6.4二叉树的遍历算法描述
二叉树的遍历及常用算法
⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。
二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)
⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。
对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。
由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。
⽐⽅堆了。
所以。
对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。
四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。
求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。
然后在訪问左⼦树和右⼦树。
所以。
对于随意结点node。
第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。
若为空。
则须要訪问右⼦树。
注意。
在訪问过左孩⼦之后。
二叉树的遍历算法实验报告
二叉树的遍历算法实验报告二叉树的遍历算法实验报告引言:二叉树是计算机科学中常用的数据结构之一,它是由节点组成的层次结构,每个节点最多有两个子节点。
在实际应用中,对二叉树进行遍历是一项重要的操作,可以帮助我们理解树的结构和节点之间的关系。
本文将介绍二叉树的三种遍历算法:前序遍历、中序遍历和后序遍历,并通过实验验证其正确性和效率。
一、前序遍历前序遍历是指先访问根节点,然后按照先左后右的顺序遍历左右子树。
具体的实现可以通过递归或者使用栈来实现。
我们以递归方式实现前序遍历算法,并进行实验验证。
实验步骤:1. 创建一个二叉树,并手动构造一些节点和它们之间的关系。
2. 实现前序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先访问当前节点,然后递归调用函数遍历左子树,最后递归调用函数遍历右子树。
4. 调用前序遍历函数,输出遍历结果。
实验结果:经过实验,我们得到了正确的前序遍历结果。
这证明了前序遍历算法的正确性。
二、中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。
同样,我们可以使用递归或者栈来实现中序遍历算法。
在本实验中,我们选择使用递归方式来实现。
实验步骤:1. 继续使用前面创建的二叉树。
2. 实现中序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先递归调用函数遍历左子树,然后访问当前节点,最后递归调用函数遍历右子树。
4. 调用中序遍历函数,输出遍历结果。
实验结果:通过实验,我们得到了正确的中序遍历结果。
这证明了中序遍历算法的正确性。
三、后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。
同样,我们可以使用递归或者栈来实现后序遍历算法。
在本实验中,我们选择使用递归方式来实现。
实验步骤:1. 继续使用前面创建的二叉树。
2. 实现后序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先递归调用函数遍历左子树,然后递归调用函数遍历右子树,最后访问当前节点。
4. 调用后序遍历函数,输出遍历结果。
二叉树前中后序遍历做题技巧
二叉树前中后序遍历做题技巧在计算机科学中,二叉树是一种重要的数据结构,而前序、中序和后序遍历则是二叉树遍历的三种主要方式。
下面将分别对这三种遍历方式进行解析,并提供一些解题技巧。
1.理解遍历顺序前序遍历顺序是:根节点->左子树->右子树中序遍历顺序是:左子树->根节点->右子树后序遍历顺序是:左子树->右子树->根节点理解每种遍历顺序是解题的基础。
2.使用递归或迭代二叉树的遍历可以通过递归或迭代实现。
在递归中,每个节点的处理函数会调用其左右子节点的处理函数。
在迭代中,可以使用栈来模拟递归过程。
3.辨析指针指向在递归或迭代中,需要正确处理指针的指向。
在递归中,通常使用全局变量或函数参数传递指针。
在迭代中,需要使用栈或其他数据结构保存指针。
4.学会断点续传在处理大规模数据时,为了避免内存溢出,可以采用断点续传的方式。
即在遍历过程中,将中间结果保存在文件中,下次遍历时从文件中读取上一次的结果,继续遍历。
5.识别循环和终止条件在遍历二叉树时,要识别是否存在循环,并确定终止条件。
循环可以通过深度优先搜索(DFS)或广度优先搜索(BFS)避免。
终止条件通常为达到叶子节点或达到某个深度限制。
6.考虑边界情况在处理二叉树遍历问题时,要考虑边界情况。
例如,对于空二叉树,需要进行特殊处理。
又如,在处理二叉搜索树时,需要考虑节点值的最小和最大边界。
7.优化空间使用在遍历二叉树时,需要优化空间使用。
例如,可以使用in-place排序来避免额外的空间开销。
此外,可以使用懒加载技术来延迟加载子节点,从而减少内存占用。
8.验证答案正确性最后,验证答案的正确性是至关重要的。
可以通过检查输出是否符合预期、是否满足题目的限制条件等方法来验证答案的正确性。
如果可能的话,也可以使用自动化测试工具进行验证。
《二叉树的遍历》PPT课件.ppt
a
b
c
前序遍历:abdefgc
d
f
中序遍历: debgfac
ห้องสมุดไป่ตู้
后序遍历: edgfbca
eg
练习!!!!!!!!
练习!!!!!!!!
