专题24 平面向量中最值、范围问题-备战2017高考技巧大全之高中数学黄金解题模板(原卷版)
平面向量的最值问题

平面向量的最值问题
平面向量的最值问题指的是求平面向量的最大值和最小值的问题。
在求解平面向量的最值问题时,一般可以通过以下几种常用的方法进行求解:
1. 向量的模的最大值和最小值:对于平面向量a=(x,y),其模的最大值和最小值分别为:
最大值:|a| = √(x^2 + y^2)
最小值:|a| = 0
2. 向量的投影的最大值和最小值:对于平面向量a=(x,y),其在某个方向上的投影的最大值和最小值分别为:
最大值:|proj_u a| = |a|·cosθ,其中θ为a与u的夹角
最小值:|proj_u a| = 0
3. 向量的点乘的最大值和最小值:对于平面向量a=(x1,y1)和b=(x2,y2),其点乘的最大值和最小值分别为:
最大值:a·b = |a|·|b|·cosθ,其中θ为a与b的夹角
最小值:a·b = |a|·|b|·cosθmin,其中θmin为a与b的夹角的最小值,即θmin=0时
需要注意的是,以上方法中的最大值和最小值都是相对于给定的条件和向量范围的。
具体在实际问题中求解向量的最值时,需要根据具体的条件和向量的性质进行分析和计算。
高考数学 玩转压轴题 专题2.3 平面向量中范围、最值等综合问题

专题2.3 平面向量中范围、最值等综合问题一.方法综述平面向量中的最值与范围问题是一种典型的能力考查题,能有效地考查学生的思维品质和学习潜能,能综合考察学生分析问题和解决问题的能力,体现了高考在知识点交汇处命题的思想,是高考的热点,也是难点,其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量夹角、系数的范围的等,解决思路是建立目标函数的函数解析式,转化为求函数的最值,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合. 二.解题策略类型一 与向量的模有关的最值问题【例1】【2018河北定州中学模拟】设向量,,a b c 满足2a b ==, 2a b ⋅=-, ,c>60a c b <--=︒,则c 的最大值等于( )A. 4B. 2C. 2D. 1 【答案】A【指点迷津】由已知条件得四点共圆是解题关键,从而转化为求外接圆直径处理. 【举一反三】1、【2018辽宁沈阳东北育才学模拟】在Rt ABC ∆中, 090A ∠=,点D 是边BC 上的动点,且3AB =,4AC =,(0,0)AD AB AC λμλμ=+>>,则当λμ取得最大值时, AD 的值为( )A.72 B. 3 C. 125 D. 52【答案】D2、【2018湖南长沙市长郡中学模拟】已知向量,a b 满足: 1a b ==,且12a b ⋅=,若c xa yb =+,其中0x >,0y >且2x y +=,则c 的最小值是__________.【解析】1a b ==,且12a b ⋅=,当c xa yb =+时, 222222c x a xya b y b =+⋅+, ()222x xy y x y xy =++=+-,又0,0x y >>且22,12x y x y xy +⎛⎫+=∴≤= ⎪⎝⎭,当且仅当1x y ==时取“=”, ()2222213,2x y c x y c +⎛⎫∴≥+-=-=∴ ⎪⎝⎭的最小值是.3、【2018浙东北联盟联考】已知向量,,a b c ,满足1,2,3a b c ===, 01λ≤≤,若0b c ⋅=,则()1a b c λλ---的最大值为_________,最小值为__________.【答案】1 【解析】设()()1,1n b c a b c a nλλλλ=+----=-,n a a n n a-≤-≤+,即11n a n n -≤-≤+,()()()2222221121n b c b c bc λλλλλλ=--=+-+-()()2224911318901λλλλλ=+-=-+≤≤,由二次函数性质可得,266136139,3,111413n n n a n n ≤≤≤≤-≤-≤-≤+≤, ()1a b c λλ∴---,最大值为4,最小6131-,故答案为4, 6131-. 类型二 与向量夹角有关的范围问题【例2】已知向量→OA 与→OB 的夹角为θ,→→→→→→→-====PQ OB t OQ OA t OP OB OA ,)1(,,1,20t 在时取得最小值,当0105t <<时,夹角θ的取值范围为________________. 【分析】将PQ 表示为变量t 的二次函数PQ 1)cos 42()cos 45(2+--++=t t θθ,转化为求二次函数的最小值问题,当θθcos 45cos 210++=t 时,取最小值,由已知条件0105t <<,得关于夹角θ的不等式,解不等式得解.【指点迷津】求变量的取值范围、最值,往往要将目标函数用某个变量表示,转化为求函数的最值问题,期间要注意变量之间的关系,进而得解. 【举一反三】1、非零向量b a ,满足b a ⋅2=22b a ,2||||=+b a,则b a 与的夹角的最小值是 .【答案】3π【解析】由题意得2212a b a b ⋅=,()24a b +=,整理得22422a b a b a b +=-⋅≥⋅,即1a b ⋅≤11cos ,22a b a b a b a b ⋅==⋅≤,,3a b ππ∴≤≤,夹角的最小值为3π2、已知向量=(-2,-1),=(λ,1),则与的夹角θ为钝角时,λ的取值范围为( )A. B. C. 且λ≠2 D. 无法确定【答案】C【解析】∵与的夹角θ为钝角,∴=-2λ-1<0,解得λ>,又当λ=2时,满足向量∥,且反向,此时向量的夹角为180°,不是钝角,故λ的取值范围为λ>,且λ≠2.故选C.类型三 与向量投影有关的最值问题【例3】设1,2OA OB ==, 0OA OB ⋅=, OP OA OB λμ=+,且1λμ+=,则OA 在OP 上的投影的取值范围( )A. ⎛⎤ ⎥ ⎝⎦B. ⎛⎤⎥⎝⎦C. ⎛⎤⎥⎝⎦D. ⎛⎤⎥ ⎝⎦【答案】D当λ0=时, 0,x =当1λ0x >===,故当λ1=时,1x 取得最小值为1,即1101x x≥∴<≤,当λ0<时, 1x ====1x <05x ∴-<<综上所述]( ,15x ∈-故答案选D 【指点迷津】由已知求得OA OP→⋅→及OP→,代入投影公式,对λ分类后利用二次函数求最值,在分类讨论时需要讨论完整,不要漏掉哪种情况,讨论完可以检查下是否把整个实数全部取完。
平面向量中最值、范围问题(含解析)高三数学备考冲刺

问题7平面向量中最值、范围问题一、考情分析平面向量中的范围、最值问题是热点问题,也是难点问题,此类问题综合性强,体现了知识的交汇组合.其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量夹角、系数的范围的等,解决思路是建立目标函数的函数解析式,转化为求函数的最值,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合. 二、经验分享1.利用平面向量的数量积可以解决几何中的垂直、夹角、长度等问题,即只需将问题转化为向量形式,用向量的运算来求解.如果能够建立适当的直角坐标系,用向量的坐标运算往往更为简捷.1.平面向量线性运算问题的常见类型及解题策略2.几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.3.坐标是向量代数化的媒介,通过向量的坐标表示可将向量问题转化为代数问题来解决,而坐标的获得通常要借助于直角坐标系. 对于某些平面向量问题, 若能建立适当的直角坐标系,可以使图形中复杂的几何关系转化为简单明朗的代数关系,减少推理过程,有效地降低思维量,起到事半功倍的效果.上面两题都是通过建立坐标系将向量问题转化为函数与不等式问题求解,体现了向量解题的工具性. 三、知识拓展 1..2.四、题型分析(一) 平面向量数量积的范围问题已知两个非零向量a 和b ,它们的夹角为θ,把数量cos a b θ⋅⋅叫做a 和b 的数量积(或内积),记作a b ⋅.即a b ⋅=cos a b θ⋅⋅,规定00a ⋅=,数量积的表示一般有三种方法:(1)当已知向量的模和夹角时,可利用定义法求解,即a b ⋅=cos a b θ⋅⋅;(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a·b=x1x2+y1y2;(3)运用平面向量基本定理,将数量积的两个向量用基底表示后,再运算.【例1】【江苏省苏州市2019届高三上学期期末】如图,在边长为2的正方形ABCD中,M,N分别是边BC,CD上的两个动点,且BM+DN=MN,则的最小值是_______.【答案】【分析】由题意,以点A为原点,建立的平面直角坐标系,设点,其中,则向量求得,再由,整理得,利用基本不等式,即可求解.【解析】由题意,以点A为原点,建立如图所示的平面直角坐标系,设点,其中,则向量,所以又由,则,整理得,又由,设,整理得,解得,所以,所以的最小值为.【点评】与几何图形有关的平面向量的数量积的运算及应用,常通过建立空间直角坐标系,利用向量的数量积的坐标运算求解【小试牛刀】【江苏省盐城中学2018届高三上学期期末】已知ABC ∆的周长为6,且,,BC CA AB 成等比数列,则BA BC ⋅的取值范围是______. 【答案】【解析】因为,,BC CA AB 成等比数列,所以,从而02b <≤,所以,又,即,解得,故.(二) 平面向量模的取值范围问题 设(,)a x y =,则,向量的模可以利用坐标表示,也可以借助“形”,向量的模指的是有向线段的长度,过可结合平面几何知识求解,尤其注意,如果直接求模不易,可以将向量用基底向量表示再求.【例2】已知向量,,a b c 满足a 与b 的夹角为4π,,则c a -的最大值为 .【分析】根据已知条件可建立直角坐标系,用坐标表示有关点(向量),确定变量满足的等式和目标函数的解析式,结合平面几何知识求最值或范围. 【解析】设;以OA 所在直线为x,O 为坐标原点建立平面直角坐标系, ∵a 与b 的夹角为4π,则A (4,0),B (2,2),设C (x,y ) ∵,∴x 2+y 2-6x-2y+9=0,即(x-3)2+(y-1)2=1表示以(3,1)为圆心,以1为半径的圆,c a -表示点A,C 的距离即圆上的点与点A (4,0)的距离;∵圆心到B 的距离为,∴c a -的最大值为12+.【点评】建立直角坐标系的原则是能准确快捷地表示有关向量或点的坐标,正确找到变量间的关系,以及目标函数代表的几何意义是解题关键.【小试牛刀】【2018届山东省济南高三上学期期末】已知平面上的两个向量OA 和OB 满足OA a =,OB b =,且221a b +=, 0OA OB ⋅=,若向量,且,则OC 的最大值为__________.【答案】32【解析】因为OA a =, OB b =,且221a b +=, 0OA OB ⋅=,,,如图,取AB 中点D ,则,12OD =, ,由可得, 1DC ∴=, C ∴在以D 为圆心, 1为半径的圆上, ∴当O C ,, D 共线时OC 最大, OC ∴的最大值为312OD +=,故答案为32. (三) 平面向量夹角的取值范围问题设11(,)a x y =,22(,)b x y =,且,a b 的夹角为θ,则.【例3】已知向量→OA 与→OB 的夹角为θ,0t 在时取得最小值,当0105t <<时,夹角θ的取值范围为________________. 【分析】将PQ 表示为变量t 的二次函数PQ ,转化为求二次函数的最小值问题,当时,取最小值,由已知条件0105t <<,得关于夹角θ的不等式,解不等式得解. 【解析】由题意知,,,所以,由二次函数的图像及其性质知,当上式取最小值时,.由题意可得,,求得,所以322πθπ<<. 