振动波动例题
微专题 振动图像与波动图像(学生)(1)
振动图像与波动图像【核心考点提示】两种图象的比较振动图象波动图象研究对象一振动质点沿波传播方向的所有质点研究内容一质点的位移随时间的变化规律某时刻所有质点的空间分布规律图象物理意义表示同一质点在各时刻的位移表示某时刻各质点的位移图象信息(1)质点振动周期(2)质点振幅(3)某一质点在各时刻的位移(4)各时刻速度、加速度的方向(1)波长、振幅(2)任意一质点在该时刻的位移(3)任意一质点在该时刻的加速度方向(4)传播方向、振动方向的互判图象变化随着时间推移,图象延续,但已有形状不变随着时间推移,波形沿传播方向平移一完整曲线占横坐标的距离表示一个周期表示一个波长【微专题训练】例题1:如图甲所示是一列沿x轴正方向传播的简谐横波在t=0时刻的波形图,P是参与波动的、离原点x1=2m处的质点,Q是参与波动的、离原点x2=4m处的质点。
图乙是参与波动的某一质点的振动图像(所有参与波动的质点计时起点相同)。
由图可知()A.从t=0到t=6s,质点P通过的路程为0.6mB.从t=0到t=6s,质点Q通过的路程为1.2mC.这列波的传播速度为v=2m/sD.从t=0起,质点P比质点Q先到达波峰E.图乙可能是图甲中质点Q的振动图像[解析]由题图乙可知周期为2s,6s=3T,每个周期内质点运动的路程为4A,因此从t=0到t=6s,质点P通过的程为12A=60cm=0.6m,选项A正确;质点Q通过的路程也为0.6m,选项B错误;由题图甲可知波长为4m,这列波的波速为v=λT=2m/s,选项C正确;质点P在t=0时正沿y轴负方向运动,质点Q正沿y轴正方向运动,因此质点Q比质点P先到达波峰,选项D错误;由于质点Q在t=0时正沿y轴正方向运动,因此题图乙可能是题图甲中质点Q的振动图像,选项E正确。
例题2:图甲为一列简谐横波在t =0.05s 时刻的波形图,图乙为质点P 的振动图象,则下列说法正确的是 ( )A .简谐波速度大小为20m/sB .简谐波沿x 轴的负方向传播C .t =0.25s 时,质点Q 的加速度大于质点P 的加速度D .t =0.1s 时,质点Q 的运动方向沿y 轴正方向E .t =0.3s 时,质点Q 距平衡位置的距离大于质点P 距平衡位置的距离[解析] 由图中数据及波速公式得v =λT =20m/s ,选项A 正确;由图乙可知t =0.05s 时质点P 正沿y 轴负方向运动,可知简谐波沿x 轴正方向传播,选项B 错误;Δt =0.25s -0.05s =0.20s =T ,经过一个周期各质点回到t =0.05s 时的位置,而t =0.05s 时,质点Q 的加速度大于质点P 的加速度,可知选项C 正确;由图示位置再经0.05s 即t =0.1s 时,质点Q 正经过平衡位置沿y 轴正方向运动,选项D 正确;t =0.3s 时与图示位置时间间隔Δt =0.3s -0.05s =0.25s =114T ,此时Q 位于平衡位置,P 位于波谷,选项E 错误。
振动和波动习题课(改)
x)
yBP
Acos[ t
2
(30 x)]
l
两波同频率,同振幅,同方向振动,所以相干静止的点满足:
(t 2 x) [t 2 (30 x)]
l
l
(2k 1)
k 0,1,2,...
化简后 30 2x kl
30 2x kl O x
X
因为: l u 4m
x 15 k 2
1
3
x 3 102 sin(4t 1 ) (SI)
2
6
画出两振动的旋转矢量图,并求合振动的振动
方程.
x1
5
102
cos(4t
1 3
)
x2
3
102
sin(4t
1 6
)
3
102
cos(4t
1 6
1 2
)
3 102 cos(4t 2 ) 3
x x1 x2
1
2 102 cos(4t 1 )
7.一简谐振动曲线如图所示,试由图确
定在t=2s时刻质点的位移为
,速
度为
。
t=2s, x=0
Vm
A
2 A
T
3
102
8.已知两个简谐振动 曲线如图所示,
X1的位相比X2的位相
A) 落后 1
2
C) 落后
B) 超前 1 √
2
D) 超前
9.一简谐振动的振动曲线如图,求此振动的 周期。
解: =/3+ /2=5/6 t=5= 5/6 = /6
2
之间)
(1)2 1 2k k 0,1,2,
A A1 A2 振动加强; 此时有= 1= 2
A1
波动方程例题
一平面简谐波, 轴负方向传播, 例1.一平面简谐波,向 x 轴负方向传播,波速为 一平面简谐波 u=120m/s,波长为 波长为60m,以原点处质点在 =A/2处并向 以原点处质点在y 波长为 以原点处质点在 处并向 y轴正方向运动作为计时零点,试写出波动方程。 轴正方向运动作为计时零点, 轴正方向运动作为计时零点 试写出波动方程。
t =0 A yO = 2 v< 0
O
A 2 o
.P
12
A x (m)
=π
4
2π
yP = 0 v >0
x = p 0 λ
2π
P = π 2
λ
12 =
π
2
π
4
∴ λ = 32 m
[ 例4] 以P 点在平衡位置向正方向运动作为计时零点 写出波动方程。 ,写出波动方程。
y
u d
o
P
x
解: ∵ t = 0, y0 = 0, v0 > 0 ∴ p = 2 π P点的振动方程 y p = A cos (ω t 点的振动方程: 点的振动方程 2 )
2π π x ) 波动方程为: ∴ y = 0.03cos(4πt + 波动方程为: 3 6
时刻的波形图, 例7.图示为平面简谐波在 t=10s时刻的波形图,求 图示为平面简谐波在 时刻的波形图 (1)波动方程 ) (2)此时 点的振动速度与方向 )此时P点的振动速度与方向 y(m) 由波形图可知: 解: 由波形图可知:
3
[ 例5 ] 波速 u =400m/s, t = 0 s时刻的波形如图所示。 时刻的波形如图所示。 时刻的波形如图所示 y(m) 写出波动方程。 写出波动方程。
u t=0 y 0 = 4 cos ( 200 t π ) π 3 原点的振动方程: 解: 4 p 2 (o点) 点 o A x π x (m) 5 y0 = 2 = y = 4 cos 200π 3 + 2 ( m) t 波动方程: { v0 > 0 400 3 2π d = p 0 u λ 0 = π 得: ω = 2π 2 d π 3 λ λ = y0 = 0 t =0 p 0 = 200π (p点) { v0 < 0 点 5
振动波动部分例题及作业
0 2
2 A 4 或 3 3
4 A 3 2 2
O
A
x
[例2]如图的谐振动x-t 曲线,试求其振 x/m 动表达式 2 解:由图知
[例7]两列相干平面简谐波沿x轴传播。 波源S1和S2相距d=30m,S1为坐标原点, 已知x1=9m和x2=12m处的两点是相邻的 两个因干涉而静止的点。求两波的波长 和两波源的最小位相差
S1
解:设S1、S2的初相位为1 、2 因x1和x2处为相邻干涉静止点,有0x1 Nhomakorabeax2
S2
x
x x2 2 (d x1 ) 2x1 [ 2 ] [1 ] (2k 1) 2 (d 2 x1 ) 2 1 (2k 1) 2 (d 2 x2 ) 同理 2 1 (2k 3)
2 T 4s T 2
x0 A
由旋转矢量法得
0.24 0.24 x 0 x 0.24 cos t m 2 (2) t=0.5s: 1 x 0.24 cos 0.17 m 2 2 2 2 F ma m x 0.01 ( ) 0.17 2 3 4.19 10 N
v0
即
x 0, v 0
2
2
O
x
[ 例 3] 质量为 0.01kg 物体作周期为 4s 、振 幅为0.24m的简谐振动。t=0时,位移 x=0.24m。求(1)谐振动表达式;(2)t=0.5s 时 , 物体的位置和所受的力; (3) 物体从 初始位置运动至 x =-0.12m 处所需的最短 时间 解:(1)设振动表达式为 x A cos( t ) 其中 A 0.24 m
大学物理-波动方程的定解问题例题
T1 cos1 T2 cos2 0 T1 sin 1 T2 sin 2 mg mutt xx0
因为 1 0,2 0,
(2) (3)
所以
cos1 cos2 1
sin 1
tan 1
u1 x
,sin 2
xx0 0
tan 2
u2 x
xx0 0
令
于是(2)化为 T1 T2 T
T (u2 x
解:由于研究的是柔软轻绳,故弦的 重量可以忽略不计。且由于惯性离心 力的作用,绳的平衡位置为水平线。 如右图所示,在绳中划出一小段dx, 考虑这一小段的受力和运动情况,此 处u(x,t)表弦的位移,T1和T2 分别表小段 dx段的两端所受的张力。注意在小振 幅情况下 sin tan ux,cos 1, 于是这一小段作横振动的运动方程为
x
2
将(2)代入(1),得
(2)
[1 2
2 (l 2
x2 ) ux ]xdx
[1 2
2 (l 2
x2) ux ]x
utt dx
两边除以 dx 并整理得
utt
1 2
2
x
[(l
2
x2
)ux
]
0
例5 长为l的弦,若在其上某定点 处挂x0有一质量为m的小球,试
推导弦作横振动时该点处的衔接条件。 解:由于小球重力mg的作用,弦在 x0处有一跃变点。设在任意
第五章 数学物理方程和定解条 件的导出 例题
5.1波动方程的定解问题
例1 设均匀柔软的细弦沿x轴绷紧,在平衡位置附近产生振幅 极小的横振动u(x, t):坐标为x的点在t时刻沿横向的位移 求:细弦上各点的振动规律
解:研究对象:选取不包括端点的一小段(x, x+dx)
振动波动例题
解:
t =0
x =0 y =0
y0= 0.03 cos(2 ×2.5 t π ) π 2
v0
π j= 2
π 2 x π y = 0.03 cos 2 ×2.5 t 2 π 0.24 π 50 x π 0.03 cos 5 t π =
2 6 0.03 cos 5 (t 10 x ) π π = 2 6
例1. 有一个和轻弹簧相联的小球,沿x 轴作振幅为A的简谐振动,其表达式用余弦 函数表示。若t =0 时,球的运动状态为: (1)x0=-A; (2)过平衡位置向x 正方向运动; (3)过x=A/2处向 x 负方向运动; A (4)过 处向 x 正方向运动; 2 试用矢量图示法确定相应的初相的值,并写 出振动表式。
由波形图得:t =1/3 s时
y/cm
10
x0
v< 0 y0 =-0.05
o
-5
20
x/cm
1 0.05 0.1cos( j ) 3
1 2 j 3 3
j
3
波动方程为:
πx + π y =10cos π t 20 3
O点(x =0)的振动方程为:
cm (1)
π π 解: A =0.24m ω = 2 = 2 = π =1.57s-1 T 2 4 x 0 = A =0.24m φ =0 t =0 v0 = 0
振动方程为: x = 0.24 cosπ t 2 (1) t =0.5s cos (π × 0.5 ) x = 0.24 2 = 0.24 cos 0.25π