A
B
C
前序序列: ABDGCEFH 中序序列: DGBAECHF 后序序列: GDBEHFCA
D G
E
F
H
图 5-15
下面我们再给出一种遍历二叉树的方法
二叉树的遍历
二叉树遍历的定义
所谓二叉树的遍历,是指按一定的顺序对二叉 树中的每个结点均访问一次,且仅访问一次。
按照根结点访问位置的不同,通常把二叉树的 遍历分为六种:
TLR(根左右), TRL(根右左) LTR(左根右), RTL(右根左) LRT(左右根), RLT(右左根)
其中,TRL、RTL和RLT三种顺序在左右子树之间均 是先右子树后左子树,这与人们先左后右的习惯不 同,因此,往往不予采用。余下的三种顺序TLR、 LTR和LRT根据根访问的位置不同分别被称为前序遍 历、中序遍历和后序遍历。
(1)二叉树的前序遍历 首先访问根结点; 然后按照前序遍历的顺序访问根结点的左子树; 再按照前序遍历的顺序访问根结点的右子树。
(2)二叉树的中序遍历 首先按照中序遍历的顺序访问根结点的左子树;
然后访问根结点; 最后按照中序遍历的顺序访问根结点的右子树。
(3)二叉树的后序遍历 首先按照后序遍历的顺序访问根结点的左子树; 然后按照后序遍历的顺序访问根结点的右子树;
(1)对一棵二叉树中序遍历时,若我们将二叉树严
格地按左子树的所有结点位于根结点的左侧,右子树的所
有结点位于根右侧的形式绘制,就可以对每个结点做一条
二叉树先序遍历算法
二叉树先序遍历算法
二叉树先序遍历是一种树的遍历算法,先序遍历过程如下:
1. 先访问根节点;
2. 再访问左子节点;
3. 再访问右子节点;
二叉树先序遍历是一种树状数据结构的深度优先搜索(DFS)算法。
先序遍历对
树状数据结构中的每个节点仅进行一次访问,且访问的次序是从上到下,从左到右的方式。
先序遍历属于深度优先搜索,它以一定的次序访问树或图的每个节点,然后递归访问其子节点,深度优先搜索可以按一定方式去遍历有向图、二叉树等数据结构,对节点都进行一定次序的编号或标签,访问顺序是按从小到大的顺序,从而把BST全部访问一次。
二叉树先序遍历的时间复杂度为O(n),空间复杂度为O(logn),应用范围很广,常用于二叉查找树的构造或查找、求树的高度和深度、树的前中后序遍历等,其中在建立二叉查找树时,往往我们都会使用先序遍历;同时,也可用先序遍历来求二叉树的节点数,计算树的深度等。
因此,二叉树先序遍历是一种基本而又重要的数据结构遍历算法,在许多应用
场景中都可以被朂泛使用,深受各个计算机领域的热捧。
二叉树常用的三种遍历方法
二叉树常用的三种遍历方法二叉树是一种常用的数据结构,它由一个根节点和两个子节点组成,其中左子节点小于根节点,右子节点大于根节点。
遍历二叉树是对所有节点进行访问的过程,常用的三种遍历方法是前序遍历、中序遍历和后序遍历。
下面将详细介绍这三种方法的实现步骤。
一、前序遍历前序遍历是指先访问根节点,然后按照左子树、右子树的顺序依次访问每个节点。
具体实现步骤如下:1. 如果当前节点为空,则返回。
2. 访问当前节点。
3. 递归进入左子树。
4. 递归进入右子树。
代码实现:void preorderTraversal(TreeNode* root) {if (root == NULL) return;cout << root->val << " ";preorderTraversal(root->left);preorderTraversal(root->right);}二、中序遍历中序遍历是指先访问左子树,然后访问根节点,最后访问右子树。
具体实现步骤如下:1. 如果当前节点为空,则返回。
2. 递归进入左子树。
3. 访问当前节点。
4. 递归进入右子树。
代码实现:void inorderTraversal(TreeNode* root) {if (root == NULL) return;inorderTraversal(root->left);cout << root->val << " ";inorderTraversal(root->right);}三、后序遍历后序遍历是指先访问左子树,然后访问右子树,最后访问根节点。
具体实现步骤如下:1. 如果当前节点为空,则返回。
2. 递归进入左子树。
3. 递归进入右子树。
4. 访问当前节点。
代码实现:void postorderTraversal(TreeNode* root) {if (root == NULL) return;postorderTraversal(root->left);postorderTraversal(root->right);cout << root->val << " ";}总结:以上就是二叉树常用的三种遍历方法的详细介绍和实现步骤。
二叉树的各种遍历算法及其深度算法
二叉树的各种遍历算法及其深度算法一、二叉树的遍历算法二叉树是一种常见的数据结构,遍历二叉树可以按照根节点的访问顺序将二叉树的结点访问一次且仅访问一次。
根据遍历的顺序不同,二叉树的遍历算法可以分为三种:前序遍历、中序遍历和后序遍历。
1. 前序遍历(Pre-order Traversal):首先访问根节点,然后遍历左子树,最后遍历右子树。
可以用递归或者栈来实现。
2. 中序遍历(In-order Traversal):首先遍历左子树,然后访问根节点,最后遍历右子树。
可以用递归或者栈来实现。
3. 后序遍历(Post-order Traversal):首先遍历左子树,然后遍历右子树,最后访问根节点。
可以用递归或者栈来实现。
二、二叉树的深度算法二叉树的深度,也叫做高度,指的是从根节点到叶子节点的最长路径上的节点数目。
可以使用递归或者层次遍历的方式来计算二叉树的深度。
1.递归算法:二叉树的深度等于左子树的深度和右子树的深度的较大值加一、递归的终止条件是当节点为空时,深度为0。
递归的过程中通过不断递归左子树和右子树,可以求出二叉树的深度。
2.层次遍历算法:层次遍历二叉树时,每遍历完一层节点,深度加一、使用一个队列来辅助层次遍历,先将根节点加入队列,然后依次取出队列中的节点,将其左右子节点加入队列,直到队列为空,完成层次遍历。
三、示例为了更好地理解二叉树的遍历和求深度的算法,我们以一个简单的二叉树为例进行说明。
假设该二叉树的结构如下:A/\BC/\/\DEFG其中,A、B、C、D、E、F、G分别代表二叉树的结点。
1.前序遍历:A->B->D->E->C->F->G2.中序遍历:D->B->E->A->F->C->G3.后序遍历:D->E->B->F->G->C->A4.深度:2以上是针对这个二叉树的遍历和深度的计算示例。
二叉树遍历讲课教案ppt课件
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
6.5 线索二叉树
§ 何谓线索二叉树? § 线索链表的遍历算法 § 如何建立线索链表?
