坐标(30)或(315) 【解析】 【分析】(1)把A 与B 坐标代入抛物线解析式求出a 与b 的值,即可确定出解析式;(2)设P 坐标为2133,2x x x ⎛⎫- ⎪ ⎪⎝⎭,表示出AD 与PD ,由相似分两种情况得比例求出x 的值,即可确定出P 坐标;(3)存在,求出已知三角形AOC 边OA 上的高h ,过O 作OM ⊥OA ,截取OM=h,与y 轴交于点N ,分别确定出M 与N 坐标,利用待定系数法求出直线MN 解析式,与抛物线解析式联立求出Q 坐标即可. 【详解】(1)把3A 3)-和点(33B 0)代入抛物线得:33327330a b a b ⎧+=-⎪⎨+=⎪⎩,解得:12a =,332b =-, 则抛物线解析式为213322y x x =-; (2)当P 在直线AD 上方时,设P 坐标为2133,22x x x ⎛⎫- ⎪ ⎪⎝⎭,则有3AD x =2133322PD x x =-+, 当OCA ADP ∆∆∽时,OC CA AD DP =2331333x x x =--+, 整理得:239318236x x x -+=-,即23113240x x -+=, 解得:11353x ±=,即83x =或3x =此时83(3P ,4)3-;当OCA PDA ∆∆∽时,OC CA PD AD =,即2313333x x x =--+, 整理得:23963663x x x -+=-,即253120x x -+=, 解得:5333x ±=,即43x =或3(舍去), 此时(43P ,6);当点()0,0P 时,也满足OCA PDA ∆∆∽; 当P 在直线AD 下方时,同理可得:P 的坐标为43(3,10)3-,综上,P 的坐标为83(,4)3-或(43,6)或43(,10)3-或()0,0;(3)在Rt AOC ∆中,3OC =,3AC =,根据勾股定理得:23OA =,Q 11··22OC AC OA h =, 32h ∴=, 1333AOC AOQ S S ∆∆==Q , AOQ ∴∆边OA 上的高为92, 过O 作OM OA ⊥,截取92OM =,过M 作//MN OA ,交y 轴于点N ,如图所示:在Rt OMN ∆中,29ON OM ==,即()0,9N , 过M 作MH x ⊥轴,在Rt OMH ∆中,1924MH OM ==,39324OH OM ==,即93(4M ,9)4, 设直线MN 解析式为9y kx =+,把M 坐标代入得:99394k =+,即3k =-,即39y x =-+, 联立得:2391332y x y x x ⎧=-+⎪⎨=-⎪⎩,解得:330x y ⎧=⎪⎨=⎪⎩或2315x y ⎧=-⎪⎨=⎪⎩,即(33Q ,0)或(23-,15),则抛物线上存在点Q ,使得13AOC AOQ S S ∆∆=,此时点Q 的坐标为(33,0)或(23-,15).【点睛】二次函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,点到直线的距离公式,熟练掌握待定系数法是解本题的关键.15.如图,△ABC 的顶点坐标分别为A (﹣6,0),B (4,0),C (0,8),把△ABC 沿直线BC 翻折,点A 的对应点为D ,抛物线y=ax 2﹣10ax+c 经过点C ,顶点M 在直线BC 上.(1)证明四边形ABCD 是菱形,并求点D 的坐标; (2)求抛物线的对称轴和函数表达式;(3)在抛物线上是否存在点P ,使得△PBD 与△PCD 的面积相等?若存在,直接写出点P 的坐标;若不存在,请说明理由. 【答案】(1)详见解析(2)22y x 4x 85=-+ (3)详见解析 【解析】 【分析】(1)根据勾股定理,翻折的性质可得AB=BD=CD=AC ,根据菱形的判定和性质可得点D 的坐标.(2)根据对称轴公式可得抛物线的对称轴,设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b ,根据待定系数法可求M 的坐标,再根据待定系数法求出抛物线的函数表达式. (3)分点P 在CD 的上面下方和点P 在CD 的上方两种情况,根据等底等高的三角形面积相等可求点P 的坐标: 设P 22x,x 4x 85⎛⎫-+ ⎪⎝⎭, 当点P 在CD 的上面下方,根据菱形的性质,知点P 是AD 与抛物线22y x 4x 85=-+的交点,由A,D 的坐标可由待定系数法求出AD 的函数表达式:1y x 32=+,二者联立可得P 1(529,48); 当点P 在CD 的上面上方,易知点P 是∠D 的外角平分线与抛物线22y x 4x 85=-+的交点,此时,∠D 的外角平分线与直线AD 垂直,由相似可知∠D 的外角平分线PD 的斜率等于-2,可设其为y 2x m =-+,将D (10,8)代入可得PD 的函数表达式:y 2x 28=-+,与抛物线22y x 4x 85=-+联立可得P 2(﹣5,38). 【详解】(1)证明:∵A (﹣6,0),B (4,0),C (0,8),∴AB=6+4=10,AC 10==.∴AB=AC .由翻折可得,AB=BD ,AC=CD .∴AB=BD=CD=AC .∴四边形ABCD 是菱形. ∴CD ∥AB .∵C (0,8),∴点D 的坐标是(10,8).(2)∵y=ax 2﹣10ax+c ,∴对称轴为直线10ax 52a-=-=. 设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b ,∴4k b 0b 8+=⎧⎨=⎩,解得k 2b 8=-⎧⎨=⎩.∴直线BC 的解析式为y=﹣2x+8.∵点M 在直线y=﹣2x+8上,∴n=﹣2×5+8=﹣2.。
天津市九年级数学上册第二十二章《二次函数》经典题(培优练)(1)
![天津市九年级数学上册第二十二章《二次函数》经典题(培优练)(1)](https://img.taocdn.com/s3/m/f5637704941ea76e59fa0493.png)
一、选择题1.设A(﹣2,y 1),B(1,y 2),C(2,y 3)是抛物线y =﹣(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( ) A .y 1>y 2>y 3 B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 2A解析:A 【分析】根据二次函数的性质解答. 【详解】由抛物线y =﹣(x +1)2+a 可知:抛物线开口向下,对称轴为直线x=-1, ∴点离对称轴越近该点的函数值越大, ∵2(1)1(1)2(1)---<--<--, ∴y 1>y 2>y 3, 故选:A . 【点睛】此题考查二次函数的增减性:当a>0时,对称轴左减右增;当a<0时,对称轴左增右减. 2.设函数()()12y x x m =--,23y x=,若当1x =时,12y y =,则( ) A .当1x >时,12y y < B .当1x <时,12y y > C .当0.5x <时,12y y < D .当5x >时,12y y >D解析:D 【分析】当y 1=y 2,即(x ﹣2)(x ﹣m )=3x,把x =1代入得,(1﹣2)(1﹣m )=3,则m =4,画出函数图象即可求解. 【详解】 解:当y 1=y 2, 即(x ﹣2)(x ﹣m )=3x, 把x =1代入得,(1﹣2)(1﹣m )=3, ∴m =4,∴y 1=(x ﹣2)(x ﹣4), 抛物线的对称轴为:x =3,如下图:设点A 、B 的横坐标分别为1,5,则点A 、B 关于抛物线的对称轴对称,从图象看在点B 处,即x =5时,y 1>y 2, 故选:D . 【点睛】本题考查的是二次函数与不等式(组),主要要求学生通过观察函数图象的方式来求解不等式.3.如图所示,二次函数2y ax bx c =++的图象中,对称轴是直线1x =,王刚同学观察得出了下面四条信息:①1c >;②若()12,y ,()24,y 是抛物线上两点,则12y y >;③420a b c -+<;④方程20ax bx c ++=的两根是11x =-,23x =.其中说法正确的有( )A .①②③④B .②④C .①②④D .①③④A解析:A 【分析】由OC 与OA 的大小对①进行判断;利用二次函数的性质对②进行判断;利用x=-2时,y <0可对③进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点为(3,0),然后根据抛物线与x 轴的交点问题可对④进行判断. 【详解】∵抛物线与y 轴的交点在x 轴的上方,且OC >1, ∴c >1,所以①正确; ∵抛物线的对称轴为直线x=1,而点(2,y 1)到直线x=1的距离小于点(4,y 2)到直线x=1的距离相等, ∴y 1>y 2,所以②正确; ∵x=-2时,y <0,∴4a-2b+c <0,所以③正确;∵抛物线的对称轴为直线x=1,而抛物线与x 轴的一个交点为(-1,0),∴抛物线与x 轴的另一个交点为(3,0),∴方程ax 2+bx+c=0的两根是x 1=-1,x 2=3,所以④正确. 故选:A . 【点睛】考查了二次函数图象与系数的关系,解题关键是熟记二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点. 4.已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如表:A .抛物线的开口向下B .抛物线的对称轴为直线x =2C .当0≤x ≤4时,y ≥0D .若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 2B 解析:B 【分析】根据表格中的数据和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题. 【详解】解:由表格可得,该抛物线的对称轴为直线x =042=2,故选项B 正确; 当x <2 时,y 随x 的增大而减小,当x >2时,y 随x 的增大而增大,所以该抛物线的开口向上,故选项A 错误;当0≤x ≤4时,y ≤0,故选项C 错误;由二次函数图象具有对称性可知,若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 2或x 2<x 1,故选项D 错误; 故选:B . 【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答. 5.抛物线2(2)3y x =-+的对称轴是( ) A .直线2x =- B .直线3x =C .直线1x =D .直线2x =D解析:D 【分析】直接利用二次函数对称轴求法得出答案.【详解】解:抛物线y=(x-2)2+3的对称轴是:直线x=2. 故选:D . 【点睛】此题主要考查了二次函数的性质,正确掌握对称轴确定方法是解题关键.6.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++A 解析:A 【分析】根据题意结合函数的图象,得出图中A 、B 、C 的坐标,再利用待定系数法求出函数关系式即可. 【详解】解:50.26 2.24 2.52+==(米) 根据题意和所建立的坐标系可知,A (-5,12),B (0,52),C (52,0), 设排球运动路线的函数关系式为y=ax 2+bx+c ,将A 、B 、C 的坐标代入得:125252255042a b c c a b c ⎧-+=⎪⎪⎪=⎨⎪⎪++=⎪⎩, 解得,1485,,75152a b c =-=-=,∴排球运动路线的函数关系式为2148575152y x x =--+, 故选:A . 【点睛】本题考查待定系数法求二次函数的关系式,根据题意得出图象所过点的坐标是正确解答的关键.7.已知二次函数22(0)y ax bx a =--≠的图象的顶点在第四象限,且过点(1,0)-,当-a b 为整数时,ab 的值为( )A .34或1 B .14或1 C .34或12D .14或12A 解析:A 【分析】由题意易得20a b +-=,且0,0a b >>,则有当x=1时,y<0,即20a b --<,进而可得22a b -<-<,然后由-a b 为整数,则有1a b -=或0或-1,最后求解即可. 【详解】解:∵二次函数()220y ax bx a =--≠的图象的顶点在第四象限,且过点()1,0-,∴20a b +-=,且0,0a b >>,当x=1时,y<0,即20a b --<, ∴2a b +=,且0,2a a b >-<, ∴02,02a b <<<<, ∴22a b -<-<, ∵-a b 为整数,∴1a b -=或0或-1,若1a b -=时,则有31,22a b ==,从而34ab =;若0a b -=时,则有1,1a b ==,从而1ab =;若1a b -=-时,则有13,22a b ==,从而34ab =;故选A . 【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 8.对于二次函数()2532y x =-+的图象,下列说法中不正确的是( ) A .顶点是()3,2 B .开口向上 C .与x 轴有两个交点 D .对称轴是3x =C解析:C 【分析】根据函数图象和性质逐个求解即可. 【详解】解:对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,顶点坐标为(3,2), A .二次函数y =5(x ﹣3)2+2的图象的顶点坐标为(3,2),故本选项不符合题意; B .由于a =5>0,所以抛物线开口向上,故本选项不符合题意;C .由于y =5(x ﹣3)2+2=5x 2﹣30x+47,则△=b 2﹣4ac =900﹣4×5×47=﹣40<0,所以该抛物线与x 轴没有交点,故本选项符合题意;D .对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,故本选项不符合题意. 故选:C . 【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点,顶点等点坐标的求法,及这些点代表的意义及函数特征. 9.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+ B .2(1)1y x =-+ C .2(2)2y x =-+ D .2(1)3y x =-+C解析:C 【分析】先求出y=(x-1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可. 【详解】解:二次函数y=(x-1)2+2的图象的顶点坐标为(1,2), ∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2), ∴所得的图象解析式为y=(x-2)2+2. 故选:C . 【点睛】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.10.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( ) A .x =-3 B .x =-1 C .x =-2 D .x =4C解析:C 【分析】根据二次函数图象的平移规律得出平移后的抛物线的解析式,由此即可得出答案. 【详解】由题意,平移后的抛物线的解析式为2213()3y x =-+-,即22(2)3y x =+-, 则此时抛物线的对称轴是直线2x =-, 故选:C . 【点睛】本题考查了二次函数图象的平移、二次函数的对称轴,熟练掌握二次函数图象的平移规律是解题关键.二、填空题11.有一个二次函数的图象,三位同学分别说了它的一些特点:甲:与x 轴只有一个交点; 乙:对称轴是直线x =4;丙:与y 轴的交点到原点的距离为3.满足上述全部特点的二次函数的解析式为_____.y =(x ﹣4)2或y =﹣(x ﹣4)2【分析】根据甲乙所说的特点可知判断抛物线的顶点坐标为(40)再根据丙所说的特点可得到抛物线与y 轴的交点坐标为(03)或(0﹣3)然后利用待定系数法求出抛物线解析式解析:y =316(x ﹣4)2或y =﹣316(x ﹣4)2. 【分析】根据甲、乙所说的特点可知判断抛物线的顶点坐标为(4,0),再根据丙所说的特点可得到抛物线与y 轴的交点坐标为(0,3)或(0,﹣3),然后利用待定系数法求出抛物线解析式即可. 【详解】解:∵抛物线与x 轴只有一个交点且对称轴是直线x =4, ∴抛物线的顶点坐标为(4,0), ∵抛物线与y 轴的交点到原点的距离为3.∴抛物线与y 轴的交点坐标为(0,3)或(0,﹣3), 设抛物线的解析式为y =a (x ﹣4)2, 把(0,3)代入得3=a (0﹣4)2,解得a =316,此时抛物线的解析式为y =316(x ﹣4)2;把(0,﹣3)代入得﹣3=a (0﹣4)2,解得a =﹣316,此时抛物线的解析式为y =﹣316(x ﹣4)2;综上,满足上述全部特点的二次函数的解析式为y =316(x ﹣4)2或y =﹣316(x ﹣4)2. 故答案为y =316(x ﹣4)2或y =﹣316(x ﹣4)2. 【点睛】本题主要考查了二次函数的性质以及运用待定系数法确定函数解析式,灵活运用二次函数的性质成为解答本题的关键.12.已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数()22y x m =--的图象上,则y 1,y 2,y 3的大小关系是_______.y2<y1<y3【分析】根据二次函数的对称性增减性可以得解【详解】解:由二次函数的解析式可得x=2时y 取得最小值∴最小又由二次函数图象的对称性质可知x=0与x=4的函数值相等∴令x=0时函数值为y 则解析:y 2<y 1<y 3根据二次函数的对称性、增减性可以得解. 【详解】解:由二次函数的解析式可得x=2时y 取得最小值,∴2y 最小, 又由二次函数图象的对称性质可知x=0与x=4的函数值相等, ∴令x=0时函数值为y ,则1y y =,再由二次函数的增减性质可知x<2时,y 随着x 的增大反而减小, 所以由于0>-2,因此x=0时的函数值小于x=-2时的函数值,即3y y <, ∴13y y <,∴213y y y <<, 故答案为213y y y <<. 【点睛】本题考查二次函数的应用,熟练掌握二次函数图象的对称性、增减性及最大最小值的求法是解题关键. 13.已知抛物线243y x x =-+与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为______.;【分析】先令y=0求得点AB 的坐标再求得顶点M 的坐标根据题意即可得出平移的方向和距离进而可求得平移后的解析式【详解】解:令y=0则有解得:x1=1x2=3∴A(10)B(30)∵=(x ﹣2)2﹣1解析:221y x x =++;【分析】先令y=0求得点A 、B 的坐标,再求得顶点M 的坐标,根据题意即可得出平移的方向和距离,进而可求得平移后的解析式. 【详解】解:令y=0,则有2043x x =-+, 解得:x 1=1,x 2=3, ∴A(1,0),B(3,0), ∵243y x x =-+=(x ﹣2)2﹣1,∴顶点M 的坐标为(2,﹣1),∵平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,∴将原抛物线向上平移1个单位长度,再向左平移3个单位长度,即可得到平移后的抛物线,∴平移后的顶点坐标为(﹣1,0), 即平移后的解析式为y=(x+1)2=x 2+2x+1, 故答案为:221y x x =++.本题考查了二次函数的图像与几何变换,会求抛物线与坐标轴的交点和顶点坐标,熟练掌握抛物线平移的变换规律是解答的关键.14.将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为________.y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减左加右减可得平移后的函数解析式【详解】解:将二次函数 的图象先向左平移2个单位再向下平移4个单位则所得图象的函数表达式为:y=2(x解析:y=2(x+1)2-1 【分析】利用二次函数图像平移规律:上加下减,左加右减,可得平移后的函数解析式. 【详解】解:将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为:y=2(x-1+2)2+3-4 ∴y=2(x+1)2-1. 故答案为:y=2(x+1)2-1. 【点睛】本题考查了二次函数与几何变换,正确掌握平移规律是解题关键.15.如图是二次函数2(0)y ax bx c a =++≠图象的一部分,有下列4个结论:①0abc >;②240b ac ->;③关于x 的方程20ax bx c ++=的两个根是12x =-,23x =;④关于x 的不等式20ax bx c ++>的解集是2x >-.其中正确的结论是___________.②③【分析】根据抛物线开口方向对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断【详解】解:∵抛物线开口解析:②③ 【分析】根据抛物线开口方向,对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断. 【详解】解:∵抛物线开口向下,交y 轴的正半轴, ∴a <0,c >0,∵-2b a =12, ∴b =-a >0,∴abc <0,所以①错误; ∵抛物线与x 轴有2个交点, ∴△=b 2-4ac >0, 即b2>4ac ,所以②正确;∵抛物线y =ax 2+bx +c 经过点(-2,0), 而抛物线的对称轴为直线x=12, ∴点(-2,0)关于直线x =12的对称点(3,0)在抛物线上, ∴关于x 的一元二次方程ax 2+bx +c =0的两根是x 1=-2,x 2=3,所以③正确. 由图象可知当-2<x <3时,y >0,∴不等式ax 2+bx +c >0的解集是-2<x <3,所以④错误; 故答案为②③. 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac =0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.16.已知点A (1,y 1),B (2,y 2)在抛物线y =﹣(x +1)2+3的图象上,则y 1_____y 2(填“<”或“>”或“=”).>【分析】根据抛物线y =﹣(x+1)2+3得到开口向下对称轴为直线x =﹣1然后根据二次函数的性质判断函数值的大小【详解】解:∵抛物线y =﹣(x+1)2+3的开口向下对称轴为直线x =﹣1∴当x >﹣1时解析:> 【分析】根据抛物线y =﹣(x +1)2+3得到开口向下,对称轴为直线x =﹣1,然后根据二次函数的性质判断函数值的大小. 【详解】解:∵抛物线y =﹣(x +1)2+3的开口向下,对称轴为直线x =﹣1,∴当x>﹣1时,y随x的增大而减小,∵1<2,∴y1>y2.故答案为:>.【点睛】本题考查了二次函数图象上点的坐标特征,二次函数的性质是解题的关键.17.已知关于x的一元二次方程x2﹣(2m+1)x+m2﹣1=0有实数根a,b,则代数式a2﹣ab+b2的最小值为_____.【分析】由韦达定理得出ab与m的关系式由一元二次方程的根与判别式的关系得出m的取值范围再对代数式a2﹣ab+b2配方并将a+b 和ab整体代入化简然后再配方结合m的取值范围可得出答案【详解】∵关于x 的解析:9 16【分析】由韦达定理得出a,b与m的关系式、由一元二次方程的根与判别式的关系得出m的取值范围,再对代数式a2﹣ab+b2配方并将a+b和ab整体代入化简,然后再配方,结合m的取值范围可得出答案.【详解】∵关于x的一元二次方程x2﹣(2m+1)x+m2﹣1=0有实数根a,b,∴a+b=2m+1,ab=m2﹣1,△≥0,∴△=[﹣(2m+1)]2﹣4×1×(m2﹣1)=4m2+4m+1﹣4m2+4=4m+5≥0,∴m≥54-.∴a2﹣ab+b2=(a+b)2﹣3ab=(2m+1)2﹣3(m2﹣1)=4m2+4m+1﹣3m2+3=m2+4m+4=(m+2)2,∴a2﹣ab+b2的最小值为:2592416⎛⎫-+=⎪⎝⎭.故答案为:9 16.【点睛】本题考查了一元二次方程根与系数的关系,以及利用二次函数的性质求解代数的最值,灵活利用韦达定理及根的判别式,是解决本题的关键,熟悉用函数的思想解决最值问题也是关键点.18.二次函数2y ax bx c =++(a 、b 、c 为常数,0a ≠)中的x 与y 的部分对应值如下表:_______.(填序号即可)①0abc <;②若点()12,C y -,()2,D y π在该拋物线上,则12y y <;③4n a < ;④对于任意实数t ,总有()2496at bt a b +≤+.①②④【分析】根据表格数据求出二次函数的对称轴为直线x=然后根据二次函数的性质对各小题分析判断即可得解【详解】解:由图表知当x=0时y=3当x=3时y=3∴对称轴为且∴①∵∴异号故①正确;②对称轴为解析:①②④【分析】根据表格数据求出二次函数的对称轴为直线x=32,然后根据二次函数的性质对各小题分析判断即可得解.【详解】解:由图表知,当x=0时,y=3,当x=3时,y=3∴对称轴为0+33=222b x a =-=,且3c =,3b a =- ∴23y ax bx =++①∵3b a =-,3c =∴a b ,异号,0abc <,故①正确;②对称轴为32x =,且当1x =-时,.y n = 将(1)n -,代入23y ax bx =++中得3a b n -+=, ∴3a b n -=-又∵0n <∴-0a b <又∵a b ,异号,∴0a <,0.b >∴23y ax bx =++的图象开口向下,∵33|2|||22π-->- ∴12y y <,故②正确;③∵3b a =-, 3.a b n -=-∴(3)3a a n --=-∴4 3.a n =-∴4.a n <,故③错误;④当32x =时,y 有最大值, ∴最大值为3492a b c ++ ∴对任意实数t ,总有29342at bt c a b c ++≤++, ∴24()96at bt a b +≤+,故④正确,故答案为:①②④.【点睛】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.19.过点()0,2,()2,2,()2,1--的二次函数图象开口向_______(填“上”或“下”)下【分析】先用待定系数法确定二次函数的解析式然后根据二次项系数即可解答【详解】解:设一般式y=ax2+bx+c 由题意得:解得由<0则该函数图像开口向下故答案为:下【点睛】本题考查了二次函数图像的性质解析:下【分析】先用待定系数法确定二次函数的解析式,然后根据二次项系数即可解答.【详解】解:设一般式y=ax 2+bx+c ,由题意得:2=c 2=42142a b c a b c ⎧⎪++⎨⎪-=-+⎩解得3=-83=42a b c ⎧⎪⎪⎪⎨⎪=⎪⎪⎩由3=-8a <0,则该函数图像开口向下. 故答案为:下.【点睛】 本题考查了二次函数图像的性质,根据题意确定二次函数的解析式是解答本题的关键.20.如图,在平面直角坐标系xOy 中,抛物线y =-2x 2+bx +c 与x 轴交于A ,B 两点.若顶点C 到x 轴的距离为6,则线段AB 的长为______.2【分析】先确定抛物线的解析式令得到AB 两点的坐标即可得到结果;【详解】∵抛物线y =-2x2+bx +c 顶点C 到x 轴的距离为6∴化二次函数解析式为顶点式为:∴令得解得:∵抛物线y =-2x2+bx +c 与解析:23 【分析】 先确定抛物线的解析式,令0y =,得到A ,B 两点的坐标,即可得到结果;【详解】∵抛物线y =-2x 2+bx +c 顶点C 到x 轴的距离为6,∴化二次函数解析式为顶点式为:()226y x h =--+, ∴令0y =,得()2260x h --+=, 解得:13x h =+,23x h =-,∵抛物线y =-2x 2+bx +c 与x 轴交于A ,B 两点, ∴()3,0A h +,()3,0B h -, ∴()3323AB h h =+--=; 故答案是23.【点睛】本题主要考查了二次函数的性质,抛物线与坐标轴的交点,准确分析计算是解题的关键.三、解答题21.如图,已知正三角形ABC 的边长为4,矩形DEFG 的DE 两个点在正三角形BC 边上,F 、G 点在AB 、AC 边上,求矩形DEFG 的面积的最大值是多少?解析:3设EF=x ,先求出三角形ABC 的高AH 的长,由矩形性质FG ∥BC ,推出△AFG ∽△ABC 利用性质得比例式FG AM =BC AH 求出()234FG=23x -⋅,利用矩形面积公式S 矩形DEFG =22343x x -+利用函数的性质求出最值即可. 【详解】过A 作AH ⊥BC 于H ,交FG 于M ,∵正三角形ABC 的边长为4,∴BH=CH=2,在Rt △ABH 中由勾股定理AH=2222AB -BH =4-2=23,设EF=x ,则AM=23-x ,∵矩形DEFG 的DE 两个点在正三角形BC 边上,∴FG ∥BC ,∴△AFG ∽△ABC ,∴FG AM =BC AH, ∴()234AM BC FG==AH 23x -⋅, ∴S 矩形DEFG =FE•FG=()2234234323x xx x -⋅=-+, ∵233a =-0<, 则抛物线开口向下,有最大值,432323x =-=⎛⎫⨯- ⎪⎝⎭,S 最大=23.本题考查等边三角形内接矩形问题,涉及等边三角形的性质,矩形的性质,相似三角形的判定与性质,二次函数的性质,掌握等边三角形的性质,矩形的性质,相似三角形的判定与性质,二次函数的性质是解题关键.22.如图,抛物线2123y x x =-++与直线24y x =交于A 、B 两点.(1)求A 、B 两点的坐标;(2)直接写出当x 取何值时,12y y >;(3)利用图象法直接写出不等式2230x x -++≥的解集.解析:(1)A (1,4),B (-3,-12);(2)-3<x <1;(3)-1≤x≤3.【分析】(1)根据函数的图象与性质可得2234x x x -++=,则可求出交点的横坐标,再由24y x =可得纵坐标,即可得出结论;(2)观察图象可得结果;(3)求出抛物线与x 轴的交点坐标,即可得解.【详解】解:(1)根据题意得:2234x x x -++=,解得:11x =,23x =-当11x =时,24y =.当23x =-时,212y =-.∴A (1,4),B (-3,-12).(2)观察图象得:当-3<x <1时,12y y >.(3)由2230x x -++=得:11x =-,23x =.∴抛物线与x 轴的交点坐标为(-1,0),(3,0).由图象可得,2230x x -++≥的解集为:-1≤x≤3.【点睛】本题主要考查了二次函数的图象与性质,掌握二次函数的图象与性质并能运用数形结合的思想是解题的关键.23.某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1)求出S 与x 之间的函数关系式,并确定自变量x 的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.解析:(1)S =﹣x 2+6x ,其中0<x <6;(2)矩形一边长为3m 时,面积最大为9m 2,9000元.【分析】(1)根据矩形的面积公式和已知条件列出S 与x 之间的函数关系式并确定自变量x 的取值范围即可;(2)根据(1)得出的关系式,利用配方法求出函数的最大值即可.【详解】解:(1)∵矩形的一边长为x 米,∴另一边长为1222x -米,即(6﹣x )米, ∴S =x (6﹣x )=﹣x 2+6x ,即S =﹣x 2+6x ,其中0<x <6; (2)根据(1)得:S =x (6﹣x )=﹣(x ﹣3)2+9,则矩形一边长为3m 时,面积最大为9m 2.则此时最大费用为9×1000=9000(元).【点睛】本题考查了二次函数在几何图形中的应用,根据题意确定S 与x 之间的函数关系式成为解答本题的关键.24.平面直角坐标系xOy 中,二次函数2y x bx c =++的图象与x 轴交于点()4,0A 和()1,0B -,交y 轴于点C .(1)求二次函数的解析式;(2)将点C 向右平移n 个单位,再次落在二次函数图象上,求n 的值;(3)对于这个二次函数,若自变量x 的值增加4时,对应的函数值y 增大,求满足题意的自变量x 的取值范围.解析:(1)234y x x =--;(2)3n =;(3)12x >-【分析】 (1)把A,B 代入解析式求出b,c ,即可得到抛物线解析式;(2)根据抛物线的对称性即可求得;(3)分三种情况讨论,即可求得满足题意的自变量x 的取值范围.【详解】解:(1)∵二次函数2+y x bx c =+的图象与x 轴交于点()4,0A 和()1,0B -,∴164010b c b c ++=⎧⎨-+=⎩, 解得34b c =-⎧⎨=-⎩, ∴234y x x =--.(2)依题意,点C 的坐标为()0,4-, 该二次函数图象的对称轴为322b x =-=, 设点C 向右平移n 个单位后,所得到的点为D ,由于点D 在抛物线上,∴C ,D 两点关于二次函数的对称轴32x =对称. ∴点D 的坐标为()3,4-.∴3n CD ==.(3)依题意,即当自变量取4x +时的函数值,大于自变量为x 时的函数值. 结合函数图象,由于对称轴为32x =,分为以下三种情况: ①当342x x <+≤时,函数值y 随x 的增大而减小,与题意不符; ② 当342x x <<+时,需使得33422x x -<+-,方可满足题意,联立解得1322x -<<; ③342x x ≤<+时,函数值y 随x 的增大而增大,符合题意,此时32x ≥. 综上所述,自变量x 的取值范围是12x >-. 【点睛】 本题考查了抛物线与x 轴的交点,待定系数法求二次函数的解析式,坐标与图形的变换−平移,二次函数的性质,分类讨论是解题的关键.25.已知关于x的方程(k-1)x2+(2k-1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=(k-1)x2+(2k-1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围.(3)已知抛物线y=(k-1)x2+(2k-1)x+2恒过定点,求出定点坐标解析:(1)证明见解析;(2)a>1或a<﹣4;(3)(0,2)、(﹣2,0).【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解(k-1)x2+(2k-1)x+2=0得到k=2,由此得到该抛物线解析式为y=x2+3x+2,结合图象回答问题.(3)根据题意得到(k-1)x2+(2k-1)x+2﹣y=0恒成立,由此列出关于x、y的方程组,通过解方程组求得该定点坐标.【详解】(1)证明:①当k=1时,方程为x+2=0,所以x=﹣2,方程有实数根,②当k≠1时,∵△=(2k-1)2﹣4x(k-1)×2=4k2-12k+9=(2k-3)2≥0,即△≥0,∴无论k取任何实数时,方程总有实数根(2)解:令y=0,则(k-1)x2+(2k-1)x+2=0,(x-2)[(k-1)x+1]=0解关于x的一元二次方程,得x1=﹣2,x2=11-k,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴1-k=-1,k=2.∴该抛物线解析式为y=x2+3x+2,由图象得到:当y1>y2时,a>1或a<﹣4.(3)依题意得(k-1)x2+(2k-1)x+2﹣y=0恒成立,即k(x2+2x)-x2-x﹣y+2=0恒成立,得:x2+2x=0;x1=0,y1=2;x2=-2,y2=0所以该抛物线恒过定点(0,2)、(﹣2,0).【点睛】本题考查了抛物线与x 轴的交点与判别式的关系及二次函数图象上点的坐标特征,解答(1)题时要注意分类讨论.26.二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:(1)直接写出c ,m 的值;(2)求此二次函数的解析式.解析:(1)4c =,52m =;(2)219(1)22y x =-++或2142y x x =--+ 【分析】(1)根据表格中对应值可知对称轴的值和抛物线与y 轴的交点,即可求得c 的值,根据抛物线的对称性即可求得m 的值; (2)直接利用待定系数法求出二次函数解析式即可.【详解】解:(1)根据图表可知:二次函数y=ax 2+bx+c 的图象过点(0,4),(-2,4), ∴对称轴为直线2012x -+==-,c=4, ∵(-3,52)的对称点为(1,52), ∴m=52; (2)∵对称轴是直线x=-1, ∴顶点为(-1,92), 设y=a (x+1)2+92, 将(0,4)代入y=a (x+1)2+92得, a+92=4, 解得a=-12, ∴这个二次函数的解析式为y=-12(x+1)2+92.【点睛】本题考查的是二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数的解析式,能熟练求解函数对称轴是解题的关键.27.若二次函数2y ax bx c =++的x 与y 的部份对应值如下表: x …-4 -3 -2 -1 0 1 … y… -5 0 3 4 3 0 … (1)求此二次函数的解析式;(2)画出此函数图象(不用列表);(3)结合函数图象,当41x -≤<时,直接写出y 的取值范围.解析:(1)y =−x 2−2x +3;(2)见详解;(3)−5≤y≤4.【分析】(1)利用表中数据和抛物线的对称性可得到抛物线的顶点坐标为(−1,4),则可设顶点式y =a (x +1)2+4,然后把(0,3)代入求出a 的值即;(2)利用描点法画二次函数图象;(3)观察函数函数图象,当41x -≤<时,函数的最大值为4,于是可得到y 的取值范围为−5≤y≤4.【详解】解:(1)由表知,抛物线的顶点坐标为(−1,4),设y =a (x +1)2+4,把(0,3)代入得a (0+1)2+4=3,解得a =−1,∴抛物线的解析式为y =−(x +1)2+4,即y =−x 2−2x +3;(2)如图,(3)如图:当−4≤x <1时,−5≤y≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.28.如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A 'B 'O .一抛物线经过点A '、B '、B .(1)求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB 'A 'B 的面积是△A 'B 'O 面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由.解析:(1)22y x x =-++;(2)存在,P (1,2).【分析】(1)利用旋转的性质得出A′(−1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S 四边形PB′A′B =S △B′OA′+S △PB′O +S △POB ,再假设四边形PB′A′B 的面积是△A′B′O 面积。