= 0.24 ×
2 =0.17m 2
(2)
高中物理简单谐振动与波动的题目解析
高中物理简单谐振动与波动的题目解析简单谐振动与波动是高中物理中的重要知识点,也是考试中常见的题型。
掌握了简单谐振动与波动的基本原理和解题方法,就能够轻松解决相关题目。
本文将通过具体的题目举例,分析解题思路和考点,并给出一些解题技巧,帮助高中学生更好地理解和应用这些知识。
一、简单谐振动题目解析例题1:一个质点做简谐振动,振幅为2cm,周期为0.4s。
求该振动的频率、角频率和振动的最大速度。
解析:这道题目主要考察了简谐振动的基本公式之间的关系。
首先,我们知道振动的周期T和频率f之间有如下关系:T = 1/f。
所以,该振动的频率为f = 1/T = 1/0.4 = 2.5 Hz。
其次,角频率ω和频率f之间有如下关系:ω = 2πf。
所以,该振动的角频率为ω = 2π × 2.5 = 5π rad/s。
最后,振动的最大速度与振幅和角频率之间有如下关系:v_max = Aω。
所以,该振动的最大速度为v_max = 2 × 5π = 10π cm/s。
通过这个例题,我们可以看到,对于简谐振动的题目,我们需要掌握振动的周期和频率之间的关系、角频率和频率之间的关系,以及振动的最大速度与振幅和角频率之间的关系。
二、波动题目解析例题2:一根绳子上的波沿着绳子传播,波长为2m,频率为50 Hz。
求波速和波动的周期。
解析:这道题目主要考察了波动的基本公式之间的关系。
首先,我们知道波速v、波长λ和频率f之间有如下关系:v = λf。
所以,该波动的波速为v = 2 × 50 = 100 m/s。
其次,波动的周期T和频率f之间有如下关系:T = 1/f。
所以,该波动的周期为T = 1/50 = 0.02 s。
通过这个例题,我们可以看到,对于波动的题目,我们需要掌握波速、波长和频率之间的关系,以及波动的周期和频率之间的关系。
三、解题技巧和注意事项在解答简单谐振动与波动的题目时,我们需要注意以下几点:1. 掌握基本公式:简单谐振动和波动都有一些基本的公式,如振动的周期和频率之间的关系、角频率和频率之间的关系,以及振动的最大速度与振幅和角频率之间的关系。
大学物理振动波动例题习题(题型借鉴)
振动波动一、例题 (一)振动1.证明单摆是简谐振动,给出振动周期及圆频率。
2. 一质点沿x 轴作简谐运动,振幅为12cm ,周期为2s 。
当t = 0时, 位移为6cm ,且向x 轴正方向运动。
求: (1) 振动表达式;(2) t = 0.5s 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于x =-0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。
3. 已知两同方向,同频率的简谐振动的方程分别为:x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+ 求:(1)合振动的初相及振幅.(2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +ϕ 3 ), 则当ϕ 3为多少时 x 1 + x 3 的振幅最大?又ϕ 3为多少时 x 2 + x 3的振幅最小?(二)波动1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s 。
在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动, 求:(1)波动方程(2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。
2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。
已知原点的振动曲线如图所示。
求:(1)原点的振动表达式;(2)波动表达式;(3)同一时刻相距m 1的两点之间的位相差。
3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+。
S 1距P 点3个波长,S 2距P 点21/4个波长。
求:两波在P 点引起的合振动振幅。
4.沿X 轴传播的平面简谐波方程为:310cos[200(t )]200xy π-=- ,隔开两种媒质的反射界面A与坐标原点O 相距2.25m ,反射波振幅无变化,反射处为固定端,求反射波的方程。
振动与波习题
出质点由初始状态运动到 x=-0.12m, v<0的状
态所经过的最短时间。 t
t=0
解:
3
t
t 2 (s) 3
a
1 3
-0.12 O 0.24
18
8. 一质点同时参与两个同方向的简谐振动,其 振动方程分别为:
1
x51 0 2co4s t ( )(SI)
1
3
x310 2sin 4t (1)(SI)
答案: y2A co s t2 (l x 4 l L )
10、S 1 和 S 2 是波长均为l的两个相干波源,相距 3l / 4
,S 1 的位相比S 2 超前 / 2。若两波单独传播时,强度
均为 I 0 ,则在 S 1、S 2连线上 S 1 外侧和 S 2外侧各点
,合成波的强度分别是
(A)4 I 0 ,4 I 0 ; (C)0,4 I 0 ;
四、谐振动的合成 同方向、同频率的谐振动的合成:
A A12 A22 2A1A2cos(2 1
tg A1sin1 A2 sin2
A1cos1 A2ca os2
8
例1:一质点作简谐振动,=4 rad/s ,振幅A=2cm. 当t=0时,质点位于x=1cm处,并且向x轴正方向运动,求振
动表达式.
解:用矢量图法求解
1、周期和频率(由波源决定,与介质无关)
2、波长
3、波速 4、波速u与l、T的关系:u
l T
二、平面简谐波波动方程
坐标原点振动方程:yAcots()
a
28
波沿x轴正向传播:
y A co (t su x ) [ ] A co 2 (T s t [ l x ) ]
波沿x轴负向传播:
大学物理波动理论及习题
波速: 波速
大学物理学 振动和波动
例题2: 一平面简谐波在介质中以速度u=20m/s,沿Ox轴的 例题 一平面简谐波在介质中以速度 沿 轴的 负向传播. 已知A点的振动方程为 点的振动方程为y=3cos4πt, 则(1)A点为坐 负向传播 已知 点的振动方程为 π 点为坐 标原点求波动方程; 以距A点 处的 处的B为坐标原点求波 标原点求波动方程 (2)以距 点5m处的 为坐标原点求波 以距 动表达式. 动表达式 y’ y 解: u x
x y(x) = Acosωt0 + u
大学物理学 振动和波动
3. 波形图分析 波形图分析: 图中x 两质点的相位差: ① 图中 1和x2两质点的相位差
y
A O x1
u λ
x2
x1 y1 = Acosωt + ( ω ) u x2 y2 = Acosωt + ( ω ) u x1 x2 2 = ω 1 = ω u u x 2π = 2 1 = ω = x u λ
大学物理学 振动和波动
1 dEk = dm v2 2
y x Q v = = Aωsin ω (t ) t u
1 x 2 2 2 质元的振动动能: 质元的振动动能 dEk = (ρ dV ) A ω sin ω (t ) 2 u
质元的弹性势能: 质元的弹性势能
1 x 2 2 2 dEp = (ρ dV ) A ω sin ω (t ) 2 u
大学物理学 振动和波动
§4-5 机械波的产生和传播
振动和波动 振动: 于平衡位置, 无随波逐流. 振动: 于平衡位置 无随波逐流 波动: 振动的传播过程. 波动: 振动的传播过程
波动的种类 电磁波: 电磁波 交变电磁场在空间的传播过程
大学物理第十章
练习十八 阻尼 受迫 共振 波动方程一.选择题1.有一悬挂的弹簧振子,振子是一个条形磁铁,当振子上下振动时,条形磁铁穿过一个闭合圆线圈A(如图18.1所示), 则此振子作(A) 等幅振动. (B) 阻尼振动. (C) 强迫振动.(D) 增幅振动.2.频率为100Hz,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距(A) 2m . (A) 2.19m . (B) 0.5 m .(D) 28.6 m .3.一圆频率为ω 的简谐波沿x 轴的正方向传播, t =0时刻的波形如图18.2所示. 则t =0时刻, x 轴上各质点的振动速度v 与坐标x 的关系图应为图18.3中哪一图?4. 一平面简谐波沿x 轴负方向传播,已知x=x 0处质点的振动方程为y=A cos(ω t+ϕ0). 若波速为u ,则此波的波动方程为(A) y=A cos{ω [t -(x 0-x )/u ]+ ϕ0} . (B) y=A cos{ω [t -(x -x 0)/u ]+ ϕ0} . (C) y=A cos{ω t -[(x 0-x )/u ]+ ϕ0} .(D) y=A cos{ω t +[(x 0-x )/u ]+ ϕ0} .5. 如图18.4所示为一平面简谐波在t = 0时刻的波形图,该波的波速u =200m/s ,则P 处质点的振动曲线为图18.5中哪一图所画出的曲线?< < k 图18.1v (m/s)O1 x (m)ωA(A)·(D)(C)图18.3二.填空题1.一列余弦横波以速度u 沿x 轴正方向传播, t 时刻波形曲线如图18.6所示,试分别指出图中A 、B 、C 各质点在该时刻的运动方向:A ;B ; C .2.已知一平面简谐波沿x 轴正向传播,振动周期T =0.5s, 波长λ=10m,振幅A =0.1 m . 当t =0时波源振动的位移恰好为正的最大值. 若波源处为原点, 则沿波传播方向距离波源为λ/2处的振动方程为y = ; 当t=T /2时, x=λ/4处质点的振动速度为 .3.一简谐波的频率为5×104Hz, 波速为1.5×103m/s,在传播路径上相距5×10-3m 的两点之间的振动相位差为 .三.计算题1.图18.7所示一平面简谐波在t =0时刻的波形图,求 (1) 该波的波动方程 ;(2) P 处质点的振动方程 .2.某质点作简谐振动,周期为2s, 振幅为0.06m, 开始计时(t =0)时, 质点恰好处在负向最大位移处, 求(1) 该质点的振动方程;(2) 此振动以速度u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动方程 ; (3) 该波的波长.练习十九 波的能量 波的干涉一.选择题1.一平面简谐波,波速u =5m · s -1. t = 3 s 时波形曲线如图19.1. 则x =0处的振动方程为(A) y =2×10-2cos(πt /2-π/2) ( S I ) . (B) y =2×10-2cos(πt +π ) ( S I ) .