一、问题的提出
顺着某一条搜索路径巡访二叉树 中的结点,使得每个结点均被访问一 次,而且仅被访问一次。
“访问”的含义可以很是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
if (T) {
visit(T->data);
// 访问结点
Preorder(T->lchild, visit); // 遍历左子树
Preorder(T->rchild, visit);// 遍历右子树 }
}
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
二、先左后右的遍历算法
先(根)序的遍历算法 中(根)序的遍历算法 后(根)序的遍历算法
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
先(根)序的遍历算法:
若二叉树为空树,则空操作;否则, (1)访问根结点; (2)先序遍历左子树; (3)先序遍历右子树。
写出由后根和中根遍历序列建二叉树的算法
写出由后根和中根遍历序列建二叉树的算法由后根和中根遍历序列建二叉树的算法,可以分为以下几个步骤:1. 从后根遍历序列中选取最后一个节点作为根节点。
2. 在中根遍历序列中找到根节点的位置,将中根遍历序列分为左右两个子序列。
3. 根据左子序列和右子序列的长度,将后根遍历序列分为左右两个子序列。
4. 递归处理左子树和右子树,分别以左子序列和右子序列为后根遍历序列,以左子序列和右子序列为中根遍历序列。
具体实现可以参考以下的伪代码:```function buildTree(postorder, inorder)if postorder is empty or inorder is emptyreturn null// 从后根遍历序列中选取最后一个节点作为根节点root = stnode = new TreeNode(root)// 在中根遍历序列中找到根节点的位置index = inorder.indexOf(root)// 将中根遍历序列分为左右两个子序列leftInorder = inorder[0...index-1]rightInorder = inorder[index+1...inorder.length-1]// 根据左子序列和右子序列的长度,将后根遍历序列分为左右两个子序列leftPostorder = postorder[0...leftInorder.length-1]rightPostorder = postorder[leftInorder.length...postorder.length-2]// 递归处理左子树和右子树node.left = buildTree(leftPostorder, leftInorder)node.right = buildTree(rightPostorder, rightInorder)return node```以上就是由后根和中根遍历序列建二叉树的算法。
二叉树的建立和遍历的实验报告
竭诚为您提供优质文档/双击可除二叉树的建立和遍历的实验报告篇一:二叉树遍历实验报告数据结构实验报告报告题目:二叉树的基本操作学生班级:学生姓名:学号:一.实验目的1、基本要求:深刻理解二叉树性质和各种存储结构的特点及适用范围;掌握用指针类型描述、访问和处理二叉树的运算;熟练掌握二叉树的遍历算法;。
2、较高要求:在遍历算法的基础上设计二叉树更复杂操作算法;认识哈夫曼树、哈夫曼编码的作用和意义;掌握树与森林的存储与便利。
二.实验学时:课内实验学时:3学时课外实验学时:6学时三.实验题目1.以二叉链表为存储结构,实现二叉树的创建、遍历(实验类型:验证型)1)问题描述:在主程序中设计一个简单的菜单,分别调用相应的函数功能:1…建立树2…前序遍历树3…中序遍历树4…后序遍历树5…求二叉树的高度6…求二叉树的叶子节点7…非递归中序遍历树0…结束2)实验要求:在程序中定义下述函数,并实现要求的函数功能:createbinTree(binTreestructnode*lchild,*rchild;}binTnode;元素类型:intcreatebinTree(binTreevoidpreorder(binTreevoidInorder(binTreevoidpostorder(binTreevoidInordern(binTreeintleaf(bi nTreeintpostTreeDepth(binTree2、编写算法实现二叉树的非递归中序遍历和求二叉树高度。
1)问题描述:实现二叉树的非递归中序遍历和求二叉树高度2)实验要求:以二叉链表作为存储结构3)实现过程:1、实现非递归中序遍历代码:voidcbiTree::Inordern(binTreeinttop=0;p=T;do{while(p!=nuLL){stack[top]=p;;top=top+1;p=p->lchild;};if(top>0){top=top-1;p=stack[top];printf("%3c",p->data);p=p->rchild;}}while(p!=nuLL||top!=0);}2、求二叉树高度:intcbiTree::postTreeDepth(binTreeif(T!=nuLL){l=postTreeDepth(T->lchild);r=postTreeDepth(T->rchil d);max=l>r?l:r;return(max+1);}elsereturn(0);}实验步骤:1)新建一个基于consoleApplication的工程,工程名称biTreeTest;2)新建一个类cbiTree二叉树类。
二叉树的遍历代码
二叉树的遍历代码二叉树是一种非常常见的数据结构,它由根节点、左子树和右子树组成,可以用于实现各种算法和应用。