天津中考数学二轮 二次函数 专项培优 易错 难题
![天津中考数学二轮 二次函数 专项培优 易错 难题](https://img.taocdn.com/s3/m/a2b5b15aaf45b307e971975c.png)
天津中考数学二轮二次函数专项培优易错难题一、二次函数1.(6分)(2015•牡丹江)如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.【答案】(1)y=-2x-3;(2).【解析】试题分析:(1)把A,B两点坐标代入,求待定系数b,c,进而确定抛物线的解析式;(2)连接BE,点F是AE中点,H是AB中点,则FH为三角形ABE的中位线,求出BE的长,FH就知道了,先由抛物线解析式求出点E坐标,根据勾股定理可求BE,再根据三角形中位线定理求线段HF的长.试题解析:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0),∴把A,B两点坐标代入得:,解得:,∴抛物线的解析式是:y=-2x-3;(2)∵点E(2,m)在抛物线上,∴把E点坐标代入抛物线解析式y=-2x-3得:m=4﹣4﹣3=﹣3,∴E(2,﹣3),∴BE==.∵点F是AE中点,点H是抛物线的对称轴与x轴交点,即H为AB的中点,∴FH是三角形ABE的中位线,∴FH=BE=×=.∴线段FH的长.考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理.2.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x 轴上是否存在一点C ,与A ,B 组成等腰三角形?若存在,求出点C 的坐标,若不在,请说明理由;(3)在直线AB 的下方抛物线上找一点P ,连接PA ,PB 使得△PAB 的面积最大,并求出这个最大值.【答案】(1)21248355y x x =--,顶点D (2,635-);(2)C (±0)或(5±0)或(9710,0);(3)752【解析】 【分析】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入函数表达式,即可求解; (2)分AB =AC 、AB =BC 、AC =BC ,三种情况求解即可;(3)由S △PAB 12=•PH •x B ,即可求解. 【详解】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2①,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入上式得:9=25a +5b ﹣3②,联立①、②解得:a 125=,b 485=-,c =﹣3,∴抛物线的解析式为:y 125=x 2485-x ﹣3. 当x =2时,y 635=-,即顶点D 的坐标为(2,635-); (2)A (0,﹣3),B (5,9),则AB =13,设点C 坐标(m ,0),分三种情况讨论:①当AB =AC 时,则:(m )2+(﹣3)2=132,解得:m ,即点C 坐标为:(,0)或(﹣,0);②当AB=BC时,则:(5﹣m)2+92=132,解得:m=5±,即:点C坐标为(5+,0)或(5﹣0);③当AC=BC时,则:5﹣m)2+92=(m)2+(﹣3)2,解得:m=9710,则点C坐标为(9710,0).综上所述:存在,点C的坐标为:(,0)或(5±0)或(9710,0);(3)过点P作y轴的平行线交AB于点H.设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k125=,故函数的表达式为:y125=x﹣3,设点P坐标为(m,12 5m2485-m﹣3),则点H坐标为(m,125m﹣3),S△PAB12=•PH•x B52=(125-m2+12m)=-6m2+30m=25756()22m--+,当m=52时,S△PAB取得最大值为:752.答:△PAB的面积最大值为752.【点睛】本题是二次函数综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.3.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B,交x轴正半轴于点C.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M 的坐标;(3)将点A 绕原点旋转得点A ′,连接CA ′、BA ′,在旋转过程中,一动点M 从点B 出发,沿线段BA ′以每秒3个单位的速度运动到A ′,再沿线段A ′C 以每秒1个单位长度的速度运动到C 后停止,求点M 在整个运动过程中用时最少是多少?【答案】(1)y =﹣x 2+2x +3;(2)S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74);(3)点M 秒. 【解析】 【分析】(1)首先求出B 点的坐标,根据B 点的坐标即可计算出二次函数的a 值,进而即可计算出二次函数的解析式;(2)计算出C 点的坐标,设出M 点的坐标,再根据△ABM 的面积为S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB ,化简成二次函数,再根据二次函数求解最大值即可. (3)首先证明△OHA ′∽△OA ′B ,再结合A ′H +A ′C ≥HC 即可计算出t 的最小值. 【详解】(1)将x =0代入y =﹣3x +3,得y =3, ∴点B 的坐标为(0,3),∵抛物线y =ax 2﹣2ax +a +4(a <0)经过点B , ∴3=a +4,得a =﹣1,∴抛物线的解析式为:y =﹣x 2+2x +3;(2)将y =0代入y =﹣x 2+2x +3,得x 1=﹣1,x 2=3,∴点C 的坐标为(3,0),∵点M 是抛物线上的一个动点,并且点M 在第一象限内,点M 的横坐标为m , ∴0<m <3,点M 的坐标为(m ,﹣m 2+2m +3), 将y =0代入y =﹣3x +3,得x =1, ∴点A 的坐标(1,0), ∵△ABM 的面积为S ,∴S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB =()2123313222m m m ⨯-++⨯⨯+-,化简,得S =252m m --=21525228m ⎛⎫--+ ⎪⎝⎭,∴当m =52时,S 取得最大值,此时S =258,此时点M 的坐标为(52,74), 即S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74); (3)如右图所示,取点H 的坐标为(0,13),连接HA ′、OA ′, ∵∠HOA ′=∠A ′OB ,13OH OA '=,13OA OB '=, ∴△OHA ′∽△OA ′B ,∴3BA A H''=, 即3BA A H ''=,∵A ′H +A ′C ≥HC =,∴t ,即点M 在整个运动过程中用时最少是3秒.【点睛】本题主要考查抛物线的性质,关键在于设元,还有就是(3)中利用代替法计算t 的取值范围,难度系数较大,是中考的压轴题.4.已知,抛物线y=x 2+2mx(m 为常数且m≠0). (1)判断该抛物线与x 轴的交点个数,并说明理由.(2)若点A(-n+5,0),B(n-1,0)在该抛物线上,点M为抛物线的顶点,求△ABM的面积.(3)若点(2,p),(3,g),(4,r)均在该抛物线上,且p<g<r,求m的取值范围.【答案】(1)抛物线与x轴有2个交点,理由见解析;(2)△ABM的面积为8;(3)m 的取值范围m>-2.5【解析】【分析】(1)首先算出根的判别式b2-4ac的值,根据偶数次幂的非负性,判断该值一定大于0,从而根据抛物线与x轴交点个数与根的判别式的关系即可得出结论;(2)根据抛物线的对称性及A,B两点的坐标特点求出抛物线的对称轴直线为x=2.从而再根据抛物线对称轴直线公式建立方程,求解算出m的值,进而求出抛物线的解析式,得出A,B,M三点的坐标,根据三角形的面积计算方法,即可算出答案;(3)方法一(图象法):根据抛物线的对称轴直线及开口方向判断出当对称轴在直线x=3的右边时,显然不符合题目条件;当对称轴在直线x=2的左边时,显然符合题目条件(如图2),从而列出不等式得出m的取值范围;当对称轴在直线x=2和x=3之间时,满足3-(-m)>-m-2即可(如图3),再列出不等式得出m的取值范围,综上所述,求出m的取值范围;方法二(代数法):将三点的横坐标分贝代入抛物线的解析式,用含m的式子表示出p,g,r,再代入 p<g<r 即可列出关于m的不等式组,求解即可。
天津市南开中学九年级数学上册第二十二章《二次函数》(培优练)
![天津市南开中学九年级数学上册第二十二章《二次函数》(培优练)](https://img.taocdn.com/s3/m/4182e48df46527d3250ce062.png)
一、选择题1.抛物线y =ax 2+bx +c (a ≠0)的图象大致如图所示,下列说法: ①2a +b =0;②当﹣1<x <3时,y <0;③若(x 1,y 1)(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2; ④9a +3b +c =0, 其中正确的是( )A .①②④B .①④C .①②③D .③④2.将二次函数221y x x =+-化为2()y x h k =-+的形式时,结果正确的是( )A .2(1)2y x =+-B .2(1)2y x =--C .2(1)2y x =-+D .2(1)3y x =++3.已知关于x 的二次函数y=(x-h )2+3,当1≤x≤3时,函数有最小值2h ,则h 的值为( ) A .32B .32或2 C .32或6 D .32或2或6 4.抛物线2(2)3y x =-+的对称轴是( ) A .直线2x =-B .直线3x =C .直线1x =D .直线2x =5.二次函数2y ax bx c =++()0a ≠的图象如图所示,观察得出了下面4条信息:①0abc >;②0a b c -+>;③230a b -=;④240b ac ->.你认为其中正确的结论有( )A .1B .2C .3D .46.已知抛物线229(0)y x mx m =-->的顶点M 关于坐标原点O 的对称点为M ',若点M '在这条抛物线上,则点M 的坐标为( )A .(1,5)-B .(2,8)-C .(3,18)-D .(4,20)-7.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D .8.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .9.如图是二次函数2(,,y ax bx c a b c =++是常数,0a ≠)图象的一部分,与x 轴的交点A 在点()2,0和()3,0之间,对称轴是1x =.对于下列说法:①0abc <;②20a b +=;③30a c +>;④()(a b m am b m +≥+为实数)﹔⑤当13x时,0y >,其中正确的是( )A .①②⑤B .①②④C .②③④D .③④⑤10.二次函数()20y ax bx c a =++≠的图象如图所示,则下列结论正确的是( )A .0abc >B .20a b +<C .关于x 的方程230ax bx c +++=有两个相等的实数根D .930a b c ++<11.关于抛物线223y x x =-+-,下列说法正确的是( ) A .开口方向向上 B .顶点坐标为()1,2- C .与x 轴有两个交点D .对称轴是直线1x =-12.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x 7-6- 5- 4-3-2-y27- 13-3-353A .5B .3-C .13-D .27-13.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x 轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( ) A .3a 1-<<- B .2a 1-<< C .1a 0-<< D .2a 4<< 14.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( )A .x =-3B .x =-1C .x =-2D .x =415.二次函数2y ax bx c =++的图象如图所示,下列结论正确的是( )A .0abc >B .0a b c ++=C .420a b c ++=D .240b ac -<二、填空题16.在ABC 中,A ∠,B 所对的边分别为a ,b ,30C ∠=︒.若二次函数2()()()y a b x a b x a b =+++--的最小值为2a-,则A ∠=______︒. 17.已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数()22y x m =--的图象上,则y 1,y 2,y 3的大小关系是_______.18.已知二次函数y=x 2+x+m ,当x 取任意实数时,都有y >0,则m 的取值范围是________.19.抛物线2(3)y a x m =-+与x 轴的一个交点为(1,0),则关于x 的一元二次方程2(3)0a x m -+=的根为__________.20.二次函数2y ax bx c =++的部分对应值如下表:x-3 -2 -1 0 1 2 3 4 5 y125-3-4-3512利用二次函数的图象可知,当函数值时,x 的取值范围是.21.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C 为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.22.某种洒杯的轴截面是一条抛物线段,在酒杯中加酒,当酒水深为lcm 时,液面宽为2cm ,将酒杯装满酒后,再倾斜至与水平面成30°,此时酒杯中余下酒深度为2cm ,这个酒杯的杯口直径为______cm .23.已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线2312y x x m =++上的点,则y 1,y 2,y 3的大小关系为__.24.2251=-+-y x x 的图象不经过__________象限;25.如图,抛物线 y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①2a +b =0;②b 2-4ac <0;③当y >0时,x 的取值范围是 -1<x <3;④当 x >0时,y 随x 增大而增大;⑤若t 为任意实数,则有a+b≥at 2+bt .其中结论正确的是_________.26.抛物线y =x²-x 的顶点坐标是________三、解答题27.已知抛物线23y ax bx =++经过点()3,0-,()2,5-.求此抛物线的解析式. 28.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李林从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站ABCDEx (千米) 8 9 10 11.5 13 1y (分钟)1820222528(1)求1关于的函数表达式.(2)李林骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用22121178y x x -+=来描述,请问:李林应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.29.已知二次函数y =﹣x 2+4x +5,完成下列各题: (1)求出该函数的顶点坐标.(2)求出它的图象与x 轴的交点坐标. (3)直接写出:当x 为何值时,y >0. 30.已知关于x 的方程222(1)2()10a x a b x b +-+++=. (1)若2b =,且2x =是此方程的根,求a 的值;(2)若此方程有实数根,当51a -<<-时,求函数242y a a ab =++的取值范围.。
天津市中考数学能力提升分类练习试卷(带答案带解析)之二次函数--2
![天津市中考数学能力提升分类练习试卷(带答案带解析)之二次函数--2](https://img.taocdn.com/s3/m/b3c063ddaff8941ea76e58fafab069dc502247bb.png)
天津市中考数学能力提升分类练习试卷(带答案带解析)之二次函数--261.已知:抛物线l1:y=−x2+2x+3交x轴于点A,B(点A在点B的左侧),交y轴于点C,抛物线l2经过点A,与x轴的另一个交点为E(6,0),交y轴于点D(0,−3).(1)求抛物线l2的函数表达式;(2)如图1,P为抛物线l1的对称轴上一动点,连接P A,PC,当∠APC=90°时,求点P的坐标;(3)如图2,M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M 自点A运动至点E的过程中,线段MN长度的最大值.所以点M 自点A 运动至点E 的过程中,线段MN 长度的最大值为21.【点睛】本题考查了二次函数的综合题,解题的关键是熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数的解析式,会求抛物线与坐标轴的交点坐标;理解坐标与图形的性质,记住两点间的距离公式和勾股定理.62.如图1,抛物线y =ax 2+bx ﹣8与x 轴交于A (2,0),B (4,0),D 为抛物线的顶点.(1)求抛物线的解析式;(2)如图2,若H 为射线DA 与y 轴的交点,N 为射线AB 上一点,设N 点的横坐标为t ,△DHN 的面积为S ,求S 与t 的函数关系式;(3)如图3,在(2)的条件下,若N 与B 重合,G 为线段DH 上一点,过G 作y 轴的平行线交抛物线于F ,连接AF ,若NG =NQ ,NG ⊥NQ ,且∠AGN =∠F AG ,求F 点的坐标. 【答案】(1)y =−x 2+6x −8;(2)S =32x −3;(3)F (1,-3)【分析】(1)利用待定系数法即可解决问题.(2)如图1中,连接OD ,根据S =S △OND +S △ONH −S △OHD 计算即可.(3)如图2中,延长FG 交OB 于M ,只要证明△MAF ≌△MGB ,得FM =BM .设M (m ,0),列出方程即可解决问题.【详解】解:(1)抛物线y =ax 2+bx ﹣8与x 轴交于A (2,0),B (4,0), 代入得{4a +2b −8=016a +4b −8=0 ,解得{a =−1b =6,∴抛物线解析式为y =−x 2+6x −8; (2)如图1中,连接OD . ∵y =−x 2+6x −8=−(x -3)2+1∴顶点D 坐标(3,1), ∵A (2,0)设直线AD 的解析式为y =kx +b (k ≠0) 把A (2,0),(3,1)代入得{0=2k +b 1=3k +b解得{k =1b =−2∴直线AD 的解析式为y =x -2, 令x =0,解得y =-2 ∴H (0,−2).∵设N 点的横坐标为t ,∴△DHN 的面积S =S △OND +S △ONH −S △OHD =12×t ×1+12×t ×2−12×2×3=32t −3.∴S =32x −3;(3)如图2中,延长FG 交OB 于M .∵H (0,−2),A (2,0) ∴OH =OA =2,∴∠OAH =∠OHA =45°, ∵FM //OH ,∴∠MGA =∠OHA =∠MAG =45°, ∴MG =MA , ∵∠F AG =∠NGA , ∴∠MAF =∠MGN , 在△MAF 和△MGN 中, ∵{∠AMF =∠GMB AM =MG ∠MAF =∠MGB , ∴△MAF ≌△MGB , ∴FM =BM .设M (m ,0), ∴−(−m 2+6m −8)=4−m , 解得m =1或4(舍弃), ∴M (1,0) ∴BM =4-1=3 ∴FM =3, ∴F (1,-3).【点睛】本题考查二次函数综合题、全等三角形的判定和性质、待定系数法等知识,解题的关键是学会利用分割法求面积.学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.63.如图,抛物线y =ax 2+bx +c 的图像经过点A(−1,0),B(0,−3),其对称轴为直线x =1(1)求这个抛物线的解析式(2)抛物线与x 轴的另一个交点为C ,抛物线的顶点为D 判断△CBD 的形状并说明理由 (3)直线BN//x 轴,交抛物线于另一点N ,点P 是直线BN 下方的抛物线上的一个动点(点P 不与点B 和点N 重合),点P 做x 轴的垂线,交直线BC 于点Q ,当四边形BPNQ 的面积最大时,求出点P 的坐标【答案】(1)y =x 2−2x −3;(2)△CBD 是直角三角形,见解析;(3)P (32,−154) 【分析】(1)利用待定系数法求解;(2)先求出点C 、D 的坐标,利用勾股定理求出BC 、BD 、CD 的长即可判断; (3)先求出直线BC 的解析式,N 的坐标,得到四边形BPNQ 的面积=12BN ⋅PQ ,故当PQ最大时,四边形BPNQ 的面积最大,设P (x ,0),则P (x,x 2−2x −3),Q (x,x −3),得到四边形BPNQ 的面积的函数解析式,利用函数性质解答. 【详解】解:(1)由题意得{a −b +c =0c =−3−b2a=1, 解得{a =1b =−2c =−3,∴这个抛物线的解析式为y =x 2−2x −3;(2)令y =x 2−2x −3中y =0,得x 2−2x −3=0, 解得x =-1或x =3, ∴C (3,0),∵y =x 2−2x −3=(x −1)2−4 ∴顶点D 的坐标为(1,-4),∵CB 2=32+32=18,BD 2=12+12=2,CD 2=22+42=20, ∴CB 2+BD 2=CD 2, ∴△CBD 是直角三角形;(3)∵B (0,-3),C (3,0), ∴直线BC 的解析式为y =x −3,∵直线BN//x 轴,交抛物线于另一点N ,B (0,3),对称轴为直线x =1, ∴N (2,-3), ∵PQ ⊥x 轴,64.已知抛物线y=ax2+bx+6(a为常数,a≠0)交x轴于点A(6,0),点B(−1,0),交y轴于点C.(1)求点C的坐标和抛物线的解析式;(2)P是抛物线上位于直线AC上方的动点,过点P作y轴平行线,交直线AC于点D,当PD取得最大值时,求点P的坐标;(3)M是抛物线的对称轴l上一点,N为抛物线上一点;当直线AC垂直平分△AMN的边MN时,求点N的坐标.∴{a −b +6=036a +6b +6=0 , ∴{a =−1b =5,∴抛物线的解析式为y =−x 2+5x +6, 当x =0时,y =6, ∴点C (0,6); (2)如图(1),∵A (6,0),C (0,6), ∴直线AC 的解析式为y =−x +6,设D (t ,−t +6)(0<t <6),则P (t ,−t 2+5t +6), ∴PD =−t 2+5t +6−(−t +6)=−t 2+6t =−(t −3)2+9, 当t =3时,PD 最大,此时,−t 2+5t +6=12, ∴P (3,12);(3)如图(2),设直线AC 与抛物线的对称轴l 的交点为F ,连接NF ,PD =PE ,(3)中NF ∥x 轴是解本题的关键.65.如图,在平面直角坐标系中,抛物线y =−x 2+bx +c 的图象与坐标轴相交于A 、B 、C 三点,其中A 点坐标为(3,0),B 点坐标为(−1,0),连接AC 、BC .动点P 从点A 出发,在线段AC 上以每秒√2个单位长度向点C 做匀速运动;同时,动点Q 从点B 出发,在线段BA 上以每秒1个单位长度向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒.(1)求b 、c 的值;(2)在P 、Q 运动的过程中,当t 为何值时,四边形BCPQ 的面积最小,最小值为多少? (3)在线段AC 上方的抛物线上是否存在点M ,使△MPQ 是以点P 为直角顶点的等腰直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由. 【答案】(1)b =2,c =3;(2)t =2,最小值为4;(3)(3+√174,23+√178)【分析】(1)利用待定系数法求解即可;(2)过点P 作PE ⊥x 轴,垂足为E ,利用S 四边形BCPQ =S △ABC -S △APQ 表示出四边形BCPQ 的面积,求出t 的范围,利用二次函数的性质求出最值即可;(3)画出图形,过点P 作x 轴的垂线,交x 轴于E ,过M 作y 轴的垂线,与EP 交于F ,证明△PFM ≌△QEP ,得到MF =PE =t ,PF =QE =4-2t ,得到点M 的坐标,再代入二次函数表达式,求出t 值,即可算出M 的坐标.【详解】解:(1)∵抛物线y =-x 2+bx +c 经过点A (3,0),B (-1,0), 则{0=−9+3b +c 0=−1−b +c ,解得:{b =2c =3;(2)由(1)得:抛物线表达式为y =-x 2+2x +3,C (0,3),A (3,0), ∴△OAC 是等腰直角三角形,由点P 的运动可知: AP =√2t ,过点P 作PE ⊥x 轴,垂足为E ,∴AE =PE =√2t √2=t ,即E (3-t ,0),又Q (-1+t ,0),∴S 四边形BCPQ =S △ABC -S △APQ=12×4×3−12×[3−(−1+t )]t =12t 2−2t +6∵当其中一点到达终点时,另一点随之停止运动,AC =√32+32=3√2,AB =4,∴0≤t ≤3,∴当t =−−22×12=2时,四边形BCPQ 的面积最小,即为12×22−2×2+6=4;(3)∵点M 是线段AC 上方的抛物线上的点,如图,过点P 作x 轴的垂线,交x 轴于E ,过M 作y 轴的垂线,与EP 交于F ,∵△PMQ 是等腰直角三角形,PM =PQ ,∠MPQ =90°,∴∠MPF +∠QPE =90°,又∠MPF +∠PMF =90°,∴∠PMF =∠QPE ,在△PFM 和△QEP 中,{∠F =∠QEP∠PMF =∠QPE PM =PQ,∴△PFM ≌△QEP (AAS ),∴MF =PE =t ,PF =QE =4-2t ,∴EF =4-2t +t =4-t ,又OE =3-t ,∴点M 的坐标为(3-2t ,4-t ),∵点M 在抛物线y =-x 2+2x +3上,66.如图,在平面直角坐标系中,抛物线y=ax2+bx−4(a≠0)与x轴交于点A(−1,0),B(4,0),与y轴交于点C.(1)求该抛物线的解析式;(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点P为直线AD下方抛物线上一动点,连接P A,PD,求△PAD面积的最大值;(3)在(2)的条件下,将抛物线y=ax2+bx−4(a≠0)沿射线AD平移4√2个单位,得到新的抛物线y 1,点E 为点P 的对应点,点F 为y 1的对称轴上任意一点,在y 1上确定一点G ,使得以点D ,E ,F ,G 为顶点的四边形是平行四边形,写出所有符合条件的点G 的坐标,并任选其中一个点的坐标,写出求解过程. 【答案】(1)y =x 2-3x -4;(2)8;(3)G(52,−54)或G(152,−254)或G(72,−254),过程见解析【分析】(1)将A (−1,0),B (4,0)的坐标代入函数式利用待定系数法求解即可;(2)先得出抛物线的对称轴,作PE ∥y 轴交直线AD 于E ,设P (m ,m 2-3m -4),用m 表示出△APD 的面积即可求出最大面积;(3)通过平移距离为4√2,转化为向右平移4个单位,再向下平移4个单位,根据平移变化得出平移后的抛物线关系式和E 的坐标,分DE 为对角线、EG 为对角线、EF 为对角线三种情况进行讨论即可.【详解】解:(1)将A (-1,0),B (4,0)代入y =ax 2+bx -4得{a −b −4=016a +4b −4=0,解得:{a =1b =−3 , ∴该抛物线的解析式为y =x 2-3x -4,(2)把x =0代入y =x 2-3x -4中得:y =-4,∴C (0,-4),抛物线y =x 2-3x -4的对称轴l 为x=32∵点D 与点C 关于直线l 对称,∴D (3,-4),∵A (-1,0),设直线AD 的解析式为y =kx +b ;∴{3k+b =-4-k +b =0 ,解得:{k =−1b =−1, ∴直线AD 的函数关系式为:y =-x -1,设P (m ,m 2-3m -4),作PE ∥y 轴交直线AD 于E ,∴E (m ,-m -1),∴PE =-m -1-(m 2-3m -4)=-m 2+2m +3,∴S ΔAPD =12×PE ×|x D −x A |=2(−m 2+2m +3)=−2m 2+4m +6,∴S ΔAPD =−2m 2+4m +6=−2(m −1)2+8,∴当m =1时,△PAD 的面积最大,最大值为:8(3)∵直线AD 的函数关系式为:y =-x -1,∴直线AD 与x 轴正方向夹角为45°,∴抛物线沿射线AD 方向平移平移4√2个单位,相当于将抛物线向右平移4个单位,再向下平移4个单位,∵A (−1,0),B (4,0),平移后的坐标分别为(3,-4),(8,-4),设平移后的抛物线的解析式为y 1=x 2+dx+e则{9+3d+e =-464+8d+e =-4 ,解得:{d =−11e =20, ∴平移后y 1=x 2-11x +20,∴抛物线y 1的对称轴为:x =112,∵P (1,-6),∴E (5,-10),∵以点D ,E ,F ,G 为顶点的四边形是平行四边形,分三种情况:设G (n ,n 2-11n +20),F (112,y ), ①当DE 为对角线时,平行四边形的对角线互相平分∴3+52=n+1122,∴n=52 ∴G(52,−54)②当EF 为对角线时,平行四边形的对角线互相平分67.如图,已知二次函数y=−x2+bx+c(c>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求该二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为点Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点P,使△PMC为等腰三角形?如果存在,求出点P的坐标;如果不存在,请说明理由.68.如图,二次函数y=ax2+bx+c的图象经过A,B,C三点,顶点为D,已知点B的坐标是(1,0),OA=OC=3OB.(1)求这个二次函数的表达式;(2)若E是线段AD上的一个动点(E与A,D不重合),过点E作平行于y轴的直线交抛物线于点F,求线段EF长度的最大值;(3)将(1)中的函数图象平移后,表达式变为y=ax2+2mx+1,若这个函数在−2≤x≤1时的最大值为3,求m的值.【答案】(1)y=−x2−2x+3;(2)EF最大值为1;(3)m=1.5或−√2【分析】(1)先表示出C(0,c),再利用OA=OC=3OB可得A(c,0),B(−13c,0),于是可利用交点式表示解析式,得到y=−(x+13c)(x−c)=−x2+23c+13c2,所以13c2=c,解得c=3,所以抛物线解析式为y=−x2+2x+3;(2)把二次函数写成顶点式,得到D点坐标,设出直线AD的解析式,将A、D两点坐标代入,可得直线解析式,分别利用各自的解析式写出交点E的坐标表达式,利用两点间公式可得到二次函数,求出最值即可;(3)分三种情况求出m的值.【详解】(1)当x=0时,y=−x2+bx+c=c,则C(0,c),∵OA=OC=3OB,∴A(c,0),B (−13c,0),∴y =−(x +13c)(x −c)=−x 2+23c +13c 2,∴13c 2=c ,解得c =0(舍去)或c =3,∴代入二次函数y =ax 2+bx +c 解析式中,y =−x 2−2x +3;(2)∵抛物线y =−x 2−2x +3=−(x +1)2+4,∴顶点D 的坐标为(−1,4).设直线AD 的解析式为y =kx +b ,∵A(−3,0),D(−1,4),∴{−3k +b =0−k +b =4, 解得:{k =2b =0, ∴直线AD 的解析式为y =2x +6.设点E 的横坐标为m ,∴E(m,2m +6),F (m,−m 2−2m +3),∴EF =−m 2−2m +3−(2m +6)=−m 2−4m −3=−(m +2)2+1,∴当m =−2时,EF 最大值为1.(3)∵y =ax 2+2mx +1的图象由y =−x 2−2x +3平移得到,∴表达式可设为y =−x 2+2mx +1,对称轴是直线x =m ;①若m <−2,则x =−2时函数值最大,把x =−2,y =3代入y =−x 2+2mx +1, 解得m =−1.5,不合题意,舍去;②若−2≤m ≤1,则x =m 时函数值最大,把x =−m,y =3代入y =−x 2+2mx +1,解得m =±√2,∴m=−√2;③若m>1,则x=−1时函数值最大,把x=−1,y=3代入y=−x2+2mx+1,解得m=1.5综上所述,m=1.5或−√2.【点睛】本题考查了利用待定系数法求函数的解析式、二次函数的图象与性质(对称性、增减性)等知识点,较难的是题(3),利用二次函数的性质正确分三种情况讨论是解题关键.x2+bx+c过点A(−1,0)和点B(3,0),与y轴交于点C,顶点为点D.69.抛物线y=−12(Ⅰ)求点C,D的坐标;(Ⅱ)点E是线段OB上一动点,过点E作直线l⊥x轴,交抛物线于点M,连接BM并延长交y 轴于点N,连接AM,OM.若△AEM的面积是△MON面积的2倍,求点E的坐标;(Ⅲ)抛物线上一点T,点T的横坐标是−3,连接BT,与y轴交于点P,点Q是线段AT上一动点(不与点A,点T重合)将△BPQ沿PQ所在直线翻折,得到△FPQ,当△FPQ与△TPQ重叠部分的面积是△TBQ面积的1时,求线段TQ的长度.4∴y=−12×(−3)2−3+32=−6.∴点T的坐标为(−3,−6).设直线BT的解析式为y=k2x+b2,有{3k2+b2=0−3k2+b2=−6,解得{k2=1b2=−3∴直线BT的解析式为y=x−3.∵当x=0时,y=−3.∴点P的坐标为(0,−3).过点T作TG⊥y轴于点G,则TG=3,PG=3,∴TP=√TG2+PG2=√32+32=3√2.又BP=√OB2+OP2=√32+32=3√2,∴BP=TP,∴点P是线段BT的中点.∴S△BPQ=S△TPQ.由折叠知,△BPQ≌△FPQ,则S△BPQ=S△FPQ.∴S△FPQ=S△TPQ.①如图,当点F在直线BT下方时,设线段FQ与线段PT交于点M,△FPQ与△TPQ重叠部分是△MPQ,连接FT.∵S△MPQ=14S△BTQ,∴S△MPQ=12S△TPQ=12S△FPQ.∴MP=MT,MQ=MF.∴四边形FPQT是平行四边形.∴TQ=PF.∵PF=BP,BP=3√2,∴TQ=3√2.②如图,当点F 在直线BT 上方时,设线段FP 与线段QT 交于点N,△FPQ 与△TPQ 重叠部分是△NPQ ,连接FT .同理可得,四边形FTPQ 是平行四边形. ∴QF =TP =BP . ∵QF =BQ , ∴BQ =BP =3√2.设直线AT 的解析式为y =k 3x +b 3, 有{−k 3+b 3=0−3k 3+b 3=−6 ,解得{k 3=3b 3=3 ∴直线AT 的解析式为y =3x +3. 设点Q 的坐标为(t,3t +3)(−3<t <−1), 过点Q 作QE ⊥x 轴于点E ,BQ =√EB 2+EQ 2=√(t −3)2+(3t +3)2=3√2,解得t 1=0,t 2=−65. ∵−3<t <−1,∴t =−65,∴点Q 的坐标为(−65,−35).70.如图所示,在抛物线上选定两点,我们把过这两点的线段和这条抛物线所围成的图形称作抛物线弓形.在平面直角坐标系xOy 中,已知抛物线y =ax 2(a >0)与直线y =x 相交于点O 和点A ,OA 截得的抛物线弓形的曲线上有一点P .(Ⅰ)当a=1时,解答下列问题:①求A点的坐标;②连接OP,AP,求△OPA面积的最大值;③当△OPA的面积最大时,直线OP也截得一个更小的抛物线弓形,同理在这个更小的抛物线弓形曲线上也有一点P′,连接OP′,P′P,当△OP′P的面积最大时,求这个△OP′P的最大面积与②中△OPA的最大面积的比值;(Ⅱ)将(Ⅰ)中a=1的条件去掉后,其它条件不变,则△OP′P的最大面积与△OPA的最大面积的比值是否变化?请说明理由.。