(D)(C)(A)(B)图18.5图18.6-图18.7ux (m)y (10-2m)· · · · · ·· 0 51015 20 25 -2图19.1图19.3(C) y =2×10-2cos(πt /2+π/2) ( S I ) . (D) y =2×10- 2cos(πt -3π/2) ( S I ) .2.一列机械横波在t 时刻的波形曲线如图19.2所示,则该时刻能量为最大值的媒质质元的位置是:(A) o ′, b , d, f . (B) a , c , e , g . (C) o ′, d . (D) b , f .3.一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零, 势能最大. (B) 动能为零, 势能为零. (C) 动能最大, 势能最大. (D) 动能最大, 势能为零.4.如图19.3所示为一平面简谐机械波在t 时刻的波形曲线. 若此时A 点处媒质质元的振动动能在增大,则(A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播.(C) B 点处质元的振动动能在减小. (D) 各点的波的能量密度都不随时间变化.5. 如图19.4所示,两相干波源s 1和s 2相距λ/4(λ为波长), s 1的位相比s 2的位相超前π/2 ,在s 1、s 2的连线上, s 1外侧各点(例如P 点)两波引起的两谐振动的位相差是:(A) 0 . (B) π . (C) π /2 . (D) 3π/2 . 二.填空题1.一列平面简谐波沿x 轴正方向无衰减地传播, 波的振幅为2×10-3m, 周期为0.01s, 波速为400 m/s, 当t =0时x 轴原点处的质元正通过平衡位置向y 轴正方向运动,则该简谐波的表达式为 .2.一个点波源位于O 点, 以O 为圆心作两个同心球面,它们的半径分别为R 1和R 2. 在两个球面上分别取相等的面积∆S 1和∆S 2 ,则通过它们的平均能流之比21 P P = .3.如图19.5所示,在平面波传播方向上有一障碍物AB,根据yx 波速u时刻t 的波形 · · ·· · · ··oo ′ a bc def g 图19.2P1 2图19.4A B图19.5惠更斯原理,定性地绘出波绕过障碍物传播的情况. 三.计算题1.如图19.6所示,三个同频率,振动方向相同(垂直纸面)的简谐波,在传播过程中在O 点相遇,若三个简谐波各自单独在S 1、S 2和S 3的振动方程分别为y 1=A cos(ω t +π/2)y 2=A cos ω ty 3=2A cos(ωt -π/2)且S 2O=4λ ,S 1O=S 3O=5λ(λ为波长),求O 点的合成振动方程(设传播过程中各波振幅不变).2.如图19.7,两列相干波在P 点相遇,一列波在B 点引起的振动是 y 10=3×10 –3cos2πt ( SI )另一列波在C 点引起在振动是y 20=3×10 –3cos(2πt +π/2) ( SI )BP =0.45m , CP =0.30m, 两波的传播速度 u=0.20m/s, 不考虑传播中振幅的减小,求P 点合振动的振动方程.练习二十 驻波 声波 多普勒效应一.选择题1.在波长为λ的驻波中,两个相邻波腹之间的距离为 (A) λ/4 .(B) λ/2 . (C) 3λ/4 .(D) λ .2.某时刻驻波波形曲线如图20.1所示,则a 、b 两点的相位差是(A) π. (B) π/2. (C) 5π /4. (D) 0.3.沿相反方向传播的两列相干波,其波动方程为y 1=A cos2π (νt -x /λ) y 2=A cos2π (νt + x /λ)叠加后形成的驻波中,波节的位置坐标为(A) x =±k λ . (B) x =±k λ/2 . (C) x =±(2k +1)λ/2 . (D) x =±(2k +1)λ/4 . 其中k = 0 , 1 , 2 , 3…….S3 图19.6图19.7图21.14.如果在长为L 、两端固定的弦线上形成驻波,则此驻波的基频波的波长为 (A) L /2 . (A) L . (B) 3L /2 . (D) 2L .5.一机车汽笛频率为750 Hz , 机车以时速90公里远离静止的观察者,观察者听到声音的频率是(设空气中声速为340m/s) :(A) 810 Hz . (A) 699 Hz . (B) 805 Hz . (D) 695 Hz . 二.填空题1.设平面简谐波沿x 轴传播时在x = 0 处发生反射,反射波的表达式为y 2=A cos[2π (νt -x /λ) +π /2] .已知反射点为一自由端,则由入射波和反射波形成驻波波节的位置坐标为 .2.设沿弦线传播的一入射波的表达式是y 1=A cos[2π (νt -x /λ) +ϕ]在x =L 处(B 点)发生反射,反射点为固定端(如图20.2), 设波在传播和反射过程中振幅不变,则弦线上形成的驻波表达式为 y = .3.相对于空气为静止的声源振动频率为νs ,接收器R 以速率v R 远离声源,设声波在空气中传播速度为u , 那么接收器收到的声波频率νR = . 三.计算题1.在绳上传播的入射波方程为 y 1=A cos (ω t +2π x /λ).入射波在x =0处的绳端反射, 反射端为自由端,设反射波不衰减,求驻波方程.2.设入射波的方程式为 y 1=A cos2π (x /λ+t /T ) .在x =0处发生反射,反射点为一固定端,设反射时无能量损失,求:(1)反射波的方程式; (2)合成的驻波方程式; (3)波腹和波节的位置 .练习二十一 振动和波习题课一.选择题1.图21.1中三条曲线分别表示简谐振动中的位移x ,速度v,加速度a ,下面哪个说法是正确的?(A) 曲线3, 1, 2分别表示x , v , a 曲线. (B) 曲线2, 1, 3分别表示x , v , a 曲线.图20.2(C) 曲线1, 3, 2分别表示x , v , a 曲线. (D) 曲线2, 3, 1分别表示x , v , a 曲线. (E) 曲线1, 2, 3分别表示x , v , a 曲线.2.用余弦函数描述一简谐振子的振动,若其速度-时间(v -t )关系曲线如图21.2所示,则振动的初相位为(A) π / 6 . (B) π / 3. (C) π / 2. (D) 2π / 3. (A) 5π / 6 .3.一质点作简谐振动,周期为T , 质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为(A) T / 4 . (B) T /12 . (C) T / 6 . (D) T / 8 .4.一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中 (A) 它的势能转换成动能. (B) 它的动能转换成势能.(C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加. (D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小.5.在弦上有一简谐波,其表达式是y 1=2.0×10-2cos[2π ( t / 0.02-x / 20) +π / 3] ( SI )为了在此弦线上形成驻波, 并且在x =0处为一波节,此弦线上还应有一简谐波, 其表达式为:(A) y 2=2.0×10-2cos[2π ( t / 0.02 + x / 20) +π / 3] ( SI ) (B) y 2=2.0×10-2cos[2π ( t / 0.02+x / 20) +2π / 3] ( SI ) (C) y 2=2.0×10-2cos[2π ( t / 0.02+x / 20) +4π / 3] ( SI ) (D) y 2=2.0×10-2cos[2π ( t / 0.02+x / 20)-π / 3] ( SI )二.填空题1.在静止的升降机中,长度为l 在单摆的振动周期为T 0 ,当升降机以加速度a =g /2竖直下降时,摆的振动周期T = .2. .如图21.3所示,一平面简谐波沿O x 轴负方向传播,波长为λ, 若P 处质点的振动方程是图21.3y P =A cos(2πνt +π /2) .则该波的波动方程是 .P 处质点 时刻的振动状态与O 处质点t 1 时刻的振动状态相同.3一平面简谐波沿O x 轴传播,波动方程为y =A cos[2π (νt -x /λ) +ϕ]则: x 1=L 处介质质点振动初相位是 ;与x 1处质点振动状态相同的其它质点的位置是 ;与x 1处质点速度大小相同,但方向相反的其它各介质质点的位置是 . 三.证明题1. 如图21.4所示,在竖直面内半径为R 的一段光滑圆弧形轨道上,放一小物体,使其静止于轨道的最低处,然后轻碰一下此物体,使其沿圆弧形轨道来回作小幅度运动,试证:(1) 此物体作简谐振动.(2) 此简谐振动的周期 T =2πg R . 四.计算题1.在实验室中做驻波实验时,使一根长3m 张紧的弦线的一端沿垂直长度方向以60H Z 的频率作简谐振动,弦线的质量为60×10-3kg , 如果在这根弦线上产生有四个波腹很强的驻波,必须对这根弦线施加多大的张力?练习十八 阻尼 受迫 共振 波动方程一.选择题B C D C A二.填空题1. 向下,向上; 向上.2. 0.1cos(4πt -π) (SI); -1.26m/s.3. π/3.三.计算题1.(1)原点处质点在t =0时刻y 0=A cos ϕ0=0 v 0=-A ωsin ϕ0>0所以 ϕ0=-π/2. 而 T=λ/v=0.40/0.08=5(s) 故该波的波动方程为y=0.04cos[2π( t/5-x/0.4)-π/2] (SI)(2) P 处质点的振动方程y P =0.04cos[2π( t/5-0.2/0.4)-π/2]图21.4= 0.04cos(0.4π t -3π/2) (SI)2.(1)取该质点为坐标原点O. t =0时刻y 0=A cos ϕ0=-A v 0=-A ωsin ϕ0=0得ϕ0=π. 所以振动方程为y O =0.06cos(2π t/2+π)=0.06cos(π t +π) (SI)(2) 波动方程为y =0.06cos[π(t -x/u )+π]=0.06cos[π(t -x/2)+π] (SI)(3) λ=uT =4(m)练习十九 波的能量 波的干涉一.选择题A B C B B二.填空题1. y =2×10-3cos(200πt -πx/2-π/2).2. R 22/R 12.3.三.计算题1. y 1=A cos[ω(t -l 1/u )+π/2]= A cos[2π(t/T -l 1/λ)+π/2]= A cos[2π(t/T -5λ/λ)+π/2] = A cos(ω t +π/2)同理 y 2=A cos ω ty 3=2A cos(ωt -π/2) 利用旋转矢量图和矢量加法的多边形法(如图),则可知合振动振幅及初位相为A ,-π/4.