在使用二叉树时,我们常常需要进行遍历来获取树中的节点信息。
下面,我们将详细介绍二叉树的遍历方法及其代码实现。
二叉树的遍历方法分为三种:前序遍历、中序遍历和后序遍历。
它们的不同之处在于遍历节点的顺序不同。
我们分别来介绍一下这三种遍历方法。
1.前序遍历前序遍历的顺序是:先访问根节点,然后递归访问左子树和右子树。
实现前序遍历的代码如下:```pythondef preorder_traversal(node):if node:print(node.data)preorder_traversal(node.left)preorder_traversal(node.right)```在代码中,我们首先输出根节点的值,然后分别递归访问左子树和右子树,直到遍历完整个树。
2.中序遍历中序遍历的顺序是:先递归访问左子树,然后访问根节点,最后递归访问右子树。
实现中序遍历的代码如下:```pythondef inorder_traversal(node):if node:inorder_traversal(node.left)print(node.data)inorder_traversal(node.right)```在代码中,我们先递归访问左子树,然后输出根节点的值,最后递归访问右子树。
3.后序遍历后序遍历的顺序是:先递归访问左子树和右子树,然后访问根节点。
实现后序遍历的代码如下:```pythondef postorder_traversal(node):if node:postorder_traversal(node.left)postorder_traversal(node.right)print(node.data)```在代码中,我们先递归访问左子树和右子树,然后输出根节点的值。
通过前序遍历、中序遍历和后序遍历,我们可以获取二叉树中每个节点的值。
二叉树的各种算法
二叉树的各种算法1.二叉树的前序遍历算法:前序遍历是指先访问根节点,再访问左子树,最后访问右子树的遍历顺序。
具体算法如下:-如果二叉树为空,则直接返回。
-访问根节点,并输出或进行其他操作。
-递归地前序遍历左子树。
-递归地前序遍历右子树。
2.二叉树的中序遍历算法:中序遍历是指先访问左子树,再访问根节点,最后访问右子树的遍历顺序。
具体算法如下:-如果二叉树为空,则直接返回。
-递归地中序遍历左子树。
-访问根节点,并输出或进行其他操作。
-递归地中序遍历右子树。
3.二叉树的后序遍历算法:后序遍历是指先访问左子树,再访问右子树,最后访问根节点的遍历顺序。
具体算法如下:-如果二叉树为空,则直接返回。
-递归地后序遍历左子树。
-递归地后序遍历右子树。
-访问根节点,并输出或进行其他操作。
4.二叉树的层序遍历算法:层序遍历是按照从上到下、从左到右的顺序逐层遍历二叉树的节点。
具体算法如下:-如果二叉树为空,则直接返回。
-创建一个队列,将根节点入队。
-循环执行以下步骤,直到队列为空:-出队并访问当前节点,并输出或进行其他操作。
-若当前节点的左子节点不为空,则将左子节点入队。
-若当前节点的右子节点不为空,则将右子节点入队。
5.二叉树的深度算法:二叉树的深度是指从根节点到叶节点的最长路径的节点数。
具体算法如下:-如果二叉树为空,则深度为0。
-否则,递归地计算左子树的深度和右子树的深度,然后取较大的值加上根节点的深度作为二叉树的深度。
6.二叉树的查找算法:二叉树的查找可以使用前序、中序或后序遍历来完成。
具体算法如下:-如果二叉树为空,则返回空。
-如果当前节点的值等于目标值,则返回当前节点。
-否则,先在左子树中递归查找,如果找到则返回找到的节点。
-如果左子树中未找到,则在右子树中递归查找,如果找到则返回找到的节点。
-如果左右子树中都未找到,则返回空。
7.二叉树的插入算法:二叉树的插入可以使用递归或循环来实现。
具体算法如下:-如果二叉树为空,则创建一个新节点作为根节点,并返回根节点。
二叉树的遍历有三种方式
二叉树的遍历有三种方式,如下:(1)前序遍历(DLR),首先访问根结点,然后遍历左子树,最后遍历右子树。
简记根-左-右。
(2)中序遍历(LDR),首先遍历左子树,然后访问根结点,最后遍历右子树。
简记左-根-右。
(3)后序遍历(LRD),首先遍历左子树,然后遍历右子树,最后访问根结点。
简记左-右-根。
例1:如上图所示的二叉树,若按前序遍历,则其输出序列为。
若按中序遍历,则其输出序列为。
若按后序遍历,则其输出序列为。
前序:根A,A的左子树B,B的左子树没有,看右子树,为D,所以A-B-D。
再来看A的右子树,根C,左子树E,E的左子树F,E的右子树G,G的左子树为H,没有了结束。
连起来为C-E-F-G-H,最后结果为ABDCEFGH中序:先访问根的左子树,B没有左子树,其有右子树D,D无左子树,下面访问树的根A,连起来是BDA。
再访问根的右子树,C的左子树的左子树是F,F的根E,E的右子树有左子树是H,再从H出发找到G,到此C的左子树结束,找到根C,无右子树,结束。
连起来是FEHGC, 中序结果连起来是BDAFEHGC 后序:B无左子树,有右子树D,再到根B。
再看右子树,最下面的左子树是F,其根的右子树的左子树是H,再到H的根G,再到G的根E,E的根C无右子树了,直接到C,这时再和B找它们其有的根A,所以连起来是DBFHGECA例2:有下列二叉树,对此二叉树前序遍历的结果为()。
A)ACBEDGFH B)ABDGCEHFC)HGFEDCBA D)ABCDEFGH解析:先根A,左子树先根B,B无左子树,其右子树,先根D,在左子树G,连起来是ABDG。
A的右子树,先根C,C左子树E,E无左子树,有右子树为H,C的右子树只有F,连起来是CEHF。
整个连起来是B答案ABDGCEHF。