2024年中考数学《二次函数的实际应用》真题含解析版
![2024年中考数学《二次函数的实际应用》真题含解析版](https://img.taocdn.com/s3/m/01c0082430b765ce0508763231126edb6e1a767f.png)
二次函数的实际应用(21题)一、单选题1(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t20≤t≤6.有下列结论:①小球从抛出到落地需要6 s;②小球运动中的高度可以是30 m;③小球运动2 s时的高度小于运动5 s时的高度.其中,正确结论的个数是()A.0B.1C.2D.3【答案】C【分析】本题考查二次函数的图像和性质,令�=0解方程即可判断①;配方成顶点式即可判断②;把t=2和t=5代入计算即可判断③.【详解】解:令�=0,则30t-5t2=0,解得:t1=0,t2=6,∴小球从抛出到落地需要6 s,故①正确;∵�=30t-5t2=-5x-32+45,∴最大高度为45m,∴小球运动中的高度可以是30 m,故②正确;当t=2时,�=30×2-5×22=40;当t=5时,�=30×5-5×52=25;∴小球运动2 s时的高度大于运动5 s时的高度,故③错误;故选C.2(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt△ABC中,∠BAC=90°,AB=12,动点E,F同时从点A出发,分别沿射线AB和射线AC的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接EF,以EF为边向下做正方形EFGH,设点E运动的路程为x0<x<12,正方形EFGH和等腰Rt△ABC重合部分的面积为下列图像能反映y与x之间函数关系的是()A. B.C. D.【答案】A 【分析】本题考查动态问题与函数图象,能够明确y 与x 分别表示的意义,并找到几何图形与函数图象之间的关系,以及对应点是解题的关键,根据题意并结合选项分析当HG 与BC 重合时,及当x ≤4时图象的走势,和当x >4时图象的走势即可得到答案.【详解】解:当HG 与BC 重合时,设AE =x ,由题可得:∴EF =EH =2x ,BE =12-x ,在Rt △EHB 中,由勾股定理可得:BE 2=BH 2+EH 2,∴2x 2+2x 2=12-x 2,∴x =4,∴当0<x ≤4时,y =2x 2=2x 2,∵2>0,∴图象为开口向上的抛物线的一部分,当HG 在BC 下方时,设AE =x ,由题可得:∴EF =2x ,BE =12-x ,∵∠AEF =∠B =45°,∠A =∠EOB =90°,∴△FAE ∽△EOB ,∴AE EF =EO EB ,∴x 2x=EO 12-x ,∴EO =12-x 2,∴当4<x <12时,y =2x ·12-x 2=12-x x =-x 2+12x ,∵-1<0,∴图象为开口向下的抛物线的一部分,综上所述:A 正确,故选:A .3(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,AB =6cm ,BC =8cm ,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,EF =23cm ,∠E =60°,现将菱形EFGH 以1cm/s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD重叠部分的面积S cm 2 与运动时间t s 之间的函数关系图象大致是()A. B.C. D.【答案】D 【分析】本题考查了解直角三角形的应用,菱形的性质,动点问题的函数图象,二次函数的图象的性质,先求得菱形的面积为63,进而分三种情形讨论,重合部分为三角形,重合部分为五边形,重合部分为菱形,分别求得面积与运动时间的函数关系式,结合选项,即可求解.【详解】解:如图所示,设EG ,HF 交于点O ,∵菱形EFGH ,∠E =60°,∴HG =GF又∵∠E =60°,∴△HFG 是等边三角形,∵EF =23cm ,∠HEF =60°,∴∠OEF =30°∴EG =2EO =2×EF cos30°=3EF =6∴S 菱形EFG H =12EG ⋅FH =12×6×23=63当0≤x ≤3时,重合部分为△MNG ,如图所示,依题意,△MNG 为等边三角形,运动时间为t ,则NG =t cos30°=233t ,∴S =12×NG ×NG ×sin60°=34233t 2=33t 2当3<x≤6时,如图所示,依题意,EM=EG-t=6-t,则EK=EMsin60°=6-t32=2336-t∴S△EKJ=12EJ⋅EM=12×2336-t2=336-t2∴S=S菱形EFGH-S△EKJ=6-336-t2=-33t2+43t-123+6∵EG=6<BC∴当6<x≤8时,S=63当8<x≤11时,同理可得,S=6-33t-82当11<x≤14时,同理可得,S=336-t-82=3314-t2综上所述,当0≤x≤3时,函数图象为开口向上的一段抛物线,当3<x≤6时,函数图象为开口向下的一段抛物线,当6<x≤8时,函数图象为一条线段,当8<x≤11时,函数图象为开口向下的一段抛物线,当11<x≤14时,函数图象为开口向上的一段抛物线;故选:D.二、填空题4(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是74m ,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =m .【答案】353【分析】本题考查的是二次函数的实际应用,设抛物线为y =a x -5 2+4,把点0,74,代入即可求出解析式;当y =0时,求得x 的值,即为实心球被推出的水平距离OM .【详解】解:以点O 为坐标原点,射线OM 方向为x 轴正半轴,射线OP 方向为y 轴正半轴,建立平面直角坐标系,∵出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .设抛物线解析式为:y =a x -5 2+4,把点0,74 代入得:25a +4=74,解得:a =-9100,∴抛物线解析式为:y =-9100x -5 2+4;当y =0时,-9100x -5 2+4=0,解得,x 1=-53(舍去),x 2=353,即此次实心球被推出的水平距离OM 为353m .故答案为:3535(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系y =-0.02x 2+0.3x +1.6的图象,点B 6,2.68 在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长CD =4m ,高DE =1.8m 的矩形,则可判定货车完全停到车棚内(填“能”或“不能”).【答案】能【分析】本题主要考查了二次函数的实际应用,根据题意求出当x =2时,y 的值,若此时y 的值大于1.8,则货车能完全停到车棚内,反之,不能,据此求解即可.【详解】解:∵CD =4m ,B 6,2.68 ,∴6-4=2,在y =-0.02x 2+0.3x +1.6中,当x =2时,y =-0.02×22+0.3×2+1.6=2.12,∵2.12>1.8,∴可判定货车能完全停到车棚内,故答案为:能.6(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.【答案】46.4【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用AO 和OC 才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.【详解】解:要使该矩形菜地面积最大,则要利用AO 和OC 构成矩形,设矩形在射线OA 上的一段长为xm ,矩形菜地面积为S ,当x ≤8时,如图,则在射线OC 上的长为16-x -1.4+52=19.6-x 2则S =x ⋅19.6-x 2=-12x 2+9.8x =-12x -9.8 2+48.02,∵-12<0,∴当x ≤9.8时,S 随x 的增大而增大,∴当x =8时,S 的最大值为46.4;当x >8时,如图,则矩形菜园的总长为16+6.6+5 =27.6m ,则在射线OC 上的长为27.6-2x 2则S =x ⋅13.8-x =-x 2+13.8x =-x -6.9 2+47.61,∵-1<0,∴当x <6.9时,S 随x 的增大而减少,∴当x >8时,S 的值均小于46.4;综上,矩形菜地的最大面积是46.4cm 2;故答案为:46.4.三、解答题7(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索L 1与缆索L 2均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF 为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索L 1所在抛物线与缆索L 2所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离OC =100m ,AO =BC =17m ,缆索L 1的最低点P 到FF 的距离PD =2m (桥塔的粗细忽略不计)(1)求缆索L 1所在抛物线的函数表达式;(2)点E 在缆索L 2上,EF ⊥FF ,且EF =2.6m ,FO <OD ,求FO 的长.【答案】(1)y =3500x -50 2+2;(2)FO 的长为40m .【分析】本题考查了二次函数的应用,待定系数法求二次函数解析式,根据题意求得函数解析式是解题的关键.(1)根据题意设缆索L 1所在抛物线的函数表达式为y =a x -50 2+2,把0,17 代入求解即可;(2)根据轴对称的性质得到缆索L 2所在抛物线的函数表达式为y =3500x +50 2+2,由EF =2.6m ,把y =2.6代入求得x 1=-40,x 2=-60,据此求解即可.【详解】(1)解:由题意得顶点P 的坐标为50,2 ,点A 的坐标为0,17 ,设缆索L 1所在抛物线的函数表达式为y =a x -50 2+2,把0,17 代入得17=a 0-50 2+2,解得a =3500,∴缆索L 1所在抛物线的函数表达式为y =3500x -50 2+2;(2)解:∵缆索L 1所在抛物线与缆索L 2所在抛物线关于y 轴对称,∴缆索L 2所在抛物线的函数表达式为y =3500x +50 2+2,∵EF =2.6,∴把y =2.6代入得,2.6=3500x +50 2+2,解得x 1=-40,x 2=-60,∴FO=40m或FO=60m,∵FO<OD,∴FO的长为40m.8(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长80m.设垂直于墙的边AB长为x米,平行于墙的边BC为y米,围成的矩形面积为Scm2.(1)求y与x,s与x的关系式.(2)围成的矩形花圃面积能否为750cm2,若能,求出x的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x的值.【答案】(1)y=80-2x19≤x<40;s=-2x2+80x(2)能,x=25(3)s的最大值为800,此时x=20【分析】本题主要考查一元二次方程的应用和二次函数的实际应用:(1)根据AB+BC+CD=80可求出y与x之间的关系,根据墙的长度可确定x的范围;根据面积公式可确立二次函数关系式;(2)令s=750,得一元二次方程,判断此方程有解,再解方程即可;(3)根据自变量的取值范围和二次函数的性质确定函数的最大值即可.【详解】(1)解:∵篱笆长80m,∴AB+BC+CD=80,∵AB=CD=x,BC=y,∴x+y+x=80,∴y=80-2x∵墙长42m,∴0<80-2x≤42,解得,19≤x<40,∴y=80-2x19≤x<40;又矩形面积s=BC⋅AB=y⋅x=80-2xx=-2x2+80x;(2)解:令s=750,则-2x2+80x=750,整理得:x2-40x+375=0,此时,Δ=b 2-4ac =-40 2-4×375=1600-1500=100>0,所以,一元二次方程x 2-40x +375=0有两个不相等的实数根,∴围成的矩形花圃面积能为750cm 2;∴x =--40 ±1002,∴x 1=25,x 2=15,∵19≤x <40,∴x =25;(3)解:s =-2x 2+80x =-2x -20 2+800∵-2<0,∴s 有最大值,又19≤x <40,∴当x =20时,s 取得最大值,此时s =800,即当x =20时,s 的最大值为8009(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度h m 满足关系式h =-5t 2+v 0t ,其中t s 是物体运动的时间,v 0m/s 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后s 时离地面的高度最大(用含v 0的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.【答案】(1)v 010(2)20m/s (3)小明的说法不正确,理由见解析【分析】本题考查了二次函数的应用,解题的关键是:(1)把函数解析式化成顶点式,然后利用二次函数的性质求解即可;(2)把t =v 010,h =20代入h =-5t 2+v 0t 求解即可;(3)由(2),得h =-5t 2+20t ,把h =15代入,求出t 的值,即可作出判断.【详解】(1)解:h =-5t 2+v 0t=-5t -v 010 2+v 0220,∴当t =v 010时,h 最大,故答案为:v 010;(2)解:根据题意,得当t =v 010时,h =20,∴-5×v 0102+v 0×v 010=20,∴v 0=20m/s (负值舍去);(3)解:小明的说法不正确.理由如下:由(2),得h =-5t 2+20t ,当h =15时,15=-5t 2+20t ,解方程,得t 1=1,t 2=3,∴两次间隔的时间为3-1=2s ,∴小明的说法不正确.10(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线y =ax 2+x 和直线y =-12x +b .其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .【答案】(1)①a =-115,b =8.1;②8.4km (2)-227<a <0【分析】本题考查了二次函数和一次函数的综合应用,涉及待定系数法求解析式,二次函数的图象和性质,一次函数的图象与性质等知识点,熟练掌握二次函数和一次函数的图象与性质是解题的关键.(1)①将9,3.6 代入即可求解;②将y =-115x 2+x 变为y =-115x -152 2+154,即可确定顶点坐标,得出y =2.4km ,进而求得当y =2.4km 时,对应的x 的值,然后进行比较再计算即可;(2)若火箭落地点与发射点的水平距离为15km ,求得a =-227,即可求解.【详解】(1)解:①∵火箭第二级的引发点的高度为3.6km∴抛物线y=ax2+x和直线y=-12x+b均经过点9,3.6∴3.6=81a+9,3.6=-12×9+b解得a=-115,b=8.1.②由①知,y=-12x+8.1,y=-115x2+x∴y=-115x2+x=-115x-1522+154∴最大值y=154km当y=154-1.35=2.4km时,则-115x2+x=2.4解得x1=12,x2=3又∵x=9时,y=3.6>2.4∴当y=2.4km时,则-12x+8.1=2.4解得x=11.44-3=8.4km∴这两个位置之间的距离8.4km.(2)解:当水平距离超过15km时,火箭第二级的引发点为9,81a+9,将9,81a+9,15,0代入y=-12x+b,得81a+9=-12×9+b,0=-12×15+b解得b=7.5,a=-2 27∴-227<a<0.11(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒.(1)求这两种粽子的进价;(2)设猪肉粽每盒售价x元52≤x≤70,y表示该商家销售猪肉粽的利润(单位:元),求y关于x的函数表达式并求出y的最大值.【答案】(1)猪肉粽每盒50元,豆沙粽每盒30元(2)y=-10x2+1200x-35000或y=-10x-602+1000,当x=60时,y取得最大值为1000元【分析】本题考查列分式方程解应用题和二次函数求最值,解决本题的关键是正确寻找本题的等量关系及二次函数配方求最值问题.(1)设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为n+20元.根据“用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同”即可列出方程,求解并检验即可;(2)根据题意可列出y关于x的函数解析式,再根据二次函数的性质即可解答.【详解】(1)解:设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为n+20元由题意得:5000n+20=3000n解得:n=30经检验:n=30是原方程的解且符合题意∴n+20=50答:猪肉粽每盒50元,豆沙粽每盒30元.(2)解:设猪肉粽每盒售价x元52≤x≤70,y表示该商家销售猪肉粽的利润(单位:元),则y=x-50180-10x-52=-10x2+1200x-35000=-10x-602+1000∵52≤x≤70,-10<0,∴当x=60时,y取得最大值为1000元.12(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元⋯1214161820⋯销售量y/盒⋯5652484440⋯(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.【答案】(1)y=-2x+80(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w元,根据利润=单件利润×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w元,根据利润=单件利润×销售量-m×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可.【详解】(1)解∶设y与x的函数表达式为y=kx+b,把x=12,y=56;x=20,y=40代入,得12k+b=56 20k+b=40 ,解得k =-2b =80 ,∴y 与x 的函数表达式为y =-2x +80;(2)解:设日销售利润为w 元,根据题意,得w =x -10 ⋅y=x -10 -2x +80=-2x 2+100x -800=-2x -25 2+450,∴当x =25时,w 有最大值为450,∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;(3)解:设日销售利润为w 元,根据题意,得w =x -10-m ⋅y=x -10-m -2x +80=-2x 2+100+2m x -800-80m ,∴当x =-100+2m 2×-2=50+m 2时,w 有最大值为-250+m 2 2+100+2m 50+m 2 -800-80m ,∵糖果日销售获得的最大利润为392元,∴-250+m 22+100+2m 50+m 2 -800-80m =392,化简得m 2-60m +116=0解得m 1=2,m 2=58当m =58时,x =-b 2a=54,则每盒的利润为:54-10-58<0,舍去,∴m 的值为2.13(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润×销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,w =5-x -2 100+50x=-50x 2+50x +300=-50x-122+312.5,∵-50<0,∴当x=12时,w有最大值,最大值为312.5,∴5-x=4.5,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.14(2024·四川遂宁·中考真题)某酒店有A、B两种客房、其中A种24间,B种20间.若全部入住,一天营业额为7200元;若A、B两种客房均有10间入住,一天营业额为3200元.(1)求A、B两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?【答案】(1)A种客房每间定价为200元,B种客房每间定价为为120元;(2)当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.【分析】(1)设A种客房每间定价为x元,B种客房每间定价为为y元,根据题意,列出方程组即可求解;(2)设A种客房每间定价为a元,根据题意,列出W与a的二次函数解析式,根据二次函数的性质即可求解;本题考查了二元一次方程组的应用,二次函数的应用,根据题意,正确列出二元一次方程组和二次函数解析式是解题的关键.【详解】(1)解:设A种客房每间定价为x元,B种客房每间定价为为y元,由题意可得,24x+20y=7200 10x+10y=3200,解得x=200 y=120 ,答:A种客房每间定价为200元,B种客房每间定价为为120元;(2)解:设A种客房每间定价为a元,则W=24-a-200 10a=-110a2+44a=-110a-2202+4840,∵-110<0,∴当a=220时,W取最大值,W最大值=4840元,答:当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.15(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A类特产的售价为60元/件,B类特产的售价为72元/件(2)y=10x+60(0≤x≤10)(3)A类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,1 根据题意设每件A类特产的售价为x元,则每件B类特产的售价为132-x元,进一步得到关于x的一元一次方程求解即可;2 根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x得取值范围;3 结合(2)中A类特产降价x元与每天的销售量y件,得到A类特产的利润,同时求得B类特产的利润,整理得到关于x的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A类特产的售价为x元,则每件B类特产的售价为132-x元.根据题意得3x+5132-x=540.解得x=60.则每件B类特产的售价132-60=72(元).答:A类特产的售价为60元/件,B类特产的售价为72元/件.(2)由题意得y=10x+60∵A类特产进价50元/件,售价为60元/件,且每件售价不低于进价∴0≤x≤10.答:y=10x+60(0≤x≤10).(3)w=(60-50-x)(10x+60)+100×(72-60)=-10x2+40x+1800=-10(x-2)2+1840.∵-10<0,∴当x=2时,w有最大值1840.答:A类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.16(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.制定加工方案生产背景背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.【答案】任务1:y=-13x+703;任务2:w=-2x2+72x+3360(x>10);任务3:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润【分析】题目主要考查一次函数及二次函数的应用,理解题意,根据二次函数的性质求解是解题关键.任务1:根据题意安排x名工人加工“雅”服装,y名工人加工“风”服装,得出加工“正”服装的有70-x-y人,然后利用“正”服装总件数和“风”服装相等,得出关系式即可得出结果;任务2:根据题意得:“雅”服装每天获利为:x100-2x-10,然后将2种服装的获利求和即可得出结果;任务3:根据任务2结果化为顶点式,然后结合题意,求解即可.【详解】解:任务1:根据题意安排70名工人加工一批夏季服装,∵安排x名工人加工“雅”服装,y名工人加工“风”服装,∴加工“正”服装的有70-x-y人,∵“正”服装总件数和“风”服装相等,∴70-x-y×1=2y,整理得:y=-13x+703;任务2:根据题意得:“雅”服装每天获利为:x100-2x-10,∴w=2y×24+70-x-y×48+x100-2x-10,整理得:w=-16x+1120+-32x+2240+-2x2+120x∴w=-2x2+72x+3360(x>10)任务3:由任务2得w=-2x2+72x+3360=-2x-182+4008,∴当x=18时,获得最大利润,y=-13×18+703=523,∴x≠18,∵开口向下,∴取x=17或x=19,当x=17时,y=533,不符合题意;当x=19时,y=513=17,符合题意;∴70-x-y=34,综上:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.17(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?【答案】(1)y=-25x2+20x+12000,每辆轮椅降价20元时,每天的利润最大,为12240元(2)这天售出了64辆轮椅【分析】本题考查二次函数的实际应用,正确的列出函数关系式,是解题的关键:(1)根据总利润等于单件利润乘以销量,列出二次函数关系式,再根据二次函数的性质求最值即可;(2)令y=12160,得到关于x的一元二次方程,进行求解即可.【详解】(1)解:由题意,得:y=200-x60+x10×4=-25x2+20x+12000;∵每辆轮椅的利润不低于180元,∴200-x≥180,∴x≤20,∵y=-25x2+20x+12000=-25x-252+12250,∴当x<25时,y随x的增大而增大,∴当x=20时,每天的利润最大,为-25×20-252+12250=12240元;答:每辆轮椅降价20元时,每天的利润最大,为12240元;(2)当y=12160时,-25x2+20x+12000=12160,解得:x1=10,x2=40(不合题意,舍去);∴60+1010×4=64(辆);答:这天售出了64辆轮椅.18(2024·江西·中考真题)如图,一小球从斜坡O点以一定的方向弹出球的飞行路线可以用二次函数y=ax2+bx a<0刻画,斜坡可以用一次函数y=14x刻画,小球飞行的水平距离x(米)与小球飞行的高度y(米)的变化规律如下表:x012m4567⋯y07261528152n72⋯(1)①m =,n =;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系y =-5t 2+vt .①小球飞行的最大高度为米;②求v 的值.【答案】(1)①3,6;②152,158;(2)①8,②v =410【分析】本题主要考查二次函数的应用以及从图象和表格中获取数据,(1)①由抛物线的顶点坐标为4,8 可建立过于a ,b 的二元一次方程组,求出a ,b 的值即可;②联立两函数解析式求解,可求出交点A 的坐标;(2)①根据第一问可知最大高度为8米;②将小球飞行高度与飞行时间的函数关系式化简为顶点式即可求得v 值.【详解】(1)解:①根据小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律表可知:抛物线顶点坐标为4,8 ,∴-b 2a =4-b 24a =8 ,解得:a =-12b =4 ,∴二次函数解析式为y =-12x 2+4x ,当y =152时,-12x 2+4x =152,解得:x =3或x =5(舍去),∴m =3,当x =6时,n =y =-12×62+4×6=6,故答案为:3,6.②联立得:y =-12x 2+4x y =14x ,解得:x =0y =0 或x =152y =158,∴点A 的坐标是152,158,(2)①由题干可知小球飞行最大高度为8米,故答案为:8;②y =-5t 2+vt =-5t -v 10 2+v 220,则v 220=8,解得v =410(负值舍去).19(2024·江苏苏州·中考真题)如图,△ABC 中,AC =BC ,∠ACB =90°,A -2,0 ,C 6,0 ,反比例函数y =k xk ≠0,x >0 的图象与AB 交于点D m ,4 ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数y =k xk ≠0,x >0 图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM ∥AB ,交y 轴于点M ,过点P 作PN ∥x 轴,交BC 于点N ,连接MN ,求△PMN 面积的最大值,并求出此时点P 的坐标.【答案】(1)m =2,k =8(2)S △PMN 最大值是92,此时P 3,83【分析】本题考查了二次函数,反比例函数,等腰三角形的判定与性质等知识,解题的关键是:(1)先求出B 的坐标,然后利用待定系数法求出直线AB 的函数表达式,把D 的坐标代入直线AB 的函数表达式求出m ,再把D 的坐标代入反比例函数表达式求出k 即可;(2)延长NP 交y 轴于点Q ,交AB 于点L .利用等腰三角形的判定与性质可得出QM =QP ,设点P 的坐标为t ,8t ,2<t <6 ,则可求出S △PMN =12⋅6-t ⋅t ,然后利用二次函数的性质求解即可.【详解】(1)解:∵A -2,0 ,C 6,0 ,∴AC =8.又∵AC =BC ,∴BC =8.∵∠ACB =90°,∴点B 6,8 .设直线AB 的函数表达式为y =ax +b ,将A -2,0 ,B 6,8 代入y =ax +b ,得-2a +b =06a +b =8 ,。
天津市2020版中考数学专题练习:二次函数50题_含答案
![天津市2020版中考数学专题练习:二次函数50题_含答案](https://img.taocdn.com/s3/m/ea93d6aedaef5ef7ba0d3c98.png)