【点评】求变量的取值范围、最值,往往要将目标函数用某个变量表示,转化为求函数的最值问题,期间要注意变量之间的关系,进而得解.【小试牛刀】已知非零向量,a b 满足2a b = ,若函数在R 上存在极值,则a 和b 夹角的取值范围为【答案】,3ππ⎛⎤⎥⎝⎦【解析】,设a 和b 夹角为θ,因为()f x 有极值,所以,即,即1cos 2θ<,所以,3πθπ⎛⎤∈ ⎥⎝⎦. (四)平面向量系数的取值范围问题平面向量中涉及系数的范围问题时,要注意利用向量的模、数量积、夹角之间的关系,通过列不等式或等式得系数的不等式,从而求系数的取值范围.【例4】已知()2,λ=a ,()5,3-=b ,且a 与b 的夹角为锐角,则λ的取值范围是 . 【分析】a 与b 的夹角为锐角等价于0a b ⋅>,且a 与b 不共线同向,所以由0a b ⋅>,得310<λ,再除去a 与b 共线同向的情形.【解析】由于a 与b 的夹角为锐角,0>⋅∴b a ,且a 与b 不共线同向,由,解得310<λ,当向量a 与b 共线时,得65-=λ,得56-=λ,因此λ的取值范围是310<λ且56-≠λ.【点评】注意向量夹角与三角形内角的区别,向量夹角的范围是[0,]π,而三角形内角范围是(0,)π,向量夹角是锐角,则cos 0,θ>且cos 1θ≠,而三角形内角为锐角,则cos 0,θ>. 【小试牛刀】【江苏省泰州中学2018届高三10月月考】如图,在ABC ∆中,.(1)求AB BC ⋅的值;(2)设点P 在以A 为圆心, AB 为半径的圆弧BC 上运动,且,其中,x y R ∈.求xy 的取值范围.【解析】(1).(2)建立如图所示的平面直角坐标,则.设,由,得.所以.所以..因为,所以,当262ππθ-=时,即3πθ=时, xy 的最大值为1; 当或即0θ=或23πθ=时, xy 的最小值为0.五、迁移运用1.【江苏省南通、扬州、泰州、苏北四市七市2019届高三第一次(2月)模拟】在平面四边形中,,则的最小值为_____.【答案】【解析】如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为,AB=1,由数量积的几何意义知在方向的投影为3,∴可设C(3,n),又所以,,即,==,当且仅当,即n=1,m=时,取等号,故答案为.2.【江苏省无锡市2019届高三上学期期末】已知点 P 在圆 M: (x-a)2 +(y-a+2)2=1 上, A,B 为圆 C:x2 +(y-4)2=4 上两动点,且 AB =2, 则的最小值是____.【答案】【解析】取AB的中点D,因为AB =2,R=2,CD==1,所以,=.C(0,4),M(a,a-2)当C、D、P、M在一条直线上时,|PD|最小,此时,|PD|=|CM|-|CD|-|PM|=所以,=≥19-12,当a=3时取到最小值19-12.故答案为:.3.【江苏省清江中学2019届高三第二次教学质量调研】在平面直角坐标系中,已知点为圆上的两动点,且若圆上存在点使得则正数的取值范围为________.【答案】【解析】设BD的中点为D,所以所以点D在以原点为圆心,以1为半径的圆上,所以点D的轨迹方程为,因为,所以设所以所以m表示动点到点(1,1)的距离,由于点在圆上运动,所以,所以正数m 的取值范围为.故答案为:4.【江苏省如皋市2018-2019学年高三数学第一学期教学质量调研】在△ABC 中,D 为AB 的中点,若,则的最小值是_______.【答案】.【解析】根据D 为AB 的中点,若,得到,化简整理得,即,根据正弦定理可得,进一步求得,所以,求导可得当时,式子取得最大值,代入求得其结果为,故答案为.5.【江苏省常州2018届高三上学期期末】在ABC ∆中, 5AB =, 7AC =, 3BC =, P 为ABC ∆内一点(含边界),若满足,则BA BP ⋅的取值范围为________.【答案】525,84⎡⎤⎢⎥⎣⎦【解析】由余弦定理,得,因为P 为ABC ∆内一点(含边界),且满足,所以30,4λ⎡⎤∈⎢⎥⎣⎦,则.6.【江苏省南通市2018届高三上学期第一次调研】如图,已知矩形ABCD 的边长2AB =, 1AD =.点P ,Q 分别在边BC , CD 上,且,则AP AQ ⋅的最小值为_________.【答案】424-【解析】以A 坐标原点,AB,AD 所在直线为x,y 轴建立直角坐标系,设所以AP AQ ⋅因为,所以因为,所以因此7.【江苏省如皋市2017--2018学年度高三年级第一学期教学质量调研】已知点P 是边长为23的正三角形ABC 内切圆上的一点,则PA PB ⋅的取值范围为_______.【答案】[]3,1-【解析】以正三角形ABC 的中心为原点,以AB 边上的高为y 轴建立坐标系,则,正三角形ABC 内切圆的方程为221x y +=,所以可设,则,,故答案为[]3,1-.8.【南京市、盐城市2018届高三年级第一次模拟考试】如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则AB CD ⋅ 的最大值为________.【答案】24【解析】先建立直角坐标系,由向量投影知AB CD ⋅ 取最大值时,即AB CD ⋅9.【江苏省泰州中学2018届高三12月月考】已知单位向量a , b 的夹角为120︒,那么2a xb -(x R ∈)的最小值是__________. 【答案】3 【解析】∴ 2a xb-的最小值为3.10.【江苏省溧阳市2017-2018学年高三第一学期阶段性调研】扇形AOB 中,弦2AB C =,为劣弧AB 上的动点, AB 与OC 交于点P ,则·OP BP 的最小值是_____________________. 【答案】14-【解析】设弦AB 中点为M,则若,MP BP 同向,则0OP BP ⋅>,若,MP BP 反向,则0OP BP ⋅<,故OP BP ⋅的最小值在,MP BP 反向时取得,此时,则:,当且仅当时取等号,即OP BP ⋅的最小值是14-. 11.已知AB 为圆O 的直径,M 为圆O 的弦CD 上一动点,8AB =,6CD =,则MA MB ⋅的取值范围是 . 【答案】[9,0]- 【解析】 试题分析:,而,所以MA MB ⋅的取值范围是[9,0]-12.在ABC ∆中, ,则角A 的最大值为_________.【答案】6π 【解析】试题分析:由题设可得,即,也即,故,由于,因此,故,所以,所以6max π=A ,应填答案6π. 13.在平面内,定点,,,A B C D 满足,动点,P M 满足,则BM 的最大值是__________.【答案】321- 【解析】 试题分析:设,则.由题设可知,且.建立如图所示的平面直角坐标系,则,由题意点P 在以A 为圆心的圆上,点M 是线段PC 的中点.故结合图形可知当CP 与圆相切时,BM 的值最大,其最大值是123-.应填答案321-.14.【2018届江苏省泰州中学高三12月月考】在矩形ABCD 中, 3AB =, 1AD =,若M , N 分别在边BC , CD 上运动(包括端点,且满足,则AM AN ⋅的取值范围是__________.【答案】[1,9]【解析】分别以AB,AD 为x,y 轴建立直角坐标系,则,设,因为,所以33xb -=,则,故,所以,故填[1,9].15.在ABC ∆中,点D 在线段BC 的延长线上,且12BC CD =,点O 在线段CD 上(与点,C D 不重合),若,则x 的取值范围是__________.【答案】()2,0- 【解析】 因为,因为12BC CD =,点O 在线段CD 上, 所以()0,2y ∈,因为,所以()2,0x ∈-.16.已知向量(),2a x =-,(),1b y =,其中x ,y 都是正实数,若a b ⊥,则2t x y =+的最小值是___________. 【答案】4【解析】由a b ⊥,得0=⋅b a ,即,所以2=xy .又x ,y 都是正实数,所以.当且仅当y x 2=时取得等号,此时2=x ,1=y ,故答案为:4.17.在ABC ∆中,已知3AB =,3C π=,则CA CB ⋅的最大值为 .【答案】32【解析】,由余弦定理得:,所以32CA CB ⋅≤,当且仅当a b =时取等号18.已知△ABC 中,4AB =,2AC =,(R λ∈)的最小值为23,若P 为边AB 上任意一点,则PB PC ⋅的最小值是 . 【答案】94-【解析】令()f λ==216λ+24(22)λ-+=,当cos 0A =时,()f λ=,因为2322>,所以2A π=,则建立直角坐标系,(0,0)A , ,设(,0)P x (04)x <<,则,,所以PB PC ⋅=(4)x x --=2(2)4x --;当cos 0A ≠时,()f λ=+1cos ]2A+≥,解得1cos 2A =,所以3A π=,则建立直角坐标系,(0,0)A , ,设(,0)P x (04)x <<,则, ,所以PB PC ⋅==259()24x --.综上所述,当52x =时,PB PC ⋅取得最小值94-.。
如何解答平面向量最值问题

4x 4y
4
解题宝典
性运算法则、数量积公式来求向量模的表达式,再求
该表达式的最值,即可求得向量的模的最值.还可以根
据向量的几何意义构造出几何图形,将所求向量的模
y
≥ 1 (5 + 2 ∙4x ) = 9 ,
x y
4
4
看作三角形、四边形的一条边长,确定向量的模取最
当且仅当
∠ADC = 90°,
例3.已知直角梯形 ABCD 中,AD//BC,
1
= AM +
AN,
4x
4y
图1
有些平面向量最值问题中含有参数,要求参数的
最值或取值范围,需根据题意建立关于参数的关系
式,将问题转化为求代数式的最值问题,利用基本不
等式、函数的性质来求最值.还可以根据题意和向量加
减法的几何意义:三角形法则和平行四边形法则,画
a
(1)数列的通项公式 n ;
解:
(1)要使 C
{
-A
2m - 2
11 - 3m
2
数学篇
40
76
77
77
77
因 为 77 - 15 =(76 + 1) - 15 = 76 + C177·76 + ⋯
+C - 15 = 76(76 + C ·76 + ⋯ + C ) + 1 - 15 = 4 × 19
因为 BM = x BA + y BD = 2x BE + y BD ,
y
所以 λBN = 2x BE + y BD ,
解答平面向量最值问题的几个“妙招”