例3:已知二叉树后序遍历是DABEC,中序遍历序列是DEBAC,它的前序遍历序列是( ) 。
A)CEDBA B)ACBED C)DECAB D)DEABC解析:由后序遍历可知,C为根结点,由中序遍历可知,C左边的是左子树含DEBA,C右边无结点,知根结点无右子树。
二叉树的四种遍历算法
⼆叉树的四种遍历算法⼆叉树作为⼀种重要的数据结构,它的很多算法的思想在很多地⽅都⽤到了,⽐如STL算法模板,⾥⾯的优先队列、集合等等都⽤到了⼆叉树⾥⾯的思想,先从⼆叉树的遍历开始:看⼆叉树长什么样⼦:我们可以看到这颗⼆叉树⼀共有七个节点0号节点是根节点1号节点和2号节点是0号节点的⼦节点,1号节点为0号节点的左⼦节点,2号节点为0号节点的右⼦节点同时1号节点和2号节点⼜是3号节点、四号节点和五号节点、6号节点的双亲节点五号节点和6号节点没有⼦节点(⼦树),那么他们被称为‘叶⼦节点’这就是⼀些基本的概念⼆叉树的遍历⼆叉树常⽤的遍历⽅式有:前序遍历、中序遍历、后序遍历、层序遍历四种遍历⽅式,不同的遍历算法,其思想略有不同,我们来看⼀下这四种遍历⽅法主要的算法思想:1、先序遍历⼆叉树顺序:根节点 –> 左⼦树 –> 右⼦树,即先访问根节点,然后是左⼦树,最后是右⼦树。
上图中⼆叉树的前序遍历结果为:0 -> 1 -> 3 -> 4 -> 2 -> 5 -> 62、中序遍历⼆叉树顺序:左⼦树 –> 根节点 –> 右⼦树,即先访问左⼦树,然后是根节点,最后是右⼦树。
上图中⼆叉树的中序遍历结果为:3 -> 1 -> 4 -> 0 -> 5 -> 2 -> 63、后续遍历⼆叉树顺序:左⼦树 –> 右⼦树 –> 根节点,即先访问左⼦树,然后是右⼦树,最后是根节点。
上图中⼆叉树的后序遍历结果为:3 -> 4 -> 1 -> 5 -> 6 -> 2 -> 04、层序遍历⼆叉树顺序:从最顶层的节点开始,从左往右依次遍历,之后转到第⼆层,继续从左往右遍历,持续循环,直到所有节点都遍历完成上图中⼆叉树的层序遍历结果为:0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6下⾯是四种算法的伪代码:前序遍历:preOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束cout << tree[n].w ; // 输出当前节点内容preOrderParse(tree[n].leftChild); // 递归输出左⼦树preOrderParse(tree[n].rightChild); // 递归输出右⼦树}中序遍历inOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束inOrderParse(tree[n].leftChild); // 递归输出左⼦树cout << tree[n].w ; // 输出当前节点内容inOrderParse(tree[n].rightChild); // 递归输出右⼦树}pastOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束pastOrderParse(tree[n].leftChild); // 递归输出左⼦树pastOrderParse(tree[n].rightChild); // 递归输出右⼦树cout << tree[n].w ; // 输出当前节点内容}可以看到前三种遍历都是直接通过递归来完成,⽤递归遍历⼆叉树简答⽅便⽽且好理解,接下来层序遍历就需要动点脑筋了,我们如何将⼆叉树⼀层⼀层的遍历输出?其实在这⾥我们要借助⼀种数据结构来完成:队列。
二叉树的遍历算法
二叉树的前序、后序的递归、非递归遍历算法学生姓名:贺天立指导老师:湛新霞摘要本课程设计主要解决树的前序、后序的递归、非递归遍历算法,层次序的非递归遍历算法的实现。
在课程设计中,系统开发平台为Windows 2000,程序设计设计语言采用Visual C++,程序运行平台为Windows 98/2000/XP。
用除递归算法前序,后续,中序遍历树外还通过非递归的算法遍历树。
程序通过调试运行,初步实现了设计目标,并且经过适当完善后,将可以应用在商业中解决实际问题。
关键词程序设计;C++;树的遍历;非递归遍历1 引言本课程设计主要解决树的前序、后序的递归、非递归遍历算法,层次序的非递归遍历算法的实现。
1.1课程设计的任务构造一棵树并输入数据,编写三个函数,非别是树的前序递归遍历算法、树的后序递归遍历算法、树的非递归中序遍历算法(这里的非递归以中序为例)。
在主程序中调用这三个函数进行树的遍历,观察用不同的遍历方法输出的数据的顺序和验证递归与非递归输出的数据是否一样。
1.2课程设计的性质由要求分析知,本设计主要要求解决树的前序、后序的递归、非递归遍历算法,层次序的非递归遍历算法的实现。
所以设计一个良好的前序、后序的递归、非递归遍历算法非常重要。
1.3课程设计的目的在程序设计中,可以用两种方法解决问题:一是传统的结构化程序设计方法,二是更先进的面向对象程序设计方法[1]。
利用《数据结构》课程的相关知识完成一个具有一定难度的综合设计题目,利用C语言进行程序设计。
巩固和加深对线性表、栈、队列、字符串、树、图、查找、排序等理论知识的理解;掌握现实复杂问题的分析建模和解决方法(包括问题描述、系统分析、设计建模、代码实现、结果分析等);提高利用计算机分析解决综合性实际问题的基本能力。
树的遍历分为前序、中序和后序,可以用递归算法实现树的三种遍历。
除了递归外还可以构造栈,利用出栈和入栈来实现树的前序遍历、中序遍历和后序遍历。
严蔚敏《数据结构》教学笔记第六章 树和二叉树
来自
转载请注明
严蔚敏数据结构教学笔记