二次函数50题一、选择题:1.若二次函数y=(m+1)x2-mx+m2-2m-3的图象经过原点,则m的值必为( )A.-1或3B.-1C.3D.-3或12.若为二次函数的图象上的三点,则的大小关系是()A. B. C. D.3.如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列三个判断中,①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;正确的是()A.①B.②C.③D.①②③都不对4.已知一条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为()A.E,FB.E,GC.E,HD.F,G5.已知二次函数y=ax2-1的图象开口向下,则直线y=ax-1经过的象限是( )A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限6.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=-n2+14n-24,则该企业一年中利润最高的月份是( )A.5月B.6月C.7月D.8月7.已知抛物线y=x2﹣x,它与x轴的两个交点间的距离为()A.0 B.1 C.2 D.48.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.9.二次函数y=x2+2x-7的函数值是8,那么对应的x的值是( )A.5B.3C.3或-5D.-3或510.抛物线y=3x2向下平移3个单位,再向左平移2个单位,得到的抛物线解析式为()A.y=3(x+2)2+3B.y=3(x-2)2+3C.y=3(x+2)2﹣3D.y=3(x-2)2﹣311.已知二次函数y=x2+2x﹣3,当自变量x取m时,对应的函数值小于0,设自变量分别取m﹣4,m+4时对应的函数值为y1,y2,则下列判断正确的是()A.y1<0,y2<0B.y1<0,y2>0C.y1>0,y2<0D.y1>0,y2>012.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到抛物线是( )A.y=(x+2)2+2B.y=(x+2)2-2C.y=x2+2D.y=x2-213.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=﹣n2+14n﹣24,则该企业一年中应停产的月份是()A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月14.二次函数y=-x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,且x1<x2<1,则y1与y2的大小关系是( )A.y1≤y2B.y1<y2C.y1≥y2D.y1>y215.二次函数y=x2﹣4x+5的最小值是( )A.﹣1B.1C.3D.516.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3D.y的最小值是﹣417.二次函数y=ax2+bx+c(a下列结论:①ac<0;②当x>1时,y的值随x的增大而减小;③3是方程ax2+(b-1)x+c=0的一个根;④当-1<x<3时,ax2+(b-1)x+c>0.其中正确的个数为( )A.4个 B.3个 C.2个 D.1个18.如图,直线y=0.5x+2与y轴交于点A,与直线y=﹣0.5x交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=-0.5x上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2≤h≤0.5B.﹣2≤h≤1C.﹣1≤h≤1.5D.﹣1≤h≤0.519.下列函数是二次函数的是( )A.y=2x+1B.y=-2x+1C.y=x2+2D.y=0.5x-220.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到抛物线是()A.y=3(x﹣1)2﹣2B.y=3(x+1)2﹣2C.y=3(x+1)2+2D.y=3(x﹣1)2+2二、填空题:21.已知点(2,5),(4,5)是抛物线y=ax2+bx+c上的两点, 则这条抛物线的对称轴是22.二次函数y=x2-3x+2的图像与x轴的交点坐标是 ,与y轴的交点坐标为23.对于二次函数,有下列说法:①如果当x≤1时随的增大而减小,则m≥1;②如果它的图象与x轴的两交点的距离是4,则;③如果将它的图象向左平移3个单位后的函数的最小值是-4,则m=-1;④如果当x=1时的函数值与x=2013时的函数值相等,则当x=2014时的函数值为-3.其中正确的说法是.24.如图,坐标平面上,二次函数y=-x2+4x-k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?25.如图,在Rt△ABC中,∠C=90°,AB= 5,AC= 4,则cos A= .A B C26.抛物线y=2(x﹣3)2+3的顶点在象限.27.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为元.28.如图,点A是抛物线y=x2﹣4x对称轴上的一点,连接OA,以A为旋转中心将AO逆时针旋转90°得到AO′,当O′恰好落在抛物线上时,点A的坐标为.29.如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°,按以下步骤作图:①以点B为圆心,小于AB的长为半径画弧,分别交AB、BC于点M、N;②分别以点M、N为圆心,大于0.5MN的长为半径画弧,两弧相交于点G;③连结BG交AC边于点E,交⊙O于点D,连接CD.则△ABE与△CDE的面积之比为.30.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.31.如图,二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),则使y1>y2成立的x的取值范围是__ _.32.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A,B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是.33.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(0.5,2.5)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.当△PAC为直角三角形时, 点P的坐标是____________________.34.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为.35.二次函数y=2(x﹣3)2﹣4的最小值为.36.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为 -a-1.其中正确的结论个数有(填序号)37.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.38.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.39.若抛物线y1=a1x2+b1x+c1与y2=a2x2+b2x+c2满足=k(k≠0,1),则称y1,y2互为“相关抛物线”.给出如下结论:①y1与y2的开口方向,开口大小不一定相同;②y1与y2的对称轴相同;③若y2的最值为m,则y1的最值为k2m;④若y2与x轴的两交点间距离为d,则y1与x轴的两交点间距离也为d.其中正确的结论的序号是(把所有正确结论的序号都填在横线上).40.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是.三、解答题:41.已知二次函数y=x2+bx+c的图象经过点(0,2)和(1,﹣1),求图象的顶点坐标和对称轴.42.一元二次方程x2+2x-3=0的二根x1,x2(x1< x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式.(2)用配方法求此抛物线的顶点为P对称轴(3)当x取什么值时,y随x增大而减小?43.某水渠的横截面呈抛物线形,水面的宽为AB(单位:米),现以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O.已知AB=8米,设抛物线解析式为y=ax2-4.(1)求a的值;(2)点C(-1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的面积.44.某公司销售A,B两种产品,根据市场调研,确定两条信息:信息1:销售A种产品所获利润y:(万元)与销售产品x(吨)之间存在二次函数关系,如图所示:信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y2=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,求销售A、B两种产品获得的利润之和最大是多少万元.45.已知抛物线y=x2﹣2x+1.(1)求它的对称轴和顶点坐标;(2)根据图象,确定当x>2时,y的取值范围.46. 某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少时每个月可获得最大利润?最大利润是多少?47.如图,二次函数y=﹣x2+bx+c图象(抛物线)与x轴交于A(1,0),且当x=0和x=﹣2时所对应函数值相等.(1)求此二次函数的表达式;(2)设抛物线与x轴的另一交点为点B,与y轴交于点C,在这条抛物线的对称轴上是否存在点D,使得△DAC 的周长最小?如果存在,求出D点的坐标;如果不存在,请说明理由.(3)设点M在第二象限,且在抛物线上,如果△MBC的面积最大,求此时点M的坐标及△MBC的面积.48.如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为;(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.49.如图,直线y=0.5x﹣2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx﹣2经过A,B,C,点B坐标为(﹣1,0).(1)求抛物线的解析式;(2)若点D是线段AC上一个动点,DE⊥AC,交直线AC下方的抛物线于点E,EG⊥x轴于点G,交AC于点F,请求出DF长的最大值;(3)设抛物线对称轴与x轴相交于点H,点P是射线CH上的一个动点,当△ABP是直角三角形时,请直接写出点P的坐标.50.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,-n),抛物线经过A、O、B三点,连结OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2-2x-3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连结OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.参考答案1.C2.D3.C4.C5.D6.C7.C8.C9.C10.C11.D12.D13.C14.B15.B16.D17.B18.A19.C20.A21.答案为:(0,6) ; (2,0),(3,0)22.答案为:(1,0),(2,0)、(0,2),23.答案为:①②④.24.答案为:0.8.25.答案为:0.826.答案为:第一.27.答案为:2528.答案为:(2,﹣1)或(2,2).29.答案为0.5.30.答案为:12.5;31.答案为:x<-2或x>832.解:令y=﹣2x2+8x﹣6=0,即x2﹣4x+3=0,解得x=1或3,则点A(1,0),B(3,0),由于将C1向右平移2个长度单位得C2,则C2解析式为y=﹣2(x﹣4)2+2(3≤x≤5),当y=x+m1与C2相切时,令y=x+m1=y=﹣2(x﹣4)2+2,即2x2﹣15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=x+m与C1、C2共有3个不同的交点,故答案是:﹣3<m<﹣.33.答案为:(3,5)或(3.5,5.5)33.答案为:x=﹣3.34.答案为:﹣4.35.答案为:①③④;36.答案为:x1=4,x2=﹣237.答案为:0.538.答案为:①②④.39.答案为:-1<x<3.40.解:把点(0,2)和(1,﹣1)代入y=x2+bx+c得,解这个方程组得,所以所求二次函数的解析式是y=x2﹣4x+2;因为y=x2﹣4x+2=(x﹣2)2﹣2,所以顶点坐标是(2,﹣2),对称轴是直线x=2.y=0.5(x+1)2 -2 ∴它的顶点坐标为(-1,-2)对称轴为直线x=-1.当y=0时,即0.5(x+3)(x-1)=0解得x1=-3,x2=1.∴x<-3时…当x取什么值时, y随x增大而减小.41.解:(1)∵ ,由抛物线的对称性可知,∴(4,0).∴ 0=16a-4.∴ a.(2)如图所示,过点C作于点E,过点D作于点F.∵ a=,∴ -4.当-1时,m=×-4=-,∴ C(-1,-).∵点C关于原点O的对称点为点D,∴ D(1,).∴ .∴△BCD的面积为15平方米.42.解:(1)根据题意,设销售A种产品所获利润y与销售产品x之间的函数关系式为y=ax2+bx,将(1,1.4)、(3,3.6)代入解析式,得:a+b=1.4,9a+3b=3.6,解得:a=-0.1,b=1.5,∴销售A种产品所获利润y与销售产品x之间的函数关系式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W取得最大值,最大值为6.6万元,答:购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.44.【解答】解:(1)y=x2﹣2x+1=(x﹣1)2,对称轴为直线x=1,顶点坐标为(1,0);(2)抛物线图象如下图所示:由图象可知当x>2时,y的取值范围是y>1.45.解答:解:(1)y=(30-20+x)(180-10x)=-10x2+80x+1800(0≤x≤5,且x为整数);(2)当x=时,y最大=1960元;∴每件商品的售价为34元.答:每件商品的售价为34元时,商品的利润最大,为1960元;(3))1920=-10x2+80x+1800 , x2-8x+12=0,即(x-2)(x-6)=0,解得x=2或x=6,∵0≤x≤5,∴x=2,∴售价为32元时,利润为1920元.46.【解答】解:(1)∵当x=0和x=﹣2时所对应的函数值相等,∴抛物线的对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点坐标为(﹣3,0),∴抛物线解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3;(2存在.连结BC交直线x=﹣1于点D,则DB=DA,∴DC+DA=DC+DB=BC,∴此时DA+DC最小,△ADC的周长最小,当x=0时,y=﹣x2﹣2x+3=3,则C(0,3),设直线BC的解析式为y=kx+m,把B(﹣3,0),C(0,3)代入得,解得,∴直线BC的解析式为y=x+3,当x=﹣1时,y=x+3=2,∴D点坐标为(﹣1,2);(3)作MN∥y轴交BC于N,如图,设M(t,﹣t2﹣2t+3)(﹣3<x<0),则N(t,t+3),S△BCM=S△MNB+S△NMC=•3•MN=(﹣t2﹣2t+3﹣t﹣3)=﹣t2﹣t=﹣(t+)2+,∴当t=﹣时,△MBC的面积的最大值为,此时M点坐标为(﹣,).47.解:(1)设二次函数的解析式为y=a(x+2)(x﹣6)∵图象过点(0,﹣8)∴a=∴二次函数的解析式为y=x2﹣x﹣8;(2)∵y=x2﹣x﹣8=(x2﹣4x+4﹣4)﹣8=(x﹣2)2﹣∴点M的坐标为(2,﹣)∵点C的坐标为(0,﹣8),∴点C关于x轴对称的点C′的坐标为(0,8)∴直线C′M的解析式为:y=﹣x+8令y=0得﹣x+8=0解得:x=∴点K的坐标为(,0);(3)①不存在PQ∥OC,若PQ∥OC,则点P,Q分别在线段OA,CA上,此时,1<t<2∵PQ∥OC,∴△APQ∽△AOC∴∵AP=6﹣3tAQ=18﹣8t,∴∴t=∵t=>2不满足1<t<2;∴不存在PQ∥OC;②分情况讨论如下,情况1:0≤t≤1S=OP•OQ=×3t×8t=12t2;情况2:1<t≤2作QE⊥OA,垂足为E,S=OP•EQ=×3t×=﹣+情况3:2<t<作OF⊥AC,垂足为F,则OF=S=QP•OF=×(24-11t)×=-+;③当0≤t≤1时,S=12t2,函数的最大值是12;当1<t≤2时,S=﹣+,函数的最大值是;当2<t<,S=QP•OF=﹣+,函数的最大值为;∴S0的值为.49.50.解(1)解方程,得,.∵,∴,∴A(-1,-1),B(3,-3).∵抛物线过原点,设抛物线的解析式为.∴解得,.∴抛物线的解析式为.(2)①设直线AB的解析式为.∴解得,. ∴直线AB的解析式为.∴C点坐标为(0,).∵直线OB过点O(0,0),B(3,-3),∴直线OB的解析式为.∵△OPC为等腰三角形,∴OC=OP或OP=PC或OC=PC.设,,(i)当OC=OP时, .解得,(舍去). ∴ P(,).(ii)当OP=PC时,点P在线段OC的中垂线上,∴ (,.(iii)当OC=PC时,由,解得,(舍去). ∴ P(.∴P点坐标为P1(,)或(,或P(.②过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H.设Q(,),D(,).===,∵0<<3,∴当时,S取得最大值为,此时D(,.。
2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题【含答案】
![2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题【含答案】](https://img.taocdn.com/s3/m/d158d1b9690203d8ce2f0066f5335a8102d266be.png)
2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题一、单选题1.在平面直角坐标系中,已知点M ,N 的坐标分别为,若抛物线(−1,3),(3,3)与线段MN 只有一个公共点,则的取值范围是( )y =x 2−2mx +m 2−m +2m A .或B .或−1⩽m <07−17<m⩽7+17−1⩽m <0m >7−17C .或D .m <07−172<m⩽7+172−1⩽m⩽7+1722.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D .3.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 出发,以 cm/s 的速度沿AB 方向运2动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC CB 方向运动到点B .设△APQ 的→面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是( )A.B.C.D.4.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数y=的图象与两坐标轴所围成的图形最接近的面积是( )14(x−4)2A.5B.C.4D.17﹣4π2255.已知如图,抛物线y=-x2-2x+3交x轴于A、B两点,顶点为C,CH⊥AB交x轴于H,在CH右侧的抛物线上有一点P,已知PQ⊥AC,垂足为Q,当∠ACH=∠CPQ时,此时CP的长为()A.B.C.D.4522521692096.如图,抛物线y=ax2+2ax-3a(a>0)与x轴交于A,B顶点为点D,把抛物线在x轴下方部分关于点B作中心对称,顶点对应D’,点A对应点C,连接DD’,CD’,DC,当△CDD’是直角三角形时,a的值为( )A . ,B . ,C . ,D . , 12321332133312337.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE﹣ED﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是()A .AE=6cmB .sin∠EBC =45C .当0<t≤10时,D .当t=12s 时,△PBQ 是等腰三角形y =25t 28.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A . cm 2B . cm 2C . cm 2D . cm 2332392327239.如图, 在平面直角坐标系中放置 , 点 .现将 沿Rt △ABC ,∠ABC =90∘A(3,4)△ABC x 轴的正方向无滑动翻转,依次得到 连续翻转 14 次, 则经过 △A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3… 三顶点的抛物线解析式为( )△A 14B 14C 14A .B .y =−35(x−51)(x−55)y =−512(x−51)(x−55)C .D .y =−35(x−55)(x−60)y =−512(x−55)(x−60)10.用一根长为50 cm 的铁丝弯成一个长方形,设这个长方形的一边长为x (cm ),它的面积为y (cm 2),则y 与x 之间的函数关系式为( )A .y =-x 2+50x B .y =x 2-50x C .y =-x 2+25xD .y =-2x 2+2511.如图,点E ,F ,G ,H 分别是正方形ABCD 边AB ,BC ,CD ,DA 上的点,且AE =BF =CG =DH.设A 、E 两点间的距离为x ,四边形EFGH 的面积为y ,则y 与x 的函数图象可能为( )A .B .C .D .12.已知一个直角三角形的两边长分别为a 和5,第三边长是抛物线y=x²-10x+21与x 轴交点间的距离,则a 的值为( )4141A.3B.C.3或D.不能确定二、填空题ABCD BC=8,AB=6E CD C,D CE13.如图,矩形中,,点为边上一动点(不与重合)、以CEFG CE:CG=3:4BF,ОOE OE为边向外作矩形,且,连接点是线段BF的中点.连接,则的最小值为 .A(3,3)B(0,2)A y=x2+bx−9AB14.如图,已知点,点,点在二次函数的图象上,作射线AB A45°C C,再将射线绕点按逆时针方向旋转,交二次函数图象于点,则点的坐标为 15.如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为 .16.在综合实践活动中,同学们借助如图所示的直角墙角(两边足够长),用24m长的篱笆围成一个矩形花园ABCD,则矩形花园ABCD的最大面积为 m2.17.用一段长为的篱笆围成一个一边靠墙的矩形养鸡场,若墙长,则这个养鸡场最大面积24m 10m 为 .m 218.在第一象限内作射线OC ,与x 轴的夹角为60°,在射线OC 上取一点A ,过点A 作AH ⊥x 轴于点H ,在抛物线y=x 2(x >0)上取一点P ,在y 轴上取一点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是 三、综合题19.如图,为美化校园环境,某校计划在一块长方形空地上修建一个长方形花圃.已知AB=20m ,BC=30m ,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为 米,花圃的面x 积为 ( ).S m 2(1)求 关于 的函数关系式;S x (2)如果通道所占面积是184 ,求出此时通道的宽 的值;m 2x (3)已知某园林公司修建通道每平方米的造价为40元,花圃每平方米的造价是60元,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过花圃宽的 ,则通道宽为13多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?20.如图,在平面直角坐标系xOy 中,点A 是反比例函数y= (x >0,m >1)图象上一点,m 3−m 2x 点A 的横坐标为m ,点B (0,﹣m )是y 轴负半轴上的一点,连接AB ,AC ⊥AB ,交y 轴于点C ,延长CA 到点D ,使得AD=AC ,过点A 作AE 平行于x 轴,过点D 作y 轴平行线交AE 于点E .(1)当m=3时,求点A 的坐标;(2)DE= ,设点D 的坐标为(x ,y ),求y 关于x 的函数关系式和自变量的取值范围;(3)连接BD ,过点A 作BD 的平行线,与(2)中的函数图象交于点F ,当m 为何值时,以A 、B 、D 、F 为顶点的四边形是平行四边形?21.如图,矩形ABCD 的四个顶点在正△EFG 的边上,已知正△EFG 的边长为2,记矩形ABCD 的面积为S ,边长AB 为x 。
天津市九年级数学上册第二十二章《二次函数》经典练习卷(课后培优)
![天津市九年级数学上册第二十二章《二次函数》经典练习卷(课后培优)](https://img.taocdn.com/s3/m/8d3847cd43323968001c92ce.png)
一、选择题1.二次函数(2)(3)y x x =--与x 轴交点的个数为( )A .1个B .2个C .3个D .4个B解析:B【分析】根据△=24b ac -与零的关系即可判断出二次函数的图象与x 轴的交点问题;【详解】∵ ()()22356y x x x x =--=-+, ∴ △=24b ac -=25-24=1>0∴二次函数()()23y x x =--与x 轴有两个交点;故选:B .【点睛】本题考查了二次函数与x 轴的交点问题,熟练掌握判别式△=24b ac -是解题的关键; 2.如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(﹣2,﹣3),(1,﹣3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为( )A .﹣1B .﹣3C .﹣5D .﹣7C解析:C【分析】 当图象顶点在点B 时,点N 的横坐标的最大值为4,求出a =13;当顶点在点A 时,M 点的横坐标为最小,此时抛物线的表达式为:y =13(x +2)2﹣3,令y =0,求出x 值,即可求解.【详解】当图象顶点在点B时,点N的横坐标的最大值为4,则此时抛物线的表达式为:y=a(x﹣1)2﹣3,把点N的坐标代入得:0=a(4﹣1)2﹣3,解得:a=13,当顶点在点A时,M点的横坐标为最小,此时抛物线的表达式为:y=13(x+2)2﹣3,令y=0,则x=﹣5或1,即点M的横坐标的最小值为﹣5,故选:C.【点睛】本题考查的是二次函数与x轴的交点,涉及到函数基本性质和函数的最值,其中确定坐标取得最值时,图象所处的位置是本题的关键.3.如图是函数y=x2+bx+c与y=x的图象,有下列结论:(1)b2﹣4c>0;(2)b+c+1=0;(3)方程x2+(b﹣1)x+c=0的解为x1=1,x2=3;(4)当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()A.1 B.2 C.3 D.4B解析:B【分析】根据函数图象与x轴交点个数判断(1);利用待定系数法求出函数解析式,代入计算判断(2);由二次函数与一次函数的交点求出方程的解,判断(3)即可;利用函数图象比较函数值判断(4).【详解】由图象知,二次函数过(3,3)(0,3),(1,1),∴93313a b ca b cc++=⎧⎪++=⎨⎪=⎩,解得:133abc=⎧⎪=-⎨⎪=⎩,∴b+c+1=﹣3+3+1=1,故②错误;∵a =1,∴抛物线为y =x 2-3x+3,∵函数y =x 2+bx+c 与x 轴无交点,∴b 2﹣4c <0,故①错误;由图象知,抛物线y =x 2+bx+c 与直线y =x 的交点坐标为(1,1)和(3,3), ∴方程x 2+(b ﹣1)x+c =0的解为x 1=1,x 2=3,故③正确;∵当1<x <3时,二次函数值小于一次函数值,∴x 2+bx+c <x ,∴x 2+(b ﹣1)x+c <0.故④正确;故选:B .【点睛】此题考查待定系数法求二次函数的解析式,二次函数的性质,二次函数与一元二次方程的关系,图象法比较函数值的大小,是一道较为基础的二次函数题.4.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .C解析:C【分析】根据关系式可得图象的开口方向,可求出函数的顶点坐标,根据s 从0开始到最大值时停止,可得t 的取值范围,即可得答案.【详解】∵滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,-1.5<0,∴图象的开口向下,∵s=60t-1.5t 2=-1.5(t-20)2+600,∴顶点坐标为(20,600),∵s 从0开始到最大值时停止,∴0≤t≤20,∴C 选项符合题意,故选:C .【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键.5.二次函数2y x bx =+的图象如图,对称轴为直线1x =.若关于x 的一元二次方程20x bx t +-=(t 为实数)在23x -<<的范围内有解,则t 的取值范围是( )A .1t ≥-B .13t -≤<C .18t -≤<D .38t <<C解析:C【分析】 根据对称轴求出b 的值,从而得到23x -<<时的函数值的取值范围,再根据一元二次方程x 2+bx-t=0(t 为实数)在-1<x <4的范围内有解相当于y=x 2+bx 与y=t 在x 的范围内有交点解答.【详解】解:对称轴为直线x=-21b ⨯=1, 解得b=-2,所以二次函数解析式为y=x 2-2x ,y=(x-1)2-1,x=1时,y=-1,x=-2时,y=4-2×(-2)=8,∵x 2+bx-t=0的解相当于y=x 2+bx 与直线y=t 的交点的横坐标,∴当-1≤t <8时,在-1<x <4的范围内有解.故选:C .【点睛】本题考查了二次函数与不等式,把方程的解转化为两个函数图象的交点的问题求解是解题的关键.6.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位B .先向左平移4个单位,在向下平移1个单位C .先向右平移4个单位,在向上平移1个单位D .先向右平移4个单位,在向下平移1个单位C解析:C【分析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况.【详解】解:抛物线y=2x 2的顶点坐标为(0,0),抛物线y=2(x-4)2+1的顶点坐标为(4,1),而点(0,0)先向右平移4个单位,再向上平移1个单位可得到点(4,1),所以抛物线y=2x 2先向右平移4个单位,再向上平移1个单位得到抛物线y=2(x+4)2+1. 故选:C .【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.如图为二次函数2y ax bx c =++的图象,此图象与x 轴的交点坐标分别为(-1,0)、(3,0).下列说法:0abc >;方程20ax bx c ++=的根为11x =-,23x =;当1x >时,y 随着x 的增大而增大;420a b c ++<.正确的个数是( )A .1B .2C .4D .3C解析:C【分析】 ①由抛物线的开口方向、与y 轴的交点判定a 、c 的符号,根据对称轴确定b 的符号; ②根据二次函数图象与x 轴的交点解答;③利用对称轴和二次函数的图象的性质作出判断;④将x=2代入函数关系式,结合图象判定y 的符号.【详解】解:①∵抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上, ∴a >0,-b 2a>0,c <0, 即b <0,∴abc >0,正确;②二次函数y=ax 2+bx+c 的图象与x 轴的交点是(-1,0)、(3,0),∴方程ax 2+bx+c=0的根为x 1=-1,x 2=3故本选项正确;③函数对称轴是直线x=1,根据图象当x >1时,y 随x 的增大而增大;④根据图象可知抛物线与x 轴的交点坐标是(-1,0),(3,0),∴当x=2时,y <0∴当x=1时4a+2b+c <0,正确.共有四个正确的,故选:C .【点睛】本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力,本题是一道比较典型的题目,具有一定的代表性,还是一道比较容易出错的题目.8.已知二次函数()()2y x p x q =---,若m ,n 是关于x 的方程()()20x p x q ---=的两个根,则实数m ,n ,p ,q 的大小关系可能是( ) A .m <p <q <nB .m <p <n <qC .p <m <n <qD .p <m <q <n A 解析:A【分析】根据二次函数图象性质和一元二次方程的知识结合已知条件,可以得到结论:m 、n 一定是一个最大、一个最小,而p 、q 一定介于m 、n 之间,从而解答本题.【详解】解:∵二次函数的解析式是()()2y x p x q =---∴1a =∴该二次函数的抛物线开口向上∵m 、n 是关于x 的方程()()20x p x q ---=的两个根∴当x m =或x n =时,0y =∵当x p =或x q =时,2y =-∴m 、n 一定是一个最大、一个最小,而p 、q 一定介于m 、n 之间.故选:A【点睛】本题考查了抛物线与x 轴的交点情况和一元二次方程根的关系、二次函数图象性质,解题的关键是明确题意,利用二次函数的图象性质解答.9.表格对应值:判断关于x 的方程22ax bx c ++=的一个解x 的范围是( )A .01x <<B .12x <<C .23x <<D .34x <<B 解析:B【分析】利用x =1和x =2所对应的函数值可判断抛物线y=ax 2+bx +c 与x 轴的一个交点在(1,0)和(2,0)之间,则根据抛物线于x 轴的交点问题可判断关于x 的方程ax 2+bx +c =0(a≠0)的一个解x 的范围.【详解】解:∵x =2时,y =5,即ax 2+bx +c >0;x =1时,y =-0.5,即ax 2+bx +c <0,∴抛物线y=ax 2+bx +c 与x 轴的一个交点在(1,0)和(2,0)之间,∴关于x 的方程ax 2+bx +c =0(a ≠0)的一个解x 的范围是1<x <2.故选:B .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.10.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .7.9(12)y x =+B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++C 解析:C【分析】根据平均每个季度GDP 增长的百分率为x ,第三季度季度GDP 总值约为7.9(1+x )元,第四季度GDP 总值为7.9(1+x )2元,则函数解析式即可求得.【详解】解:设平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是:y=7.9(1+x )2.故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键.二、填空题11.小明研究抛物线y =﹣(x ﹣a )2﹣a +1(a 为常数)性质时得到如下结论:①这条抛物线的顶点始终在直线y =x +1上;②当﹣1<x <2时,y 随x 的增大而增大,则a 的取值范围为a ≥2;③点A (x 1,y 1)与点B (x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2a ,则y 1>y 2; ④只存在一个a 的值,使得抛物线与x 轴的两个交点及抛物线的顶点构成等腰直角三角形;其中正确结论的序号是____.②③④【分析】由题意易得顶点坐标为(a ﹣a+1)所以这个函数图象的顶点始终在直线y=﹣x+1上抛物线开口向下对称轴为直线x=a 由此可判定②由可判定③假设存在一个a 的值使得函数图象的顶点与x 轴的两个交解析:②③④【分析】由题意易得顶点坐标为(a ,﹣a +1),所以这个函数图象的顶点始终在直线y =﹣x +1上,抛物线开口向下,对称轴为直线x =a ,由此可判定②,由122x x a +>可判定③,假设存在一个a 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形,令y =0,得﹣(x ﹣a )2﹣a +1=0,其中a ≤1,进而可求解.