思路探寻由于ΔABC 与ΔABD 的底边相同,所以它们的面积之比就是它们在AB 边上的高之比,不难发现这两个三角形的高CE 和DE 的夹角就是二面角的平面角,可直接运用射影面积法,求得两个三角形ΔABC 与ΔABD 的面积,即可解题.三、采用垂面法由二面角的平面角的定义可知两个半平面的公垂面与二面角的棱垂直,因此公垂面与两个半平面的交线所成的角,就是二面角的平面角.如图5,若平面OABC 为二面角α-a -β的公垂面,则这个二面角的平面角为∠COB .运用垂面法解题,要先根据面面垂直的判定定理证明公垂面与二面角的两个半平面都垂直,才能确定二面角的平面角.图5图6例3.如图6,在长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,BC =3,E ,F 分别为CD 1,AB 的中点.(1)求证:EF ∥平面BB 1C 1C ;(2)求二面角F -CD 1-D 的余弦值.解:(1)过程略;(2)设CD 的中点为P ,连接FP ,过点P 作CD 1的垂线,垂足为H .在长方体中,由FP ⊥CD 可得FP ⊥CD 1,因为PH ⊥CD 1,PH ⋂FP =P ,所以CD 1⊥平面FHP ,所以FH ⊥CD 1,则∠FHP 为二面角F -CD 1-D 的平面角.因为∠FPH =π2,且FP =BC =3,则HP =12DE=2所以FH =HP 2+FP 2=,所以cos ∠FHP =HPFH .即二面角F -CD 1-D 的余弦值为.运用垂面法解题时,可以找到一个与二面角的棱垂直的平面,那么根据面面垂直的判定定理可知这个平面即为二面角的公垂面.在本题中,我们根据CD 1⊥平面FHP ,确定平面FHP 为二面角的公垂面,从而找到二面角的平面角∠FHP .总之,在求解二面角问题时,我们需根据解题需求,采用三垂线法、射影面积法、垂面法来确定二面角的平面角,再根据平面几何知识,如勾股定理、正余弦定理来求平面角的大小.(作者单位:江苏省淮安市楚州中学)平面向量最值问题的常见命题形式有:(1)求两个向量数量积的最值;(2)求某个向量的模的最值;(3)求参数或代数式的最值.平面向量最值问题具有较强的综合性,对学生的运算和分析能力有较高的要求.下面以一道平面向量最值问题为例,谈一谈解答此类问题的“妙招”.题目:已知平面向量a ,b ,c (c ≠0)满足|a |=1,|b|=2,a ∙b =0,(a -b )∙c =0,若向量d 在a ,b 方向上的投影分别为x ,y ,d -a 在向量c方向上的投影为z ,则x 2+y 2+z 2的最小值为______.题目中给出的条件较多,需先根据题意理清各种关系,根据向量的模的公式、数乘运算法则、数量积公式、投影的定义建立关于x 、y 、z 的关系式,将目标式中变量的个数减少,从而将问题转化为求代数式的最值;再利用配方法、柯西不等式、导数法、数形结合法求解.一、配方配方法只适用于解答含有二次式的代数问题.若平面向量最值问题中的目标式为二次式,则可采用配方法.先将目标式配成完全平方式;然后根据完全平方式恒大于或等于0的性质,令完全平方式为0,即可求得目标式的最小值.解法1.∵a ∙b =0,∴a ⊥b,以a ,b两个向量的起点为原点建立平面直角坐标系,设a =(1,0),b =(0,2),c =(m ,n ),∵(a -b)∙c =0,∴m -2n =0,即m =2n ,∴c =(2n ,n )(n ≠0).∵d在a ,b 方向上的投影分别为x ,y ,∴d =(x ,y ),∵d -a 在c方向上的投影为z ,∴z =(d -a )∙c ||c =,吴仕明48思路探寻5的最小值为25.看作线段OP长度的平到直线2x+y-2=0的距离便可将问题转化为距离问题,通过研究点O、以及直线之间的位置关系确定目标式取最小值最后根据两点间的距离公式、点到直线的距我们从四种不同的角度寻找到解答这道平面向。
【向量专题】2.向量中最值(取值范围)问题解题策略

【向量专题】2.向量中最值(取值范围)问题解题策略
向量题目在高考题中除了最常见的简单运算外,还有另外一种有些难度的题目,即向量题目中的最值问题(取值范围问题),类似于其他专题,最值问题中千年不变的常见方法有利用三角函数有界性和不等式法,这次课除了这两种方法外再给出两种方法,常见的解决向量最值问题的方法有如下四种:、
向量专题中两类向量不等式。
(常被忽略)利用三角函数有界性来解,但是需要注意一下,三角函数有界性是在运算中出现正余弦的形式,所以当题目中出现了三角坐标时,又或者题目中出现了圆,椭圆,半圆的时候,如果需要设其上点的坐标,最好设成三角函数坐标的形式。
利用基本不等式解决最值问题。
利用几何图形法解决最值问题,特别需要注意在给定形状三角形内的情况。
向量中的最值来自曹老师的高中数学课00:00 29:46 注意接下来的转化:
用到了任意性注意这个结论:
---------------------------------------------------------------------------------------------------------------。
数学-平面向量中的最值与范围问题

平面向量中的最值与范围问题高中数学 会利用向量的定义及运算求解最值与范围问题.导语 平面向量中的范围、最值问题是热点问题,也是难点问题,此类问题综合性强,体现了知识的交汇组合,其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量的夹角、系数的范围等等,解题思路是建立目标函数的函数解析式,转化为求函数的最值,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合.一、向量线性运算中的最值与范围问题例1 如图,在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,动点P 在边BC 上,且满足=m +n (m ,n 均为正实数),求+的最小值.AP → AB → AD→ 1m 1n解 因为在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,所以=+=-,AD → AC → CD → AC → 14AB → 所以=m +n AP → AB → AD → =m +n AB→ (AC → -14AB →)=+n ,(m -14n )AB → AC → 由P ,B ,C 三点共线得,m -n +n =m +n =1(m ,n >0),1434所以+=1m 1n (1m +1n )(m +34n )=++≥+2743n4m mn 743n 4m ·mn=+=(当且仅当3n 2=4m 2时取等号),7437+434即+的最小值为.1m 1n 7+434反思感悟 利用向量的概念及基本运算,将所求问题转化为相应的等式关系,然后用基本不等式求最值.跟踪训练1 如图所示,A ,B ,C 是圆O 上的三点,CO 的延长线与BA 的延长线交于圆O 外一点D .若=m +n ,则m +n 的取值范围是________.OC → OA → OB→答案 (-1,0)解析 由点D 是圆O 外一点,可设=λ(λ>1),BD → BA→ 则=+λ=λ+(1-λ).OD → OB → BA → OA → OB → 又因为C ,O ,D 三点共线,令=-μ(μ>1),OD → OC→ 则=--(λ>1,μ>1),所以m =-,n =-,OC → λμOA → 1-λμOB→ λμ1-λμ则m +n =--=-∈(-1,0).λμ1-λμ1μ二、向量数量积的最值与范围问题例2 在边长为1的正方形ABCD 中,M 为边BC 的中点,点E 在线段AB 上运动,则·EC→ 的取值范围是( )EM→ A. B.[12,2][0,32]C.D .[0,1][12,32]答案 C解析 将正方形放入如图所示的平面直角坐标系中,设E (x ,0),0≤x ≤1.则M,C (1,1),(1,12)所以=,=(1-x ,1),EM → (1-x ,12)EC → 所以·=·(1-x ,1)=(1-x )2+.EM → EC → (1-x ,12)12因为0≤x ≤1,所以≤(1-x )2+≤,121232即·的取值范围是.EC → EM → [12,32]反思感悟 建立适当的坐标系,将平面向量数量积的运算坐标化,然后利用二次函数,基本不等式等求最值或范围.跟踪训练2 在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.动点E 和F 分别在线段BC 和DC 上,且=λ,=,则·的最小值为________.BE → BC → DF → 19λDC → AE→ AF → 答案 2918解析 根据题意,可知DC =1,·=(+)·(+)=(+λ)·=AE → AF → AB → BE → AD → DF → AB → BC→ (AD → +19λDC → )·+·+λ·+·=1++-≥1+2-=,当且仅当λ=时,AB → AD → 19λAB → DC → BC → AD → 19BC → DC→ 29λλ211819118291823等号成立.三、向量模的最值问题例3 向量a ,b 满足|a |=1,a 与b 的夹角为,则|a -b |的最小值为________.π3答案 32解析 |a -b|2=(a -b )2=a 2-2a·b +b 2=1-2×1×|b|cos +|b|2π3=|b|2-|b|+1=2+≥,(|b |-12)3434所以|a -b|≥,当|b|=时取得最小值.3212跟踪训练3 已知|a +b |=2,向量a ,b 的夹角为,则|a |+|b |的最大值为________.π3答案 433解析 将|a +b |=2两边平方并化简得(|a |+|b |)2-|a ||b |=4,由基本不等式得|a ||b |≤2=(|a |+|b |2),故(|a |+|b |)2≤4,即(|a |+|b |)2≤,即|a |+|b |≤,当且仅当|a |=|b |=时,(|a |+|b |)2434163433233等号成立,所以|a |+|b |的最大值为.433四、向量夹角的最值问题例4 已知|a |=1,向量b 满足2|b -a |=b ·a ,设a 与b 的夹角为θ,则cos θ的最小值为________.答案 255解析 ∵|a |=1,∴设a =(1,0),b =(x ,y ),∴b -a =(x -1,y ),由2|b -a |=b ·a 得,2=x ,则x >0,(x -1)2+y 2∴4(x -1)2+4y 2=x 2,∴y 2=-x 2+2x -1,34∴cos θ=====a ·b|a ||b |xx 2+y 2xx 2-34x 2+2x -1x14x 2+2x -11-(1x )2+2x +14=,1-(1x -1)2+54∴当=1即x =1时,cos θ取最小值.1x 255反思感悟 将向量夹角的大小问题转化为夹角余弦值的大小,利用函数求最值或范围.跟踪训练4 已知向量a ,b 满足a =(t ,2-t ),|b |=1,且(a -b )⊥b ,则a ,b 的夹角的最2小值为( )A.B.π6π4C. D.π3π2答案 C解析 因为(a -b )⊥b ,所以(a -b )·b =0,a ·b =b 2,cos 〈a ,b 〉====a ·b |a ||b ||b |2|a ||b ||b ||a |1|a |=,12t 2-42t +8又因为2t 2-4t +8=2[(t -)2+2]≥2[(-)2+2]=4,2222所以0<cos 〈a ,b 〉≤,所以a ,b 的夹角的最小值为.12π3课时对点练1.已知向量m =(a -1,1),n =(2-b ,2)(a >0,b >0),若m ∥n ,则m ·n 的取值范围是( )A .[2,+∞) B .(0,+∞)C .[2,4) D .(2,4)答案 C解析 因为m ∥n ,所以2a -2=2-b ,所以2a +b =4,所以b =4-2a >0,所以0<a <2,所以m ·n =2a +b -ab =4-ab =4-a (4-2a )=2a 2-4a +4=2(a -1)2+2∈[2,4).2.如图,在△ABC 中,点D 是线段BC 上的动点,且=x+y ,则+的最小值为( )AD → AB → AC→ 1x 4y A .3 B .4 C .5 D .9答案 D解析 由图可知x ,y 均为正,且x +y =1,∴+=(x +y )=5++1x 4y (1x +4y )y x 4xy≥5+2=9,当且仅当=,y x ·4x y y x 4x y 即x =,y =时等号成立,1323则+的最小值为9.1x 4y3.在△ABC 中,AB =,BC =2,∠B =150°,点D 是AC 边上的一点(包括端点),点M 3是AC 的中点,则·的取值范围是( )BM→ BD → A. B. C. D .[0,1](0,12)[0,12][12,1]答案 B解析 因为点M 是AC 的中点,所以=+,BM → 12BA → 12BC → 因为点D 是AC 边上的一点(包括端点),所以=λ,λ∈[0,1],CD → CA→ -=λ-λ,=λ+(1-λ),BD → BC → BA → BC → BD → BA → BC → 则·=·[λ+(1-λ)]BM → BD → (12BA → +12BC →)BA → BC → =λ2+·+(1-λ)2.12BA → 12BA → BC → 12BC → 因为AB =,BC =2,∠B =150°,3所以2=3,·=-3,2=4,BA → BA → BC → BC → 所以·=-λ.BM → BD→ 1212因为0≤λ≤1,则0≤-λ≤.121212故·的取值范围是.BM → BD→ [0,12]4.