CountLeaf( T->rchild, count); // 统计右子树中叶子结点个数 } }
2、求二叉树的深度(后序遍历) int Depth (BiTree T ) { if ( !T ) depthval = 0; else { depthLeft = Depth( T->lchild ); depthRight= Depth( T->rchild ); depthval = 1 + (depthLeft> depthRight?depthLeft:depthRight); } return depthval; }
五、遍历算法的应用举例: 1、统计二叉树中叶子结点的个数(先序遍历) void CountLeaf (BiTree T, int& count) { if ( T ) { if ((!T->lchild)&& (!T->rchild)) count++; CountLeaf( T->lchild, count); // 统计左子树中叶子结点个数 9
LeftChild(T, cur_e); RightSibling(T, cur_e);
TreeEmpty(T); TreeDepth(T);
TraverseTree(T, Visit()); 插入: InitTree(&T); CreateTree(&T, definition);
Assign(T, cur_e, value); InsertChild(&T, &p, i, c); 1
3、复制二叉树(后序遍历) // 生成一个二叉树的结点 BiTNode *GetTreeNode(TElemType item, BiTNode *lptr , BiTNode *rptr ){ if (!(T = (BiTNode*)malloc(sizeof(BiTNode)))) 10
二叉树的三种遍历方式
⼆叉树的三种遍历⽅式⼀、⼆叉树的定义⼆叉树(Binary Tree)的递归定义:⼆叉树要么为空,要么由根节点(root)、左⼦树(left subtree)和右⼦树(right subtree)组成,⽽左⼦书和右⼦树分别是⼀颗⼆叉树。
注意,在计算机中,树⼀般是"倒置"的,即根在上,叶⼦在下。
⼆、⼆叉树的层次遍历三种遍历⽅式:先序遍历、中序遍历、后序遍历(根据根节点的顺序)PreOrder(T) = T的根节点 + PreOrder(T的左⼦树) + PreOrder(T的右⼦树)InOrder(T) = InOrder(T的左⼦树) + T的根节点 + InOrder(T的右⼦树)PostOrder(T) = PostOrder(左⼦树) + PostOrder(右⼦树)其中加号表⽰字符串连接这三种遍历都是递归遍历或者说深度优先遍历 (DFS,Depth-First-Search)三、已知两种遍历⽅式,推出另⼀种遍历⽅式先序+中序---->后序后序+中序---->先序因为后序或先序可以直接得到根节点,然后只要在中序遍历中找到,就知道左右⼦树的中序和后序遍历,递归下去就可以构造出⼆叉树了。
四、样例(1) 题意:给⼀颗点带权(各权值都不相同,都是⼩于10000的整数)的⼆叉树的中序和后序遍历,找⼀个叶⼦节点使它到根的路径上的权应尽量少。
(2) 代码实现:1 #include<stdio.h>2 #include<iostream>3 #include<algorithm>4 #include<cstring>5 #include<string>6 #include<sstream>7using namespace std;89const int INF = 0x3f3f3f3f;10//因为各节点的权值各不相同且都只是整数,直接⽤权值作为节点编号11const int maxn = 10000 + 10;12int in_order[maxn], post_order[maxn], lch[maxn], rch[maxn];13int n;14int best, best_sum;1516//按⾏读取数据,并存到数组中17bool read_list(int *a)18{19string line;20if (!getline(cin, line)) return false;21 stringstream ss(line);22 n = 0;23int x;24while (ss >> x) a[n++] = x;25return n > 0;26}2728//把in_order[L1,R1]和post_order[L2,R2]建成⼀棵⼆叉树,返回树根29int build(int L1, int R1, int L2, int R2)30{31if (L2 > R2) return0; //空树32int root = post_order[R2];33int pos = L1;34while (in_order[pos] != root) pos++;35int cnt = pos - L1;36 lch[root] = build(L1, pos - 1, L2, L2 + cnt - 1);37 rch[root] = build(pos + 1, R1, L2 + cnt, R2 - 1);38return root;39}4041//从根节点出发,中序遍历,查找最⼩值42void dfs(int u, int sum)43{44 sum += u;4546//到达叶⼦节点,循环终⽌47if (!lch[u] && !rch[u])48 {49if (sum < best_sum)50 {51 best = u;52 best_sum = sum;53 }54return;55 }5657//加了个剪枝:如果当前的和⼤于当前的最⼩和,就不必从这条路继续搜58if (lch[u] && sum < best_sum) dfs(lch[u], sum);59if (rch[u] && sum < best_sum) dfs(rch[u], sum);60}6162int main()63{64while (read_list(in_order))65 {66 read_list(post_order);67 build(0, n - 1, 0, n - 1);6869 best_sum = INF;70 dfs(post_order[n - 1], 0);71 cout << best << endl;72 }73return0;74 }。