故合振动方程为y =2A cos(ωt -π/4)2. 两列相干波在P 点引起的振动分别是 y 1=3×10-3cos[2π(t -l 1/u )]=3×10-3cos(2πt -9π/2) =3×10-3cos(2πt -π/2)y 2=3×10-3cos[2π(t -l 2/u ) +π/2]=3×10-3cos(2πt -3π+π/2)= 3×10-3cos(2πt -π/2)所以合振动方程为y = y 1+ y 2= 6×10-3cos(2πt -π/2) (SI)练习二十 驻波 多普勒效应A 1A 2A 3 Ay O -π/4 ⎭一.选择题B C D D B二.填空题1. x=(k+1/2)(λ/2), k=0,1,2,3,….2.2A cos(2πx/λ±π/2-2πL/λ)·cos(2πνt±π/2+ϕ-2πL/λ) .3. νs(u-v R)/u.三.计算题1. 入射波在x =0处引起的振动为y10=A cos (ω t+2π 0/λ)= A cosω t因反射端为自由端,所以反射波波源的振动y20= A cosω t反射波方程为y2=A cos (ω t-2πx/λ)驻波方程为y= y1+ y2= A cos (ω t+2πx/λ)+ A cos (ω t-2πx/λ)=2A cos 2πx/λcosω t2.(1) 入射波在x =0处引起的振动为y10=A cos2π(0/λ+ t/T)= A cos2πt/T因反射端为固定端,所以反射波波源的振动为y20= A cos(2πt/T-π) 反射波方程为y2=A cos[2π(t/T- x/λ)-π]= A cos[2π(x/λ- t/T)+π](2)合成的驻波方程式y=y1+y2=A cos[2π(x/λ+t/T)]+A cos[2π(x/λ-t/T)+π]=2A cos(2πx/λ+π/2)cos(2πt/T-π/2)(3)对于波腹,有2πx/λ+π/2=nπ故波腹位置为x= (n-1/2)λ/2 (n=1,2,3,…)对于波节,有2πx/λ+π/2=nπ+π/2故波节位置为x= n λ/2 (n=1,2,3,…)练习二十一振动和波习题课一.选择题 E A B C C二.填空题1. 2T0.2. -2πL/λ+ϕ·; L±kλ(k=1,2,3,…);L±(k+1/2)λ(k=1,2,3,…).3. y=A cos{2π[νt+( x+L) /λ]+π/2}t1+L/(λν)+ k/ν(k=0,±1,±2,±3,…){或t1+L/(λν)}三.计算题1.设绳张力为T ,线密度为μ,则波速为u=()m Tl l m T T ==μ=λνT=λ2ν2m/l因弦线上产生有四个波腹很强的驻波,所以l=4·λ/2=2λ λ=l/2 T=λ2ν2m/l=l ν2m/4=162N四.证明题1.(1) 设小球向右摆动为角坐标θ正向.摆动过程中小球受重力和弧形轨道的支持力. 重力的切向分力使小球获得切向加速度.当小球向右摆动θ角时, 重力的切向分力与θ相反,有-mg sin θ=ma t =mR d 2θ/d t 2当作小幅度运动时,sin θ ≈θ, 有d 2θ/d t 2+(g/R ) θ=0故小球作间谐振动 θ=θA cos(R g t +ϕ) (2)周期为 T=2π/ω=2π /R g =2πg RⅣ 课堂例题一.选择题1. 一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为2m 的物体,则系统振动周期T 2等于(A) 2 T 1 (B) T 1(C) T 12/ (D) T 1 /2 (E) T 1 /42. 一简谐振动曲线如图所示.则振动周期是 (A) 2.62 s . (B) 2.40 s .(C) 2.20 s . (D) 2.00 s .3. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A))3232cos(2π+π=t x .(B) )3232cos(2π-π=t x .(C) )3234c o s (2π+π=t x .(D))3234c o s (2π-π=t x .--(E) )4134cos(2π-π=t x4.一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m . (B) 波长为3 m . (C) a 、b 两点间相位差为2π . (D) 波速为9 m/s .5. 两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前2π,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B) 2π. (C) π. (D) 23π.6. 在波长为λ 的驻波中,两个相邻波腹之间的距离为 (A) λ /4. (B) λ /2. (C) 3λ /4. (D) λ . 二.填空题1.质量为m 物体和一个轻弹簧组成弹簧振子,其固有振动周期为T. 当它作振幅为A 自由简谐振动时,其振动能量E = ____________.2.两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅为___________________ cm ,第一、二两个简谐振动的相位差φ1 - φ2为____________.3.一物体同时参与同一直线上的两个简谐振动:)314c o s (05.01π+π=t x (SI) , )324c o s (03.02π-π=t x (SI)合成振动的振幅为__________________m .4.一平面简谐波沿x 轴正方向传播,波速u = 100 m/s ,t = 0时刻的波形曲线如图所示.可知波长λ = ____________; 振幅A = __________; 频率ν = ____________.5.设沿弦线传播的一入射波的表达式为S 1S 2Pλ/4)-y (m )]2c o s [1λωxt A y π-=,在处(B 点)发生反射,反射点为自由端(如图).设波在传播和反射过程中振幅不变,则弦上形成的驻波的表达式是y = ______________________________.6.一列火车以20 m/s 的速度行驶,若机车汽笛的频率为600 Hz ,一静止观测者在机车前和机车后所听到的声音频率分别为____________和__________(设空气中声速为340 m/s ).三.计算题1.图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.已知波速为u ,求 (1) 坐标原点处介质质点的振动方程; (2) 该波的波动表达式.2.图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程.3.一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π= 求:(1) x = λ /4 处介质质点的合振动方程; (2) x = λ /4 处介质质点的速度表达式.(m ) -4.如图,一角频率为ω,振幅为A的平面简谐波沿x轴正方向传播,设在t = 0时该波在原点O处引起的振动使媒质元由平衡位置向y轴的负方向运动.M是垂直于x轴的波密媒质反射面.已知OO'= 7 λ /4,PO'= λ /4(λ为该波波长);设反射波不衰减,求:(1) 入射波与反射波的表达式;;(2)P点的振动方程.附Ⅴ振动和波习题课课堂例题解答一.选择题 DBCCCB 二.填空题1、 222/2T mA π2、 10 、π-213、 0.024、 0.8 m 0.2 m 125 Hz5、 )2cos()22cos(2λωλλLt LxA π-π-π6、 637.5 Hz 、 566.7 Hz三.计算题1、解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时 刻,O 处质点φcos 0A =, φωs i n 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为 )24c o s (2/ππ-=νA A所以244πππ-=-ν, ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI) (2) 波速u = 20 /2 m/s = 10 m/s波长λ = u /ν = 160 m 波动表达式]21)16016(2c o s [π-+π=xt A y (SI)2、解:(1) O 处质点,t = 0 时0cos 0==φA y , 0sin 0>-=φωA v所以 2π-=φ 又==u T /λ 5 s 故波动表达式为]2)4.05(2cos[04.0π--π=x t y (SI)(2) P 处质点的振动方程为]2)4.02.05(2c o s [04.0π--π=t y P )234.0c o s (04.0π-π=t (SI)3、解:(1) x = λ /4处)22cos(1ππ-=t A y ν , ))22cos(22ππ+=t A y ν ∵y 1,y 2反相∴合振动振幅 A A A A s =-=2,且合振动的初相φ 和y 2的初相一样为2π. 合振动方程 )22cos(ππ+=t A y ν(2)x = λ /4处质点的速度)2cos(2)2 2sin(2/d d v ππππππ+=+-==t A t A t y νννν4、解:设O 处振动方程为)cos(0φω+=t A y当t = 0时, y 0 = 0,v 0 < 0,∴ 2π=φ ∴ )2cos(0π+=t A y ω 故入射波表达式为)22c o s (λωx t A y ππ-+=在O ′处入射波引起的振动方程为 )c o s ()4722c o s (1πππ-=⋅-+=t A t A y ωλλω由于M 是波密媒质反射面,所以O ′处反射波振动有一个相位的突变π.∴ )cos(1π+π-='t A y ωt A ωcos = 反射波表达式)](2cos[x O O t A y -'π-='λω)]47(2cos[x t A -π-=λλω ]22cos[π+π+=x t A λω合成波为 y y y '+=]22cos[]22cos[π+π++π+π-=x t A x t A λωλω)2cos(2cos2π+π=t x A ωλ将P 点坐标 λλλ234147=-=x 代入得P 点的振动方程)2cos(2π+-=t A y ω。
振动波动习题讲解
轴负方向传播的平面简谐波在t 沿x轴负方向传播的平面简谐波在 = 2 s 轴负方向传播的平面简谐波在 时刻的波形曲线如图所示, 设波速u 时刻的波形曲线如图所示 , 设波速 = 0.5 m/s. 求:原点 的振动方程. 原点O的振动方程 的振动方程. .