设O (0,0),A (1,0),B (0,1),点P 是线段AB 上的一个动点,=λ,AP → AB→ 若·≥·,则实数λ的取值范围是( )OP→ AB → PA → PB → A.≤λ≤1 B .1-≤λ≤11222C.≤λ≤1+ D .1-≤λ≤1+12222222答案 B解析 ∵=λ,=(1-λ)+λ=(1-λ,λ),=λ=(-λ,λ),·≥·AP → AB → OP → OA → OB → AP → AB → OP→ AB → PA → ,PB →∴(1-λ,λ)·(-1,1)≥(λ,-λ)·(λ-1,1-λ),∴2λ2-4λ+1≤0,解得1-≤λ≤1+,因为点P 是线段AB 上的一个动点,所以22220≤λ≤1,即满足条件的实数λ的取值范围是1-≤λ≤1.225.如图,在平行四边形ABCD 中,∠BAD =,AB =2,AD =1,若M ,N 分别是边AD ,CD π3上的点,且满足==λ,其中λ∈[0,1],则·的取值范围是( )MDAD NCDC AN→ BM→ A .[-3,-1] B .[-3,1]C .[-1,1] D .[1,3]答案 A解析 以A 为原点,AB ,垂直于AB 所在的直线分别为x ,y 轴建立平面直角坐标系(图略),则B (2,0),A (0,0),D .(12,32)∵满足==λ,λ∈[0,1],MDAD NCDC ∴=+=+(1-λ)=+(1-λ)=+(1-λ)(2,0)=,AN → AD → DN → AD → DC → AD → AB → (12,32)(52-2λ,32)=+=-+(1-λ)=(-2,0)+(1-λ)=,BM → BA → AM → AB → AD → (12,32)(-32-12λ,32(1-λ))·=·AN → BM → (52-2λ,32)(-32-12λ,32(1-λ))=+×(1-λ)(52-2λ)(-32-12λ)3232=λ2+λ-3=2-.(λ+12)134∵λ∈[0,1],二次函数的对称轴为λ=-,12则函数在[0,1]上单调递增,故当λ∈[0,1]时,λ2+λ-3∈[-3,-1].6.设0≤θ<2π,已知两个向量=(cos θ,sin θ),=(2+sin θ,2-cos θ),则向量OP 1→ OP2→长度的最大值是( )P 1P 2——→ A. B. C .3 D .22323答案 C解析 ∵=-=(2+sin θ-cos θ,2-cos θ-sin θ),P 1P 2——→ OP2→ OP 1→ ∴||==≤3.P 1P 2——→ (2+sin θ-cos θ)2+(2-cos θ-sin θ)210-8cos θ2当cos θ=-1时,||有最大值3.P 1P 2——→ 27.已知△ABC 的三边长AC =3,BC =4,AB =5,P 为AB 边上任意一点,则·(-)CP→ BA → BC → 的最大值为________.答案 9解析 根据题意,建立直角坐标系,如图,∴A (0,3),B (4,0),C (0,0),∴=(4,-3),AB→ =+=+λ=(0,3)+(4λ,-3λ)=(4λ,3-3λ),λ∈[0,1],CP → CA → AP → CA → AB→ ∴·(-)=·=(4λ,3-3λ)·(0,3)=9-9λ∈[0,9],CP→ BA → BC → CP → CA → ∴·(-)的最大值为9.CP→ BA → BC → 8.若a =(2,2),|b |=1,则|a +b |的最大值为________.答案 2+12解析 因为|b |=1,设b =(cos θ,sin θ),则a +b =(2+cos θ,2+sin θ),则|a +b|===(2+cos θ)2+(2+sin θ)24(cos θ+sin θ)+9≤==2+1,当且仅当sin=1时取等号.42sin (θ+π4)+99+42(22+1)22(θ+π4)9.已知向量a ,b 满足|a |=1,|b |=2,a ·(a +b )=2.求|a -λb |的最小值.解 由|a |=1,a ·(a +b )=2,可知a ·b =1,根据向量求模公式得|a -λb |=,4λ2-2λ+1易知,当λ=时,|a -λb |取得最小值为.143210.△ABC 中,AB =2,AC =2,∠BAC =45°,P 为线段AC 上任意一点,求·的取2PB→ PC → 值范围.解 设=t (0≤t ≤1),PC→ AC → 则=(1-t ),AP → AC → 因为=-=-(1-t ),PB → AB → AP → AB → AC → 所以·=[-(1-t )]·t PB → PC → AB → AC → AC → =t ·-t (1-t )2AB → AC → AC → =2×2t ·cos 45°-t (1-t )×(2)222=8t 2-4t =82-.(t -14)12因为0≤t ≤1,所以-≤·≤4,12PB→ PC → 所以·的取值范围为.PB → PC→ [-12,4]11.如图,在△ABC 中,已知AB =2,AC =3,∠BAC =θ,点D 为BC 的三等分点.则·AD→ 的取值范围为( )BC→A. B.(-113,133)(13,73)C.D.(-53,73)(-53,553)答案 C解析 ∵=+=+AD → AB → BD → AB → 13BC→=+(-)=+,AB → 13AC → AB → 23AB → 13AC → ∴·=·(-)AD → BC → (23AB → +13AC →)AC → AB → =-||2+||2+·23AB → 13AC → 13AB → AC →=-×4+×9+×2×3cos θ=2cos θ+.23131313∵-1<cos θ<1,∴-<2cos θ+<.531373∴·∈.AD → BC → (-53,73)12.如图,延长线段AB 到点C ,使得=2,D 点在线段BC 上运动,点O ∉直线AB ,满AB → BC→ 足=λ+μ,则λμ的取值范围是( )OD → OA → OB→A.B.[-32,0][-2,23]C.D .[-1,1][-34,0]答案 C解析 不妨设AB =2BC =2,BD =x ,x ∈[0,1],由平面向量三点共线可知,= + ,OB → 22+x OD → x2+x OA→ ∴=-,OD → 2+x 2OB → x 2OA → ∴λ=-,μ=,x ∈[0,1],x22+x2则λμ=-=-(x 2+2x ),(2+x )x414∴λμ∈.[-34,0]13.已知平面向量a ,b ,c 满足|a |=|b |=|c |=1,若a ·b =,则(a +b )·(2b -c )的取值范围是( )12A .[1,2+]B .[1,3+]33C .[3-,2+]D .[3-,3+]3333答案 D解析 因为a ·b =,设a 与b 的夹角为θ,12则a·b =|a|·|b|cos θ=,解得θ=,而|a|=|b|=|c|=1,则可设a =(1,0),由θ=可得b =12π3π3.(12,32)由|c |=1,设c =(sin α,cos α),则(a +b )·(2b -c )=2a·b +2b 2-a·c -b·c=1+2-sin α-(12sin α+32cos α)=3-=3-sin.(32sin α+32cos α)3(α+π6)所以当α=时取得最大值为3+,当α=时取得最小值为3-,所以(a +b )·(2b -c )的4π33π33取值范围为[3-,3+].3314.已知|a |=|b |=a ·b =2,c =(2-4λ)a +λb ,则(c -a )·(c -b )的最小值为________.答案 -4952解析 ∵c -a =(1-4λ)a +λb ,c -b =(2-4λ)a +(λ-1)b ,∴(c -a )·(c -b )=[(1-4λ)a +λb ]·[(2-4λ)a +(λ-1)b ]=(16λ2-12λ+2)a 2+(-8λ2+7λ-1)a ·b +(λ2-λ)b 2,代入|a |=|b |=a ·b =2,原式=52λ2-38λ+6,∴当λ=时,原式取得最小值,为-.1952495215.已知正三角形ABC 按如图所示的方式放置,AB =4,点A ,B 分别在x 轴的正半轴和y轴的正半轴上滑动,则·的最大值是________.OA → OC →答案 12解析 设∠OAB =θ,θ∈,(0,π2)则A (4cos θ,0),C ,(4cos θ+4cos (2π3-θ),4sin (2π3-θ))所以·=4cos θ·OA → OC → [4cos θ+4cos (2π3-θ)]=4cos θ(2cos θ+2sin θ)3=4cos 2θ+4+4sin 2θ3=8sin +4,θ∈,(2θ+π6)(0,π2)故当2θ+=,即θ=时,·有最大值12.π6π2π6OA → OC → 16.已知向量a =(,-1),b =.3(12,32)(1)求与a 平行的单位向量c ;(2)设x =a +(t 3+3)b ,y =-k ·t a +b ,若存在t ∈[0,2],使得x ⊥y 成立,求k 的取值范围.解 (1)设c =(x ,y ),根据题意得Error!解得Error!或Error!∴c =或c =.(32,-12)(-32,12)(2)∵a =(,-1),b =,3(12,32)∴a·b =0.∵x ⊥y ,∴-kt |a |2+(t 2+3)|b |2=0.∵|a |=2,|b |=1,∴t 2-4kt +3=0.问题转化为关于t 的二次方程t 2-4kt +3=0在[0,2]内有解.令f (t )=t 2-4kt +3,则当2k ≤0,即k ≤0时,∵f (0)=3,∴方程t 2-4kt +3=0在[0,2]内无解.当0<2k ≤2,即0<k ≤1时,由Δ=16k 2-12≥0,解得k ≤-或k ≥,∴≤k ≤1.323232当2k >2,即k >1时,由f (2)≤0得4-8k +3≤0,解得k ≥,∴k >1.78综上,实数k 的取值范围为.[32,+∞)。
巧解平面向量中的最值问题

可以了,不应该把大量时间浪费在体育活动上。首先,要改变父母 要性时,曾说过四句话:“没有强度就没有体育,没有强度就没有
对健康的认识,要让他们认识到健康不仅仅是身体健康,还包括 健康体质,没有强度就没有大众健康,没有强度就不可能成为体
心理健康、社会适应良好和道德健康。其次,要让他们对体育的功 育强国。”可见强度的重要意义。因此,只要保证学生膳食平衡、运
高三数学的复习需要对学生的知识进行联系、对解决综合问 题的能力进行提升,突破“不是做不到,只是想不到”的瓶颈,促进 知识的内化。为此,问题的提出要围绕核心知识,在知识的交汇处 设计问题;教师通过问题串以及典型的例题,组织知识、思想方法 的复习,使学生能抓住核心主干,掌握基本技能和思想方法。
教师在课堂上应该引导学生探究知识点间的联系和区别,让 知识点连成线、构成面、织成网,使得知识在脑海中经历“由厚到 薄”的过程;而不是将复习课变成“知识点+训练”的简单模式。在 本节课里,核心知识是平面向量数量积,由实数不等式类比得到 平面向量也有此不等式成立。学生在分析中发现平面向量中的最 值、范围的求解可以类比实数不等式求解,逐步形成完整的知识 体系和解题方法。因此,教师要结合复习的核心知识与思想方法, 对整节课作一个整体有序、结构合理、纵横联系、逐步深入的设 计,使之成为知识网络的建构过程。
[4]李百惠,吴双胜,王海俊,马军,张世伟,等.全国五城市儿
的重要原因之一,那么如何更好地促进学生体质健康?家校合作 童青少年运动状况调查[A].膳食营养、身体活动与健康:达能营
的体育模式是值得推荐的一个措施,家长除了要多和孩子交流外, 养中心第十一次学术年会[C],2008.