【详解】解:抛物线y =﹣(x ﹣a )2﹣a +1(a 为常数),①∵顶点坐标为(a ,﹣a +1),∴这个函数图象的顶点始终在直线y =﹣x +1上,故结论①错误;②∵抛物线开口向下,对称轴为直线x =a ,当﹣1<x <2时,y 随x 的增大而增大,∴a 的取值范围为a ≥2,故结论②正确;③∵x 1+x 2>2a , ∴122x x a +>, ∵抛物线对称轴为直线x =a ,∴点A 离对称轴的距离小于点B 离对称轴的距离,∴y 1>y 2,故结论③正确;④假设存在一个a 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形, 令y =0,得﹣(x ﹣a )2﹣a +1=0,其中a ≤1,解得:x 1=a ,x 2=a .∵顶点坐标为(a ,﹣a +1),且顶点与x 轴的两个交点构成等腰直角三角形,∴|﹣a +1|=|a ﹣(a )|,解得:a =0或1,当a =1时,二次函数y =﹣(x ﹣1)2,此时顶点为(1,0),与x 轴的交点也为(1,0),不构成三角形,舍去;∴存在a =0,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形,故结论④正确.故答案为:②③④.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 12.如图,在平面直角坐标系中,抛物线2y x x 2=--分别交y 轴,x 轴于点A ,B ,动点E 在抛物线上,EF x ⊥轴,交直线AB 于点F .则EF 的长为______(用含字母x 的式子来表示).【分析】先分别令y=0x=0求出AB 点的坐标求出直线AB 的解析式在用字母分别表示出EF 点的纵坐标相减即可【详解】令y=0得解得:B (20)令x=0得y=-2A (0-2)设AB 所在直线解析式为:代入A 解析:22x x -【分析】先分别令y =0,x =0,求出A 、B 点的坐标,求出直线AB 的解析式,在用字母分别表示出E 、F 点的纵坐标,相减即可.【详解】令y =0,得220x x --=解得:121,2x x =-=∴ B (2,0)令x =0,得y =-2,∴A (0,-2)设AB 所在直线解析式为:y kx b =+代入A 、B 解得:2y x =-设动点E 的横坐标为x ,∴ F 点的横坐标为x ,E 点的纵坐标为:22x x -- 又F 点在直线AB 之上, ∴F 点的纵坐标为:2x - 又EF x ⊥∴EF 的长度为:22(2)x x x ---- 化简得:22x x - 故答案为:22x x -【点睛】本题主要考查了二次函数与坐标轴的交点问题,二次函数与一次函数的综合问题以及线段长度的计算,分别用字母表示出E 、F 点的纵坐标是解决本题的关键.13.对于抛物线243y x x =-+,当712x -<<时,关于x 的一元二次方程2430x x t -+-=有解,则t 的取值范围是 ______.﹣1≤t <8【分析】结合直角坐标系将一元二次方程转化成二次函数与一次函数图象相交的问题确定二次函数在上的取值范围即可求解【详解】解:当时关于x 的一元二次方程有解∴即在图象上和在相交∵当x=2时有最小解析:﹣1≤t <8【分析】结合直角坐标系,将一元二次方程转化成二次函数与一次函数图象相交的问题,确定二次函数 21=43y x x -+在712x -<<上的取值范围即可求解. 【详解】 解:当712x -<<时,关于x 的一元二次方程2430x x t -+-=有解, ∴243x x t -+= 即在图象上21=43y x x -+和2=y t 在712x -<<相交, ∵()21=21y x -- 当x=2时,1y 有最小值﹣1当x =﹣1是,1y 有最大值8 即当712x -<<是,﹣1≤y 1<8 ∴﹣1≤t <8故答案为:﹣1≤t <8【点睛】本题主要考查二次函数与一次函数交点的问题,解题的关键是正确理解题意,将方程转化为二次函数与一次函数相交的问题. 14.如图,平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y =﹣13x 2,桥下的水面宽AB 为6m ,当水位上涨2m 时,水面宽CD 为_____m (结果保留根号).2【分析】首先求出B点纵坐标进而得出D点纵坐标即可求出D点横坐标进而得出CD的长【详解】解:由题意可得:当AB=6m则B点横坐标为3故此时y=﹣×32=﹣3当水位上涨2m时此时D点纵坐标为:﹣3+2解析:3【分析】首先求出B点纵坐标,进而得出D点纵坐标,即可求出D点横坐标,进而得出CD的长.【详解】解:由题意可得:当AB=6m,则B点横坐标为3,故此时y=﹣13×32=﹣3,当水位上涨2m时,此时D点纵坐标为:﹣3+2=﹣1,则﹣1=﹣13x2,解得:x=3故当水位上涨2m时,水面宽CD为3.故答案为:3【点睛】此题主要考查了二次函数的应用,求出D点横坐标是解题关键.15.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为_____.y=(x﹣2)2+2【分析】根据原二次函数的解析式可得原抛物线的顶点进而可得新抛物线的顶点根据平移不改变二次项的系数利用顶点式可得新函数解析式【详解】∵二次函数y=(x﹣1)2+2的图象的顶点坐标为解析:y=(x﹣2)2+2【分析】根据原二次函数的解析式可得原抛物线的顶点,进而可得新抛物线的顶点,根据平移不改变二次项的系数利用顶点式可得新函数解析式.【详解】∵二次函数y =(x ﹣1)2+2的图象的顶点坐标为(1,2), ∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2), ∴所得的图象解析式为y =(x ﹣2)2+2. 故答案为y =(x ﹣2)2+2. 【点睛】本题考查了二次函数的平移问题;用到的知识点为:平移不改变二次项的系数;二次函数的平移,看顶点的坐标平移即可,用顶点式较简便.16.已知二次函数2(0)y ax bx c a =++≠,其函数y 与自变量x 之间的部分对应值如下表所示,则42a b c ++=___________.函数值可得从而可得由此即可得【详解】和的函数值相同此二次函数的对称轴为即当时则故答案为:【点睛】本题考查了二次函数的性质正确求出二 解析:152【分析】先根据0x =和1x =的函数值相同可得二次函数的对称轴为12x =,从而可得=-b a ,再根据1x =-时的函数值可得152a b c ,从而可得1522a c ,由此即可得. 【详解】0x =和1x =的函数值相同,∴此二次函数的对称轴为12x =,122b a ∴-=,即=-b a , 当1x =-时,152ya b c, 1522a c, 则4242a b c a a c ,2a c , 152=,故答案为:152. 【点睛】本题考查了二次函数的性质,正确求出二次函数的对称轴是解题关键.17.已知二次函数()20y ax bx c a =++≠的图象如图所示,给出以下结论:①24b ac >;②abc>0;③20a b -=;④80a c +<;⑤930a b c ++>,其中结论正确的是__________.(填正确结论的序号)①②【分析】由抛物线的开口方向判断a 与0的关系由抛物线与y 轴的交点判断c 与0的关系然后根据对称轴及抛物线与x 轴交点情况进行推理进而对所得结论进行判断即可【详解】解:①由图知:抛物线与x 轴有两个不同的解析:①②. 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断即可. 【详解】解:①由图知:抛物线与x 轴有两个不同的交点,则△=b 2−4ac >0,∴b 2>4ac ,故①正确;②抛物线开口向上,得:a >0;抛物线的对称轴为x =2ba-=1,b =−2a ,故b <0;抛物线交y 轴于负半轴,得:c <0;所以abc >0;故②正确;③∵抛物线的对称轴为x =2ba-=1,b =−2a ,∴2a +b =0,故③错误; ④根据②可将抛物线的解析式化为:y =ax 2−2ax +c (a≠0);由函数的图象知:当x =−2时,y >0;即4a−(−4a )+c =8a +c >0,故④错误; ⑤根据抛物线的对称轴方程可知:(−1,0)关于对称轴的对称点是(3,0); 当x =−1时,y <0,所以当x =3时,也有y <0,即9a +3b +c <0;故⑤错误; 所以正确的结论有:①②. 故答案为:①②. 【点睛】本题主要考查了图象与二次函数系数之间的关系,,掌握二次函数()20y ax bx c a =++≠系数符号与抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数的关系是解题的关键.18.已知二次函数2y ax bx c =++自变量x 的部分取值和对应函数值y 如表:则在实数范围内能使得成立的取值范围是_______.的数据和二次函数的性质可以得到对称轴函数图象的开口方向再根据表格中的数据即可得到y-3>0成立的x 取值范围【详解】解:由表格可知该二次函数的对称轴是直线函数图象开口向上故y-3>解析:1x <-或3x > 【分析】根据表格中的数据和二次函数的性质,可以得到对称轴、函数图象的开口方向,再根据表格中的数据,即可得到y-3>0成立的x 取值范围. 【详解】 解:由表格可知,该二次函数的对称轴是直线1312x -+==,函数图象开口向上, 故y-3>0成立的x 的取值范围是x <-1或x >3, 故答案为:x <-1或x >3. 【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,利用二次函数的性质解答.19.已知点()1,A a m y -、()2,B a n y -、()3,C a b y +都在二次函数221y x ax =-+的图象上,若0m b n <<<,则1y 、2y 、3y 的大小关系是_________.【分析】先根据二次函数解析式找出开口方向与对称轴再根据ABC 点与对称轴的距离判断y 值得大小即可【详解】∵二次函数∴对称轴方程为且抛物线开口向上∴横坐标离对称轴x=a 越远y 越大a-m 离x=a 有m 个单位 解析:231y y y >>【分析】先根据二次函数解析式找出开口方向与对称轴,再根据A 、B 、C 点与对称轴的距离判断y 值得大小即可. 【详解】∵二次函数221y x ax =-+∴对称轴方程为22ax a -=-=,且抛物线开口向上, ∴横坐标离对称轴x=a 越远,y 越大, a-m 离x=a 有m 个单位长度, a-n 离x=a 有n 个单位长度, a+b 离x=a 有b 个单位长度,又∵0m b n <<<, ∴231y y y >>, 故答案为:231y y y >>. 【点睛】本题考查二次函数的对称性和增减性,根据二次函数解析式确定函数图像的对称轴是解答本题的关键 .20.二次函数2y ax bx c =++的图象经过(1,0)A ,对称轴为1x =-,其图像如图所示,则化简2244||b bc c a b c +++-+的结果为___________.【分析】根据二次函数的性质及绝对值的非负性二次根式的性质求解即可【详解】解:观察图象得:a<0c>0把A(10)代入得a+b+c=0∴c=-a-b ∵=-1∴b=2a<0∴c=-a-2a=-3a>0∴ 解析:2a b c -+-【分析】根据二次函数的性质及绝对值的非负性,二次根式的性质求解即可. 【详解】解:观察图象得:a<0,c>0,把A(1,0)代入2y ax bx c =++得a+b+c=0,∴c= -a-b , ∵2ba-= -1,∴b=2a<0,∴c=-a-2a=-3a>0,∴2b+c=4a-3a=a<0,a-b+c=a-2a-3a=-4a>0, ∴2244||b bc c a b c ++-+=2(2)b c a b c +-+ =-(2b+c)+a-b+c =-2b-c+a-b+c = -3b+a =-5a , 故答案为-5a . 【点睛】本题考查了二次函数的性质及绝对值的非负性,解题的关键是熟练掌握二次函数的性质.三、解答题21.愤怒的小鸟——为了打击偷走鸟蛋的捣蛋猪,鸟儿以自己的身体为武器,在空中画出完美的抛物线,像炮弹一样去攻击捣蛋猪的堡垒.而捣蛋猪为了躲避打击,将自己藏在各种障碍物后面,自此,双方展开了一番斗智斗勇的较量.(1)如图1,愤怒的小鸟调整好位置后,恰好可以越过2m 高的箱子(箱子宽度不计),射中6m 外的捣蛋猪,最高点距离地面3m ,问出发时小鸟与箱子的距离?(2)如图2,箱子的长宽不断发生变化,愤怒的小鸟按照原弹射轨迹(射中6m 外的捣蛋猪,最高点距离地面3m),当轨迹恰好经过B 、C 两点时,则AB+BC+CD 的最大值是多少? 解析:(1)出发时小鸟与箱子的距离为(33+) m ;(2)AB BC CD ++的最大值为152m . 【分析】(1)根据题意知顶点坐标为(3,3),且经过原点,利用待定系数法可求得抛物线的解析式,再求得当2y =时,x 的值,结合题意可得答案;(2)设B 点坐标为(x ,2123x x -+),则C 点坐标为(6x -,2123x x -+),根据题意得到AB+BC+CD 的二次函数,根据二次函数的性质即可求解. 【详解】(1)根据题意知顶点坐标为(3,3),且经过原点,设抛物线的解析式为:()233y a x =-+, 把(0,0)代入得:()20330a -+=, 解得:13a =-, ∴抛物线的解析式为()221133233y x x x =--+=-+, 令2y =,则()213323x --+=,即()233x -=, 解得:123333x x ==,不合题意,舍去), 答:出发时小鸟与箱子的距离为(33) m ;(2)设B 点坐标为(x ,2123x x -+),则C 点坐标为(6x -,2123x x -+), ∵B 点、C 点都在第一象限,∴21AB CD 23x x ==-+,BC 662x x x =--=-,∴21AB BC CD 22623x x x ⎛⎫++=-++- ⎪⎝⎭22263x x =-++22315322x ⎛⎫=--+ ⎪⎝⎭,∴当32x =时,AB BC CD ++的最大值为152m . 【点睛】本题考查了二次函数的实际应用,解此类题的关键是通过题意,确定出二次函数的解析式,实际问题中自变量x 的取值要使实际问题有意义.22.已知抛物线 ()21y x m x m =-+-+经过点()23,(1)求m 的值及抛物线的顶点坐标;(2)当x 取什么值时,y 随着x 的增大而减小?解析:(1)m=3,(1,4);(2)当x >1时,y 随x 的增大而减小. 【分析】(1)将已知点的坐标代入函数解析式,建立关于m 的方程,解方程求出m 的值,再将函数解析式转化为顶点式,可得到抛物线的顶点坐标.(2)利用函数解析式可知a=-1<0,结合对称轴可得到y 随x 的增大而减小时自变量x 的取值范围. 【详解】 (1)解:由题意得 -4+2(m-1)+m=3 解之:m=3,∴抛物线的解析式为y=-x 2+2x+3 ∴y= -(x-1)2+4∴抛物线的顶点坐标为(1,4); (2)解:∵a=-1<0,∴当x >1时,y 随x 的增大而减小. 【点睛】本题考查了二次函数的性质以及求二次函数的顶点坐标、二次函数的增减性,熟练掌握二次函数的性质是解题的关键. 23.已知二次函数2(2)1y x =--,(1)确定抛物线开口方向、对称轴、顶点坐标;(2)如图,观察图象确定,x 取什么值时,①y >0,②y <0,③y =0.解析:(1)开口方向:向上,对称轴:直线x=2,顶点坐标:(2,-1);(2)①1x <或3x >时y>0,②13x <<时,y<0;③x=1或x=3时,y=0. 【分析】(1)根据顶点式可直接推出抛物线开口方向、对称轴、顶点坐标; (2)令y=0,求出关于x 的方程的解,结合图象即可解答. 【详解】解:(1)由于二次项系数为正数,则抛物线开口向上; 根据顶点式可知,对称轴为x=2,顶点坐标为(2,-1). (2)令y=0,则原式可化为(x-2)2-1=0, 移项得,(x-2)2=1, 开方得,x-2=±1, 解得x 1=1,x 2=3.则与x 轴的交点坐标为(1,0),(3,0). 如图:①当x <1或x >3时,y >0; ②当x=1或x=3时,y=0; ③当1<x <3时,y <0.【点睛】本题考查了二次函数的性质,熟悉顶点式及正确画出图象,利用数形结合是解题的关键. 24.已知抛物线2(0)y ax bx a =+≠经过点(4,8)A -和点(,0)(0)P m m ≠.(1)若点A 是抛物线的顶点,则m =______.(2)如图,若2m =,设此时抛物线的顶点为B ,求OAB 的面积. 解析:(1)8;(2)6. 【分析】(1)先将点(4,8)A -代入抛物线的解析式可得1648a b +=-,再根据点A 是抛物线的顶点可得其对称轴42bx a=-=,从而可得8b a =-,求出a 、b 的值,然后将点P 的坐标代入抛物线的解析式即可得;(2)如图(见解析),先利用待定系数法求出抛物线的解析式,从而可得顶点B 的坐标,再利用待定系数法求出直线AB 的函数解析式,从而可得点C 的坐标,然后根据OAB 的面积等于OAC 与OBC 的面积之和即可得. 【详解】(1)由题意,将点(4,8)A -代入抛物线的解析式得:1648a b +=-,点A 是抛物线的顶点,∴抛物线的对称轴为42bx a=-=,即8b a =-, 联立16488a b b a +=-⎧⎨=-⎩,解得124a b ⎧=⎪⎨⎪=-⎩,则抛物线的解析式为2142y x x =-, 将(,0)(0)P m m ≠代入2142y x x =-得:21402m m -=,解得8m =或0m =(不符题意,舍去), 故答案为:8; (2)2m =, (2,0)P ∴,将点(4,8),(2,0)A P -代入抛物线的解析式得:1648420a b a b +=-⎧⎨+=⎩,解得12a b =-⎧⎨=⎩, 则此时抛物线的解析式为222(1)1y x x x =-+=--+,∴顶点B 的坐标为(1,1)B ,设直线AB 的函数解析式为y kx c =+, 将点(4,8),(1,1)A B -代入得:481k c k c +=-⎧⎨+=⎩,解得34k c =-⎧⎨=⎩,则直线AB 的函数解析式为34y x =-+, 当0y =时,340x -+=,解得43x =,即4(,0)3C , 43OC ∴=, (4,8)(1),1,B A -,OAC ∴的OC 边上的高为8,OBC 的OC 边上的高为1,OACOB BCOA SSS∴=+,1414812323=⨯⨯+⨯⨯, 6=,即OAB 的面积为6.【点睛】本题考查了利用待定系数法求二次函数和一次函数的解析式、二次函数的性质等知识点,熟练掌握待定系数法是解题关键.25.疫情期间,某防疫物晶销售量y (件)与售价x (元)满足一次函数关系,部分对应值如下麦,当售价为70元时,每件商品能获得40%的利润. 售价x (元) ... 70 65 60 ... 销售量y (个)...300350400...(2)售价为多少时利润最大?最大利润为多少?解析:(1) y=-10x+1000;(2)售价为75元时有最大利润为6250元【分析】(1)设一次函数的解析式为y=kx+b ,然后再代入点(70,300)和点(65,350)即可求解;(2)由售价为70元时,每件商品能获得40%的利润求出商品的成本为50元,进而得出商品的单个利润为(x-50),再乘以销售量y 即得到关于x 的二次函数,再利用二次函数求出最大利润即可.【详解】解:(1)设一次函数的解析式为y=kx+b ,代入点(70,300)和点(65,350),∴3007035065k b k b =+⎧⎨=+⎩,解得101000k b =-⎧⎨=⎩, ∴y 与x 的函数关系式为:y=-10x+1000;(2)∵售价为70元时,每件商品能获得40%的利润求出商品的成本为50元,∴商品的成本为:70÷(1+40%)=50元,∴商品的单个利润为:(x-50)元,设销售额为w 元,则w=(x-50)y=(x-50)(-10x+1000)=-10x²+1500x-50000,此时w 是关于x 的二次函数,且对称轴为x=75,∴当x=75时,w 有最大值为:-10×75²+1500×75-50000=6250元,故答案为:售价为75元时有最大利润为6250元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常常利函数的增减性来解答,我们首先要读懂题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).26.已知二次函数2(21)3y x m x m =-+-.(1)若2m =,写出该函数的表达式,并求出函数图象的对称轴.(2)已知点()1,P m y ,()24,Q m y +在该函数图象上,试比较1y ,2y 的大小. (3)对于此函数,在13x -≤≤的范围内函数最大值为-2,求m 的值.解析:(1)256y x x =--,直线52x =;(2)21y y >;(3)4 【分析】(1)把m=2代入y=x 2-(2m+1)x-3m 即可求得函数的表达式,进而根据对称轴x=-2b a 求得对称轴;(2)把P (m ,y 1),Q (m+4,y 2)两点代入y=x 2-(2m+1)x-3m 比较即可;(3)分132m +>,1132m -≤+≤,112m +<-三种情况,列式求解即可. 【详解】解:(1)2(21)3y x m x m =-+-,∴当2m =时,256y x x =--, 对称轴:直线55222b x a -=-=-=, ∴函数的解析式为:256y x x =--,对称轴为:直线52x =. (2)2(21)3y x m x m =-+-,∴对称轴为直线(21)1222b m x m a -+=-=-=+, ∵抛物线开口向上,(,)P m y 距对称轴为:1122m m +-=, ()24,Q m y +距对称轴为:17422m m +--=, ∴Q 离对称轴更远,2y 值更大.21y y ∴>.(3)2(21)3y x m x m =-+-,∴对称轴为:12x m =+, ①当132m +>,即52m >, 当1x =-时,max 2y =-,12132m m ∴++-=-,4m ∴=,符合52m >. .②当1132m -≤+≤时,即3522m -≤≤, 若1x =-时,y 取最大-2, 12132m m ∴++-=-,解得4m =,不符合:3522m -≤≤(舍) 若3x =时,y 取最大-2,则93(21)32m m -+-=-, 解得:89m =,符合3522m -≤≤, 当89m =时,对称轴:81259218x =+=, 2518x =离3x =距离为:2918, 2518x =离1x =-距离为:4318, ∴离1x =-更远,最大值应在1x =-处取得,与3x =处取最大值矛盾,故舍去.③当112m +<-时,即32m <-时,3x =处,取最大值,如图,93(21)32m m ∴-+-=-,解得:89x =, 不符合32m <-, 故舍去.综上所述,m 的值为4.【点睛】 本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,解题的关键是根据题意得到一元一次不等式.27.如图,二次函数2y x bx c =-++与x 轴交于点B 和点()1,0A -,与y 轴交于点。
天津市中考数学能力提升分类练习试卷(带答案带解析)之二次函数--5
![天津市中考数学能力提升分类练习试卷(带答案带解析)之二次函数--5](https://img.taocdn.com/s3/m/e647e90d657d27284b73f242336c1eb91a3733a0.png)
天津市中考数学能力提升分类练习试卷(带答案带解析)之二次函数--5源自天津历年真题整理91.如图,点A ,B ,C 都在抛物线y =ax 2−2amx +am 2+2m −5(其中−14<a <0)上,AB//x 轴,∠ABC =135°,且AB =4.(1)当m =1时,求抛物线的顶点坐标;(2)求点C 到直线AB 的距离(用含a 的式子表示):(3)若点C 到直线AB 的距离为1,当2m −5≤x ≤2m −2时,y 的最大值为2,求m 的值.【答案】(1)(1,−3);(2)−4a+1a;(3)m 的值为72或10+2√10【分析】(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解; (2)过点C 作直线AB 的垂线,交线段AB 的延长线于点D ,由角度关系可得BD =DC ,再将y =ax 2−2amx +am 2+2m −5化成顶点式,即可得到其顶点坐标为m ,根据AB =4可表示出点B 的坐标,设点C 到直线AB 的距离为d ,则BD =DC =d ,即可用含d 的式子表示出点C 的坐标,将其代入到抛物线解析式中,可得,d(ad +4a +1)=0,根据d ≠0,即可求得d 的值,此题得解; (3)将d =1代入到(2)中所得结果−4a+1a中,即可得到a =−15,则此时,y =−15(x −m)2+2m −5,根据抛物线的增减性分三种情况进行讨论,分别为:①当m >2m −2,即m <2,当x =2m −2时y 取最大值,利用二次函数图像上点的坐标特征可得关于m 的一元二次方程,解之即可得到m 的值;②当2m −5≤m ≤2m −2时,即2≤m ≤5,当x =m 时y 取最大值,利用二次函数图像上点的坐标特征可得关于m 的一元一次方程,解之即可得到m 的值;③当m <2m −5时,即m >5,x =2m −5时y 取最大值,利用二次函数图像上点的坐标特征可得关于m 的一元二次方程,解之即可得到m 的值,综上即可得出结论.【详解】(1)当m=1时,抛物线的解析式为y=ax2−2ax+a−3,∴y=a(x2−2x+1)−3,y=a(x−1)2−3∴顶点坐标为(1,−3);(2)过点C作直线AB的垂线,交线段AB的延长线于点D,∵∠ABC=135°,∴∠DBC=45°,∵CD⊥AD,∴∠BCD=45°,∴∠DBC=∠DCB,∴BD=DC,y=ax2−2amx+am2+2m−5,=a(x2−2mx+m2)+2m−5,=a(x−m)2+2m−5,∴抛物线顶点横坐标为m,∵AB//x轴,AB=4,∴B点横坐标为m+2,∵点B在抛物线y=a(x−m)2+2m−5上,当x=m+2时,y=a(m+2−m)2+2m−5=4a+2m−5,∴B点坐标为(m+2,4a+2m−5),设点C到直线AB的距离为d,则BD=DC=d,∴点C的坐标为(m+2+d,4a+2m−5−d),∵点C在抛物线y=a(x−m)2+2m−5上,∴4a+2m−5−d=a(m+2+d−m)2+2m−5,整理,得ad2+4ad+d=0,即,d(ad+4a+1)=0,∵d≠0,∴ad+4a+1=0,解得,d=−4a+1,a∴点C到直线AB的距离为−4a+1;a(3)∵点C到直线AB的距离为1,=1,∴−4a+1a解得a=−1,5(x−m)2+2m−5,∴y=−15①当m>2m−2,即m<2时,当x=2m−2时y取最大值,(2m−2−m)2+2m−5=2,∴−15整理,得m2−14m+39=0,解得m1=7−√10(舍去),m2=7+√10(舍去),②当2m−5≤m≤2m−2,即2≤m≤5时,当x=m时y取最大值,∴2m−5=2,解得m=7,2③当m<2m−5,即m>5时,当x=2m−5时y取最大值,(2m−5−m)2+2m−5=2,∴−15整理,得m2−20m+60=0,解得m3=10−2√10(舍去),m4=10+2√10,或10+2√10.综上所述,m的值为72【点睛】本题考查了二次函数的顶点式、二次函数图像上点的坐标特征、解一元二次方程、二次函数的最值、等腰直角三角形等知识点,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分情况讨论.92.已知抛物线y=x2+bx−3(b是常数)与x轴交于点A和点B,与y轴交于点C.(1)若点A坐标为(−1,0),求该抛物线的解析式和顶点坐标;(2)在(1)的条件下,设抛物线的对称轴与x轴交于点N,在抛物线的对称轴上是否存在点P,使△CNP为等腰三角形?若存在,求出符合条件的P点坐标;若不存在,说明理由;(3)在−1≤x≤2范围内,二次函数有最小值是-6,求b的值(直接写出答案即可).二次函数有最小值是−6【分析】(1)把(−1,0)代入即可求解析式及顶点坐标;(2)△CNP为等腰三角形,分三种情况,勾股定理列方程即可;(3)先确定对称轴,再根据顶点是否在−1≤x≤2范围内,分类讨论,确定最小值时x值,代入即可.【详解】解:(1)∵抛物线经过点A(−1,0),∴(−1)2−b−3=0,解得,b=−2,则抛物线的解析式为y=x2−2x−3;y=x2−2x−3=(x−1)2−4,∴抛物线的顶点坐标为(1,−4));(2)存在点P,设P(1,t),根据题意得:N(1,0),C(0,-3)则CN=√12+32=√10;NP=√t2;PC=√12+(t+3)2,∴△CNP为等腰三角形,分三种情况:①当CN=NP时,t2=10,得t=±√10,∴点P的坐标为(1,√10))或(1,−√10);②当PC=NP时,1+(t+3)2=t2,1+t2+6t+9=t2,解得,t=−5,3));∴点P的坐标为(1,−53③当PC=CN时,1+(t+3)2=10,(t+3)2=9,解得t1=0(舍去),t2=−6,∴点P的坐标为(1,−6);)或(1,−6).∴符合条件的点P存在,点P(1,√10))或(1,−√10)或(1,−5393.在平面直角坐标系中,O为坐标原点,抛物线C:y=x2+4x+3的顶点为M,与y轴交点为N.(1)求点M,N的坐标;(2)已知点P(4,2),将抛物线C向上平移得抛物线C′,点N平移后的对应点为N′,且PN′=ON′,求抛物线C′的解析式;(3)如图,直线y=−2x+9与y轴交于点A,与直线OM交于点B.现将抛物线C 平移,保持顶点在直线OB上,若平移后抛物线与射线AB(含端点A)只有一个公共点,求它的顶点横坐标h的取值范围.h=4【分析】(1)对于y=x2+4x+3,令x=0,则可求得点N的坐标,将一般式化为顶点式即可求得点M的坐标;94.在平面直角坐标系中,设二次函数y=x2−x−a2−a,其中a>0;(1)若函数y的图象经过点(1,﹣2),求函数y的解析式;(2)若抛物线与x轴的两交点坐标为A,B(A点在B点的左侧),与y轴的交点为C,满足OC=2OB时,求a的值.(3)已知点P(x0,m)和Q(1,n)在函数y的图象上,若m<n,求x0的取值范围.【答案】(1)y=x2−x−2;(2)a=2;(3)0<x0<1;【分析】(1)根据待定系数法,可得函数解析式;(2)由二次函数图象上点的坐标特征,得点A、B、C的坐标,根据OC=2OB,求a的值;(3)根据二次函数的性质,可得答案.【详解】(1)函数y=x2−x−a2−a的图象经过点(1,﹣2),得−a2−a=−2整理得:(a+2)(a−1)=0,∴得:a=−2或a=1;又由题知,a>0,∴a=1;∴函数y的解析式:y=x2−x−2;(2)当y=0时x2−x−a2−a=0,整理得:(x+a)(x−a−1)=0;解得:x1=−a或x2=a+1;图象与x轴的交点是A(−a,0),B(a+1,0),当x=0时,y=−a2−a,即C(0,−a2−a);∵OC=2OB,∴|−a2−a|=2|a+1|;∵a>0,∴a2+a=2(a+1),整理得:a2−a−2=0,∴(a−2)(a+1)=0,解得:a=2或a=−1(舍去);∴a=2;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而减小,(1,n)与(0,n)关于对称轴对称,由m<n,得:0<x0≤1;2当时P在对称轴的右侧时,y随x的增大而增大,由m<n,得1<x0<1,2综上所述:当m<n时,x0的取值范围:0<x0<1;∴ x 0的取值范围:0<x 0<1.【点睛】本题主要考查二次函数的解析式及基本性质,重点理解对称轴的应用及对应一元二次方程的求解.95.如图,抛物线y =12x 2﹣32x ﹣2与x 轴交于点A ,点B ,与y 轴交于点C ,直线y =kx +m ,经过点B ,C . (1)求k 的值;(2)点P 是直线BC 下方抛物线上一动点,求四边形ACPB 面积最大时点P 的坐标; (3)若M 是抛物线上一点,且∠MCB =∠ABC ,请直接写出点M 的坐标.96.已知抛物线与x轴交于点A(−2,0),B(4,0),与y轴交于点C(0,8),该抛物线的顶点为D.(Ⅰ)求抛物线的解析式及其顶点D的坐标;(Ⅱ)①直线CD的解析式为__________;②过点D作DH⊥x轴于H,在线段DH上有一点P到直线CD的距离等于线段PO的长,求点P的坐标;(Ⅲ)设直线CD交x轴于点E.过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使平移后的抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?【答案】(Ⅰ)y=−x2+2x+8,顶点D(1,9);(Ⅱ)①y=x+8;②P的坐标为(1,−9+ 4√10);(Ⅲ)向上最多可平移72个单位长,向下最多可平移1个单位长4【分析】(Ⅰ)由抛物线过A、B、C三点可求出抛物线表达式;(Ⅱ)①解出直线CD的解析式,根据点P到CD的距离等于PO可解出P点坐标;②应分两种情况:抛物线向上或下平移,设出解析式,代入点求出平移的单位长度.【详解】解:(Ⅰ)设抛物线解析式为y=a(x+2)(x−4),把C(0,8)代入得a=−1.∴y=−x2+2x+8=−(x−1)2+9,顶点D(1,9)(II)①设CD的解析式为y=kx+b,把C(0,8)和D(1,9)代入,得{8=0+b 9=k +b 解得{k =1b =8∴CD 的解析式为:y =x +8﹔②作PM ⊥CD 于M ,设P(1,t),因为直线CD 与x 轴的夹角为45°,∴点P 到CD 的距离PM =√22PD ,且PD =9−t ,又PO =√1+t 2.∴由题意PM =PO ,即PM 2=PO 2,∴1+t 2=12(9−t)2 整理得:t 2+18t −79=0,解得t 1=−9+4√10;t 2=−9−4√10(舍).∴P 的坐标为(1,−9+4√10).(III )由上求得E(−8,0),F(4,12).①若抛物线向上平移,可设解析式为y =−x 2+2x +8+m(m >0).当x =−8时,y =−72+m .当x =4时,y =m ,∴−72+m ≤0或m ≤12.∴0<m ≤72.②若抛物线向下移,可设解析式为y =−x 2+2x +8−m .由{y =−x 2+2x +8−m y =x +8,有x 2−x +m =0. ∴Δ=1−4m ≥0,∴0<m ≤14.∴向上最多可本题考查了平移72个单位长,向下最多可平移14个单位长.【点睛】本题考查了待定系数法求抛物线解析式,第二问考垂直平分线性质,利用距离相等解题,最后一问考抛物线的平移,要注意已知条件和技巧.97.已知,抛物线y=-x²+bx+c 经过点A(-1,0)和C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使PA+PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【答案】(1)y =−x 2+2x +3;(2)存在,当PA +PC 的值最小时,点P 的坐标为(1,2);(3)点M 的坐标为(1,1)、(1,2)、(1,83)或(1,−23)【分析】(1)由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;(2)连接BC 交抛物线对称轴于点P ,此时PA +PC 取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;(3)设点M 的坐标为(1,m),则CM =√(1−0)2+(m −3)2,AC =√[0−(−1)]2+(3−0)2=√10,AM =√[1−(−1)]2+(m −0)2,分∠AMC =90°、∠ACM =90°和∠CAM =90°三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标.