二叉树的遍历ppt讲稿
D:访问根节点
根
DLR
L:遍历左子树 左 子树 R:遍历右子树 注:限定先左后右的进行遍历
数据结构-二叉树的遍历
右 子树
LDR LRD
二、遍历定义与算法描述
二叉树的遍历算法描述
先(根)序遍历-DLRD
若二叉树为空, 则空操作;否则 (1)访问根结点; (2)先序遍历左子树; (3)先序遍历右子树。
数据结构-二叉树的遍历
二、遍历定义与算法描述
二叉树的遍历算法描述
根
左 子树
右 子树
二叉树:二叉树是n个数据元素的有限集,它或为空集(n=0),或者含 有唯一称为根的元素,且其余元素分成两个互补相交的子集,每个子集 自身是一颗二叉树,分别称为根的左子树和右子树。
数据结构-二叉树的遍历
二、遍历定义与算法描述
数据结构-二叉树的遍历
二、遍历定义与算法描述
先(根)序遍历 - D L R:
前序遍历序列:ABDECFG
A
D A D
G
L
R
B D E
C F
L
R
D L R
D C
L
R
D L R
B
D L R
E D
D L RG
F
数据结构-二叉树的遍历
二、遍历定义与算法描述
中(根)序遍历 - L D R:
中序遍历序列:DBEAFCG
四、小 结
数据结构-二叉树的遍历
The end
谢
谢!
数据结构-二叉树的遍历
E D
G
F
数据结构-二叉树的遍历
三、应用实例
已知: 一棵二叉树的 先(根)序遍历序列为:A B C D E F G 中(根)序遍历序列为:C B E D A F G 试构建该二叉树。
二叉树的遍历
T->rchild= CreatBiTree(); /*构造右子树*/ 扩展先序遍历序列
}
2021/2/21
return (T) ;}
A B Φ D Φ Φ C Φ 17Φ
T
T
T
ch=B
ch=Φ
Λ
T
T= Λ, Creat(T)
ch=A T
A
B creat(T L)
ΛB 返回
creat(T L)
creat(T R)
A
p=p->RChild;
}
2021/2/21
}
top
A
B
C
D
top
B
top
A
A
top
D
A
top
A
top
C
13
top
中序遍历二叉树的非递归算法:
A
void InOrder(BiTree T)
{ InitStack(&S); 相当于top=-1;
p=T;
B
C
while(p!=NULL | | !IsEmpty(S)) 相当于top==-1;
}
后序遍历二叉树的递归算法:
void PostOrder (BiTree T)
{ if(T!=NULL)
{ PostOrder (T->lchild);
PostOrder (T->rchild);
printf(T->data); }
2021/2/21
15
}
先序遍历二叉树的递归算法: void PreOder (BiTree T) { if(T! =NULL){ printf (T->data); PreOrder (T->lchild); PreOrder (T->rchild); } }
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非递归中序遍历BT的算法:
p
A
B
C E
D i F &A (1)
G
非递归中序遍历BT的算法:
A
p C
B
i &C D &B
E
F (3)
&A
G
非递归中序遍历BT的算法:
A
B
C p=NULL E
D F
i
&B
&A
(4)
G
访问:C
非递归中序遍历BT的算法:
A
p B
C E
D i F &A
(5)
G
访问:C B
}//else
}//InOrderTraverse
我们先观察一下三种遍历行走的路线
* * A
前序遍历NLR
* E
B
*
C
*
H
* F
*
I
*
G
*
D
中序遍历LNR
A # B # C #
E #
G #
H
# #
F
I
# D #
三种遍历的访问位置对比:
&
* * B # * E & # * * & A # * & C # I # & 三种遍历的路线完全一样,只是访 问时间不同;
3 按先序遍历序列建二叉树
Status CreateBiTree(BiTree &T) { scanf(&ch); if (ch==' ') T = NULL; else { if (!(T = new BiTNode)) exit(OVERFLOW); T->data = ch; // 生成根结点 CreateBiTree(T->lchild); // 构造左子树 CreateBiTree(T->rchild); // 构造右子树 } return OK; } // CreateBiTree
push(S,p); pop(S,p); Boolean StackEmpty(S); 下面给出基于逻辑结构的算法描述
非递归中序遍历二叉树的算法思想 建立栈 stack; 1. P指向根; 2. 当p不空 且 stack 不空时反复做: 若 p不空 ,p 入 栈; p指向左 子女; 否则: • 出栈顶元素到p中; • 访问p; • p指向右子女; 4. 结束