也要加强与学校交流,这样不仅能了解学生的学习情况,而且能
灵活运用公式的能力。只有拥有熟悉的知识、严谨的思维、熟练的
高考冲刺平面向量中范围、最值等综合问题

平面向量中的范围、最值问题一.方法综述平面向量中的范围、最值问题是热点问题,也是难点问题,此类问题综合性强,体现了高考在知识点交汇处命题的思想,是高考的热点,也是难点,其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量夹角、系数的范围的等,解决思路是建立目标函数的函数解析式,转化为求函数(二次函数、三角函数)的最值或应用基本不等式,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合,应用图形的几何性质.二.解题策略类型一 与向量的模有关的最值问题【例1】(2020·天津高考模拟)如图,在ABC ∆中,3BAC π∠=,2AD DB =u u u r u u u r,P 为CD 上一点,且满足12AP mAC AB =+u u u r u u u r u u u r ,若ABC ∆的面积为||AP uuu r的最小值为( )AB .43C .3D【解析】()AP AC CP AC kCD AC k AD AC =+=+=+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 23AC k AB AC ⎛⎫=+- ⎪⎝⎭u u u v u u uv u u u v()21132k AB k AC mAC AB =+-=+u u u v u u u v u u u v u u u v ,得到211,32k k m -==,所以14m =, 结合ABC ∆的面积为12AC AB u u uv u u u v ⋅=,得到8AC AB ⋅=u u u v u u u v ,所以AP ==u u u v D . 【点睛】三点共线的一个向量性质:已知O 、A 、B 、C 是平面内的四点,则A 、B 、C 三点共线的充要条件是存在一对实数λ1、λ2,使OC ⃑⃑⃑⃑⃑ =λ1OC ⃑⃑⃑⃑⃑ +λ2OC ⃑⃑⃑⃑⃑ ,且λ1+λ2=1.【举一反三】1.(2020·天津南开中学高考模拟)如图,在等腰三角形ABC 中,已知2AB AC ==,120,,A E F ∠=︒分别是,AB AC 上的点,且AE AB =uu u r uu u rλ,AF AC μ=u u u r u u u r(其中λ,()0,1μ∈),且41λμ+=,若线段,EF BC的中点分别为,M N ,则MN u u u u r的最小值为________.【分析】由向量的数量积公式求出2AB AC ⋅=-u u u r u u u r,连接,AM AN ,利用向量加法的运算法则得出,AM AN u u u u r u u u r ,再根据平面向量减法运算法则以及平面向量的数量积的运算法则可得222161MN μμ=-+u u u u r ,结合二次函数的性质可得2MN u u u u r 的最小值,进而可得结果. 【详解】连接,AM AN ,Q 等腰三角形ABC 中,2,120AB AC A ===o,||||cos1202AB AC AB AC ︒∴⋅=⋅=-u u u r u u u r u u u r u u u r,AM Q 是AEF ∆的中线, 11()()22AM AE AF AB AC λμ∴=+=+u u u u r u u u r u u u r u u ur u u u r同理,可得1()2AN AB AC =+u u u r u u u r u u u r,由此可得11()()22MN AN AM AB AC AB AC λμ=-=+-+u u u u r u u u r u u u u r u u u r u u u r u u u r u u u r 11(1)(1)22AB AC λμ=-+-u u u r u u u r ,2211(1)(1)22MN AB AC λμ⎡⎤=-+-⎢⎥⎣⎦u u u u r u u u r u u u r 2222111(1)(1)(1)(1)424AB AB AC AC λλμμ=-+--⋅+-u u u r u u u u r u u u r u u u r()22(1)(1)1(1)λμλμ=----+-41λμ+=Q ,可得14λμ-=, ∴代入上式得222(4)4(1)(1)MN μμμμ=--+-u u u u r 22161μμ=-+, ,(0,1)λμ∈Q , ∴当17μ=时, 2MN u u u u r 的最小值为47,.2.(2020·浙江高考模拟)已知平面向量,a b rr 不共线,且1a =r,1a b ⋅=rr ,记b r与2a b +rr的夹角是θ,则θ最大时,a b -=rr ( )A .1BCD .2【分析】把cos θ表示为|b|r 的函数,利用函数的性质求出当θ最大时|b|r 的值,进而可求出|a-b|r r的值.【详解】设|b|=x r ,则()22·22?2b a b a b b x +=+=+r r r r r r,|2+a b =r r所以()2·2cos 2b a b b a b θ+==+r r r r r r 易得cos 0θ>, ()()()2222222222211cos 124811411222263x x x x x x θ+===+⎛⎫-++--+⎪+++⎝⎭, 当24x =时,2cos θ取得最小值,θ取得最大值,此时|a b -==r r 故选C.3.已知向量满足 与的夹角为,,则的最大值为 .【分析】根据已知条件可建立直角坐标系,用坐标表示有关点(向量),确定变量满足的等式和目标函数的解析式,结合平面几何知识求最值或范围. 【解析】设;以OA 所在直线为x,O 为坐标原点建立平面直角坐标系,∵与的夹角为,则A (4,0),B (2,2),设C (x,y ) ∵,∴x 2+y 2-6x-2y+9=0,即(x-3)2+(y-1)2=1表示以(3,1)为圆心,以1为半径的圆,表示点A,C 的距离即圆上的点与点A (4,0)的距离;∵圆心到B 的距离为,∴的最大值为.【点评】建立直角坐标系的原则是能准确快捷地表示有关向量或点的坐标,正确找到变量间的关系,以及目标函数代表的几何意义是解题关键.,,a b c r r r 4,22,a b ==r r a r b r 4π()()1c a c b -⋅-=-r r r rc a -r r ===,,4,a b ==r r a r b r 4π()()1c a c b -⋅-=-r r r rc a -r r2)01()43(22=-+-c a -r r12+类型二与向量夹角有关的范围问题【例2】已知向量与的夹角为,时取得最小值,当时,夹角的取值范围为________________.【分析】将表示为变量的二次函数,转化为求二次函数的最小值问题,当时,取最小值,由已知条件,得关于夹角的不等式,解不等式得解.【解析】由题意知,,,所以,由二次函数的图像及其性质知,当上式取最小值时,.由题意可得,,求得,所以.【举一反三】1.已知非零向量,在R 上存在极值,则和夹角的取值范围为【解析设和夹角为,因为有极值,所即2.非零向量满足=,,则的夹角的最小值是.【解析】由题意得2212a b a b⋅=r r r r,()24a b+=r r,整理得22422a b a b a b+=-⋅≥⋅r r r r r r,即1a b⋅≤r11cos,22a ba b a ba b⋅==⋅≤r rr r r rr r,,3a bππ∴≤≤r r,夹角的最小值为3π.3.已知向量OM⃑⃑⃑⃑⃑⃑⃑ 与ON⃑⃑⃑⃑⃑⃑ 的夹角为θ,|OM⃑⃑⃑⃑⃑⃑⃑ |=1,|ON⃑⃑⃑⃑⃑⃑ |=2,OP⃑⃑⃑⃑⃑ =(1−t)OM⃑⃑⃑⃑⃑⃑⃑ ,OQ⃑⃑⃑⃑⃑⃑ =t ON⃑⃑⃑⃑⃑⃑ ,(0≤t≤1).|PQ⃑⃑⃑⃑⃑ |在t=t0时取得最小值.若0<t0<15,则夹角θ的取值范围是______.【解析】OP⃑⃑⃑⃑⃑ =(1−t)OM⃑⃑⃑⃑⃑⃑ ,OQ⃑⃑⃑⃑⃑⃑ =tON⃑⃑⃑⃑⃑⃑ ,(0≤t≤1)∴PQ⃑⃑⃑⃑⃑ =OQ⃑⃑⃑⃑⃑⃑ −OP⃑⃑⃑⃑⃑ =tON⃑⃑⃑⃑⃑⃑ −(1−t)OM⃑⃑⃑⃑⃑⃑ ,∴|PQ⃑⃑⃑⃑⃑ |2=4t2+(1−t)2−2t(1−t)ON⃑⃑⃑⃑⃑⃑ ⋅OM⃑⃑⃑⃑⃑⃑ =(5+4cosθ)t2−(2+4cosθ)t+1,∵在t=t0时取得最小值,∴0<t0=1+2cosθ5+4cosθ<15解可得:−12<cosθ<0,则夹角θ的取值范围→OA→OBθ→→→→→→→-====PQOBtOQOAtOPOBOA,)1(,,1,2t在015t<<θPQu u u rt PQu u u r1)cos42()cos45(2+--++=ttθθθθcos45cos210++=t15t<<θθθcos2cos12=⨯⨯=⋅→→OBOA→→→→→--=-=OAtOBtOPOQPQ)1(2222222(1)2(1)(1)44(1)cosPQ t OB t OA t t OA OB t t t tθ=-+--⋅=-+--u u u r u u u r u u u r u u u r u u u r1)cos42()cos45(2+--++=ttθθθθcos45cos210++=t51cos45cos210<++<θθcos21<<-θ322πθπ<<,a br rarbrarbrθ()f xbaϖϖ,baϖϖ⋅222baϖϖ2||||=+baϖϖbaϖϖ与(π2,2π3)类型三 与向量投影有关的最值问题【例3】(2020天津模拟)设1,2OA OB ==u u u v u u u v , 0OA OB ⋅=u u u v u u u v , OP OA OB λμ=+u u u v u u u v u u u v ,且1λμ+=,则OAu u u v在OP uuu v上的投影的取值范围( )A. ⎛⎤ ⎥ ⎝⎦B.⎤⎥⎝⎦ C. ⎤⎥⎝⎦ D. ⎛⎤⎥ ⎝⎦当λ0=时, 0,x =当1λ0x >===,故当λ1=时,1x 取得最小值为1,即1101x x≥∴<≤,当λ0<时, 1x ====,即1x <05x ∴-<<,综上所述]( ,15x ∈-故答案选D 【举一反三】1.若平面向量e 1⃑⃑⃑ ,e 2⃑⃑⃑ 满足|e 1⃑⃑⃑ |=|3e 1⃑⃑⃑ +e 2⃑⃑⃑ |=2,则e 1⃑⃑⃑ 在e 2⃑⃑⃑ 方向上的投影的最大值为( ) A .−4√23B .−3√24C .8√2D .48√2【解析】因为|e 1⃑⃑⃑ |=|3e 1⃑⃑⃑ +e 2⃑⃑⃑ |=2,所以|e 1⃑⃑⃑ |2=4,9|e 1⃑⃑⃑ |2+|e 2⃑⃑⃑ |2+6e 1⃑⃑⃑ ·e 2⃑⃑⃑ =4,e 1⃑⃑⃑ 在e 2⃑⃑⃑ 方向上的投影为e 1⃑⃑⃑⃑ ·e 2⃑⃑⃑⃑ |e2|=2cosθ,其中θ为e 1⃑⃑⃑ ,e 2⃑⃑⃑ 的夹角.又36+|e 2⃑⃑⃑ |2+12|e 2⃑⃑⃑ |cosθ=4,故|e 2⃑⃑⃑ |2+12|e 2⃑⃑⃑ |cosθ+32=0.设t =|e 2⃑⃑⃑ |,则t 2+12tcosθ+32=0有非负解,故{cosθ≤0144cos 2θ−128≥0,故cosθ≤−2√23,故e 1⃑⃑⃑⃑ ·e 2⃑⃑⃑⃑ |e 2|≤−4√23,故选A . 2.(2020·北京高考模拟)在同一平面内,已知A 为动点,B ,C 为定点,且∠BAC=3π,2ACB π∠≠,BC=1,P 为BC 中点.过点P 作PQ ⊥BC 交AC 所在直线于Q ,则AQ uuu r在BC uuu r方向上投影的最大值是( ) A .13B .12CD .23建立如图所示的平面直角坐标系,则B (-12,0),C (12,0),P (0,0), 由BAC 3π∠=可知,ABC 三点在一个定圆上,且弦BC 所对的圆周角为3π,所以圆心角为23π.圆心在BC 的中垂线即y 轴上,且圆心到直线BC的距离为126tan 3BCπ=,即圆心为,=所以点A的轨迹方程为:22163x y ⎛⎫+-= ⎪ ⎪⎝⎭,则213x ≤ ,则03x -≤< , 由AQ uuu r 在BC uuu r 方向上投影的几何意义可得:AQ uuu r 在BC uuu r方向上投影为|DP|=|x|,则AQ uuu r在BC uuu r方向上投影的最大值是C . 类型四 与平面向量数量积有关的最值问题【例4】(2020·天津高考模拟)已知边长为2的菱形ABCD 中,点F 为BD 上一动点,点E 满足2BE EC =u u u r u u u r,23AE BD ⋅=-u u u r u u u r ,则AF EF ⋅u u u r u u u r 的最小值为( )A .23-B .43- C .15275-D .7336-【详解】由题意知:23BE BC =u u u r u u u r,设DAB θ∠=()()22233AE BD AB BE AD AB AB AD AB BC AD BC AB ∴⋅=+⋅-=⋅-+⋅-⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r8824cos 4cos 333θθ=-+-=-1cos 2θ∴= 3πθ⇒=以AC 与BD 交点为原点,AC 为x 轴,BD 为y 轴建立如下图所示的平面直角坐标系:()A ∴,13E ⎫-⎪⎪⎝⎭,设()0,F t则)AF t =u u u r,13EF t ⎛⎫=+ ⎪ ⎪⎝⎭u u u r 2112233AF EF t t t t ⎛⎫∴⋅=-++=+- ⎪⎝⎭u u u r u u u r当16t =-时,()min11732361836AF EF⋅=--=-u u u r u u u r ,本题正确选项:D 【举一反三】1.