【详解】解:(1)将A(−1,0)、C(0,3)代入y =−x 2+bx +c 中,得:{−1−b +c =0c =3 ,解得:{b =2c =3, ∴抛物线的解析式为y =−x 2+2x +3.(2)连接BC 交抛物线对称轴于点P ,此时PA +PC 取最小值,如图1所示.当y =0时,有−x 2+2x +3=0,解得:x 1=−1,x 2=3,∴点B 的坐标为(3,0).∵抛物线的解析式为y =−x 2+2x +3=−(x −1)2+4,∴抛物线的对称轴为直线x =1.设直线BC 的解析式为y =kx +d(k ≠0),将B(3,0)、C(0,3)代入y =kx +d 中,得:{3k +d =0d =3 ,解得:{k =−1d =3, ∴直线BC 的解析式为y =−x +3.∵当x =1时,y =−x +3=2,∴当PA +PC 的值最小时,点P 的坐标为(1,2).(3)设点M 的坐标为(1,m),则CM =√(1−0)2+(m −3)2,AC =√[0−(−1)]2+(3−0)2=√10,AM =√[1−(−1)]2+(m −0)2.分三种情况考虑:①当∠AMC =90°时,有AC 2=AM 2+CM 2,即10=1+(m −3)2+4+m 2, 解得:m 1=1,m 2=2,∴点M 的坐标为(1,1)或(1,2);②当∠ACM =90°时,有AM 2=AC 2+CM 2,即4+m 2=10+1+(m −3)2, 解得:m =83, ∴点M 的坐标为(1,83); ③当∠CAM =90°时,有CM 2=AM 2+AC 2,即1+(m −3)2=4+m 2+10, 解得:m =−23, ∴点M 的坐标为(1,−23). 综上所述:当△MAC 是直角三角形时,点M 的坐标为(1,1)、(1,2)、(1,83)或(1,−23). 【点睛】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线解析式;(2)由两点之间线段最短结合抛物线的对称性找出点P 的位置;(3)分∠AMC =90°、∠ACM =90°和∠CAM =90°三种情况,列出关于m 的方程.98.如图,直线y =12x +2交y 轴于点A ,交x 轴于点C ,抛物线y =−14x 2+bx +c 经过点A ,点C ,且交x 轴于另一上点B .(1)直接写出点A,点B,点C的坐标及抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求三角形ACM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,若线段O′A′与抛物线只有一个公共点,请结合函数图象,求m的取值范围(直接写出结果即可).交于点A,此抛物线与x轴的正半轴交于点B(1,0),且AC=2BC.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点.过点P作PD垂直于x轴于点D,交线段AB于点E,使DE=3PE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为以AB为直角边的直角三角形?若存在,直接写出符合条件的点M的坐标;若不存在,说明理由.【答案】(1)y=−x2−3x+4;(2)①点P坐标是(−43,569);②存在,(−43,193)或(−43,−76)【分析】(1)根据题意,分别求出点C的坐标,利用AC=2BC求出点A的坐标,在利用待定系数法求出抛物线的解析式即可;(2)①设点P的坐标为(a,-a2-3a+4),利用待定系数法求出直线AB的解析式,用含a的式子表示出点E的坐标,用含a的式子表示出DE和PE的长度,由DE=3PE,得到关于a的方程,求得a的值,即可得到点P的坐标;②设点M的坐标为(−43,m),分别求得AB、AM、BM的长度,根据△ABM是以AB 为直角边的直角三角形,所以可分为两种情况:一是AM为斜边,二是BM为斜边,利用勾股定理列出关于m的方程,求解即可.【详解】解:(1)∵直线x=−2与x轴交于点C.∴C(−2,0)∵B(1,0)∴BC=3∵AC=2BC∴AC=6∵直线x=−2与x轴交于点A.∴A 点坐标为(−2,6)把点A 、B 标代入解析式得{−4−2b +c =6−1+b +c =0解得:{b =−3c =4∴抛物线的解析式为:y =−x 2−3x +4(2)①∵P 是直线AB 上方的抛物线上一点∴设点P 为坐标为(a,−a 2−3a +4)设直线AB 解析式:y AB =kx +b将点A 、B 坐标代入解析式,得{−2k +b =6k +b =0解得:{k =−2b =2∴y AB =−2x +2∵PD ⊥x 轴于D ,交AB 于点E∴点E 坐标为(a,−2a +2)∴DE =−2a +2PE =−a 2−3a +4−(−2a +2)=−a 2−a +2∵DE =3PE∴−2a +2=3(−a 2−a +2)解得:a 1=1(舍去),a 2=−43当x =−43时,100.如图,二次函数y=﹣x2+(k﹣1)x+4的图象与y轴交于点A,与x轴的负半轴交于点B,且△AOB的面积为6.(1)求A,B两点的坐标;(2)求该二次函数的表达式;(3)如果点P在坐标轴上,且△ABP是等腰三角形,求点P的坐标.或(0,﹣4).【分析】(1)令x=0,即可求得点A的坐标,由△AOB的面积公式可求得OB的长,进而得到点B的坐标;(2)把点B的坐标代入抛物线的解析式,可求得k的值,确定出抛物线解析式;(3)若△ABP是等腰三角形,当点P在x轴上时,分三种情况讨论,当BP=AB或AP =BP或AP=BP时,由等腰三角形的性质分别求得即可,当点P在y轴上时同理可得.【详解】解:(1)令x=0,y=4,∴点A的坐标为(0,4),×BO×4=6,∵S△OAB=12∴BO=3.∴B(3,0)或(﹣3,0),∵二次函数与x轴的负半轴交于点B,∴点B的坐标为(﹣3,0);(2)把点B的坐标(﹣3,0)代入y=﹣x2+(k﹣1)x+4,得﹣(﹣3)2+(k﹣1)×(﹣3)+4=0.,解得k﹣1=﹣53x+4;∴所求二次函数的解析式为y=﹣x2﹣53(3)(Ⅰ)当点P在x轴上时,①如图1,当AB=AP时,则点P和点B关于y轴对称,则点P的坐标为(3,0);②如图2,当AB=BP时,当点P在y轴左侧时,BP=AB=5,则OP=PB+OB=5+3=8,故点P(﹣8,0),当点P在y轴右侧时,则B P′=5,则O P′=P′B+OB=5﹣3=2,故点P′(2,0),故点P的坐标为(2,0)或(﹣8,0);③如图3,当AP=BP时,设点P的坐标为(x,0),根据题意,得√x2+42=|x+3|..解得x=76∴点P的坐标为(7,0);6,0).故点P的坐标为(3,0),(2,0),(﹣8,0),(76(Ⅱ)当点P在y轴上时,①如图4,当AB=AP时,∵AB=5,∴AP=5,若点P在y轴的正半轴上,OP=AO+AP=9,则点P的坐标为(0,9);若点P在y轴的负半轴上,OP=AP-AO=1,则点P的坐标为(0,-1);②如图5,当AB=BP时,又∵BO⊥AP,∴OP=OA=4,∴点P的坐标为(0,﹣4);③如图6,当AP=BP时,设点P 的坐标为(0,y ),根据题意,得√32+y 2=|4-y |.解得y =78.∴点P 的坐标为(0,78) 综上所述,点P 的坐标为(3,0),(2,0),(﹣8,0),(76,0)或(0,78)或(0,9)或(0,﹣1)或(0,﹣4).【点睛】本题考查了抛物线与坐标轴的关系,等腰三角形的性质,注意当△ABP 是等腰三角形时,要分情况讨论.。
天津市中考数学能力提升分类专题训练试卷(带答案带解析)分类之二次函数--专题5(共5专题)
![天津市中考数学能力提升分类专题训练试卷(带答案带解析)分类之二次函数--专题5(共5专题)](https://img.taocdn.com/s3/m/ea818d38a200a6c30c22590102020740bf1ecd5f.png)
天津市中考数学能力提升分类专题训练试卷(带答案带解析)分类之二次函数--专题5(共5专题)源自天津历年真题整理40.已知抛物线y=ax2+bx+c(a,b,c为常数,a>0)经过A(-1,0)和B(3,0)两点,点C(0,-3),连接BC,点Q为线段BC上的动点.(1)若抛物线经过点C;①求抛物线的解析式和顶点坐标;②连接AC,过点Q作PQ∥AC交抛物线的第四象限部分于点P,连接P A,PB,AQ,△P AQ 与△PBQ面积记为S1,S2,若S=S1+S2,当S最大时,求点P坐标;(2)若抛物线与y轴交点为点H,线段AB上有一个动点G,AG=BQ,连接HG,AQ,当AQ+HG 最小值为3√2时,求抛物线解析式.解得a =1∴抛物线解析式为y =x 2−2x −3 ∵y =x 2−2x −3=(x −1)2−4 ∴顶点坐标为(1,﹣4)②如图①,连接CP ,过点P 作PD ⊥x 轴于E ,交BC 于点D ,过点C 作CF ⊥PD ∵PQ //AC ∴S △P AQ =S △PCQ ∴S =S 1+S 2=S △P AQ +S △PBQ∴S =S △PCQ +S △PBQ =S △CPB =S △CPD +S △BPD · 设直线BC 的解析式为y =kx +b{3k +b =0b =−3解得{k =1b =−3.∴直线BC 的解析式为y=x ﹣3.设P (m ,m 2−2m −3),则D (m ,m −3),(0<m <3) ∴PD =m −3−(m 2−2m −3)=−m 2+3mS =S △CPD +S △BPD =12PD ⋅DF +12PD ⋅BE =12PD ⋅(CF +BE)=12PD ⋅3=−32(m 2−3m)∴S =−32(m −32)2+278∵−32<0,0<m <3 ∴m =32时,S 最大 ∴P (32,−154)(2)如图②,把线段AB绕点A逆时针旋转45°,得到线段AE,连接EH交x轴于点G,∴AE=AB=4,∠EAB=45°.∵y=ax2+bx+c经过A(-1,0),B(3,0)·∴y=a (x+1) (x﹣3)∴y=ax2﹣2ax﹣3a令x=0,可得y=﹣3a∴H (0,﹣3a) .∵∠BOC=90°,OB=OC=3,∴∠OBC=∠OCB=45°∴∠EAB= ∠OBC=45°.又∵AG=BQ∴ΔAEG≌ΔBAQ.∴EG=AQ∴AQ+HG=EG+HG≥HE.当点E,G,H共线时,AQ+HG值最小即HE=3√2过点E作EN⊥y轴,ET⊥x轴,在RtΔATE中,∠EAT=45°41.将一个直角三角形纸片ABC 放置在平面直角坐标系中,∠ACB =90°,点A (4, 0),点C (0, 2),点O (0,0),点B 在x 轴负半轴,点E 在线段AO 上以每秒2个单位长度的速度从A 向点O 运动,过点E 作直线EF ⊥x 轴,交线段AC 于点F ,设运动时间为t 秒.将△AEF 沿EF 翻折,使点A 落在x 轴上点D 处,得到△DEF .(1)如图①,连接DC,当∠CDF=90°时,求点D的坐标.(2)①如图②,若折叠后△DEF与△ABC重叠部分为四边形,DF与边BC相交于点M,求点M的坐标(用含t的代数式表示),并直接写出t的取值范围;≤t≤2时,求S的取值范围(直接写当出结果②△DEF与△ABC重叠部分的面积为S,当12即可).∵∠AOC=90°,∴tan∠CAO=OCOA =12,∵△AEF沿EF翻折后,点A落在x轴上点D处,∴△DEF≌△AEF,∴∠FDE=∠F AE,∵∠CDF=90°,∴∠FDE+∠CDO=90°,∵∠COD=90°,∴∠OCD+∠CDO=90°,∴∠FDE=∠OCD,∴∠FDE=∠OCD=∠F AE,∴tan∠OCD=tan∠F AE=12,在Rt△OCD中,tan∠OCD=ODOC =12,∴OD=12OC=1,∴D(1,0).(2)①过点M作MN⊥x轴,如图所示:∵∠MNB=90°,∴∠MBN+∠BMN=90°,∵∠ACB=90°,∴∠CBA+∠CAB=90°,∴∠BMN=∠CAB,在RtΔBMN中,tan∠BMN=tan∠CAB=MNDN =12,∴MN =2BN ,在Rt ΔDMN 中,tan ∠MDN =tan ∠CAB =MN DN=12,∴DN =2MN =4BN , ∴BD =DN ﹣BN =3BN , ∵∠ACB =∠AOC =90°,∴∠BCO +∠ACO =∠ACO +∠CAB =90°, ∴∠BCO =∠CAB , 在Rt ΔBOC 中,tan ∠BCO =OB OC=12,∴OB =12OC =1,∴AB =5,∴△DEF ≌ΔAEF , ∴AE =DE =2t , ∴BD =AD ﹣AB =4t ﹣5, ∴4t ﹣5=3BN , ∴BN =4t−53,MN =2BN =8t−103,∴M (4t−83,8t−103),要使重叠部分为四边形,则2AE >AB , 即4t >5, 解得t >54,∵点E 在线段AO 上, ∴AE ≤AO , 即2t ≤4, 解得:t ≤2,∴t 的取值范围是54<t ≤2;②当12≤t ≤54时,重叠部分为三角形,此时重叠部分的面积为:S =S ΔAEF =12AE ×EF =12×2t ×t =t 2,42.已知抛物线L:y=ax2−4x+c(a≠0)经过点A(0,−5),B(5,0).(1)求抛物线L的解析式;(2)连接AB,交抛物线L的对称轴于点M.①求点M的坐标;②将抛物线L向左平移m(m>0)个单位得到抛物线L1.过点M作MN∥y轴,交抛物线L1于点N.且点N在点M的下方,点P是抛物线L1上一点,横坐标为−1,过点P作PE∥x轴,交抛物线L于点E,点E在抛物线L对称轴的右侧.若PE+MN=10,求m的值.【答案】(1)y=x2−4x−5(2)①点M的坐标是(2,−3);②1.【分析】(1)由A、B坐标待定系数法求函数解析式即可;(2)求得点A、B所在直线的解析式,由对称轴横坐标代入直线解析式求得纵坐标即可;(3)根据坐标平移规律设抛物线L1的表达式是y=(x−2+m)2−9,PE交抛物线L1于另一点Q,由坐标特征求得点N、P的坐标表达式,由二次函数的对称性求得Q点坐标表达式,再由平移性质求得E点坐标表达式;根据PE+MN=10列方程求得m的值即可;(1)解:把点A(0,−5),B(5,0)的坐标分别代入y=ax2−4x+c,得{c=−525a−20+c=0,解得{a=1c=−5,∴抛物线解析式为y=x2−4x−5;(2)解:①设AB所在直线的函数表达式为y=kx+b(k≠0),把A(0,−5),B(5,0)的坐标分别代入表达式得:{b=−55k+b=0,解得{k=1b=−5,∴AB所在直线的函数表达式为y=x−5;由(1)得,抛物线L:y=x2−4x−5=(x−2)2−9的对称轴是直线x=2,当x=2时,y=x−5=−3,∴点M的坐标是(2,−3).②设抛物线L1的表达式是y=(x−2+m)2−9,如图1,虚线表示L,实线表示L1,∵MN∥y轴,∴点N的坐标是(2,m2−9),∵点P的横坐标为−1,∴点P的坐标是(−1,m2−6m),设PE交抛物线L1于另一点Q,∵抛物线L1的对称轴是直线x=2−m,PE∥x轴,∴根据抛物线的轴对称性,点Q的坐标是(5−2m,m2−6m),当抛物线L1过点M(2,-3)时,m=±√6,∵m>0,∴m=√6,∴当点N在点M下方时,平移距离m<√6,PQ=5−2m−(−1)=6−2m,MN=−3−(m2−9)=6−m2,由平移性质得QE=m,∴PE=6−2m+m=6−m,∵PE+MN=10,∴6−m+6−m2=10,解得m1=−2(舍去),m2=1,∴m的值是1.【点睛】本题考查了二次函数的解析式,二次函数的对称轴,二次函数的平移,二次函数的图像特征等知识;根据题意作出二次函数的图像及平移后的图像是解题关键.x2+bx+c(b,c为常数)与x轴交于A(-2,0),B(4,0)两点,43.已知抛物线y=12与y轴交于点C,点P是抛物线上的一个动点.(1)求抛物线的解析式;(2)若点P的横坐标为m,过点P作P M⊥x轴,垂足为M,PM与直线BC交于点D.若点P,D,M三点中恰有一点是其他两点所连线段的中点(三点重合除外)时,请找出符合条件的m值;(3)若抛物线对称轴与x轴交于点E,过点E作EF⊥BC,垂足为F,点Q是对称轴上一个动点,当以E,F,P,Q为顶点的四边形是平行四边形时,求点P,Q的坐标(直接写出结果即可).当点P 的坐标为(52,−278)时,Q 点的坐标是(1,−158)或者(1,158)【分析】(1)结合A (−2,0),B (4,0)利用待定系数法即可求解;(2)利用B 、C 两点的坐标先求出直线BC 的解析式,再用m 表示出点P 坐标,根据PM ⊥x 轴,PM 与直线BC 交于点D ,得到点M 的坐标为(m,0)和点D 的坐标为(m,m −4)再分D 为PM 的中点、当P 为DM 的中点和M 为PD 的中点三种情况讨论,利用中点坐标公式即可列出关于m 的方程,求解出m 的值,问题得解;(3)求出抛物线的对称轴,即可得到E 点坐标和Q 的横坐标,过F 点作FG ⊥AB 于G 点,在结合EF ⊥BC ,OC =OB=4,OE =1,利用等腰直角三角形的性质即可求出F 点坐标,根据条件设P 点坐标为(x P ,12x P 2−x P −4),Q 点坐标为(1,a),根据构成的四边形是平行四边形,利用两条对角线的交点也是各自的中点的性质,再结合中点坐标公式即可列出方程组求出P 、Q 的坐标,不过此处需要分EQ 为对角线、EP 为对角线和EF 为对角线三种情况讨论.(1)∵抛物线y =12x 2+bx +c (b ,c 为常数)经过A (−2,0),B (4,0), ∴{2−2b +c =0,8+4b +c =0.解得{b =−1,c =−4.∴抛物线的解析式为y =12x 2−x −4; (2)∵抛物线y =12x 2−x −4与y 轴交于C (0,−4),∴设直线BC 的解析式为y =kx −4,∵直线BC 经过点B (4,0),∴4k −4=0解得k =1,∴直线BC 的解析式为y =x −4,∵点P 是抛物线上的一个动点,且点P 的横坐标为m ,∴点P 的坐标为(m,12m 2−m −4),∵PM ⊥x 轴,垂足为M ,PM 与直线BC 交于点D ,∴点M 的坐标为(m,0),点D 的坐标为(m,m −4),①当D为PM的中点时,2(m−4)=12m2−m−4+0,∴m=2或m=4(舍)②当P为DM的中点时,2(12m2−m−4)=m−4+0,∴m=−1或m=4(舍)③当M为PD的中点时,12m2−m−4+m−4=0,∴m=−4或m=4(舍)即满足条件的m的值为2,-1,-4.(3)过F点作FG⊥AB于G点,如图,将抛物线的解析式配成顶点式,得:y=12(x−1)2−92,则抛物线的对称轴为x=1,∴E点的坐标为(1,0),即有OE=1,根据(2)中求得的C点坐标,可知OC=4,又∵OB=4=OC,∴在Rt△OBC中,∠OBC=∠OCB=45°,又∵EF⊥BC,GF⊥OB,∴利用等腰直角三角形的性质可得EG=GF=GB,∵BE=OB-OE=4-1=3,∴EG=GF=GB=32,∴可得F点的坐标为(52,−32),∵P点在抛物线上,Q点在抛物线对称轴x=1,∴设P点坐标为(x P,12x P2−x P−4),Q点坐标为(1,a),44.已知函数y={−12x2+12x+m(x<m)x2−mx+n(x≥m),记该函数图象为G.(1)当m=2时,已知M(4,n)在该函数图象上,求n的值;(2)当0≤x≤2时,求函数G的最大值.(3)当m>0时,作直线x=12m与x轴交于点P,与函数G交于点Q,若∠POQ=45°时,求m的值.【答案】(1)10(2)21845.已知抛物线y=ax2+bx+3(a≠0)交x轴交于A(−1,0)和点B(3,0),交y轴交于点C.(1)求抛物线的解析式;(2)如图1,点D是直线BC上一点,过点D作DE∥y轴,交抛物线于点E(点E在点D的上方),再过点E作EF∥x轴,交直线BC于点F.当△DEF的面积取最大值时,求点E的坐标;(3)如图2,点M为抛物线对称轴l上的一点,点N为抛物线上的一点,当直线BC垂直平分MN时,求出点N的坐标.【答案】(1)y=−x2+2x+3(2)8132(3)(1−√2,2)或(1+√2,2)【分析】(1)利用交点式设二次函数式,再代入抛物线与y轴的交点坐标,即可解答;(2)利用待定系数法求直线BC的解析式,设D(m,-m+3),再表示出DE的长,根据题意求出△DEF 为等腰直角三角形,然后把△DEF 的面积用含m 的代数式表示出来,最后利用二次函数性质求其最大值即可;(3)连接ND ,根据对称的性质和△AOB 为等腰直角三角形推出△MDN 是等腰直角三角形,得出ND =MD ,设M (1,p ),然后分当M 在D 点上方时,当M 在D 点下方时两种情况分别表示出N 点坐标,将其代入抛物线解析式建立方程求解,即可解决问题.(1)解:∵抛物线y =ax 2+bx +3(a ≠0)交x 轴交于A(−1,0)和点B(3,0),设y =a (x +1)(x −3)(a ≠0),∵当x =0时,y =3,∴3=a (0+1)(0−3),解得a =-1,∴y =−(x +1)(x −3),即y =−x 2+2x +3.(2)解:设直线BC 的解析式为:y =kx +b (k ≠0),∵B (3,0),C (0,3),则{0=3k +b 3=b, 解得{k =−1b =3, ∴y =-x +3,设D (m ,-m +3),∴E (m ,-m 2+2m +3),∵DE = yE -yD =-m 2+2m +3-(-m +3)=-m 2+3m ,由(1)得,OB =OC =3,∴△BOC 为等腰直角三角形,∵DE ∥OC ,EF ∥OB ,∴△DEF 为等腰直角三角形,∴S △DEF =12DE·EF =12DE 2=12(−m 2+3m )2 ,∵点E 在点D 的上方,∴0<m <3,∵DE =−m 2+3m =−(m −32)2+94 ,∴当m =32 时,DE 的最大值为94 , ∴S △DEF 的最大值为12×(94)2=8132 ;(3)解:如图,l 与直线BC 相交与D ,连接ND ,∵BC 是MN 的对称轴,∴ND =MD ,由(2)知△BOC 是等腰直角三角形,∴∠BDH =∠CBO =45°,∴∠CDM =∠BDH =45°,∴△MDN 是等腰直角三角形,∴抛物线的对称轴为x =3−12=1 ,设M (1,p ),D (1,-1+3),即(1,2),∵ND =MD =p -2,当M 点在D 点上方时,∴xN =1-(p -2)=-p +3,∴N (-p +3, 2)∵N 点在抛物线上,∴ 2=−(−p +3)2+2(−p +3)+3,解得p =2+√2或2−√2(舍去),∴N 点坐标(1−√2,2) ;当M 点在D 点下方时,同理得出△M′DN′为等腰直角三角形,∴M′D=N′D,设M′的坐标为(1,q),∴M′D=2−q,∴xN’=(2-q)+1=3-q,∴N’(3-q, 2),∵N’点在抛物线上,∴2=−(3−q)2+2(3−q)+3,解得q=2+√2(舍去)或2−√2,∴N′(1+√2,2),综上,N点坐标为(1−√2,2)或(1+√2,2).【点睛】本题考查了二次函数图象和几何知识的综合,待定系数法求函数解析式,求最大值,轴对称图形等,解决问题的关键是能综合运用所学的数学知识和利用几何知识解决函数问题.46.如图,二次函数y=ax2+2x+c(a≠0)的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).(1)求该二次函数的解析式及其图象的顶点坐标;(2)点P是直线BC上方的抛物线上任意一点,点P关于y轴的对称点记作点P′,当四边形POP′C为菱形时,求点P的坐标;(3)点P是抛物线上任意一点,过点P做PD⊥BC,垂足为点D.过点P作PQ∥x轴,与抛物线交于点Q.若PQ=√2PD,求点P的坐标.(2)先画出图形,再利用菱形的性质可得y P =y P ′=32,再列方程求解即可; (3)如图,过P 作PM∥y 轴交BC 于M,证明PM =PQ,设P(x,−x 2+2x +3),再分别表示PM,PQ, 最后建立方程求解即可.(1)解:∵ 二次函数y =ax 2+2x +c (a ≠0)的图象经过点C(0,3),与x 轴点B(3,0).∴{c =39a +6+c =0 ,解得:{a =−1c =3所以抛物线的解析式为y =−x 2+2x +3.(2)解:如图,四边形POP ′C 为菱形,∴CO ⊥PP ′,CK =OK,PK =P ′K,∵C(0,3),∴OK =CK =32,∴y P =y P ′=32, ∴−x 2+2x +3=32, 解得:x =2±√102, ∵ 点P 是直线BC 上方的抛物线上任意一点,∴x >0, 即x =2+√102,∴P(2+√102,32). (3)解:如图,过P 作PM∥y 轴交BC 于M, 则∠PMC =∠OCB,∵B(3,0),C(0,3),∴BC 的解析式为y =−x +3,∠OCB =45°,47.已知抛物线y=x2+bx+c(b,c为常数)与x轴交于A(3,0),C两点,与y轴相交于点B,点M为线段AB上一点.(1)当b=−2时,求该抛物线的顶点坐标;(2)若点N(-b-2,y N)是抛物线在第三象限内的点,有一点P(-5,0),当AP=AN时,求b的值;(3)在(1)的条件下,AM=2√2,点E是y轴上一点,在抛物线上是否存在点F,使得以A,M,E,F为顶点的四边形为平行四边形?若存在,求出点F的坐标;若不存在,请说明理由.【答案】(1)(1,-4)(2)4√2−5(3)(2,-3)或(-2,5)或(4,5)【分析】(1)根据点A(3,0),可得9+3b+c=0,再由b=−2,即可求解;(2)过点N作NQ⊥x轴于点Q,先求出点N(-b-2,-b-5),可得AQ=b+5,NQ=b+5,再由AP=AN,结合勾股定理,即可求解;(3)过点M作MD∥x轴于点D,可得到点M(1,-2),然后分三种情况讨论:若以AM为边,点E在点D上方时,得到平行四边形AMFE;若以AM为边,点E在点D下方时,得到平行四边形AMEF;若以AM为对角线时,AM的中点与EF的中点重合,即可求解.(1)解∶∵抛物线y=x2+bx+c(b,c为常数)与x轴交于A(3,0),∴9+3b+c=0,∵b=−2,∴c=-3,∴抛物线的解析式为y=x2−2x−3=(x−1)2−4,∴顶点坐标为(1,-4);(2)解:如图,过点N作NQ⊥x轴于点Q,∵抛物线y=x2+bx+c(b,c为常数)与x轴交于A(3,0),∴9+3b+c=0,∴c=-3b-9,∴抛物线解析式为y=x2+bx−3b−9,∵点N(-b-2,y N)是抛物线在第三象限内的点,∴y N=(−b−2)2+b(−b−2)−3b−9=−b−5,∴点N(-b-2,-b-5),∴AQ=b+5,NQ=b+5,∵点P(-5,0),AP=AN,∴AN=8,∴√(b+5)2+(b+5)2=8,解得:b=4√2−5或b=−4√2−5,∵点N(-b-2,y N)在第三象限,∴−b−2<0,即b>−2,∴b=4√2−5;(3)解:如图,过点M作MD∥x轴于点D,由(1)得抛物线的解析式为y=x2−2x−3,当x=0时,y=0,∴点B(0,3),∴OB=3,∵A(3,0),∴OA=3,∴AB=3√2,∵AM=2√2,∴BM=√2,∵MD∥x轴,∴△BDM∽△BOA,∴BDOB =DMOA=BMAB=√23√2,∴BD=1,DM=1,∴OD=2,∴点M(1,-2),设点E(0,m),若以AM为边,点E在点D上方时,得到平行四边形AMFE,则EF∥AM,∴点F(-2,-2+m),∴−2+m=4+4−3,解得:m=7,∴此时点F的坐标为(-2,5);若以AM为边,点E在点D下方时,得到平行四边形AMEF,则EF∥AM,∵点A(3,0),点E(0,m),点M(1,-2),∴点F(2,-2-m),∴−2−m=4−4−3,解得:m=1,∴此时点F的坐标为(2,-3);若以AM为对角线时,AM的中点与EF的中点重合,设点P(x,y),∴{3+12=x2−2 2=m+y2,解得:{x=4y=−m−2,∴−m−2=16−8−3,解得:m=-7,∴此时点P的坐标为(4,5),综上所述,点P的坐标为(2,-3)或(-2,5)或(4,5).【点睛】本题主要考查了二次函数的综合题,熟练掌握二次函数的图象和性质,相似三角形的判定和性质,勾股定理等知识,并利用分类讨论思想解答是解题的关键.48.已知抛物线y=ax2-2ax+c(a,c为常数,a≠0)经过点C(0,-1),顶点为D.(1)当a=1时,求该抛物线的顶点坐标;(2)当a>0时,点E(0,a),若DE=2DC,求a的值;(3)当a<-1时,点F(0,1-a),过点C作直线l平行于x轴,M(m,0)是x轴上的动点,N(m+3,-1)是直线l上的动点,且取MN的中点记为P.当a为何值时,FP+DP的最小值为√17,并求此时点M ,N 的坐标. 【答案】(1)抛物线的顶点坐标为(1,-2)(2)a =12(3)当a =−32,FP +DP 的最小值为√17,此时点M 的坐标为(−34,0),点N 的坐标为(94,−1)【分析】(1)把a =1代入抛物线的解析式为y =x 2-2x +c .根据抛物线经过点C (0,-1),求出c =-1,然后将抛物线解析式配方y =x 2-2x -1=(x -1)2-2即可;(2)根据题意,得抛物线的解析式为y =ax 2−2ax −1;根据抛物线对称轴的性质,计算得点D 的坐标为(1,−a −1);过点D 作DG ⊥y 轴于点G ,根据勾股定理和拓展一元一次方程的性质,得a =12,从而得到答案;(3)当a <-1时,根据点P 为 AN 的中点,可求P (m +32,−12),作点D (1,-a -1)关于直线y =−12的对称点D ′(1,a).当满足条件的点P 落在线段FD '上时,FP +DP 最小,根据FD ′2=17,即(1−2a )2+1=17.解方程求出点F 的坐标为(0,52),点D′的坐标为(1,−32).利用待定系数法求出直线FD′的解析式为y =−4x +52即可. (1)解:当a =1时,抛物线的解析式为y =x 2-2x +c .∵抛物线经过点C (0,-1),∴c =-1.∴抛物线的解析式为y =x 2-2x -1.∵y =x 2-2x -1=(x -1)2-2,∴抛物线的顶点坐标为(1,-2).(2)解:当a >0时,由抛物线y =ax 2-2ax +c 经过点C (0,-1),∴c =-1.∴抛物线的解析式为y =ax 2-2ax -1.可得抛物线的对称轴为x =1.当x =1时,y =-a -1.∴抛物线的顶点D的坐标为(1,-a-1).过点D作DG⊥y轴于点G.在Rt△DEG中,DG=1,EG=a−(−a−1)=2a+1,∴ED2=DG2+EG2=(2a+1)2+1.在Rt△DCG中,DG=OG-OC=1,CG=−1−(−a−1)=a,∴DC2=DG2+CG2=1+a2.∵DE=2DC,即DE2=4DC2,∴(2a+1)2+1=4(1+a2).解得a=12.(3)当a<-1时,M(m,0)是x轴上的动点,N(m+3,-1)是直线l上的动点,∵点P为M、N的中点,∴点P(m+32,−12),作点D(1,-a-1)关于直线y=−12的对称点D′(1,a).当满足条件的点P落在线段FD'上时,FP+DP=FP+PD′最小,此时,FP+DP=FD′=√17.过点D′作D′H⊥y轴于点H.在Rt△FD′H中,D′H=1,FH=−a+1−a=1−2a,∴FD2=FH2+D′H2=(1−2a)2+1.又FD′2=17,即(1−2a)2+1=17.49.已知抛物线y =x 2+bx +c (b ,c 为常数,b <0)与x 轴交于点A (1,0),B (点A 在点B 的左侧),与y 轴正半轴交于点C .(1)当b =−2时,求抛物线的顶点坐标;(2)点P 是射线OC 上的一个动点①点D (−b,y 0)是抛物线上的点,当OP =3,AD =AP 时,求b 的值:②若点P在线段OC上,当b的值为−4时,求CP+2AP的最小值.【答案】(1)(1,0)(2)①−√5−1;②3+√3【分析】(1)把点A坐标代入解析式可求出c的值,然后把抛物线的解析化为顶点式即可求出顶点坐标.(2)①根据勾股定理求出AP2,根据点A在抛物线上求出b和c的关系式,然后用b来表示c,根据点D坐标和勾股定理求出AD2,然后根据AP=AD列出方程求解即可求出b的值.②在x轴负半轴上找一点M,使得∠OCM=30°,连接CM,过点P作PN⊥CM于N.根据垂线段最短可确定,当AN⊥CM时,CP+2AP取得最小值,根据抛物线解析式求出点C坐标,进而求出OC的长度,根据直角三角形的边角关系求出OM和CM的长度,最后根据三角形面积公式即可求解.(1)解:当b=-2时,抛物线的解析式为y=x2−2x+c.把A(1,0)代入抛物线解析式得0=12−2×1+c.解得c=1.所以抛物线的解析式为y=x2−2x+1=(x−1)2.所以抛物线的顶点为(1,0).(2)解:①如下图所示.∵A(1,0),∴OA=1.∵OP=3,∴AP2=OA2+OP2=10.把A(1,0)代入抛物线解析式得0=12+b×1+c.整理得c=−b−1.∴抛物线解析式为y=x2+bx−b−1.∵点D(−b,y0)是抛物线上的点,∴y0=(−b)2+b×(−b)−b−1=−b−1.∴D(−b,−b−1).∴AD2=(−b−1)2+(−b−1)2=2(b+1)2.∵AD=AP,∴AD2=AP2.∴10=2(b+1)2.解得b1=√5−1(舍),b2=−√5−1.∴b的值为−√5−1.②如下图所示,在x轴负半轴上找一点M,使得∠OCM=30°,连接CM,过点P作PN⊥CM 于N.∵∠OCM=30°,PN⊥CM,CP.∴NP=12(CP+2AP).∴NP+AP=12∴当NP+AP取得最小值时,CP+2AP取得最小值.∴当AP与NP共线时,即AN⊥CM时,NP+AP取得最小值为AN,即CP+2AP取得最小值.50.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于A(3,0),B(−1,0)两点,与y轴交于点C,连接AC,点D是第一象限的抛物线上一动点.(1)求抛物线的解析式;(2)过点D作DE⊥AC于点E.①若DE=CE,求D点坐标;②过点D作DH⊥x轴于点H,交AC于点F,连接DC、DA,当△DEF的周长取得最大值时,抛物线上是否存在一点P,使S△PAC=S△ACD,如果存在,请求出点P的坐标,如果不存在,请说明理由.的关系推出CD ∥OA ,求出点C 和D 的纵坐标都等于3,把y =3代入抛物线解析式y =−x 2+2x +3即可求出;②DF ⊥x 轴,得出DH ⊥OA ,证明△DEF 为等腰直角三角形,因为△DEF 的周长等于DE +EF +DF =(√2+1)DF .有A(3,0),C(0,3),求出直线AC 的解析式为y =-x +3,设点D 的坐标为(m,−m 2+2m +3),F(m,−m +3),则DF =−m 2+2m +3−(−m +3),利用配方法研究最值.(1)解:把A(3,0),B(−1,0)两点代入抛物线y =ax 2+bx +3则{9a +3b +3=0a −b +3=0, 解得{a =−1b =2. ∴抛物线的解析式为y =−x 2+2x +3;(2)解:①连接CD ,当x =0时,y =3,即OC =3,∵OC =OA =3,∠AOC =90°,∴△AOC 为等腰直角三角形,∠CAO =45°.∵DE ⊥AC ,DE =CE ,∴△CDE 为等腰直角三角形,∠DCE =45°,∴∠DCE =∠OAC =45°,即CD ∥OA .∴点C 和D 的纵坐标都等于3.把y =3代入抛物线解析式y =−x 2+2x +3得,−x 2+2x +3=3,解得x 1=0(舍去),x 2=2,∴点D的坐标为(2,3).②∵DF⊥x轴,∴DH⊥OA,∵∠CAO=45°,∴∠AFH=45°,∵DE⊥AC,∠DFE=∠AFH=45°,∴△DEF为等腰直角三角形,∴DE=EF=√22DF则△DEF的周长等于DE+EF+DF=(√2+1)DF.∵A(3,0),C(0,3),∴直线AC的解析式为y=-x+3.设点D的坐标为(m,−m2+2m+3),F(m,−m+3),则DF=−m2+2m+3−(−m+3)=−m2+3m=−(m−32)2+94.∴当m=32时,DF取得最大值,此时△DEF的周长取得最大值.点D的坐标为(32,154).∵S△PAC=S△ACD,∴点P和D到直线AC的距离相等.容易得知点P和D重合时符合题意,此时P的坐标为(32,154).作直线l和k都和直线AC平行,且到直线AC的距离都相等,则直线l的解析式为。