2 解:方法一 T = = = 4(s) u 0.5
y (m) 0.5 O 1 u t=2s 2 x (m)
P
λ
y (m) 0.5 O 1 u t=2s 2 x (m)
t = 2 s =T/2。则t = 0时波形比题图 。 时波形比题图 中的波形倒退λ/2,如图。 中的波形倒退 ,如图。 此时y 此时 0 = 0,且朝 轴负方向运动, ,且朝y 轴负方向运动, ∴
一平面简谐波以400 m·s-1的波速在均匀媒质中沿 的波速在均匀媒质中沿x 一平面简谐波以 轴正向传播.已知波源的振动周期为 已知波源的振动周期为0.01s 、振幅为 轴正向传播 已知波源的振动周期为 0.2m. 设以波源振动经过平衡位置且向y 轴正向运 设以波源振动经过平衡位置且向 动作为计时起点,写出以距波源2m处为坐标原点 动作为计时起点,写出以距波源 处为坐标原点 的波动方程。 的波动方程。
x (m)
(该波的振幅A、波速u与波长 为已知量) 该波的振幅 、波速 与波长λ为已知量) 与波长 为已知量
点作为坐标原点, 解:若以此时为计时零点,以O点作为坐标原点,则 若以此时为计时零点, 点作为坐标原点 π y (m) ∵ ω = 2πν = 2π u ϕ =− A λ 2 u x π ∴波动方程为 y = Acos[2π (t′ + ) − ] 0 P λ u 2 若以2s前为计时零点,显然有 t′ = t − 2 若以 前为计时零点, 前为计时零点 ∴以2s前为计时零点波动方程为 前为计时零点波动方程为
大学物理第十章
练习十八 阻尼 受迫 共振 波动方程一.选择题1.有一悬挂的弹簧振子,振子是一个条形磁铁,当振子上下振动时,条形磁铁穿过一个闭合圆线圈A(如图18.1所示), 则此振子作(A) 等幅振动. (B) 阻尼振动. (C) 强迫振动.(D) 增幅振动.2.频率为100Hz,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距(A) 2m . (A) 2.19m . (B) 0.5 m .(D) 28.6 m .3.一圆频率为ω 的简谐波沿x 轴的正方向传播, t =0时刻的波形如图18.2所示. 则t =0时刻, x 轴上各质点的振动速度v 与坐标x 的关系图应为图18.3中哪一图?4. 一平面简谐波沿x 轴负方向传播,已知x=x 0处质点的振动方程为y=A cos(ω t+ϕ0). 若波速为u ,则此波的波动方程为(A) y=A cos{ω [t -(x 0-x )/u ]+ ϕ0} . (B) y=A cos{ω [t -(x -x 0)/u ]+ ϕ0} . (C) y=A cos{ω t -[(x 0-x )/u ]+ ϕ0} .(D) y=A cos{ω t +[(x 0-x )/u ]+ ϕ0} .5. 如图18.4所示为一平面简谐波在t = 0时刻的波形图,该波的波速u =200m/s ,则P 处质点的振动曲线为图18.5中哪一图所画出的曲线?< < k 图18.1v (m/s)O1 x (m)ωA(A)·(D)(C)图18.3二.填空题1.一列余弦横波以速度u 沿x 轴正方向传播, t 时刻波形曲线如图18.6所示,试分别指出图中A 、B 、C 各质点在该时刻的运动方向:A ;B ; C .2.已知一平面简谐波沿x 轴正向传播,振动周期T =0.5s, 波长λ=10m,振幅A =0.1 m . 当t =0时波源振动的位移恰好为正的最大值. 若波源处为原点, 则沿波传播方向距离波源为λ/2处的振动方程为y = ; 当t=T /2时, x=λ/4处质点的振动速度为 .3.一简谐波的频率为5×104Hz, 波速为1.5×103m/s,在传播路径上相距5×10-3m 的两点之间的振动相位差为 .三.计算题1.图18.7所示一平面简谐波在t =0时刻的波形图,求 (1) 该波的波动方程 ;(2) P 处质点的振动方程 .2.某质点作简谐振动,周期为2s, 振幅为0.06m, 开始计时(t =0)时, 质点恰好处在负向最大位移处, 求(1) 该质点的振动方程;(2) 此振动以速度u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动方程 ; (3) 该波的波长.练习十九 波的能量 波的干涉一.选择题1.一平面简谐波,波速u =5m · s -1. t = 3 s 时波形曲线如图19.1. 则x =0处的振动方程为(A) y =2×10-2cos(πt /2-π/2) ( S I ) . (B) y =2×10-2cos(πt +π ) ( S I ) .(D)(C)(A)(B)图18.5图18.6-图18.7ux (m)y (10-2m)· · · · · ·· 0 51015 20 25 -2图19.1图19.3(C) y =2×10-2cos(πt /2+π/2) ( S I ) . (D) y =2×10- 2cos(πt -3π/2) ( S I ) .2.一列机械横波在t 时刻的波形曲线如图19.2所示,则该时刻能量为最大值的媒质质元的位置是:(A) o ′, b , d, f . (B) a , c , e , g . (C) o ′, d . (D) b , f .3.一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零, 势能最大. (B) 动能为零, 势能为零. (C) 动能最大, 势能最大. (D) 动能最大, 势能为零.4.如图19.3所示为一平面简谐机械波在t 时刻的波形曲线. 若此时A 点处媒质质元的振动动能在增大,则(A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播.(C) B 点处质元的振动动能在减小. (D) 各点的波的能量密度都不随时间变化.5. 如图19.4所示,两相干波源s 1和s 2相距λ/4(λ为波长), s 1的位相比s 2的位相超前π/2 ,在s 1、s 2的连线上, s 1外侧各点(例如P 点)两波引起的两谐振动的位相差是:(A) 0 . (B) π . (C) π /2 . (D) 3π/2 . 二.填空题1.一列平面简谐波沿x 轴正方向无衰减地传播, 波的振幅为2×10-3m, 周期为0.01s, 波速为400 m/s, 当t =0时x 轴原点处的质元正通过平衡位置向y 轴正方向运动,则该简谐波的表达式为 .2.一个点波源位于O 点, 以O 为圆心作两个同心球面,它们的半径分别为R 1和R 2. 在两个球面上分别取相等的面积∆S 1和∆S 2 ,则通过它们的平均能流之比21 P P = .3.如图19.5所示,在平面波传播方向上有一障碍物AB,根据yx 波速u时刻t 的波形 · · ·· · · ··oo ′ a bc def g 图19.2P1 2图19.4A B图19.5惠更斯原理,定性地绘出波绕过障碍物传播的情况. 三.计算题1.如图19.6所示,三个同频率,振动方向相同(垂直纸面)的简谐波,在传播过程中在O 点相遇,若三个简谐波各自单独在S 1、S 2和S 3的振动方程分别为y 1=A cos(ω t +π/2)y 2=A cos ω ty 3=2A cos(ωt -π/2)且S 2O=4λ ,S 1O=S 3O=5λ(λ为波长),求O 点的合成振动方程(设传播过程中各波振幅不变).2.如图19.7,两列相干波在P 点相遇,一列波在B 点引起的振动是 y 10=3×10 –3cos2πt ( SI )另一列波在C 点引起在振动是y 20=3×10 –3cos(2πt +π/2) ( SI )BP =0.45m , CP =0.30m, 两波的传播速度 u=0.20m/s, 不考虑传播中振幅的减小,求P 点合振动的振动方程.练习二十 驻波 声波 多普勒效应一.选择题1.在波长为λ的驻波中,两个相邻波腹之间的距离为 (A) λ/4 .(B) λ/2 . (C) 3λ/4 .(D) λ .2.某时刻驻波波形曲线如图20.1所示,则a 、b 两点的相位差是(A) π. (B) π/2. (C) 5π /4. (D) 0.3.沿相反方向传播的两列相干波,其波动方程为y 1=A cos2π (νt -x /λ) y 2=A cos2π (νt + x /λ)叠加后形成的驻波中,波节的位置坐标为(A) x =±k λ . (B) x =±k λ/2 . (C) x =±(2k +1)λ/2 . (D) x =±(2k +1)λ/4 . 其中k = 0 , 1 , 2 , 3…….S3 图19.6图19.7图21.14.如果在长为L 、两端固定的弦线上形成驻波,则此驻波的基频波的波长为 (A) L /2 . (A) L . (B) 3L /2 . (D) 2L .5.一机车汽笛频率为750 Hz , 机车以时速90公里远离静止的观察者,观察者听到声音的频率是(设空气中声速为340m/s) :(A) 810 Hz . (A) 699 Hz . (B) 805 Hz . (D) 695 Hz . 二.填空题1.设平面简谐波沿x 轴传播时在x = 0 处发生反射,反射波的表达式为y 2=A cos[2π (νt -x /λ) +π /2] .已知反射点为一自由端,则由入射波和反射波形成驻波波节的位置坐标为 .2.设沿弦线传播的一入射波的表达式是y 1=A cos[2π (νt -x /λ) +ϕ]在x =L 处(B 点)发生反射,反射点为固定端(如图20.2), 设波在传播和反射过程中振幅不变,则弦线上形成的驻波表达式为 y = .3.相对于空气为静止的声源振动频率为νs ,接收器R 以速率v R 远离声源,设声波在空气中传播速度为u , 那么接收器收到的声波频率νR = . 三.计算题1.在绳上传播的入射波方程为 y 1=A cos (ω t +2π x /λ).入射波在x =0处的绳端反射, 反射端为自由端,设反射波不衰减,求驻波方程.2.设入射波的方程式为 y 1=A cos2π (x /λ+t /T ) .在x =0处发生反射,反射点为一固定端,设反射时无能量损失,求:(1)反射波的方程式; (2)合成的驻波方程式; (3)波腹和波节的位置 .练习二十一 振动和波习题课一.选择题1.图21.1中三条曲线分别表示简谐振动中的位移x ,速度v,加速度a ,下面哪个说法是正确的?(A) 曲线3, 1, 2分别表示x , v , a 曲线. (B) 曲线2, 1, 3分别表示x , v , a 曲线.图20.2(C) 曲线1, 3, 2分别表示x , v , a 曲线. (D) 曲线2, 3, 1分别表示x , v , a 曲线. (E) 曲线1, 2, 3分别表示x , v , a 曲线.2.用余弦函数描述一简谐振子的振动,若其速度-时间(v -t )关系曲线如图21.2所示,则振动的初相位为(A) π / 6 . (B) π / 3. (C) π / 2. (D) 2π / 3. (A) 5π / 6 .3.一质点作简谐振动,周期为T , 质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为(A) T / 4 . (B) T /12 . (C) T / 6 . (D) T / 8 .4.一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中 (A) 它的势能转换成动能. (B) 它的动能转换成势能.