(2020·四川高考模拟)已知ABC ∆是边长为EF 为ABC ∆的外接圆O 的一条直径,M 为ABC ∆的边上的动点,则ME FM ⋅u u u r u u u u r的最大值为( ) A .3B .4C .5D .6如图所示,以AB 边所在直线为x 轴,以其中点为坐标原点建立平面直角坐标系,因为该正三角形ABC 的边长为())()()(),,0,3,0,1,0,3A BC E F ∴-,当点M 在边AB 上时,设点()0,0M x ,则()()000,1,,3,x ME x FM x u u u r u u u u r ≤≤=--=-∴ 203,ME FM x ⋅=-+u u u r u u u u rQ 0x ME FM≤≤∴⋅u u u r u u u u r 的最大值为3;当点M 在边BC 上时,因为直线BC的斜率为所以直线BC 的方程为30y +-=,设点()00,3M x ,则00x ≤≤()()20000004,,2ME x FM x ME FM x =--=∴⋅=-u u u r u u u u r u u u r u u u u r Q ,00x ME FM ≤≤∴⋅u u u r u Q u u u r的最大值为0;当点M 在边AC 上时,因为直线AC,所以直线AC的方程为30y -+=,设点()00,3M x ,则()()000000,,4,,x ME x FM x ≤≤=--=∴u u u r u u u u r Q 2004,ME FM x ⋅=--u u u r u u u u r Q00,x ≤≤∴ME FM ⋅u u u r u u u u r的最大值为3;综上,最大值为3,故选A.2、(2020辽宁省鞍山市高三一模)△ABC 中,AB =5,AC =4,AD ⃑⃑⃑⃑⃑ =λAB ⃑⃑⃑⃑⃑ +(1−λ)AC ⃑⃑⃑⃑⃑ (0<λ<1),且AD ⃑⃑⃑⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ =16,则DA ⃑⃑⃑⃑⃑ ⋅DB ⃑⃑⃑⃑⃑ 的最小值等于( ) A .−754B .−214C .−94D .−21【解析】由题意知,向量AD ⃑⃑⃑⃑⃑ =λAB ⃑⃑⃑⃑⃑ +(1−λ)AC ⃑⃑⃑⃑⃑ (0<λ<1),且AD ⃑⃑⃑⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ =16, 可得点D 在边BC 上,|AD ⃑⃑⃑⃑⃑ |⋅|AC ⃑⃑⃑⃑⃑ |cos∠DAC =16, 所以|AD ⃑⃑⃑⃑⃑ |cos∠DAC =4,则cos∠DAC =1,即BC ⊥AC , 所以ΔABC 时以C 为直角的直角三角形.如图建立平面直角坐标系,设A(x,4),则(x −3,0),则DA ⃑⃑⃑⃑⃑ ⋅DB ⃑⃑⃑⃑⃑ =x(x −3),(0<x <3),当x =32时,则DA ⃑⃑⃑⃑⃑ ⋅DB ⃑⃑⃑⃑⃑ 最小,最小值为−94.故选:C .3、已知圆O 的半径为2,P,Q 是圆O 上任意两点,且∠POQ =600,AB 是圆O 的一条直径,若点C 满足OC ⃑⃑⃑⃑⃑ =(λ−1)OP⃑⃑⃑⃑⃑ +λOQ ⃑⃑⃑⃑⃑⃑ (λ∈R ),则CA ⃑⃑⃑⃑⃑ •CB ⃑⃑⃑⃑⃑ 的最小值为( ) A. -1 B. -2 C. -3 D. -4类型五 平面向量系数的取值范围问题【例5】(2020·河南高考模拟)在ABC ∆中,点P 满足2BP PC =u u u r u u u r,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM mAB =u u u u r u u u r ,(0,0)AN nAC m n =>>u u ur u u u r ,则2m n +的最小值为( )A .3B .4C .83D .103【解析】分析:用AM u u u u v ,AN u u u v 表示出AP u u u v,根据三点共线得出,m n 的关系,利用基本不等式得出2m n +的最小值.()21212,33333AP AB BP AB AC AB AB AC AM AN m n =+=+-=+=+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u Q u u v u u u u v u u u u v,,M P N Q 三点共线,121,,3332nm m n n ∴+=∴=-则()()225232326333322,323232n n n n n m n n n n n -+-+-+=+==--- ()()215253223,332333n n ⎡⎤=-++≥⨯+=⎢⎥-⎢⎥⎣⎦ 当且仅当()()13232n n -=-即1m n ==时等号成立.故选A.【举一反三】1.(2020·安徽高考模拟)已知G 是ABC V 的重心,过点G 作直线MN 与AB ,AC 交于点,M N ,且AM xAB =uuur uu u r ,AN yAC =uuur uu u r ,(),0x y >,则3x y +的最小值是( )A .83B .72C .52D .43+如图M N G Q ,, 三点共线, MG GN λ∴=u u u u v u u u v,AG AM AN AG λ∴-=-u u u v u u u u v u u u v u u u v(),∵G 是ABC V 的重心, 13AG AB AC ∴=+u u u v u u u v u u u v (),1133AB AC xAB y AC AB AC λ∴+-=-+u u uv u u u v u u u v u u u v u u u v u u u v ()(()), 11331133x y λλλ⎧--⎪⎪∴⎨⎪-⎪⎩=,= 解得,31311x y --=()(); 结合图象可知11 1122x y ≤≤≤≤,;令1131312222x m y n m n -=-=≤≤≤≤,,(,); 故11133m nmn x y ++===,,;故14443133333n n x y m m ++=++=++≥+=+当且仅当3m n ==D 2.在矩形ABCD 中, 12AB AD ==,,动点P 在以点C 为圆心且与BD 相切的圆上,若AP AB AD λμ=+u u u v u u u v u u u v,则λμ+的最大值为( )A. 3B.22 C.5 D. 23.(2020云南省昆明市云南师范大学附属中学)已知正方形ABCD 的边长为1,动点P 满足|PB ⃑⃑⃑⃑⃑ |=√2|PC ⃑⃑⃑⃑ |,若AP ⃑⃑⃑⃑⃑ =λAB ⃑⃑⃑⃑⃑ +μAD ⃑⃑⃑⃑⃑ ,则λ2+μ2的最大值为( ) A .2√2B .√5C .7+2√10D .√5+√2解:以A 为原点建立如图所示的直角坐标系:则A(0,0),B(1,0),C(1,1),D(0,1),设P(x,y),PB ⃑⃑⃑⃑⃑ =(1−x,−y ),PC ⃑⃑⃑⃑⃑ =(1−x,1−y ) ,则由|PB ⃑⃑⃑⃑⃑ |=√2|PC ⃑⃑⃑⃑ |得√(x −1)2+y 2=√2√(x −1)2+(y −1)2,化简得:(x −1)2+(y −2)2=2,又AP ⃑⃑⃑⃑⃑ =λAB ⃑⃑⃑⃑⃑ +μAD ⃑⃑⃑⃑⃑ ,∴(x,y)=λ(1,0)+μ(0,1),∴x =λ,y =μ,∴λ2+μ2=x 2+y 2表示圆(x −1)2+(y −2)2=2上的点到原点的距离得平方,其最大值等于圆心(1,2)到原点的距离加半径的平方,即λ2+μ2=x 2+y 2≤(√(1−0)2+(2−0)2+√2)2=7+2√10,故选:C . 类型六 平面向量与三角形四心的结合【例6】(2020·吉林高考模拟)如图所示,已知点G 是的重心,过点G 作直线与,AB AC 两边分别交于,M N 两点,且,则x y +的最小值为( )A .2B .C .43D . 【解析】由题意得:223323AB AC AB ACAG AQ ++==⨯=u u u r u u u r u u u r u u u ru u u r u u u r ,又,(1)AG AM AN x AB y AC λμλμλμ=+=++=u u u r u u u u r u u u r u u u r u u u r ,所以111111133333x y x y x y λμ==⇒+=⇒+=,,因此111114()()(2)(22)3333y x y x x y x y x y x y x y +=++⋅=++≥+⋅=,当且仅当时23x y ==取等号,所以选C . 【指点迷津】平面向量中有关范围最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.ABC ∆,AM x AB AN y AC ==u u u u r u u u r u u u r u u u r1334CMNA BGQ【举一反三】1.如图,O 为ΔABC 的外心,AB =4,AC =2,∠BAC 为钝角,M 是边BC 的中点,则AM ⃑⃑⃑⃑⃑⃑ ⋅AO ⃑⃑⃑⃑⃑ 的值为2.已知ABC ∆的三边垂直平分线交于点O , ,,a b c 分别为内角,,A B C 的对边,且()222c b b =-,则AO BC ⋅u u u v u u u v的取值范围是__________.【解析】如图,延长AO 交△ABC 的外接圆与点D ,链接BD ,CD ,则∠ABD =∠ACD =90°,所以111()()cos cos 222AO BC AO AC AB AD AC AB AC AD CAD AB AD BAD ⋅=⋅-=⋅-=∠-∠u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r221()2b c =-① 又222(2)42c b b b b =-=-,②把②代入①得221322(34)2233AO BC b b b ⎛⎫⋅=-=-- ⎪⎝⎭u u u r u u u r ,③又22(2)0c b b =->,所以02b <<④ 把④代入①得AO BC ⋅u u u r u u u r的取值范围是2,23⎛⎫-⎪⎝⎭3.(2020大连模拟)已知点O 是锐角三角形ABC 的外心,若OC mOA nOB =+u u u v u u u v u u u v(m , n R ∈),则( ) A. 2m n +≤- B. 21m n -≤+<- C. 1m n +<- D. 10m n -<+<【解析】∵O 是锐角△ABC 的外心,∴O 在三角形内部,不妨设锐角△ABC 的外接圆的半径为1,又OC mOA nOB =+u u u v u u u v u u u v ,∴|OC u u u v |=| mOA nOB +u u u v u u u v|,可得2OC u u u v =22m OA u u u v +22n OB u u u v+2mn OA u u u v ⋅OB uuu v,而OA u u u v ⋅OB uuu v =|OA u u u v |⋅|OB uuu v |cos ∠A 0B <|OA u u u v |⋅|OB uuu v |=1.∴1=2m +2n +2mn OA u u u v ⋅OB uuu v<22m n ++2mn , ∴m n + <−1或m n + >1,如果m n + >1则O 在三角形外部,三角形不是锐角三角形, ∴m n + <−1,故选:C.三.强化训练1.(2019·辽宁高考模拟(理))已知12,e e r r是两个单位向量,且夹角为3π,则12e te +r r 与12te e +r r 数量积的最小值为( ) A .32-B.C .12D【解析】由题意:()()()222112122211te e te t e e t t e e e ⋅=++++⋅+r r r rrr r r()22221122111cos 2322t e t e e t e t t π=+++=++r r r r∴当2t =-时,最小值为:11344222⨯-+=-,本题正确选项:A2.(2018·四川高考模拟)已知ABC ∆是边长为2的正三角形,点P为平面内一点,且CP =u u u r,则()PC PA PB ⋅+u u u r u u u r u u u r的取值范围是( )A .[]0,12B .30,2⎡⎤⎢⎥⎣⎦C .[]0,6D .[]0,3以点B 为坐标原点, BC 所在直线为x 轴,过点B 与BC 垂直的直线为y 轴,建立平面直角坐标系,则()00B ,、(A 、()20C , 设() P x y ,因为CP =u u u vP 点轨迹为()2223x y -+=令2x y θθ⎧=+⎪⎨=⎪⎩则()1PA θθ=-u uu v()2,PB θθ=-u u u v,()PC θθ=u u u v则()16666cos 26PC PA PB sin πθθθ⎫⎛⎫⋅+=-+=++⎪ ⎪⎪⎝⎭⎝⎭u u u v u u u v u u u v 由66cos 66πθ⎛⎫-≤+≤ ⎪⎝⎭ 得066cos 126πθ⎛⎫≤++≤ ⎪⎝⎭故选A3.