天津中考数学二轮 二次函数 专项培优 易错 难题
![天津中考数学二轮 二次函数 专项培优 易错 难题](https://img.taocdn.com/s3/m/7df523aae87101f69f31955b.png)
一、二次函数真题与模拟题分类汇编(难题易错题)1.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).(Ⅰ)求二次函数的解析式及点A,B的坐标;(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.【答案】(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q553)M (1,8),N(2,13)或M′(3,8),N′(2,3).【解析】【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).把点Q′坐标代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴55∴Q55(Ⅲ)如图,作MK⊥对称轴x=2于K.①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.∵此时点M的横坐标为1,∴y=8,∴M(1,8),N(2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,此时M′的横坐标为3,可得M′(3,8),N′(2,3).【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.2.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P2﹣1,2);②P(﹣32,154)【解析】试题分析:(1)将B、C的坐标代入已知的抛物线的解析式,由对称轴为1x=-即可得到抛物线的解析式;(2)①首先求得抛物线与x轴的交点坐标,然后根据已知条件得到PD=OA,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c b a ++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得x=21-(舍去)或x=21--,∴点P (21--,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形 =12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P (32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.3.在平面直角坐标系中,抛物线y =﹣x 2+bx +c 经过点A 、B 、C ,已知A (﹣1,0),C (0,3).(1)求抛物线的解析式;(2)如图1,P 为线段BC 上一点,过点P 作y 轴的平行线,交抛物线于点D ,当△CDP 为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是线段EF上一动点,M(m,0)是x 轴一个动点,若∠MNC=90°,请求出m的取值范围.【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(1,2)或(2,1)或(3﹣2,23)55 4m-≤≤【解析】【分析】(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC的解析式,再设P(t,3﹣t),即可得D(t,﹣t2+2t+3),即可求得PD的长,然后分三种情况讨论,求点P的坐标;(3)直角三角形斜边上的中线等于斜边的一半列出关系式m=(n﹣32)2﹣54,然后根据n的取值得到最小值.【详解】解:(1)∵抛物线y=﹣x2+bx+c经过点A、B、C,A(﹣1,0),C(0,3),∴103b cc--+=⎧⎨=⎩,解得b=2,c=3.故该抛物线解析式为:y=﹣x2+2x+3.(2)令﹣x2+2x+3=0,解得x1=﹣1,x2=3,即B(3,0),设直线BC的解析式为y=kx+b′,则330bk b''=⎧⎨+=⎩,解得:k=-1,b’=3故直线BC的解析式为y=﹣x+3;∴设P(t,3﹣t),∴D(t,﹣t2+2t+3),∴PD=(﹣t2+2t+3)﹣(3﹣t)=﹣t2+3t,∵OB=OC=3,∴△BOC 是等腰直角三角形,∴∠OCB =45°,当CD =PC 时,则∠CPD =∠CDP ,∵PD ∥y 轴,∴∠CPD =∠OCB =45°,∴∠CDP =45°,∴∠PCD =90°,∴直线CD 的解析式为y =x +3,解2323y x y x x =+⎧⎨=-++⎩得03x y =⎧⎨=⎩或14x y =⎧⎨=⎩∴D (1,4),此时P (1,2);当CD =PD 时,则∠DCP =∠CPD =45°,∴∠CDP =90°,∴CD ∥x 轴,∴D 点的纵坐标为3,代入y =﹣x 2+2x +3得,3=﹣x 2+2x +3,解得x =0或x =2,此时P (2,1);当PC =PD 时,∵PC t , ∴=﹣t 2+3t ,解得t =0或t =3,此时P (3);综上,当△CDP 为等腰三角形时,点P 的坐标为(1,2)或(2,1)或(3) (3)如图2,由(1)y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴E (1,4),设N (1,n ),则0≤n ≤4,取CM 的中点Q (2m ,32), ∵∠MNC =90°, ∴NQ =12CM , ∴4NQ 2=CM 2, ∵NQ 2=(1﹣2m )2+(n ﹣32)2, ∴4[(1﹣2m )2+(n ﹣32)2]=m 2+9,整理得,m=(n﹣32)2﹣54,∵0≤n≤4,当n=32时,m最小值=﹣54,n=4时,m=5,综上,m的取值范围为:﹣54≤m≤5.【点睛】此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.4.二次函数y=x2-2mx+3(m>)的图象与x轴交于点A(a,0)和点B(a+n,0)(n >0且n为整数),与y轴交于C点.(1)若a=1,①求二次函数关系式;②求△ABC的面积;(2)求证:a=m-;(3)线段AB(包括A、B)上有且只有三个点的横坐标是整数,求a的值.【答案】(1)y=x2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A的坐标,然后代入二次函数的解析式,求得m的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m,然后根据A、B两点关于x=m对称得到a+n-m=m-a,从而确定a、m、n之间的关系;(3)根据a=m-得到A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,求得m 的值即可确定a的值.试题解析:(1)①∵a=1,∴A(1,0),代入y=x2-2mx+3得1-2m+3=0,解得m=2,∴y=x2-4x+3;②在y=x2-4x+3中,当y=0时,有x2-4x+3=0可得x=1或x=3,∴A(1,0)、B(3,0),∴AB=2再根据解析式求出C点坐标为(0,3),∴OC=3,△ABC的面积=×2×3=3;(2)∵y=x2-2mx+3=(x-m)2-m2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m 2=, ∴m=,m=-(舍去), ∴a=−,综上所述:a=1或a=−. 考点:二次函数综合题.5.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩. ∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.6.课本中有一道作业题:有一块三角形余料ABC ,它的边BC=120mm ,高AD=80mm .要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.问加工成的正方形零件的边长是多少mm ?小颖解得此题的答案为48mm ,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm ?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.【答案】(1)2407mm,4807mm;(2)PN=60mm,40PQ mm.【解析】【分析】(1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm),根据平行得出△APN和△ABC 相似,根据线段的比值得出y的值,然后得出边长;(2)、根据第一题同样的方法得出y与x的函数关系式,然后求出S与x的函数关系式,根据二次函数的性质得出最大值.【详解】(1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm)∵PN∥BC,∴=,△APN∽△ABC∴=∴=∴=解得 y=∴2y=∴这个矩形零件的两条边长分别为mm,mm(2)、设PQ=x(mm),PN=y(mm),矩形面积为S ,则AE=80-x(mm)..由(1)知=∴=∴ y=则S=xy===∵∴ S有最大值∴当x=40时,S 最大=2400(mm 2) 此时,y==60 .∴面积达到这个最大值时矩形零件的两边PQ 、PN 长分别是40 mm ,60 mm .考点:三角形相似的应用7.如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【解析】【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标; (3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=32,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=32,∴OP=OC+PC=3+32或OP=PC﹣OC=32﹣3∴P1(0,3+32),P2(0,3﹣32);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=1×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,2当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x 轴上方2个单位处或点N在对称轴上x轴下方2个单位处.8. 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M (1,3)的特征线有:x =1,y =3,y =x +2,y =﹣x +4.问题与探究:如图,在平面直角坐标系中有正方形OABC ,点B 在第一象限,A 、C 分别在x 轴和y 轴上,抛物线21()4y x m n =-+经过B 、C 两点,顶点D 在正方形内部. (1)直接写出点D (m ,n )所有的特征线;(2)若点D 有一条特征线是y =x +1,求此抛物线的解析式; (3)点P 是AB 边上除点A 外的任意一点,连接OP ,将△OAP 沿着OP 折叠,点A 落在点A ′的位置,当点A ′在平行于坐标轴的D 点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP 上?【答案】(1)x =m ,y =n ,y =x +n ﹣m ,y =﹣x +m+n ;(2)21(2)34y x =-+;(3)抛物923-2312距离,其顶点落在OP 上. 【解析】试题分析:(1)根据特征线直接求出点D 的特征线;(2)由点D 的一条特征线和正方形的性质求出点D 的坐标,从而求出抛物线解析式; (2)分平行于x 轴和y 轴两种情况,由折叠的性质计算即可.试题解析:解:(1)∵点D (m ,n ),∴点D (m ,n )的特征线是x =m ,y =n ,y =x +n ﹣m ,y =﹣x +m +n ;(2)点D 有一条特征线是y =x +1,∴n ﹣m =1,∴n =m +1.∵抛物线解析式为21()4y x m n =-+,∴21()14y x m m =-++,∵四边形OABC 是正方形,且D 点为正方形的对称轴,D (m ,n ),∴B (2m ,2m ),∴21(2)24y m m n m =-+=,将n =m +1带入得到m =2,n =3;∴D (2,3),∴抛物线解析式为21(2)34y x =-+. (3)①如图,当点A ′在平行于y 轴的D 点的特征线时:根据题意可得,D (2,3),∴OA ′=OA =4,OM =2,∴∠A ′OM =60°,∴∠A ′OP =∠AOP =30°,∴MN =3=23,∴抛物线需要向下平移的距离=2333-=9233-. ②如图,当点A ′在平行于x 轴的D 点的特征线时,设A ′(p ,3),则OA ′=OA =4,OE =3,EA ′=2243-=7,∴A ′F =4﹣7,设P (4,c )(c >0),,在Rt △A ′FP 中,(4﹣7)2+(3﹣c )2=c 2,∴c =16473-,∴P (4,16473-),∴直线OP 解析式为y =47-x ,∴N (2,827-),∴抛物线需要向下平移的距离=3﹣827-=127+. 综上所述:抛物线向下平移923-或127+距离,其顶点落在OP 上.点睛:此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,解答本题的关键是用正方形的性质求出点D 的坐标.9.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6), ∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, 所以二次函数的解析式为:y =233642x x --+;(2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+) =23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA 29n +PE 212n ++()AE 16425+=,分三种情况讨论: 当PA =PE 29n +212n ++()n =1,此时P (﹣1,1); 当PA =AE 29n +16425+=n =11,此时点P 坐标为(﹣1,11);当PE =AE 212n ++()16425+=n =﹣219P 坐标为:(﹣1,﹣219).±).综上所述:P点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.10.一次函数y=x的图象如图所示,它与二次函数y=ax2-4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.【答案】(1)点C(2,);(2)①y=x2-x;②y=-x2+2x+.【解析】试题分析:(1)求得二次函数y=ax2-4ax+c对称轴为直线x=2,把x=2代入y=x求得y=,即可得点C的坐标;(2)①根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m),根据S△ACD=3即可求得m的值,即求得点A的坐标,把A.D的坐标代入y=ax2-4ax+c得方程组,解得a、c的值即可得二次函数的表达式.②设A(m,m)(m<2),过点A作AE⊥CD于E,则AE=2-m,CE=-m,根据勾股定理用m表示出AC的长,根据△ACD的面积等于10可求得m的值,即可得A 点的坐标,分两种情况:第一种情况,若a>0,则点D在点C下方,求点D的坐标;第二种情况,若a<0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入y=ax2-4ax+c即可求得函数表达式.试题解析:(1)y=ax2-4ax+c=a(x-2)2-4a+c.∴二次函数图像的对称轴为直线x =2.当x=2时,y=x=,∴C(2,).(2)①∵点D与点C关于x轴对称,∴D(2,-),∴CD=3.设A(m,m)(m<2),由S△ACD=3,得×3×(2-m)=3,解得m=0,∴A(0,0).由A(0,0)、 D(2,-)得解得a=,c=0.∴y=x2-x.②设A(m,m)(m<2),过点A作AE⊥CD于E,则AE=2-m,CE=-m,AC==(2-m),∵CD=AC,∴CD=(2-m).由S△ACD=10得×(2-m)2=10,解得m=-2或m=6(舍去),∴m=-2.∴A(-2,-),CD=5.若a>0,则点D在点C下方,∴D(2,-),由A(-2,-)、D(2,-)得解得∴y=x2-x-3.若a<0,则点D在点C上方,∴D(2,),由A(-2,-)、D(2,)得解得∴y=-x2+2x+.考点:二次函数与一次函数的综合题.。
天津九年级数学 二次函数的专项 培优练习题
![天津九年级数学 二次函数的专项 培优练习题](https://img.taocdn.com/s3/m/89894b5e4b35eefdc8d333d1.png)
天津九年级数学 二次函数的专项 培优练习题一、二次函数1.如图,过()A 1,0、()B 3,0作x 轴的垂线,分别交直线y 4x =-于C 、D 两点.抛物线2y ax bx c =++经过O 、C 、D 三点.()1求抛物线的表达式;()2点M 为直线OD 上的一个动点,过M 作x 轴的垂线交抛物线于点N ,问是否存在这样的点M ,使得以A 、C 、M 、N 为顶点的四边形为平行四边形?若存在,求此时点M 的横坐标;若不存在,请说明理由;()3若AOC V 沿CD 方向平移(点C 在线段CD 上,且不与点D 重合),在平移的过程中AOC V 与OBD V 重叠部分的面积记为S ,试求S 的最大值.【答案】(1)2413y x x 33=-+;(2)32332+332-;(3)13. 【解析】 【分析】(1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3.设点M 的横坐标为x ,则求出MN =|43x 2﹣4x |;解方程|43x 2﹣4x |=3,求出x 的值,即点M 横坐标的值;(3)设水平方向的平移距离为t (0≤t <2),利用平移性质求出S 的表达式:S 16=-(t ﹣1)213+;当t =1时,s 有最大值为13. 【详解】(1)由题意,可得C (1,3),D (3,1).∵抛物线过原点,∴设抛物线的解析式为:y =ax 2+bx ,∴3931a b a b +=⎧⎨+=⎩,解得43133a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为:y 43=-x 2133+x . (2)存在.设直线OD 解析式为y =kx ,将D (3,1)代入,求得k 13=,∴直线OD 解析式为y 13=x . 设点M 的横坐标为x ,则M (x ,13x ),N (x ,43-x 2133+x ),∴MN =|y M ﹣y N |=|13x ﹣(43-x 2133+x )|=|43x 2﹣4x |. 由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3,∴|43x 2﹣4x |=3. 若43x 2﹣4x =3,整理得:4x 2﹣12x ﹣9=0,解得:x =或x = 若43x 2﹣4x =﹣3,整理得:4x 2﹣12x +9=0,解得:x 32=,∴存在满足条件的点M ,点M 的横坐标为:32或32+或32-. (3)∵C (1,3),D (3,1),∴易得直线OC 的解析式为y =3x ,直线OD 的解析式为y 13=x . 如解答图所示,设平移中的三角形为△A 'O 'C ',点C '在线段CD 上. 设O 'C '与x 轴交于点E ,与直线OD 交于点P ; 设A 'C '与x 轴交于点F ,与直线OD 交于点Q .设水平方向的平移距离为t (0≤t <2),则图中AF =t ,F (1+t ,0),Q (1+t ,1133+t ),C '(1+t ,3﹣t ).设直线O 'C '的解析式为y =3x +b ,将C '(1+t ,3﹣t )代入得:b =﹣4t ,∴直线O 'C '的解析式为y =3x ﹣4t ,∴E (43t ,0). 联立y =3x ﹣4t 与y 13=x ,解得:x 32=t ,∴P (32t ,12t ). 过点P 作PG ⊥x 轴于点G ,则PG 12=t ,∴S =S △OFQ ﹣S △OEP 12=OF •FQ 12-OE •PG12=(1+t )(1133+t )12-•43t •12t 16=-(t ﹣1)213+当t =1时,S 有最大值为13,∴S 的最大值为13.【点睛】本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题的关键是根据平行四边形定义,得到MN =AC =3,由此列出方程求解;第(3)问中,解题的关键是求出S 的表达式,注意图形面积的计算方法.2.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点. (1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x 2+2x+3;直线AC 的解析式为y=3x+3;(2)点M 的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=M B′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.3.已知,抛物线y=x 2+2mx(m 为常数且m≠0). (1)判断该抛物线与x 轴的交点个数,并说明理由.(2)若点A (-n+5,0),B(n-1,0)在该抛物线上,点M 为抛物线的顶点,求△ABM 的面积.(3)若点(2,p),(3,g ),(4,r)均在该抛物线上,且p<g<r ,求m 的取值范围. 【答案】(1)抛物线与x 轴有2个交点,理由见解析;(2)△ABM 的面积为8;(3)m 的取值范围m>-2.5 【解析】 【分析】(1)首先算出根的判别式b 2-4ac 的值,根据偶数次幂的非负性,判断该值一定大于0,从而根据抛物线与x 轴交点个数与根的判别式的关系即可得出结论;(2)根据抛物线的对称性及A,B 两点的坐标特点求出抛物线的对称轴直线为x=2.从而再根据抛物线对称轴直线公式建立方程,求解算出m 的值,进而求出抛物线的解析式,得出A,B,M 三点的坐标,根据三角形的面积计算方法,即可算出答案;(3)方法一(图象法):根据抛物线的对称轴直线及开口方向判断出当对称轴在直线x=3的右边时,显然不符合题目条件;当对称轴在直线x=2的左边时,显然符合题目条件(如图2),从而列出不等式得出m 的取值范围;当对称轴在直线x=2和x=3之间时,满足3-(-m)>-m-2即可(如图3),再列出不等式得出m 的取值范围,综上所述,求出m 的取值范围;方法二(代数法):将三点的横坐标分贝代入抛物线的解析式,用含m 的式子表示出p,g,r ,再代入 p<g<r 即可列出关于m 的不等式组,求解即可。
天津市中考数学能力提升分类专题训练试卷(带答案带解析)分类之二次函数--专题1(共5专题)
![天津市中考数学能力提升分类专题训练试卷(带答案带解析)分类之二次函数--专题1(共5专题)](https://img.taocdn.com/s3/m/8f7dd93c11a6f524ccbff121dd36a32d7375c7ed.png)
天津市中考数学能力提升分类专题训练试卷(带答案带解析)分类之二次函数--专题1(共5专题)源自天津历年真题整理1.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图像的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当−1<x<3时,y>0,其中正确的是()A.①②④B.①②C.②③④D.③④【答案】A【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=−1时,y=a−b+c;然后由图像确定当x取何值时,y>0.【详解】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;=1,②∵对称轴x=−b2a∴2a+b=0;故正确;③∵2a+b=0,∴b=−2a,∵当x=−1时,y=a−b+c<0,∴a−(−2a)+c=3a+c<0,故错误;④根据图示知,当x=1时,有最大值;当m≠1时,有am2+bm+c<a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当−1<x<3时,y不只是大于0.故错误.故选:A.【点睛】本题主要考查了二次函数图像与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).2.已知抛物线y=ax2−2x+1(a≠0)的顶点为P,有下列结论:①当a<0时,抛物线与直线y=2x+2没有交点;②若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若点P在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),则a≥1.其中,正确结论的个数是().A.0 B.1 C.2 D.3【答案】C【分析】①构建方程组,转化为一元二次方程,利用判别式的值判断即可;②首先证明a>1,再证明x=1时,y<0,可得结论;③首先证明a>0,然后根据抛物线对称轴在直线x=0和直线x=2之间,结合抛物线顶点在点(0,2)下方且在x轴上或在x轴上方求解即可.【详解】解:由{y=2x+2y=ax2−2x+1,消去y得到,ax2-4x-1=0,∵Δ=16+4a,a<0,∴Δ的值可能大于0,∴抛物线与直线y=2x+2可能有交点,故①错误;∵抛物线与x轴有两个交点,∴Δ=4-4a>0,∴a<1,∵抛物线经过(0,1),且x =1时,y =a -1<0,∴抛物线与x 轴一定有一个交点在(0,0)与(1,0)之间.故②正确;当a <0时,抛物线对称轴为直线x =−−22a =1a <0,∴此时抛物线顶点P 在y 轴左侧,不可能在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),∴a >0,∵抛物线解析式为y =ax 2−2x +1=a (x −1a )2+1−1a ,∴{0≤1−1a ≤21a ≤2 , 解得,a ≥1,故③正确,综上,正确的有②③共2个.故选:C .【点睛】本题考查抛物线与x 轴的交点,一次函数的性质,二次函数的性质等知识,解题的关键是学会构建不等式或不等式组解决问题,属于中考填空题中的压轴题.3.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点 A (3,0),与y 轴的交点B 在(0,3)与(0,4)之间(不包括这两点),对称轴为直线x =1.下列结论: ①abc <0;②43a +3b +c >0;③−43<a <−1;④若x 1,x 2(x 1<x 2)是方程ax 2+bx +c =m (m <0)的两个根,则有x 1<−1<3<x 2.其中正确结论的个数是( )A .1个B .2个C .3个D .4个【答案】D【分析】根据抛物线的开口方向,对称轴的位置,判定abc 的符号,根据9a +3b +c =0,−b 2a =1,用含a 的代数式表示b ,c ,代入化简43a +3b +c 并判断正负性;根据a 、c 之间的关系和{c <4c >3 转化a 的不等式组,并解之;利用数形结合思想判断.【详解】∵抛物线开口向下,∴a <0,∵−b2a =1>0,∴b >0,∴ab <0,∵c >0,∴abc <0,故结论①正确;∵二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点 A (3,0),对称轴为直线x =1, ∴9a +3b +c =0,−b 2a =1,∴3a +c =0,43a −9a =−233a >0故结论②正确;∵3a +c =0,且{c <4c >3, ∴{−3a <4−3a >3, 解得−43<a <−1,故结论③正确;∵二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点 A .(3,0),对称轴为直线x =1, ∴3+x 02=1,解得x 0=−1,故抛物线与x 轴另一个交点为(-1,0)∴方程ax 2+bx +c =m (m <0)的两个根是抛物线y =ax 2+bx +c 与y =m 的交点的横坐标,画图如下,数形结合思想判断,得x 1<−1<3<x 2.故结论④正确.故选:D .【点睛】本题考查了抛物线的性质,抛物线与各项系数的关系,不等式组的解集,抛物线与x 轴的交点,熟练掌握抛物线的性质是解题的关键.4.已知二次函数y =(m ﹣2)x 2+2mx +m ﹣3(m 是常数)的图象与x 轴有两个交点(x 1,0),(x 2,0),x 1≠x 2,则下列说法:①该二次函数的图象一定过定点(﹣1,﹣5);②若该函数图象开口向下,则m 的取值范围为:65<m <2;③若m =3,当t ≤x ≤0时,y 的最大值为0,最小值为﹣9,则t 的取值范围为−6≤t ≤−3.其中,正确的个数为( )A .0个B .1个C .2个D .3个 【答案】D【分析】①y =(m -2)x 2+2mx +m -3=m (x +1)2-2x 2-3,当x =-1时,y =-5,可判断①, ②若该函数图象开口向下可得m -2<0,根据Δ>0,可得m >65,即可判断②; ③当m =3时,函数关系式为:y =x 2+6x =(x +3)2-9,可得函数顶点坐标为(-3,-9),对称轴为x =-3,且图像开口向上,再根据题意即可判断③;【详解】解:①y =(m -2)x 2+2mx +m -3=m (x +1)2-2x 2-3,当x =-1时,y =-5,故该函数图象一定过定点(-1,-5),故①正确;②若该函数图象开口向下,则m -2<0,且Δ>0,Δ=b 2-4ac =20m -24>0,解得:m >65,且m <2,故m 的取值范围为:65<m <2,故②正确; ③当m =3时,函数关系式为:y =x 2+6x =(x +3)2-9,可得函数顶点坐标为(-3,-9),对称轴为x =-3,且图像开口向上,根据题意,当t ≤x ≤0时,y 的最大值为0,最小值为﹣9,所以x 应当位于对称轴到抛物线与x 轴的左侧交点之间(包含端点),所以−6≤t ≤−3.故③正确;故选:D .【点睛】主要考查图象与二次函数系数之间的关系,会利用根的判别式、掌握二次函数图象性质是解题的关键.5.已知二次函数y =a (x +1)(x ﹣m )(a 为非零常数,1<m <2),当x <-1时,y 随x 的增大而增大,则下列结论正确的是( )①当x >2时,y 随x 的增大而减小;②若图象经过点(0,1),则﹣1<a <0;③若(﹣2021,y 1),(2021,y 2)是函数图象上的两点,则y 1<y 2;④若图象上两点(14,y 1),(14+n ,y 2)对一切正数n ,总有y 1>y 2,则1<m ≤32.A .①②B .①③C .①②③D .①③④ 【答案】D【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:①:∵二次函数y =a (x +1)(x ﹣m )(a 为非零常数,1<m <2), ∴x 1=﹣1,x 2=m ,x 1<x 2,又∵当x <﹣1时,y 随x 的增大而增大,∴a <0,开口向下,∴当x >2>x 2时,y 随x 的增大而减小,故①正确;②:∵二次函数y =a (x +1)(x ﹣m )(a 为非零常数,1<m <2),当x <﹣1时,y 随x 的增大而增大,∴a <0,若图象经过点(0,1),则1=a (0+1)(0﹣m ),得1=﹣am ,∵a <0,1<m <2,∴﹣1<a <﹣12,故②错误;③:又∵对称轴为直线x =−1+m2,1<m <2,∴0<−1+m2<12, ∴若(﹣2021,y 1),(2021,y 2)是函数图象上的两点,2021离对称轴近些,则y 1<y 2, 故③正确;④若图象上两点(14,y 1),(14+n ,y 2)对一切正数n ,总有y 1>y 2,1<m <2, ∴该函数与x 轴的两个交点为(﹣1,0),(m ,0),∴0<−1+m2≤14, 解得1<m ≤32,故④正确;∴①③④正确;②错误.故选:D .【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.6.已知二次函数y =ax 2+bx +c(a ≠0)的图像如图所示,有下列5个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④2c >3b ;⑤a +b >m(am +b)(m ≠1),其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】A【分析】先利用二次函数的开口方向,与y 轴交于正半轴,二次函数的对称轴为:x =−b 2a =1>0,判断a,b,c 的符号,可判断①,由图象可得:(−1,a −b +c)在第三象限,可判断②,由抛物线与x 轴的一个交点在(−1,0),(0,0)之间,则与x 轴的另一个交点在(2,0),(3,0)之间,可得点(2,4a +2b +c)在第一象限,可判断③,由(3,9a +3b +c)在第四象限,抛物线的对称轴为:x=−b2a =1,即a=−b2,可判断④,当x=1时,y最大值=a+b+c,当x=m(m≠1),y=am2+bm+c,此时:am2+bm+c<a+b+c,可判断⑤,从而可得答案. 【详解】解:由二次函数的图象开口向下可得:a<0,二次函数的图象与y轴交于正半轴,可得c>0,二次函数的对称轴为:x=−b2a=1>0,可得b>0,所以:abc<0,故①不符合题意;由图象可得:(−1,a−b+c)在第三象限,∴a−b+c<0,∴b>a+c,故②不符合题意;由抛物线与x轴的一个交点在(−1,0),(0,0)之间,则与x轴的另一个交点在(2,0),(3,0)之间,∴点(2,4a+2b+c)在第一象限,∴4a+2b+c>0,故③符合题意;∵(3,9a+3b+c)在第四象限,∴9a+3b+c<0,∵抛物线的对称轴为:x=−b2a=1,∴a=−b 2 ,∴−9b2+3b+c<0,∴2c<3b,故④不符合题意;∵当x=1时,y最大值=a+b+c,当x=m(m≠1),y=am2+bm+c,此时:am2+bm+c<a+b+c,∴m(am+b)<a+b,故⑤符合题意;综上:符合题意的有:③⑤.