(C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加. (D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小.5.在弦上有一简谐波,其表达式是y 1=2.0×10-2cos[2π ( t / 0.02-x / 20) +π / 3] ( SI )为了在此弦线上形成驻波, 并且在x =0处为一波节,此弦线上还应有一简谐波, 其表达式为:(A) y 2=2.0×10-2cos[2π ( t / 0.02 + x / 20) +π / 3] ( SI ) (B) y 2=2.0×10-2cos[2π ( t / 0.02+x / 20) +2π / 3] ( SI ) (C) y 2=2.0×10-2cos[2π ( t / 0.02+x / 20) +4π / 3] ( SI ) (D) y 2=2.0×10-2cos[2π ( t / 0.02+x / 20)-π / 3] ( SI )二.填空题1.在静止的升降机中,长度为l 在单摆的振动周期为T 0 ,当升降机以加速度a =g /2竖直下降时,摆的振动周期T = .2. .如图21.3所示,一平面简谐波沿O x 轴负方向传播,波长为λ, 若P 处质点的振动方程是图21.3y P =A cos(2πνt +π /2) .则该波的波动方程是 .P 处质点 时刻的振动状态与O 处质点t 1 时刻的振动状态相同.3一平面简谐波沿O x 轴传播,波动方程为y =A cos[2π (νt -x /λ) +ϕ]则: x 1=L 处介质质点振动初相位是 ;与x 1处质点振动状态相同的其它质点的位置是 ;与x 1处质点速度大小相同,但方向相反的其它各介质质点的位置是 . 三.证明题1. 如图21.4所示,在竖直面内半径为R 的一段光滑圆弧形轨道上,放一小物体,使其静止于轨道的最低处,然后轻碰一下此物体,使其沿圆弧形轨道来回作小幅度运动,试证:(1) 此物体作简谐振动.(2) 此简谐振动的周期 T =2πg R . 四.计算题1.在实验室中做驻波实验时,使一根长3m 张紧的弦线的一端沿垂直长度方向以60H Z 的频率作简谐振动,弦线的质量为60×10-3kg , 如果在这根弦线上产生有四个波腹很强的驻波,必须对这根弦线施加多大的张力?练习十八 阻尼 受迫 共振 波动方程一.选择题B C D C A二.填空题1. 向下,向上; 向上.2. 0.1cos(4πt -π) (SI); -1.26m/s.3. π/3.三.计算题1.(1)原点处质点在t =0时刻y 0=A cos ϕ0=0 v 0=-A ωsin ϕ0>0所以 ϕ0=-π/2. 而 T=λ/v=0.40/0.08=5(s) 故该波的波动方程为y=0.04cos[2π( t/5-x/0.4)-π/2] (SI)(2) P 处质点的振动方程y P =0.04cos[2π( t/5-0.2/0.4)-π/2]图21.4= 0.04cos(0.4π t -3π/2) (SI)2.(1)取该质点为坐标原点O. t =0时刻y 0=A cos ϕ0=-A v 0=-A ωsin ϕ0=0得ϕ0=π. 所以振动方程为y O =0.06cos(2π t/2+π)=0.06cos(π t +π) (SI)(2) 波动方程为y =0.06cos[π(t -x/u )+π]=0.06cos[π(t -x/2)+π] (SI)(3) λ=uT =4(m)练习十九 波的能量 波的干涉一.选择题A B C B B二.填空题1. y =2×10-3cos(200πt -πx/2-π/2).2. R 22/R 12.3.三.计算题1. y 1=A cos[ω(t -l 1/u )+π/2]= A cos[2π(t/T -l 1/λ)+π/2]= A cos[2π(t/T -5λ/λ)+π/2] = A cos(ω t +π/2)同理 y 2=A cos ω ty 3=2A cos(ωt -π/2) 利用旋转矢量图和矢量加法的多边形法(如图),则可知合振动振幅及初位相为A ,-π/4.故合振动方程为y =2A cos(ωt -π/4)2. 两列相干波在P 点引起的振动分别是 y 1=3×10-3cos[2π(t -l 1/u )]=3×10-3cos(2πt -9π/2) =3×10-3cos(2πt -π/2)y 2=3×10-3cos[2π(t -l 2/u ) +π/2]=3×10-3cos(2πt -3π+π/2)= 3×10-3cos(2πt -π/2)所以合振动方程为y = y 1+ y 2= 6×10-3cos(2πt -π/2) (SI)练习二十 驻波 多普勒效应A 1A 2A 3 Ay O -π/4 ⎭一.选择题B C D D B二.填空题1. x=(k+1/2)(λ/2), k=0,1,2,3,….2.2A cos(2πx/λ±π/2-2πL/λ)·cos(2πνt±π/2+ϕ-2πL/λ) .3. νs(u-v R)/u.三.计算题1. 入射波在x =0处引起的振动为y10=A cos (ω t+2π 0/λ)= A cosω t因反射端为自由端,所以反射波波源的振动y20= A cosω t反射波方程为y2=A cos (ω t-2πx/λ)驻波方程为y= y1+ y2= A cos (ω t+2πx/λ)+ A cos (ω t-2πx/λ)=2A cos 2πx/λcosω t2.(1) 入射波在x =0处引起的振动为y10=A cos2π(0/λ+ t/T)= A cos2πt/T因反射端为固定端,所以反射波波源的振动为y20= A cos(2πt/T-π) 反射波方程为y2=A cos[2π(t/T- x/λ)-π]= A cos[2π(x/λ- t/T)+π](2)合成的驻波方程式y=y1+y2=A cos[2π(x/λ+t/T)]+A cos[2π(x/λ-t/T)+π]=2A cos(2πx/λ+π/2)cos(2πt/T-π/2)(3)对于波腹,有2πx/λ+π/2=nπ故波腹位置为x= (n-1/2)λ/2 (n=1,2,3,…)对于波节,有2πx/λ+π/2=nπ+π/2故波节位置为x= n λ/2 (n=1,2,3,…)练习二十一振动和波习题课一.选择题 E A B C C二.填空题1. 2T0.2. -2πL/λ+ϕ·; L±kλ(k=1,2,3,…);L±(k+1/2)λ(k=1,2,3,…).3. y=A cos{2π[νt+( x+L) /λ]+π/2}t1+L/(λν)+ k/ν(k=0,±1,±2,±3,…){或t1+L/(λν)}三.计算题1.设绳张力为T ,线密度为μ,则波速为u=()m Tl l m T T ==μ=λνT=λ2ν2m/l因弦线上产生有四个波腹很强的驻波,所以l=4·λ/2=2λ λ=l/2 T=λ2ν2m/l=l ν2m/4=162N四.证明题1.(1) 设小球向右摆动为角坐标θ正向.摆动过程中小球受重力和弧形轨道的支持力. 重力的切向分力使小球获得切向加速度.当小球向右摆动θ角时, 重力的切向分力与θ相反,有-mg sin θ=ma t =mR d 2θ/d t 2当作小幅度运动时,sin θ ≈θ, 有d 2θ/d t 2+(g/R ) θ=0故小球作间谐振动 θ=θA cos(R g t +ϕ) (2)周期为 T=2π/ω=2π /R g =2πg RⅣ 课堂例题一.选择题1. 一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为2m 的物体,则系统振动周期T 2等于(A) 2 T 1 (B) T 1(C) T 12/ (D) T 1 /2 (E) T 1 /42. 一简谐振动曲线如图所示.则振动周期是 (A) 2.62 s . (B) 2.40 s .(C) 2.20 s . (D) 2.00 s .3. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A))3232cos(2π+π=t x .(B) )3232cos(2π-π=t x .(C) )3234c o s (2π+π=t x .(D))3234c o s (2π-π=t x .--(E) )4134cos(2π-π=t x4.一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m . (B) 波长为3 m . (C) a 、b 两点间相位差为2π . (D) 波速为9 m/s .5. 两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前2π,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B) 2π. (C) π. (D) 23π.6. 在波长为λ 的驻波中,两个相邻波腹之间的距离为 (A) λ /4. (B) λ /2. (C) 3λ /4. (D) λ . 二.填空题1.质量为m 物体和一个轻弹簧组成弹簧振子,其固有振动周期为T. 当它作振幅为A 自由简谐振动时,其振动能量E = ____________.2.两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅为___________________ cm ,第一、二两个简谐振动的相位差φ1 - φ2为____________.3.一物体同时参与同一直线上的两个简谐振动:)314c o s (05.01π+π=t x (SI) , )324c o s (03.02π-π=t x (SI)合成振动的振幅为__________________m .4.一平面简谐波沿x 轴正方向传播,波速u = 100 m/s ,t = 0时刻的波形曲线如图所示.可知波长λ = ____________; 振幅A = __________; 频率ν = ____________.5.设沿弦线传播的一入射波的表达式为S 1S 2Pλ/4)-y (m )]2c o s [1λωxt A y π-=,在处(B 点)发生反射,反射点为自由端(如图).设波在传播和反射过程中振幅不变,则弦上形成的驻波的表达式是y = ______________________________.6.一列火车以20 m/s 的速度行驶,若机车汽笛的频率为600 Hz ,一静止观测者在机车前和机车后所听到的声音频率分别为____________和__________(设空气中声速为340 m/s ).三.计算题1.图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.已知波速为u ,求 (1) 坐标原点处介质质点的振动方程; (2) 该波的波动表达式.2.图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程.3.一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π= 求:(1) x = λ /4 处介质质点的合振动方程; (2) x = λ /4 处介质质点的速度表达式.(m ) -4.如图,一角频率为ω,振幅为A的平面简谐波沿x轴正方向传播,设在t = 0时该波在原点O处引起的振动使媒质元由平衡位置向y轴的负方向运动.M是垂直于x轴的波密媒质反射面.已知OO'= 7 λ /4,PO'= λ /4(λ为该波波长);设反射波不衰减,求:(1) 入射波与反射波的表达式;;(2)P点的振动方程.