(2020·山东高考模拟)如图所示,两个不共线向量,OA OB u u u r u u u r的夹角为θ,,M N 分别为OA 与OB 的中点,点C 在直线MN 上,且(),OC xOA yOB x y R =+∈u u u r u u u r u u u r ,则22x y +的最小值为( )AB .18CD .12【解析】由题意,设NC tNM =u u u r u u u u r(01)t ≤≤,则()OC ON NC ON tMN ON t OM ON =+=+=+-u u u r u u u r u u u r u u u r u u u u r u u u r u u u u r u u u r =(1)t ON tOM -+u u u r u u u u r =122t t OA OB -+u u u r u u u r ,所以12{2t x t y -==,所以222221111()()()22228t t x y t -+=+=-+,则当12t =时,22x y +取得最小值18,故选B .4.(2020·河北高考模拟)已知两点(1,0)M -,(1,0)N ,若直线340x y m -+=上存在点P 满足0PM PN ⋅=u u u u r u u u r,则实数m 的取值范围是( ) A .(][),55,-∞-+∞U B .(][),2525,-∞-+∞U C .[]5,5-D .[]25,25-【详解】设(),P x y ,则()()1,,1,,PM x y PN x y =---=--u u u u v u u u v由PM PN ⊥u u u u r u u u r得221x y +=,因P 在直线340x y m -+=上,故圆心到直线的距离1d =≤,故[]5,5m ∈-,故选C.【点睛】此类问题为“隐形圆问题”,常规的处理办法是找出动点所在的轨迹(通常为圆),常见的“隐形圆”有:(1)如果,A B 为定点,且动点M 满足()1MA MB λλ=≠,则动点M 的轨迹为圆; (2)如果ABC ∆中,BC 为定长,A 为定值,则动点A 的轨迹为一段圆弧.5.(2020·浙江高考模拟)如图,在△ABC 中,点,D E 是线段BC 上两个动点,且AD AE +u u u r u u u r x AB y AC =+u u u r u u u r ,则14x y+的最小值为( )A .32B .2C .52D .92【分析】根据题意求出x,y 满足的等式,然后利用基本不等式中“1”的代换,求解14x y+最小值【详解】如图可知x ,y 均为正,设=m ,AD AB nAC AE AB AC λμ+=+u u u r u u u r u u u r u u u r u u u r,:,,,B D E C 共线, 1,1m n λμ∴+=+=,()()AD AE xAB y AC m AB n AC λμ+=+=+++u u u r u u u r u u u r u u u r u u u r u u u rQ ,则2x y m n λμ+=+++=,141141419()5(52222y x x y x y x y x y ⎛⎫⎛⎫∴+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭,则14x y +的最小值为92,故选D.6、(2020宁夏六盘山一模)如图,矩形ABCD 中边AD 的长为1,AB 边的长为2,矩形ABCD 位于第一象限,且顶点A,D 分别位于x 轴、y 轴的正半轴上(含原点)滑动,则OB ⃑⃑⃑⃑⃑ ·OC⃑⃑⃑⃑⃑ 的最大值为( )A .5B .6C .7D .8如图,设A(a,0),B(b,0),∠BAx =θ则B(a +2cosθ,2sinθ),C(2cosθ,b +2sinθ) 因为AD =1所以a 2+b 2=1则OB ⃑⃑⃑⃑⃑ ⋅OC⃑⃑⃑⃑⃑ =2cosθ(a +2cosθ)+2sinθ(b +2sinθ) =4+2acosθ+2bsinθ =4+√4a 2+4b 2sin (θ+φ)=4+2sin (θ+φ)所以OB⃑⃑⃑⃑⃑ ⋅OC ⃑⃑⃑⃑⃑ 的最大值为4+2=6 所以选B 7.(2020·山东高考模拟)已知△ABC 中,22BC BA BC =⋅=-u u u r u u u r u u u r,.点P 为BC 边上的动点,则()PC PA PB PC ⋅++u u u r u u u r u u u r u u u r的最小值为( )A .2B .34-C .2-D .2512-【详解】以BC 的中点为坐标原点,建立如图的直角坐标系,可得()()1010B C -,,,,设()()0P a A x y ,,,, 由2BA BC ⋅=-u u u r u u u r,可得()()120222x y x +⋅=+=-,,,即20x y =-≠,, 则()()()101100PC PA PB PC a x a a a y ⋅++=-⋅---+-++u u u r u u u r u u u r u u u r,, ()()()()21312332a x a a a a a =--=---=--21253612a ⎛⎫=-- ⎪⎝⎭,当16a =时,()PC PA PB PC ⋅++u u u r u u u r u u u r u u u r 的最小值为2512-.故选D .8.(2020·四川高考模拟)已知圆1C :22(5)1x y ++=,2C :22(5)225x y -+=,动圆C 满足与1C 外切且2C 与内切,若M 为1C 上的动点,且10CM C M ⋅=u u u u r u u u u r,则CM u u u u v 的最小值为( )A .B .C .4D .∵圆1C :()2251x y ++=,圆2C :()225225x y -+=, 动圆C 满足与1C 外切且2C 与内切,设圆C 的半径为r ,由题意得1211516CC CC r r +=++-=()(), ∴则C 的轨迹是以(()()505,0,,- 为焦点,长轴长为16的椭圆,∴其方程为221,6439x y += 因为10CM C M ⋅=u u u u v u u u u v ,即CM 为圆1C 的切线,要CM u u u u v 的最小,只要1CC 最小,设()00,M x y ,则CM ===u u u u v088,x =-≤≤Qmin CM ∴===u u u u v ,选A.9.(2020·天津市滨海新区高考模拟)已知ABC V 是边长为a 的正三角形,且,(,,1)AM AB AN AC R λμλμλμ==∈+=.设函数()f BN CM λ=⋅,当函数()f λ的最大值为2-时,a =()A .BC .D 【详解】,BN AN AB CM AM AC =-=-u u u v u u u v u u u v u u u u vu u u u v u u u v,因为ABC ∆是边长为a 的正三角形,且AM AB λ=u u u u v u u u v ,AN AC u u u v u u u vμ=所以()f BN CM λ=⋅u u u v u u u u v ()()AN AB AM AC =-⋅-u u uv u u u v u u u u v u u u vAN AM AM AB AN AC AB AC =⋅-⋅-⋅+⋅u u u v u u u u v u u u u v u u u v u u u v u u u v u u u v u u u v 22221122a a ua a λμλ=--+ 又因1λμ+=,代入1μλ=-得()()()2222111122f a a a a λλλλλ=----+()22112a λλ=-+-所以当12λ=,最大值为21328f a ⎛⎫=- ⎪⎝⎭所以2328a -=-,解得a =.故选D 项. 10.在ABC ∆中, 3AB =, 5AC =,若O 为ABC ∆外接圆的圆心(即满足OA OB OC ==),则·AO BC u u u v u u u v的值为__________.【解析】设BC 的中点为D ,连结OD ,AD ,则OD BC ⊥u u u v u u u v,则:()()()()()2222111538222AO BC AD DO BC AD BC AB AC AC AB AC AB ⋅=+⋅=⋅=+-=-=-=u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v。
平面向量中最值、范围问题

平面向量中的最值、范围问题一、考情分析平面向量中的范围、最值问题是热点问题,也是难点问题,此类问题综合性强,体现了知识的交汇组合.其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量夹角、系数的范围的等,解决思路是建立目标函数的函数解析式,转化为求函数的最值,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合. 二、经验分享1.利用平面向量的数量积可以解决几何中的垂直、夹角、长度等问题,即只需将问题转化为向量形式,用向量的运算来求解.如果能够建立适当的直角坐标系,用向量的坐标运算往往更为简捷.1.平面向量线性运算问题的常见类型及解题策略2.几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.3.坐标是向量代数化的媒介,通过向量的坐标表示可将向量问题转化为代数问题来解决,而坐标的获得通常要借助于直角坐标系. 对于某些平面向量问题, 若能建立适当的直角坐标系,可以使图形中复杂的几何关系转化为简单明朗的代数关系,减少推理过程,有效地降低思维量,起到事半功倍的效果.上面两题都是通过建立坐标系将向量问题转化为函数与不等式问题求解,体现了向量解题的工具性. 三、知识拓展1.-≤⋅≤a b a b a b . 2.-≤±≤+a b a b a b 四、题型分析(一) 平面向量数量积的范围问题已知两个非零向量a 和b ,它们的夹角为θ,cos a b θ⋅⋅叫做a 和b 的数量积(或内积),记作a b ⋅.即a b ⋅=cos a b θ⋅⋅,规定00a ⋅=,数量积的表示一般有三种方法:(1)当已知向量的模和夹角时,可利用定义法求解,即a b ⋅=cos a b θ⋅⋅;(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2;(3)运用平面向量基本定理,将数量积的两个向量用基底表示后,再运算. 【例1】在边长为2的等边三角形ABC 中,D 是AB 的中点,E 为线段AC 上一动点,则ED EB ⋅的取值范围为【分析】利用向量的加法或减法法则,将向量,EB ED 分别表示,结合已知条件设|AE |x =(02x ≤≤),将ED EB ⋅用变量x 表示,进而转化为二次函数的值域问题.【点评】将⋅用某个变量表示,转化为函数的值域问题,其中选择变量要有可操作性.【小试牛刀】【江苏省盐城中学2018届高三上学期期末】已知ABC ∆的周长为6,且,,BC CA AB 成等比数列,则BA BC ⋅的取值范围是______. 【答案】2795⎡-⎢⎣⎭【解析】因为,,BC CA AB 成等比数列,所以622a c bb ac +-=≤=,从而02b <≤,所以()()22222263cos 32722b b ac bBA BC ac B b --+-⋅====-++,又()()2222,,4a c b a c b a c ac b -<∴-<+-<,即2390b b +->,3532b -<≤,故27952BA BC -≤⋅<. (二) 平面向量模的取值范围问题设(,)a x y =,则222a a x y ==+,向量的模可以利用坐标表示,也可以借助“形”,向量的模指的是有向线段的长度,过可结合平面几何知识求解,尤其注意,如果直接求模不易,可以将向量用基底向量表示再求.【例2】已知向量,,a b c 满足4,22,a b ==a 与b 的夹角为4π,()()1c a c b -⋅-=-,则c a -的最大值为 .【分析】根据已知条件可建立直角坐标系,用坐标表示有关点(向量),确定变量满足的等式和目标函数的解析式,结合平面几何知识求最值或范围. 【解析】设c OC b OB a OA ===,,;以OA 所在直线为x,O 为坐标原点建立平面直角坐标系,4,22,a b ==a 与b 的夹角为4π,则A (4,0),B (2,2),设C (x,y ) ∵()()1c a c b -⋅-=-, ∴x 2+y 2-6x-2y+9=0,即(x-3)2+(y-1)2=1表示以(3,1)为圆心,以1为半径的圆,c a -表示点a -的最大值【点评】建立直角坐标系的原则是能准确快捷地表示有关向量或点的坐标,正确找到变量间的关系,以及目标函数代表的几何意义是解题关键.【小试牛刀】【2018届山东省济南高三上学期期末】已知平面上的两个向量OA 和OB 满足OA a =,OB b =,且221a b +=, 0OA OB ⋅=,若向量(),R OC OA OB λμλμ=+∈,且()()222221214a b λμ-+-=,则OC 的最大值为__________. 【答案】32【解析】因为OA a =, OB b =,且221a b +=, 0OA OB ⋅=,, 1,AB OA OB =⊥,如图,取AB 中点D ,则()12OD OA OB =+, 12OD = , 1122DC OC OD OA OB λμ⎛⎫⎛⎫∴=-=-+- ⎪ ⎪⎝⎭⎝⎭,由()()222221214a b λμ-+-=可得222211122a b λμ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭2222211122DC a b λμ⎛⎫⎛⎫∴=-+-= ⎪ ⎪⎝⎭⎝⎭, 1DC ∴=, C ∴在以D 为圆心, 1为半径的圆上, ∴当O C ,, D 共线时OC 最大, OC ∴的最大值为312OD +=,故答案为32.