depthLeft = TreeDepth( T->lchild );
depthRight= TreeDepth( T->rchild ); depth = 1 + (depthLeft > depthRight ? depthLeft : depthRight); } return depth; }
10/4/2014
课堂练习
1 前序遍历序列:EDACBGFH 中序遍历序列:ADCBEFHG
试画出满足以上序列的二叉树
2 中序遍历序列:ADCBHFEG 后序遍历序列:ABCDEFGH 试画出满足以上序列的二叉树
访问:C B E G D F A
二叉树与表达式: 表达式 : ( a + b ) × c – d / e
二叉树的先序遍历序列为:
× + a b c / d e 二叉树的中序遍历序列为: a + b× c – d / e 二叉树的后序遍历序列为: a b + c×d e / –
–
前缀表达式 中缀表达式 后缀表达式
前序:第一次 经过* 时访问
*
H #
&
* F & # * D # &
G & #
中序:第二次 经过# 时访问 后序:第三次 经过& 时访问
遍历线路的核心规则是:先左后右;
我们用一个栈stack记录走过的位置,以便返回;
stack 中数据元素的类型: *BiTNode(或BiTree)
函数:BiTree P;
-
×
/
c d
10/4/2014
+
a b
e
非递归先序遍历二叉树
void PreOrderTraverse (BiTree T, void (*visit) (TelemType& e)) { InitStack(S); p=T; while( p || !StackEmpty(S) ){ if (p) {if ( !visit(p->data) ) return ERROR; // 访问根结点 Push(S,p); p=p->lchild; }
6.4 二叉树的算法描述
6.4.1非递归中序遍历BT的算法:
Void lnorderTraverse(BiTree BT) { //采用二叉链表存储结构,中序遍历二叉树T的非递归算法. InitStack(S); p=BT; while(p||!StackEmpty(S)) { if(p) { push(S,p); p=p->lchild;}//根指针进栈,遍历左子 树 else { //根指针退栈,访问根结点,遍历右子树 pop(S,p); visit(p)); p=p->rchild;
C D
&D
E F &A
G P=NULL
访问:C B E
(9)
非递归中序遍历BT的算法:
A B
C
E
D
F
i
&D
&A 访问:C B E G
G p
(10)
非递归中序遍历BT的算法:
A
B
p
C
E
D
i F &A
(11)
G
访问:C B E G D
非递归中序遍历BT的算法:
A
B p C D i
&F
E F &A
(12)
按先序遍历序列建立二叉树的二叉链表, 已知先序序列为:
A B C D E G F
A B C D
E
G
F
4、求二叉树的深度
10/4/2014
算法:
int TreeDepth (BiTree T ){ // 返回二叉树的深度
if ( !T ) else { depth = 0;
非递归中序遍历BT的算法:
A p
B
C E (6)
D F
i
&D &A
G
访问:C B
非递归中序遍历BT的算法:
A
B
i
&E D &D
C E p
F
&A
(7)
G
访问:C B
非递归中序遍历BT的算法:
A B i C E D &D F &A 访问:C B E
G p
(8)
非递归中序遍历BT的算法:
A
B
i
&G
10/4/2014
2、统计二叉树中叶子结点的个数
10/4/2014
算法基本思想: 先序(或中序或后序)遍历二叉树,在 遍历过程中查找叶子结点并计数。在遍历 算法中增加一个参数用于计数,并将算法 中“VISIT()” 的操作改为:若是叶子,则 计数器增1。
10/4/2014
void CountLeaf (BiTree T, int& count){ if ( T ) { if ((!T->lchild)&& (!T->rchild)) count++; // 对叶子结点计数 CountLeaf( T->lchild, count); CountLeaf( T->rchild, count); } // if } // CountLeaf
// 根指针进栈,遍历左子树
else { Pop(S,p); p=p->rchild; } //else } // while return OK;
//根指针退栈,遍历右子树
6.4.2遍历算法的应用举例
1、查询二叉树中某个结点
Status Preorderelem (BiTree T, ElemType x, BiTree &p) {// 若二叉树中存在和x相同的元素,则p指向该结 点并返回true if (T) { if (T->data==x) { p=T; return OK,} else { if (Preorderelem (T->lchild, x, p) return OK; else return(Preorderelem (T->rchild, x, p)) ; }//else }//if else return FALSE; }
G
访问:C B E G D
非递归中序遍历BT的算法:
A
B
C E
D i F p=NULL
&A
(13)
G 访问:C B E G D F
非递归中序遍历BT的算法:
p A B
C E
D F
i
G
(14) 访问:C B E G D F A
非递归中序遍历BT的算法:
p=NULL
A B C E D F
i
G (15)