附Ⅴ振动和波习题课课堂例题解答一.选择题 DBCCCB 二.填空题1、 222/2T mA π2、 10 、π-213、 0.024、 0.8 m 0.2 m 125 Hz5、 )2cos()22cos(2λωλλLt LxA π-π-π6、 637.5 Hz 、 566.7 Hz三.计算题1、解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时 刻,O 处质点φcos 0A =, φωs i n 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为 )24c o s (2/ππ-=νA A所以244πππ-=-ν, ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI) (2) 波速u = 20 /2 m/s = 10 m/s波长λ = u /ν = 160 m 波动表达式]21)16016(2c o s [π-+π=xt A y (SI)2、解:(1) O 处质点,t = 0 时0cos 0==φA y , 0sin 0>-=φωA v所以 2π-=φ 又==u T /λ 5 s 故波动表达式为]2)4.05(2cos[04.0π--π=x t y (SI)(2) P 处质点的振动方程为]2)4.02.05(2c o s [04.0π--π=t y P )234.0c o s (04.0π-π=t (SI)3、解:(1) x = λ /4处)22cos(1ππ-=t A y ν , ))22cos(22ππ+=t A y ν ∵y 1,y 2反相∴合振动振幅 A A A A s =-=2,且合振动的初相φ 和y 2的初相一样为2π. 合振动方程 )22cos(ππ+=t A y ν(2)x = λ /4处质点的速度)2cos(2)2 2sin(2/d d v ππππππ+=+-==t A t A t y νννν4、解:设O 处振动方程为)cos(0φω+=t A y当t = 0时, y 0 = 0,v 0 < 0,∴ 2π=φ ∴ )2cos(0π+=t A y ω 故入射波表达式为)22c o s (λωx t A y ππ-+=在O ′处入射波引起的振动方程为 )c o s ()4722c o s (1πππ-=⋅-+=t A t A y ωλλω由于M 是波密媒质反射面,所以O ′处反射波振动有一个相位的突变π.∴ )cos(1π+π-='t A y ωt A ωcos = 反射波表达式)](2cos[x O O t A y -'π-='λω)]47(2cos[x t A -π-=λλω ]22cos[π+π+=x t A λω合成波为 y y y '+=]22cos[]22cos[π+π++π+π-=x t A x t A λωλω)2cos(2cos2π+π=t x A ωλ将P 点坐标 λλλ234147=-=x 代入得P 点的振动方程)2cos(2π+-=t A y ω。
大学物理学(第五版)下册第十章 波动 补充例题
y/m 0.10
I
II
u
O -0.10
0.20
0.40
0.60 x / m
6 平面简谐波的波动方程为
y 0.08 cos( 4t 2x),式中y的单位为m, t的单位为s.求:(1)t 2.1s 时波源及距波 源0.10m两处的相位; (2)离波源0.80m及 0.30m说明两处的相位.
r1
11 如图所示, x 0 处有一运动方程为 y A cos t 的平面波波源,产生的波沿x轴正、 负方向传播MN为波密介质的反射面,距波源 3 λ / 4.求:(1)波源所发射的波沿波源O左右 传播的波动方程;(2)在MN处反射波的波动 方程;(3)在O~MN区域内形成的驻波方程, 以及波节和波腹的位置;(4)区域内合成波 M 的波动方程.
13 一警车以25m· s-1的速度在静止的空 气中行驶,假设车上警笛的频率为800Hz. 求: (1)静止站在路边的人听到警车驶近和离 去时的警笛声波频率; (2)如果警车追赶一辆速度为15m· s-1的客 车,则客车上人听到的警笛声波频率是多 少? (设空气中声速为u=330m· s-1 )
14 一次军事演习中,有两艘潜艇在水 中相向而行,甲的速度为50.0km· h-1,乙的 速度为70.0km· h-1,如图所示.甲潜艇发出一 个1.0×103Hz的声音信号,设声波在水中的 传播速度为5.47×103km· h-1,试求:(1) 乙潜艇接收到的信号频率;(2)甲潜艇接 收到的从乙潜艇反射回来的信号频率.
) 甲 50.0km· h-1 )
)
)
)
)
)
乙 70.0km· h-1
y/m
u 0.08m s 1
O -0.04
大物例题(六、七)
(2)波动方程 t 时刻原点的振动为 t-d/u时刻P点的振动 原点的振动方程为:
yP
A cos (
2
t
)
y
A
O
.
1
t
yO
A cos [
2
(t
d) u
]
波动方程
y Acos[ (t x d ) ]
2 uu
Acos[2 ( t x d ) ] 4
v y t
4.0
T
10-2 cos(100π t
2
5π x
π2λ)区别波1速2.6与co质s(点10振0π动t 速5度π x)
例7-3. 图示为一平面简谐波在t=0时刻的波形图
求(1)波动方程 (2)P处质点的振动方程
y
u=0.08m/s
解:设原点处质点的振动方程为
yo Acos(t )
x Acos(t )
31.4
v vm
Asin(t ) vm A 31.4cms 1
cos(t
2
)
15.7 0
15.7
1
t(s)
v的旋转矢量与v轴夹角表示t
时刻相位 t
2
由图知 2
23
6
31.4
解 (1) A = 4.0102m, = 0.4m y /cm
周期
T
λ u
0.4 20
1 50
s
y
4
2
u t=0
(2) 原点处质点的振动方程
高考物理专题复习振动和波综合例题精选
高考物理专题复习 振动和波综合例题精选例1:若单摆的摆长不变,摆球的质量增加为原来的4倍,摆球经过平衡位置时的速度减为原来的12,则单摆的A .频率不变,振幅不变B .频率不变,振幅改变C .频率改变,振幅改变D .频率改变,振幅不变 解析:本题考查单摆振动周期或频率与摆球质量和摆角无关,只由摆长和当地重力加速度决定,即T L g=2π。
因而频率不变。
振动过程中机械能守恒,在摆长不变情况下总机械能可以由在平衡位置的动能或最大振幅时的势能表示,本题经过平衡位置时动能E mv E m v mv K K 12121242121222==⎛⎝ ⎫⎭⎪=,,单摆机械能未变化,最大位移处与平衡位置的高差h v g=22,由于v 的减小而减小,在摆长不变条件下,振幅要减小,正确选项是B 。
例2:单摆摆球多次通过同一位置时,下述物理量变化的是A .位移B .速度C .加速度D .动量E .动能F .摆线张力 解析:通过同一位置,其位移不变,同时加速度、回复力、速率、动能也不变,摆线张力mg m v Lcos α+2也不变,由单摆振动的往复性可知相邻两次经过同一位置速度方向发生改变,从而动量也发生改变。
符合题意的选项是BD 。
有兴趣的话,可以分析一下,当回复力由小变大时,上述哪些物理量的数值是变小的?例3:若单摆摆球在最大位移处摆线断了,此后球做什么运动?若在摆球经过平衡位置时摆线断了,摆球又做什么运动?解析:单摆摆至最大位移处速度为零,此时摆线断了,摆球只受重力,因此摆球做自由落体运动。
在平衡位置线断了,此时摆球有最大水平速度,又只受重力,所以摆球做平抛运动。
本题除了考查单摆振动中速度特点外,还考查了物体运动轨迹是由受力和初速度决定的这一基本知识。
例4:在光滑水平面上有一弹簧振子,弹簧的劲度系数为K ,振子质量为M ,振动最大速度为v 0,如图2所示。
当振子在最大位移为A的时刻把质量为m 的物体轻放在其上,则(1)要保持物体和振子一起振动,二者间动摩因数至少有多大?(2)一起振动时,二者通过平衡位置时的速度是多大?振幅又是多大?解析:(1)对M 与m 整体以及m 隔离受力分析如图3所示,在最大位移处,竖直方向均为平衡态,水平方向加速度应相同即()T KA M m a a KA M mf ma f mg ==+=+==,,,μ, μmg ma ≥时一起振动。
振动图像和波动图像的综合应用
振动图像和波动图像的综合应用
创新微课
【解析】 :在(b)的振动图象中,t=0时质点在平衡位置且向y 轴正方向运动,在平衡位置的点只有b、d,故选项A、C错误; 因题干中未给出波的传播方向,此时还不知b、d的运动方向。若 波沿x正向传播,波源在左侧,b、d两点都是在其左侧点的带动 下振动的,b左侧1 的点在其上方,因此b质点正向上运动,符合要 求,选项B正确;d左侧的点在其下方,d质点正向下运动,不合 要求,选项D错误。
置的-y方向上,1都在a的带动下向上运动,波的图象如图所示。
振动图像和波动图像的综合应用
【练习】根据图甲、乙所示,判断下列说法正确的是( BD )
创新微课
1
A.甲是振动图象,乙是波的图象 B.甲是波的图象,乙是振动图象
C.甲中A质点向下振,乙中B时刻质点向下振 D.甲中A质点向上振,乙中B时刻质点向下振
【答案】 B
振动图像和波动图像的综合应用
创新微课
【例题2】 一列简谐横波沿x轴负方向传播,如图甲是t=1 s时的波
形,图乙是波中某振动质点位移随时间变化的振动图象(两图用同一 时间起点)。
1 (1)图乙可能是图甲中哪个质点的振动图象( A ) A.x=0处的质点 B.x=1 m处的质点 C.x=2 m处的质点 D.x=3 m处的质点
同学,下节再见
【解析】(1)由题图乙可知,当t=1 s时,质点在平衡位置,正要沿y 轴负方向运动,由题图甲和波向x轴负方向传播判断 x=0处质点在 平衡位置,且正沿y轴负方向运动。故选项A正确。
(2)由题图甲和波向x轴正方向传播可判断x=2 m处的质点在平衡 位置,且正沿y轴负1方向运动,故选项C正确。
(3)在t=1 s时,x=3 m处的质点正在正向最大位移处,可得振动图 象如图所示:
大学物理(工科) 振 动 和 波
0
mg
即:
d2
dt2
3g
2l
0
2 3g
2l
故:T 2 2 2l
3g
[例3] 半径为R 的圆环静止于刀口O 点上,令其在自身平面内作 微小摆动,证明其摆动为简谐振动,并计算其振动周期。
证明: 设圆环偏离角度为θ。圆环可看作刚体,分析所受力矩:
取逆时针为正方向。 M Rmgsin
o
由转动定律:
1、旋转矢量:
作坐标轴 O x , 自O 点作一矢量
OM , 用 A 表示 。 A A - 振幅A
A
M t 0 t A
o px
A 在t = 0 时与x 轴的夹角- 初相 φ
A 以恒定角速度ω 绕O 点作逆时针转动 - 角频率ω
t 时刻 A与x 轴的夹角- 相位 ω t +φ
矢量 A 的端点M 在x 轴上的投影点P 的坐标为:
由图可知,A = 2 cm ,当t = 0 时
x(cm)
2
1
0 1
x0 2 cos 1
v0 0
由矢量图可得: 2 / 3
2
1s
t = 1s 时位移达到正的最大值,即: A
画出矢量图:知:
t 1s、 4 、 4
3
t 3
x 2 cos 4 t 2
3
3
A
t(s)
Ax Ax
44
[例2] 一长为 l 的均匀细棒悬于其一端的光滑水平轴上,
作成一复摆。此摆作微小摆动的周期为多少?