故选:A.【点睛】本题考查的是二次函数的图象与性质,熟练的应用二次函数的图象与性质判断代数式的符号是解题的关键.7.抛物线y=ax2+bx+c(a,b,c为常数)开口向下且过点A(1,0),B(m,0)(−2<m<−1),下列结论:①2b+c>0;②2a+c<0;③a(m+1)−b+c>0;④若方程a(x−m)(x−1)−1=0有两个不相等的实数根,则4ac−b2<4a.其中正确结论的个数是()A.4 B.3 C.2 D.1【答案】A【分析】根据已知条件可判断c>0,a<b<0,据此逐项分析解题即可.【详解】解:∵抛物线开口向下∴a<0把A(1,0),B(m,0)代入y=ax2+bx+c得{a+b+c=0am2+bm+c=0∴am2+bm=a+b∴am2+bm−a−b=0(m−1)(am+a+b)=0∵−2<m<−1∴am+a+b=0∴am=c,a(m+1)=−b∴c>0∴−1<m+1<0∵m+1<0∴−12<m+12<0∴−12<−b2a<0∴1>ba>0∴a<b<0①2b+c=2b−a−b=b−a>0,故①正确;②2a+c=2a−a−b=a−b<0,故②正确;③a(m+1)−b+c=−2b+c=−2b−a−b=−3b−a>0,故③正确;;④若方程a(x−m)(x−1)−1=0有两个不相等的实数根,即ax2−a(m+1)x+am−1=0Δ=a2(m+1)2−4a(am−1)=a2(m+1)2−4a2m+4a=b2−4a2⋅−a−ba+4a=b2+4a2+4ab+4a=b2+4a(a+b)+4a=b2−4ac+4a>0∴4ac−b2<4a,故④正确,即正确结论的个数是4,故选:A.【点睛】本题考查二次函数的图象与性质、二次函数与系数a、b、c关系,涉及一元二次方程根的判别式,是重要考点,有难度,掌握相关知识是解题关键.8.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点(−1,−1),(0,1),当x=−2时,与其对应的函数值y>1.有下列结论:①abc>0;②关于x的方程ax2+bx+c−3=0有两个不等的实数根;③a+b+c>7.其中,正确结论的个数是()A.0 B.1 C.2 D.3【答案】D【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可【详解】∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点(−1,−1),(0,1),当x=−2时,与其对应的函数值y>1.∴c=1>0,a-b+c= -1,4a-2b+c>1,∴a-b= -2,2a-b>0,∴2a-a-2>0,∴a>2>0,∴b=a+2>0,∴abc>0,∵ax2+bx+c−3=0,∴△=b2−4a(c−3)=b2+8a>0,∴ax2+bx+c−3=0有两个不等的实数根;∵b=a+2,a>2,c=1,∴a+b+c=a+a+2+1=2a+3,∵a>2,∴2a>4,∴2a+3>4+3>7,故选D.【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.9.如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,其中点B的坐标为(4,0),抛物线与y轴负半轴交于点C,有下列结论:①abc>0;②4a+b<0;③若M(1,y1)与N(2,y2)是抛物线上两点,则y1>y2;④若AB≥3,则4b+3c>0其中,正确的结论是()A.①②B.③④C.①④D.②③【答案】C【分析】从抛物线的开口方向、对称轴、顶点位置、与坐标轴的交点位置、函数的增减性等方面加以逐项计算或判断,即可得出相应的结论.【详解】解:(1)∵抛物线的开口向下,∴a<0.∵抛物线与y轴交于负半轴,∴c<0.∵抛物线的对称轴在y轴的右侧,>0.∴−b2a∴b>0.∴abc>0.∴①正确;(2)∵抛物线过点B(4,0),点A在x轴的正半轴,∴对称轴在直线x=2的右侧.∴−b2a>2.∴2+b2a <0,即4a+b2a<0.又∵a<0,∴4a+b>0.∴②错误;(3)∵M(1,y1)和N(2,y2)是抛物线上的两点,且0<1<2,∴抛物线在0<x<−b2a 上,y随x的增大而增大,在x>−b2a上,y随x的增大而减小.∴y1>y2不一定成立.∴③错误;(4)∵AB≥3,B(4,0),∴点A的横坐标大于0且小于或等于1.∴当x=1时,有y=a+b+c≥0;当x=4时,有y=16a+4b+c=0.∴a=−4b+c16,代入a=−4b+c16,得,−4b+c16+b+c≥0.整理得,4b+5c≥0.∴4b+3c≥−2c.又∵c<0,∴-2c>0.∴4b+3c>0.∴④正确.故选:C.【点睛】本题主要考查了二次函数的图象与性质、二次函数与不等式等知识点.熟知图象的位置与系数的关系是解题的基础.10.函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象与x轴交于点(2,0),顶点坐标为(−1,n),其中n>0.有下列结论:①abc>0;②函数y=ax2+bx+c在x=1和x=−2处的函数值相等;③点M(x1,y1),N(x2,y2)在函数y=ax2+bx+c的图象上,若−3<x1< 1<x2,则y1>y2.其中,正确结论的个数是()A.0 B.1 C.2 D.3【答案】C【分析】根据待定系数法,抛物线的对称性、抛物线的增减性等知识即可作出判断.【详解】∵抛物线的顶点坐标为(−1,n)∴抛物线的对称轴为直线x=-1∵抛物线y=ax2+bx+c的图象与x轴交于点(2,0)设抛物线与x轴的另一个交点坐标为(x,0),则-1-x=2+1∴x=-4即抛物线与x轴的两个交点的坐标分别为(2,0)和(−4,0)故抛物线的解析式为y=a(x+4)(x−2)=ax2+2ax−8a∵n>0,即抛物线的顶点在x轴的上方,且抛物线与x轴有两个交点∴a<0∴b=2a<0,c=-8a>0∴abc>0故①正确当x=1时,y=-5a;当x=-2时,y=-8a∵a<0∴-5a<-8a故②错误当x=-3时,y=-5a;当x=1时,y=-5a∵当−3<x<−1时,函数值随自变量的增大而增大;当−1<x<1时,函数值随自变量的增大而减小∴当−3<x1<1时,−5a<y1<n∵当x2>1>−1时,函数值随自变量的增大而减小∴y2<−5a∴y2<y1故③正确从而正确的结论有两个.故选:C.【点睛】本题考查了二次函数解析式及其性质,有一定的综合性,关键是用好抛物线的对称性质及增减性质.。
天津市中考数学能力提升分类练习试卷(带答案带解析)之二次函数--4
![天津市中考数学能力提升分类练习试卷(带答案带解析)之二次函数--4](https://img.taocdn.com/s3/m/4214420b0166f5335a8102d276a20029bd6463a1.png)
天津市中考数学能力提升分类练习试卷(带答案带解析)之二次函数--4源自天津历年真题整理81.已知抛物线y =x 2+bx +c (b ,c 为常数)交x 轴于点A(1,0)和点B ,交y 轴于点C(0,5),抛物线的对称轴与x 轴交于点D .(Ⅰ)求该抛物线的解析式;(Ⅱ)在y 轴上是否存在一点P ,使△PBC 为等腰三角形,若存在,请求出点P 的坐标若不存在,请说明理由.(Ⅲ)有一点M 从点A 出发,以1单位长/秒的速度在AB 上向点B 运动,另一点N 从点D 的位置与点M 同时出发,以2单位长/秒的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M ,N 同时停止运动,问点M ,N 运动到何处时,△MNB 的面积最大,试求出最大面积.为4【分析】(Ⅰ)运用待定系数法求解即可;(Ⅱ)求出点B 的坐标,再根据勾股定理得出BC ,当△PBC 为等腰三角形时分三种情况进行讨论:①CP =CB ;②BP =BC ;③PB =PC ;(Ⅲ)设AM =t ,则DN =2t ,由AB =4得S △MNB =12×(4−t)×2t =−(t −2)2+4,运用二次函数的性质可得结论.【详解】解:(Ⅰ)∵抛物线y =x 2+bx +c 经过点A(1,0),点C(0,5),∴{1+b +c =0c =5, 解得{b =−6c =5. ∴抛物线的解析式为y =x 2−6x +5.(Ⅱ)存在如图,在抛物线y =x 2−6x +5中,令y =0,则x 2−6x +5=0.解得x 1=1,x 2=5.∴A (1,0),B (5,0).∵C(0,5)∴OC=5,由勾股定理得,BC=√52+52=5√2点P在y轴上,当△PBC为等腰三角形时,分三种情况讨论:①当CP=CB时,BC=5√2∴OP=OC+CP=5+5√2或OP=PC-OC=5√2−5∴P1(0,5+5√2),P2(0,5−5√2)②当PB=BC时,OP=OC=5∴P3(0,−5)③当PB=PC时,∵OC=OB=5∴此时点P与点O重合,∴P4(0,0)综上所述,符合条件的点P有四个,分别为(0,0),(0,5+5√2),(0,5−5√2),(0,−5).(Ⅲ)由y=x2−6x+5可得抛物线的对称轴为x=3.设点M的运动时间为t秒,∵点A(1,0),点B(5,0),∴OA=1,OB=5.∴AB=4∴BM=AB−AM=5−1−t=4−t.∵点N的速度是点M的2倍,∴DN=2t.∴S△MNB=12BM⋅DN=12×(4−t)×2t=−(t−2)2+4.∴当t=2时,S△MNB有最大值,最大值为4.∴OM=OA+AM=1+2=3,DN=2×2=4∵抛物线y=x2−6x+5的对称轴与x轴交于点D,∴点D(3,0)∴N(3,4)或N(3,−4)即当M(3,0),N(3,4)或N(3,−4)时,△MNB面积最大,最大面积为4.【点睛】本题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的判定与性质是解答此题的关键.82.已知,抛物线C:y=ax2+bx+c(a,b,c为常数,a≠0)的顶点为M,与y轴交于点C.(1)当a=−1时,①抛物线C经过点C(0,3)和(4,−5),求抛物线C的顶点坐标;②抛物线C1与抛物线C关于直线x=3对称,若点(1,0),点(2,5)在抛物线C1上,求抛物线C 的解析式;(2)开口向下的抛物线C经过点A(−2,0),C(0,2√3),对称轴在y轴右侧,交x轴于点Q,点P为y轴上一动点,当PQ+12CP的最小值为3√32时,求a,b的值.将x M =b 2代入上式,得x M ′=6−b 2,即M ′(6−b 2,b 24+c),抛物线C 1的解析式为y =−(x +b 2−6)2+b 24+c ,∵点A(1,0),点B(2,5)在抛物线C 1上, ∴{−(1+b 2−6)2+b 24+c =0−(2+b 2−6)2+b 24+c =5 ,解得{b =4c =5 , ∴抛物线的解析式为y =−x 2+4x +5;方法二:∵抛物线C 1与抛物线C 关于直线x =3对称,抛物线C 的解析式为y =−x 2+bx +c ,∴设抛物线C 1的解析式为y =−x 2+b 1x +c 1,∵点A(1,0),点B(2,5)在抛物线C 1上,代入y =−x 2+b 1x +c 1,{−1+b +c 1=0−4+2b +c 1=5 ,解得{b =8c =−7, ∴抛物线C 1的解析式为y =−x 2+8x −7;即y =−(x −4)2+9,∴抛物线C 1的顶点(4,9),∴抛物线C 1的顶点与抛物线C 的顶点也关于直线x =3对称,抛物线C 的顶点为(2,9),∴抛物线C 的解析式为y =−(x −2)2+9即y =−x 2+4x +5;方法三:∵抛物线C 1与抛物线C 关于直线x =3对称,∴点A(1,0),点B(2,5)关于直线x =3对称点分别为(5,0)和(4,5),设抛物线C 的解析式为y =−x 2+bx +c ,{−25+5b +c =0−16+4b +c =5 ,解得{b =4c =5, ∴抛物线的解析式为y =−x 2+4x +5;(2)如图,连接AC ,过点Q 做QE ⊥CA ,分别交CA,OC 于点E ,P ,83.如图,抛物线y =ax 2+bx −6与x 轴相交于A ,B 两点,与y 轴相交于点C ,A(−2,0),B(4,0),在对称轴右侧的抛物线上有一动点D ,连接BD ,BC ,CD .(1)求抛物线的函数表达式;(2)若点D 在x 轴的下方,设点D 的横坐标为t ,过点D 作DE 垂直于x 轴,交BC 于点F ,用含有t 的式子表示DF 的长,并写出t 的取值范围;(3)在(2)的条件下,当△CBD 的面积是92时,点M 是x 轴上一点,点N 是抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点,以BD 为一边的四边形是平行四边形,若存在,求出点N 的坐标;若不存在,请说明理由.84.在平面直角坐标系中,点O (0,0),抛物线y =−x 2+bx +c c (b ,c 是常数)经过点B (1,0),C (0,3),与x 轴的另一个交点为A ,顶点为D .(I )求该抛物线的解析式和顶点坐标;(II )连接AD ,CD ,BC ,将△OBC 沿着x 轴以每秒1个单位长度的速度向左平移,得到△O ′B ′C ′,点O 、B 、C 的对应点分别为点O ′,B ′,C ′,设平移时间为t 秒,当点O ′与点A 重合时停止移动.记△O ′B ′C ′与四边形AOCD 的重叠部分的面积为S ,当0<t <1时,求S 与时间t 的函数解析式. 【答案】(I )y =−x 2−2x +3,(−1,4);(II )S =−32t 2+3t (0<t <1).【分析】(Ⅰ)B (1,0),C (0,3)代入y =﹣x 2+bx +c 可得解析式及顶点;(Ⅱ)当0<t <1时,设B ′C ′交y 轴于E ,重合部分是梯形,分别用t 表示上、下底和高即可.【详解】解:(Ⅰ)B (1,0),C (0,3)代入y =﹣x 2+bx +c 得:{0=−1+b +c 3=c ,解得{b =−2c =3, ∴抛物线的解析式是y =﹣x 2﹣2x +3,∵y =﹣x 2﹣2x +3=﹣(x +1)2+4,∴顶点D (﹣1,4);(Ⅱ)当0<t <1时,设B ′C ′交y 轴于E ,如答图1:∵B(1,0),C(0,3),△OBC沿着x轴以每秒1个单位长度的速度向左平移,得到△O′B'C',∴OB=1,OC=O′C′=3,tan∠CBO=tan∠EB′O=3,∴OB′=1﹣t,OE=3(1﹣t),OO′=t,∴△O′B'C'与四边形AOCD的重叠部分的面积为S=(OE+O′C′)⋅O′O2=[3(1−t)+3]⋅t2=−32t2+3t.【点睛】本题考查二次函数及面积的综合知识,解题的关键是用t的代数式表示相关线段的长度和图形面积.85.已知抛物线y=ax2+bx(a,b为常数,a≠0)与x轴的正半轴交于点A,其顶点C的坐标为(2,4).(1)求抛物线的解析式;(2)点P是抛物线上位于直线AC上方的一个动点,求△P AC面积的最大值;(3)点Q是抛物线对称轴上的一个动点,连接QA,求QC+√5QA的最小值.最小值为8.【分析】(1)由顶点C的坐标为(2,4)知对称轴为x=−b2a=2,利用待定系数法即可求解;(2)过P作PN⊥x轴于N,交直线AC于M,先利用待定系数法求得直线AC的解析式,设点P的坐标为(x,−x2+4x),则点M的坐标为(x,−2x+8),根据三角形的面积公式得到二次函数的解析式,利用函数性质即可求解;(3)连接OC,过Q作QD⊥OC于D,设对称轴交x轴于点E,判断出当D、Q、A在同一直线上,即AD ⊥OC 于D 时,DQ +QA 有最小值,利用三角函数的知识以及面积法即可求解.【详解】(1)∵顶点C 的坐标为(2,4),∴对称轴为x =−b2a =2,即4a +b =0,∴{4a +b =04a +2b =4,解得:{a =−1b =4 , ∴抛物线的解析式为:y =−x 2+4x ;(2)在y =−x 2+4x 中,令y =0,则x =0或4,∴点A 的坐标为(4,0),设直线AC 的解析式为:y =kx +b 1,∴{4k +b 1=02k +b 1=4,解得:{k =−2b 1=8 , ∴直线AC 的解析式为:y =−2x +8,过P 作PN ⊥x 轴于N ,交直线AC 于M ,设点P 的坐标为(x ,−x 2+4x ),则点M 的坐标为(x ,−2x +8),且2<x <4,∴PM =−x 2+4x −(−2x +8)=−x 2+6x −8=−(x −3)2+1,∴S △PAC =12×PM ×(x A −x C )=−(x −3)2+1, ∵−1<0,且2<x <4,∴当x =3时,S △PAC 有最大值,最大值为1;(3)连接OC ,过Q 作QD ⊥OC 于D ,设对称轴交x 轴于点E ,86.如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B,有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=4米,每个圆柱形桶的直径为0.5米,高为0.4米(网球的体积和圆柱形桶的厚度忽略不计).(1)建立适当的直角坐标系,求网球飞行路线的抛物线解析式;(2)若竖直摆放4个圆柱形桶时,则网球能落入桶内吗?说明理由;(3)若要网球能落入桶内,求竖直摆放的圆柱形桶的个数.【答案】(1)坐标图见解析,y=−x2+4;(2)不能,理由见解析;(3)5个或6个或7个【分析】(1)根据题意顶点M(0,4)、点A(﹣2,0),利用待定系数法可求出函数解析式;(2)当桶的左侧(x=1)最高点位于抛物线以下,右侧(x=1.5)最高点位于抛物线以上时,球才能落入桶内,据此可分别计算x=1和x=1.5时y的值,与桶高4×0.4比较可知;(3)可设桶的个数为m,根据(2)中关系列出不等式,即可求出m的范围.【详解】解:(1)如图建立直角坐标系,∵网球飞行的最大高度OM=4m,∴OM所在直线是抛物线的对称轴,∵AB=4m,∴AO=BO=2m,∴A(−2,0),顶点M(0,4),故可设网球飞行路线的抛物线解析式为:y=ax2+4,把A(−2,0)代入得:4a+4=0,解得:a=−1,∴网球飞行路线的抛物线解析式为:y=−x2+4;(2)∵CD=0.5,AC=3且AO=2,∴OC=1,OD=1.5,即点Q的横坐标是1.5,点P的横坐标是1,∴当x=1时,y=3;当x=1.5时,y=1.75;若竖直摆放4个圆柱形桶,则桶高为4×0.4=1.6m,而4×0.4<1.75,且4×0.4<3,∴若竖直摆放4个圆柱形桶时,网球不能落入桶内;(3)设竖直摆放的圆柱形桶有m个时,网球能落入桶内,则1.75<0.4m<3,解得:4.375<m<7.5,∵m为整数,∴m的值为5或6或7,答:当竖直摆放5个或6个或7个圆形桶时,网球能落入桶内.【点睛】本题主要考查待定系数法求二次函数解析式及二次函数的实际应用,求能否落入桶内时高度的比较是解题关键.87.已知抛物线y=ax2+bx(a,b为常数,且a≠0)的对称轴为x=1,且过点(1,1).点2P是抛物线上的一个动点,点P的横坐标为t,直线AB:y=-x+3与x轴相交于点A,与y 轴相交于点B(1)求抛物线的解析式;(2)若点P在第一象限内或x轴上,求ΔPAB面积的最小值(3)对于抛物线y=ax2+bx,是否存在实数m、n(m<n),当m≤x≤n时,y的取值范围是3m≤y≤3n,如果存在,求出m、n的值,如果不存在,说明理由.88.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14轴,∠ABC=135°,且AB=4.(1)当m=1时,求抛物线的顶点坐标;(2)求点C到直线AB的距离(用含a的式子表示);(3)若点C到直线AB的距离为1,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.【答案】(1)(1,﹣3);(2)点C 到直线AB 的距离为﹣4a+1a ;(3)m 的值为72或10+2√10 【分析】(1)由配方法可求顶点坐标;(2)设点C 到直线AB 的距离为d ,求出点C 坐标,代入解析式可求解;(3)先求出a 值,分三种情况考虑:①当m >2m ﹣2,即m <2时,x =2m ﹣2时y 取最大值,利用二次函数图象上点的坐标特征可得出关于m 的一元二次方程,解之可求出m 的值;②当2m ﹣5≤m ≤2m ﹣2,即2≤m ≤5时,x =m 时y 取最大值,利用二次函数图象上点的坐标特征可得出关于m 的一元一次方程,解之可求出m 的值;③当m <2m ﹣5,即m >5时,x =2m ﹣5时y 取最大值,利用二次函数图象上点的坐标特征可得出关于m 的一元一次方程,解之可求出m 的值.综上即可得出结论.【详解】解:(1)当m =1时,抛物线的解析式为y =ax 2﹣2ax +a ﹣3,∵y =ax 2﹣2ax +a ﹣3=a (x ﹣1)2﹣3,∴顶点坐标为(1,﹣3);(2)如图,过点C 作CD ⊥AB ,交AB 的延长线于D ,∵∠ABC =135°,∴∠CBD =45°,∵CD ⊥AD ,∴∠DBC=∠DCB=45°,∴BD=CD,∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴顶点坐标为(m,2m﹣5),∵AB=4,∴点B的横坐标为m+2,∵点B在抛物线y=a(x﹣m)2+2m﹣5上,∴y=a(m+2﹣m)2+2m﹣5=4a+2m﹣5,∴点B(m+2,4a+2m﹣5),设点C到直线AB的距离为d,∴BD=CD=d,∴点C(m+2+d,4a+2m﹣5﹣d),∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣d=a(m+2+d﹣m)2+2m﹣5,整理得:ad2+4ad+d=0,∵d≠0,∴d=﹣4a+1,a;∴点C到直线AB的距离为﹣4a+1a(3)∵点C到直线AB的距离为1,=1,∴﹣4a+1a,∴a=﹣15(x﹣m)2+2m﹣5.∴抛物线的解析式为y=﹣15分三种情况考虑:(2m﹣2﹣m)2+2m﹣5=2,①当m>2m﹣2,即m<2时,有﹣15整理,得:m2﹣14m+39=0,解得:m1=7﹣√10(舍去),m2=7+√10(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,89.已知抛物线y=ax2+bx+c(a≠0)经过A(4,0),B(−1,0),C(0,4)三点.(1)求抛物线的函数解析式;(2)如图1,点D是在直线AC上方的抛物线的一点,DN⊥AC于点N,DM//y轴交AC于点M,求△DMN周长的最大值及此时点D的坐标;(3)如图2,点P为第一象限内的抛物线上的一个动点,连接OP,OP与AC相交于点Q,的最大值.求S△APQS△AOQ【答案】(1)y=−x2+3x+4;(2)4√2+4,D(2,6);(3)1【分析】(1)将A,B,C,三点的坐标代入解析式y=ax2+bx+c中即可得出.(2)延长DM交x轴于点H,证明△DMN为等腰直角三角形,求出直线AC的解析式,设D(m,−m2+3m+4),M(m,−m+4),得到DM=−(m−2)2+4,求出DM的最大值,由△DMN 周长=DN+MN+DM,即可得到△DMN周长的最大值,以及D的坐标;(3)过PM//y轴交AC于点M,设P(m,−m2+3m+4),得到M(m,−m+4),求得PM=−(m−2)2+4,再得到S△APQS△AOQ =PQOQ=PMCO=−14(m−2)2+1,即可求出最大值.【详解】解:(1)法一:依题意,得{a−b+c=016a+4b+c=0c=4,解之,得{a=−1b=3c=4,∴抛物线解析式为y=−x2+3x+4.法二:依题意,得y=a(x−4)(x+1)(a≠0),将C(0,4)坐标代入得,−3a=3,解得a=−1,∴抛物线解析式为y=−x2+3x+4.法三:依题意,得{−b2a=1a−b+c=0c=4,解之,得{a=−1b=3c=4,∴抛物线解析式为y=−x2+3x+4.(2)如图1,延长DM交x轴于点H,∵OA=OC=4,OA⊥OC,DM//y轴交AC于点M,∴∠OAC=45°,∠AHM=90°,∵DN⊥AC于点N,∴∠AMH=∠DMN=45°,∴△DMN是等腰直角三角形,∴DN=MN=√22DM.设直线AC的解析式为y=kx+b',90.函数y=x2+bx+c的图像与x轴交于A,B两点,与y轴交于点C,OB=OC.点D 在函数图像上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b,c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.【答案】(1)b=−2,c=−3;(2)点F的坐标为(0,−2);(3)存在满足题意的点Q,坐标为(12,−154)或(32,−154).【分析】(1)CD=2,则函数对称轴x=1=−12b,即:b=−2,则函数表达式为:y=x2−2x+c,OB=OC,则点B坐标为(−c,0),把点B坐标代入函数表达式,即可求解;(2)直线BE的表达式为:y=2x−6,把x=2代入上式得:y=2×2−6=−2,即:点坐标为F′(2,−2),即可求解;(3)设点P的坐标为(n,0),可表示出PN、PA、PB的长,作QR⊥PN,垂足为R,则可求出QR的长,用n可以表示出Q、R、N的坐标,在Rt△QRN中用勾股定理可求出关于n 的二次函数,利用二次函数的性质可以求出Q点的坐标【详解】(1)CD=2,则函数对称轴x=1=−12b,即:b=−2,则函数表达式为:y=x2−2x+c,OB=OC,则点B坐标为(−c,0),把点B坐标代入函数表达式,解得:c=−3或c=0舍去),答:b=−2,c=−3;(2)二次函数表达式为:y=x2−2x−3,函数对称轴为x=1,则顶点E坐标为(1,−4),把点E、B坐标代入一次函数表达式:y=mx+n得:{3m+n=0m+n=−4,解得:{m=2n=−6,则直线BE的表达式为:y=2x−6,由题意得:点F ′的横坐标为2,把x =2代入上式得:y =2×2−6=−2即:点坐标为F ′(2,−2), ∴点F 的坐标为(0,−2) (3)存在点Q 满足题意.设点P 坐标为(n,0),则PA =n +1, PB =PM =3−n ,PN =−n 2+2n +3; 如图,作QR ⊥PN ,垂足为R∵S △PQN =S △APM ,∴12(n +1)(3−n)=12(−n 2+2n +3)⋅QR ∴QR =1①当点Q 在直线PN 的左侧时,点Q 的坐标为(n −1,n 2−4n),R 点的坐标为(n,n 2−4n),N 点的坐标为(n,n 2−2n −3)∴在Rt △QRN 中,NQ 2=1+(2n −3)2,∴当n =32时,NQ 取得最小值1,此时Q 点的坐标为(12,−154);②当点Q 在直线PN 的右侧时,点Q 的坐标为(n +1,n 2−4), 同理NQ 2=1+(2n −1)2,∴当n =12时,NQ 取得最小值1,此时Q 点的坐标为(32,−154);。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)若直线 经过 、 两点,求直线 和抛物线的解析式;
(2)在抛物线的对称轴 上找一点 ,使点 到点 的距离与到点 的距离之和最小,求出点 的坐标;
(3)设点 为抛物线的对称轴 上的一个动点,求使 为直角三角形的点 的坐标.
w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250
∵a=﹣10<0,对称轴x=65
∴当44≤x≤46时,y随x的增大而增大
∴当x=46时,w最大值=8640元
即商场销售该品牌玩具获得的最大利润是8640元.
【点睛】
本题考查了二次函数的实际应用,难度较大,求解二次函数与利润之间的关系时,需要用代数式表示销售数量和销售单价,熟悉二次函数顶点式的性质是解题关键.
【解析】
【2)由函数图象上点的坐标特征:可设点E的坐标为(m,m+3),点F的坐标为(m, m2+ m﹣1),由此得到EF=﹣ m2+ m+4,根据二次函数最值的求法解答即可;
(3)分三种情形①如图1中,当EG为菱形对角线时.②如图2、3中,当EC为菱形的对角线时,③如图4中,当ED为菱形的对角线时,分别求解即可.
【答案】(1)抛物线的解析式为 ,直线的解析式为 .(2) ;(3) 的坐标为 或 或 或 .
【解析】
分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;
【答案】(1) , ;(2)①当 时, ;②当 时, ;③当 时,
【解析】
【分析】
(1)根据一次函数表达式求出B点坐标,然后根据B点在抛物线上,求出b值,从而得到二次函数表达式,再根据二次函数表达式求出A点的坐标,最后代入一次函数求出m值.(2)根据解方程组,可得顶点M的纵坐标的范围,根据二次函数的性质,可得答案.
【详解】
解:(1)令y=0,则 ,
∵m<0,∴ ,解得: , .
∴A( ,0)、B(3,0).
(2)存在.理由如下:
∵设抛物线C1的表达式为 ( ),
把C(0, )代入可得, .
∴C1的表达式为: ,即 .
设P(p, ),
∴ S△PBC= S△POC+ S△BOP–S△BOC= .
∵ <0,∴当 时, S△PBC最大值为 .
【解析】
【分析】
(1)利用销售单价每涨1元,销售量将减少10个即可表示出y=600﹣10(x﹣40),再利用w= y•(x﹣30)即可表示出w与x之间的关系式;(2)先将w=﹣10x2+1300x﹣30000变成顶点式,找到对称轴,利用函数图像的增减性确定在44≤x≤46范围内当x=46时有最大值,代入求值即可解题.
当点 关于抛物线对称轴(直线 )对称时, ,∴
且二次函数图象的开口向下,顶点 在直线 上
综上:①当 时, ;②当 时, ;③当 时, .
【点睛】
本题考查二次函数与一次函数的综合应用,难度系数大同学们需要认真分析即可.
3.如图,抛物线y=ax2+bx﹣1(a≠0)交x轴于A,B(1,0)两点,交y轴于点C,一次函数y=x+3的图象交坐标轴于A,D两点,E为直线AD上一点,作EF⊥x轴,交抛物线于点F
则∠OEC=45°-15°=30°,
∴OE=OC•tan60°=3 ,
设EC为y=kx﹣3,代入(3 ,0)可得:k ,
联立两个方程可得: ,
解得: ,
所以M2( ,﹣2).
综上所述M的坐标为(3 ,6)或( ,﹣2).
【点睛】
此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.
(3)由C2可知:B(3,0),D(0, ),M(1, ),
∴BD2= ,BM2= ,DM2= .
∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:
当∠BMD=90°时,BM2+ DM2= BD2,即 + = ,
解得: , (舍去).
当∠BDM=90°时,BD2+ DM2= BM2,即 + = ,
详解:(1)依题意得: ,解得: ,
∴抛物线的解析式为 .
∵对称轴为 ,且抛物线经过 ,
∴把 、 分别代入直线 ,
得 ,解之得: ,
∴直线 的解析式为 .
(2)直线 与对称轴 的交点为 ,则此时 的值最小,把 代入直线 得 ,
∴ .即当点 到点 的距离与到点 的距离之和最小时 的坐标为 .
(注:本题只求 坐标没说要求证明为何此时 的值最小,所以答案未证明 的值最小的原因).
,
解得: ,
所以二次函数的解析式为:y x2﹣3;
(3)存在,分以下两种情况:
①若M在B上方,设MC交x轴于点D,
则∠ODC=45°+15°=60°,
∴OD=OC•tan30° ,
设DC为y=kx﹣3,代入( ,0),可得:k ,
联立两个方程可得: ,
解得: ,
所以M1(3 ,6);
②若M在B下方,设MC交x轴于点E,
(3)设 ,又 , ,
∴ , , ,
①若点 为直角顶点,则 ,即: 解得: ,
②若点 为直角顶点,则 ,即: 解得: ,
③若点 为直角顶点,则 ,即: 解得:
, .
综上所述 的坐标为 或 或 或 .
点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.
(1)求抛物线的解析式;
(2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E的坐标;若没有,请说明理由;
(3)在平面直角坐标系内存在点G,使得G,E,D,C为顶点的四边形为菱形,请直接写出点G的坐标.
【答案】(1)抛物线的解析式为y= x2+ x﹣1;(2) ,( , );(3)点G的坐标为(2,1),(﹣2 ,﹣2 ﹣1),(2 ,2 ﹣1),(﹣4,3).
【详解】
(1)如图1,∵直线 与 轴交于点为 ,∴点 坐标为
又∵ 在抛物线上,∴ ,解得
∴二次函数的表达式为
∴当 时,得 ,
∴
代入 得, ,∴
(2)如图2,根据题意,抛物线的顶点 为 ,即 点始终在直线 上,
∵直线 与直线 交于点 ,与 轴交于点 ,而直线 表达式为
解方程组 ,得
∴点 ,
∵点 在 内,∴
(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;
(3)分M在BC上方和下方两种情况进行解答即可.
【详解】
(1)将C(0,﹣3)代入y=x+m,可得:
m=﹣3;
(2)将y=0代入y=x﹣3得:
x=3,
所以点B的坐标为(3,0),
将(0,﹣3)、(3,0)代入y=ax2+b中,可得:
一、二次函数真题与模拟题分类汇编(难题易错题)
1.如图,在平面直角坐标系 中,A、B为x轴上两点,C、D为y轴上的两点,经
过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封
闭曲线称为“蛋线”.已知点C的坐标为(0, ),点M是抛物线C2: ( <0)的顶点.
解得: , (舍去).
综上所述, 或 时,△BDM为直角三角形.
2.已知,点 为二次函数 图象的顶点,直线 分别交 轴正半轴, 轴于点 .
(1)如图1,若二次函数图象也经过点 ,试求出该二次函数解析式,并求出 的值.
(2)如图2,点 坐标为 ,点 在 内,若点 , 都在二次函数图象上,试比较 与 的大小.
【点睛】
本题考查二次函数综合题、轴对称变换、菱形的判定和性质等知识,解题的关键是学会利用对称解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.
4.某商场经营某种品牌的玩具,购进时的单价是3元,经市场预测,销售单价为40元时,可售出600个;销售单价每涨1元,销售量将减少10个设每个销售单价为x元.
【解析】
【分析】
(1)在 中令y=0,即可得到A、B两点的坐标.
(2)先用待定系数法得到抛物线C1的解析式,由S△PBC= S△POC+ S△BOP–S△BOC得到△PBC面积的表达式,根据二次函数最值原理求出最大值.
(3)先表示出DM2,BD2,MB2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m的值.
【详解】
解:
(1)依题意,易得销售量y(件)与销售单价x(元)之间的函数关系:y=600﹣10(x﹣40)=﹣10x+1000
获得利润w(元)与销售单价x(元)之间的函数关系为:w=y•(x﹣30)=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000
(2)根据题意得,x≥14时且1000﹣10x≥540,解得:44≤x≤46
(2)设点E的坐标为(m,m+3),线段EF的长度为y,
则点F的坐标为(m, m2+ m﹣1)
∴y=(m+3)﹣( m2+ m﹣1)=﹣ m2+ m+4
即y=- (m﹣ )2+ ,
此时点E的坐标为( , );
(3)点G的坐标为(2,1),(﹣2 ,﹣2 ﹣1),(2 ,2 ﹣1),(﹣4,3).
理由:①如图1,当四边形CGDE为菱形时.
【详解】
解:(1)将y=0代入y=x+3,得x=﹣3.