解:均匀细棒可看作刚体,分析所受力矩:
O
取逆时针为正方向。
M mg sin l
2
由转动定律:
l
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j=
π
3
波动方程为:
y=
A cos
2π
l
(x+ut )+j
= A cos
2π
60
(x
+120
t
)
π
3
例2. 有一列向 x 轴正方向传播的平面简 谐波,它在t = 0时刻的波形如图所示,其波 速为u =600m/s。试写出波动方程。
y(m)
o
.
12
u 5
x (m)
结束 返回
解:
y(m)
[ 例1] 以P 点在平衡位置向正方向运动作 为计时零点,写出波动方程。
y
o
uP
d
解:
jp=
π
2
yp = A cos (ω t
π
2
)
yo=
A cos[ω
(t+
d u
)
y
=
A cos[ω
(
t
+
d u
x
π
2
]
x u
)
π
2
]
结束 返回
[ 例2 ] 波速 u =400m/s, t = 0 s时刻的波 形如图所示。写出波动方程。
结束 返回
[ 例2 ] 水面上浮有一方形木块,在静止时 水面以上高度为a,水面以下高度为b。水密度
为ρ ´木块密度为ρ 不计水的阻力。
a
b
ρ
ρ´
结束 返回
[ 例2 ] 水面上浮有一方形木块,在静止时 水面以上高度为a,水面以下高度为b。水密度
为ρ ´木块密度为ρ 不计水的阻力。现用外力
将木块压入水中,使木块上表面与水面平齐。
x
)+
π
2
=2k
π
2
x=d
2π
l
(d
l
4
x
(2k+1)
)+π2 = (2k
+
1)π2
x =d
kl
2
结束 返回
例1.一平面简谐波,向 x 轴负方向传播, 波速为u=120m/s,波长为60m,以原点处质 点在y =A/2处并向y轴正方向运动作为计时 零点,试写出波动方程。
解: u=120 l =60 在 t = 0 时刻 v > 0
y a
o
x
b
[ 例1 ] 一弹簧振子 k = 8N/m, m= 2 kg, x0 =3 m, v0 =8 m/s
求:ω,A, j 及振动方程
解:ω =
k m
=
8 2
=2
(rad/s)
A=
x
2 0
+
(ωv0
)2
=几几几 32 +(
8 2
)2
= 5(m
)
tg j =
v0
ω x0
=
8 2×3
=
4
3
结束 返回
.P
o 12
t =0 时刻
yO =
A 2
v< 0
jO
π
=4
2π
l=
π
4
( π2 )
12
A x (m)
yP = 0 v >0
jP =
π
2
l = 32m
结束 返回
例4 一平面简谐波以速度 u沿x轴正方向传 播,在 t=t’时波形曲线如图所示,则坐标原 点o的振动方程为________________。
= sρ ´g x
合外力和位移成正比,方向和位移相反,
木块作谐振动。
结束 返回
由上面得到: Σ F = sρ ´g x
由牛顿定律
sρ ´gx = (a+b)sρ
d2x dt 2
d2x dt 2
+(aρ+b´g)ρ
x=0
ω=
ρ ´g (a+b)ρ
t =0
x0 =a v0 = 0
tg j =
v0
ω x0
=
8 2×3
=
4
3
j 1= 53.13 0 j2 =126.870
若取 j2 =126.870
则有 x 0 = Acos j 2 < 0
∵ x0 =3 m>0 ∴不合题意,舍去
取 j 1= 53.13 0
x = 5 cos(2 t 53.3 0 )
= 5cos( 2t 0.296π )
结束 返回
l = 4 (m)
ω = 2πν
=2π
u l
=
2π
4400=
200π
(S
1)
y 0
=
4
cos
(
200π
t
π
3
)
结束 返回
[ 例3 ] 设波源(在原点O)的振动方程为:
y = Acosω t
它向墙面方向传播经反射后形成驻波。
求:驻波方程,波节及波腹的位置。
y 入射波
o
d
x
p
墙 面
入射波 y入 = A cosω ( t
原点处质点的振动方程为:
y0= 5 cos
100πt
π
+2
波动方程为:
y = 5 cos 100π(t
x 600
)+π2
结束
返回
例3. 有一列向 x 轴正方向传播的平面简 谐波,它在t = 0时刻的波形如图所示,试求 其波长。
y(m)
u
A
2 o
.P
12
A x (m)
结束 返回
解: y(m)
u
A
2
将木块压入水中,使木块上表面与水面平齐。
求证:木块将作谐振动,并写出谐振动方程。
a
b
ρ
ρ´
结束 返回
平 衡 位
a b
.
ρc
置 ρ´ s
0
y
任 意
a
x
位 置
b
s
.
0
x
y
c
x
平衡时: (a+ b)sρ g bsρ ´g = 0
任意位置木块受到的合外力为:
Σ F= (a+b) sρ g (b+x )sρ ´g
y 反
=
A
cos
[ω
(
t
d u
dx u
)+π
]
=A cos [ω ( t
2d u
x
) +π ]
结束 返回
驻波方程:
y
=
y 入
+
y反=
A
cosω
(t
x u
)
+ A cos [ω ( t
2d u
x
) +π
]
=2A cos (ω t
2π d
l
+π2
)cos
[2π
(d l
x
)+
π
2
]
波腹: 波节:
2π
l
(d
u
o
由图可知, 在t = 0时刻
.
5
12
y =0v=Fra biblioteky t
<
0
x (m)
j
π
=2
l = 24m A =5m
n
=
u l
=
600 12
=50(s 1 )
ω= 2πn = 100π(rad.s 1 )
结束 返回
l = 24m
A =5m
j
π
=2
n
=
u l
=
600 12
=50(s 1 )
ω= 2πn = 100π(rad.s 1 )
x u
)
ω y´p = A cos ( t du )___p点的振动方程
考虑到半波损失后P点的振动方程:
yp = A cos [ω ( t
d u
)
+π ]
结束 返回
y o
入射波
x
反 射波
m (叠加点) d
墙 p面
考虑到半波损失后P点的振动方程:
yp = A cos [ω ( t
d u
)
+π
]
反射波在叠加点(m点) 的振动方程:
y(m)
24
o
u p
5 3
x (m)
{ t = 0
(o点)
y 0
=
2
=
v0 > 0
A
2
得:
j0 =
π
3
{ t =0
(p点)
y 0
=
0
v0< 0
得:
j
p
=
π
2
结束
返回
y(m)
24
o
u p
5 3
x (m)
j0=
π
3
j
p
=
π
2
2π
l
=
j
pj
d
0
=
2π jp
d
j 0
=
2π × π(
2
5 3
π
3
)
=
4
(m)
结束 返回
[ 例2 ] 水面上浮有一方形木块,在静止时 水面以上高度为a,水面以下高度为b。水密度
为ρ ´木块密度为ρ 不计水的阻力。现用外力
将木块压入水中,使木块上表面与水面平齐。
结束 返回
[ 例2 ] 水面上浮有一方形木块,在静止时 水面以上高度为a,水面以下高度为b。水密度