(三) 平面向量夹角的取值范围问题设11(,)a x y =,22(,)b x y =,且,a b 的夹角为θ,则121222221122cos a b a bx y x y θ⋅==⋅+⋅+.【例3】已知向量→OA 与→OB 的夹角为θ,→→→→→→→-====PQ OB t OQ OA t OP OB OA ,)1(,,1,20t 在时取得最小值,当0105t <<时,夹角θ的取值范围为________________. 【分析】将PQ 表示为变量t 的二次函数PQ 1)cos 42()cos 45(2+--++=t t θθ,转化为求二次函数的最小值问题,当θθcos 45cos 210++=t 时,取最小值,由已知条件0105t <<,得关于夹角θ的不等式,解不等式得解.【点评】求变量的取值范围、最值,往往要将目标函数用某个变量表示,转化为求函数的最值问题,期间要注意变量之间的关系,进而得解.【小试牛刀】已知非零向量,a b 满足2a b = ,若函数3211().132f x x a x a bx =+++ 在R 上存在极值,则a 和b 夹角的取值范围为 【答案】,3ππ⎛⎤⎥⎝⎦【解析】()'2fx x a x a b =++⋅,设a 和b 夹角为θ,因为()f x 有极值,所以240a a b ∆=-⋅>,即24cos 0a a b θ∆=-⋅⋅>,即1cos 2θ<,所以,3πθπ⎛⎤∈ ⎥⎝⎦. (四)平面向量系数的取值范围问题平面向量中涉及系数的范围问题时,要注意利用向量的模、数量积、夹角之间的关系,通过列不等式或等式得系数的不等式,从而求系数的取值范围.【例4】已知()2,λ=a ,()5,3-=b ,且a 与b 的夹角为锐角,则λ的取值范围是 .【分析】a 与b 的夹角为锐角等价于0a b ⋅>,且a 与b 不共线同向,所以由0a b ⋅>,得310<λ,再除去a 与b 共线同向的情形.【解析】由于a 与b 的夹角为锐角,0>⋅∴b a ,且a 与b 不共线同向,由01030>+-⇒>⋅λb a ,解得310<λ,当向量a 与b 共线时,得65-=λ,得56-=λ,因此λ的取值范围是310<λ且56-≠λ.【点评】注意向量夹角与三角形内角的区别,向量夹角的范围是[0,]π,而三角形内角范围是(0,)π,向量夹角是锐角,则cos 0,θ>且cos 1θ≠,而三角形内角为锐角,则cos 0,θ>.【小试牛刀】【江苏省泰州中学2018届高三10月月考】如图,在ABC ∆中, 21,3AB AC BAC π==∠=. (1)求AB BC ⋅的值;(2)设点P 在以A 为圆心, AB 为半径的圆弧BC 上运动,且AP x AB y AC =+,其中,x y R ∈.求xy 的取值范围.【解析】(1)()AB BC AB AC AB ⋅=⋅- 213||122AB AC AB =⋅-=--=-. (2)建立如图所示的平面直角坐标,则()131,0,,22B C ⎛⎫- ⎪ ⎪⎝⎭.设()2cos ,sin ,0,3P πθθθ⎡⎤∈⎢⎥⎣⎦,由AP x AB y AC =+, 得()()13cos ,sin 1,0,2x y θθ⎛⎫=+- ⎪ ⎪⎝⎭.所以3cos ,sin 2y x y θθ=-=. 所以323cos sin ,sin x y θθθ=+=. 22323121sin cos sin sin2sin 233363xy πθθθθθ⎛⎫=+=+=-+ ⎪⎝⎭. 因为270,,2,3666ππππθθ⎡⎤⎡⎤∈-∈-⎢⎥⎢⎥⎣⎦⎣⎦, 所以,当262ππθ-=时,即3πθ=时, xy 的最大值为1;当266ππθ-=-或7266ππθ-=即0θ=或23πθ=时, xy 的最小值为0.五、迁移运用1.【江苏省常州2018届高三上学期期末】在ABC ∆中, 5AB =, 7AC =, 3BC =, P 为ABC ∆内一点(含边界),若满足()14BP BA BC R λλ=+∈,则BA BP ⋅的取值范围为________. 【答案】525,84⎡⎤⎢⎥⎣⎦【解析】由余弦定理,得2225371cos 2532B +-==-⨯⨯,因为P 为ABC ∆内一点(含边界),且满足()14BP BA BC R λλ=+∈,所以30,4λ⎡⎤∈⎢⎥⎣⎦,则14BA BP BA BA BC λ⎛⎫⋅=⋅+ ⎪⎝⎭212515525,44284BA BA BC λλ⎡⎤=+⋅=-∈⎢⎥⎣⎦. 2.【江苏省南通市2018届高三上学期第一次调研】如图,已知矩形ABCD 的边长2AB =, 1AD =.点P ,Q 分别在边BC , CD 上,且45PAQ ︒∠=,则AP AQ ⋅的最小值为_________.【答案】424-3.【江苏省如皋市2017--2018学年度高三年级第一学期教学质量调研】已知点P 是边长为3形ABC 内切圆上的一点,则PA PB ⋅的取值范围为_______. 【答案】[]3,1-【解析】以正三角形ABC 的中心为原点,以AB 边上的高为y 轴建立坐标系,则())3,1,3,1A B ---,正三角形ABC 内切圆的方程为221x y +=,所以可设()cos ,sin P αα,则()()3cos 1,3cos 1PA sin PB sin αααα=----=---,,, 22cos 3sin 21PA PB sin ααα⋅=-+++[]213,1sin α=-∈-,故答案为[]3,1-.4.【南京市、盐城市2018届高三年级第一次模拟考试】如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则AB CD ⋅ 的最大值为________.【答案】24【解析】先建立直角坐标系,由向量投影知AB CD ⋅ 取最大值时()()()390,5,3,0,,,0,022C D A B ⎛⎫- ⎪ ⎪⎝⎭ ,即AB CD ⋅ ()39345,3,5242222⎛⎫=--⋅--=+= ⎪ ⎪⎝⎭5.【江苏省泰州中学2018届高三12月月考】已知单位向量a , b 的夹角为120︒,那么2a xb -(x R ∈)的最小值是__________. 3 【解析】()()22222244cos1202413a xb a xbx x x x x -=-=+-︒=++=++ ∴ 2a xb-36.【江苏省溧阳市2017-2018学年高三第一学期阶段性调研】扇形AOB 中,弦2AB C =,为劣弧AB 上的动点, AB 与OC 交于点P ,则·OP BP 的最小值是_____________________. 【答案】14-【解析】设弦AB 中点为M,则()·OP BP OM MP BP MP BP ⋅=+=⋅ 若,MP BP 同向,则0OP BP ⋅>,若,MP BP 反向,则0OP BP ⋅<, 故OP BP ⋅的最小值在,MP BP 反向时取得,此时1MP BP +=,则: 2124MP BP OP BP MP BP ⎛⎫+⎪⋅=-⋅≥-=- ⎪⎝⎭, 当且仅当12MP BP ==时取等号,即OP BP ⋅的最小值是14-. 7.【苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中】已知AB 为圆O 的直径,M 为圆O 的弦CD 上一动点,8AB =,6CD =,则MA MB ⋅的取值范围是 . 【答案】[9,0]- 【解析】试题分析:22216MA MB MO AO MO ⋅=-=-,而222[,][7,16]O CD MO d r -∈=,所以MA MB ⋅的取值范围是[9,0]-8.【泰州中学2017届高三上学期期中考试】在ABC ∆中,()30AB AC CB -=,则角A 的最大值为_________. 【答案】6π9.【泰州中学2017届高三上学期期中考试】在平面内,定点,,,A B C D 满足,4DA DB DC DA DB DB DC DC DA =====-,动点,P M 满足2,AP PM MC ==,则BM 的最大值是__________.【答案】321【解析】试题分析:设r DC DB DA ===||||||,则4cos cos cos 222-===γβαr r r .由题设可知0120===γβα,且2282=⇒=r r .建立如图所示的平面直角坐标系,则)0,6(),0,6(),23,0(C B A -,由题意点P 在以A 为圆心的圆上,点M 是线段PC 的中点.故结合图形可知当CP 与圆相切时,BM 的值最大,其最大值是123-.应填答案1.10.【2017届甘肃天水一中高三12月月考】已知ABC ∆中,过中线AD 的中点E 任作一条直线分别交边AB ,AC 于M ,N 两点,设AM xAB =,AN y AC =(0xy ≠),则4x y +的最小值 .【答案】94【解析】由已知可得AB x AM AE ME AD AE AD )41(4212-=-=⇒+==⇒+=AC y AB x AM AN MN AC +-=-=+,41,由=+⇒=+⇒=--⇒y x yx y x xMN ME 44114141// 49)425(41)45(41)11)(4(41=⋅+≥++=++y x x y y x x y y x y x . 11.【2017吉林长春五县高二理上学期期末】已知0m >,0n >,向量(),1,3a m =-与()1,,2b n =垂直,则mn 的最大值为 .【答案】9【解析】因为向量(),1,3a m =-与()1,,2b n =垂直,所以60a b m n ⋅=+-=,即6m n +=,所以292()m n mn +≤=,当且仅当3m n ==时取等号,所以mn 的最大值为9,故答案为9. 12.【2017河北武邑中学周考】已知直角梯形ABCD 中,BC AD //,90=∠ADC ,2=AD ,1=BC ,P 是腰DC 上的动点,则3PA PB +的最小值为________. 【答案】5【解析】如图所示,以直线,DA DC 分别为,x y 轴建立平面直角坐标系,则(2,0),(1,),(0,),(0,0)A B a C a D ,设(0,)(0)P b b a ≤≤,则(2,),(1,)PA b PB a b =-=-,所以3(1,5,34)PA PB a a b +=--,所以2325(34)5PA PB a b +=+-≥,所以3PA PB +的最小值为5.13.【2017学年河北武邑中学周考】在平面直角坐标系中,O 为原点,()0,1-A ,()3,0B ,()0,3C ,动点D 满足1CD =,则OA OB OD ++的最大值是________. 【答案】17+【解析】由题意可得,点D 在以(3,0)C 为圆心的单位圆上,设点D 的坐标为(3cos ,sin )θθ+,则71OA OB OD OA OB OC CD ++≤+++=.14.【2017届河北武邑中学高三周考】已知向量()1,1OA =,()1,OB a =,其中O 为原点,若向量OA 与OB 的夹角在区间0,12π⎡⎤⎢⎥⎣⎦内变化,则实数a 的取值范围是 . 33a ≤≤【解析】因为),1(),1,1(a OB OA ==,所以a +=⋅1;又θcos 122a +⋅=⋅,故)1(21cos 2a a ++=θ,注意到]12,0[πθ∈,故]1,426[cos +∈θ,即]1,426[)1(212+∈++a a ,解之得333a ≤≤;应填答案333a ≤≤. 15.【2018届辽宁师范大学附属中学高三上学期期末】直角梯形ABCD 中, CB CD ⊥, AD BC ,ABD 是边长为2的正三角形, P 是平面上的动点, 1CP =,设AP AD AB λμ=+(λ, R μ∈),则λμ+的最大值为__________.【答案】923+ 【解析】以C 为原点, CD 为x 轴, BC 所在直线为y 轴,建立直角坐标系, 1,CP =∴可设()()()cos ,,1,3,2,0CP sin AD AB αα==-=-, (,3,AC =- (cos 2,3,AP AC CP sin αα=+=-+因为AP AD AB λμ=+,所以()()cos 2,32,3sin ααλμλ-+=--3122{{3313122cos sin cos λαλμαλαμαα=+--=-⇒==-+,)13333cos 222λμαααϕ+=-+-+ 332≤=923+即λμ+的最大值为923+923+. 16.【2018届湖南师范大学附属中学高三上学期月考】已知向量,a b 夹角为3π, 2b =,对任意x R ∈,有b xa a b +≥-,则()2atb a tb t R -+-∈的最小值是__________.【答案】7 【解析】向量,a b 夹角为,23b π=,对任意x R ∈,有b xa a b +≥-,两边平方整理可得()222220x a ax b a a b +⋅-⋅≥,则()()2224420a b a a a b ∆=⋅+-⋅≤,即有()220a a b -⋅≤,即()0a a b ⋅-=,则()a b a -⊥,由向量,a b 夹角为,23b π=,由2cos3a ab a b π=⋅=⋅⋅,即有1a =,则2223a b a b a b -=+-⋅=,画出AO a =, AB b =,建立平面直角坐标系,如图所示,则()()1,0,3,A B ()()1,0,1,3a b ∴=-=- ()()22132a tb a tb t t∴-+-=-+()2222113421424t tt t t t ⎛⎫-+=-++-+= ⎪⎝⎭2222131********t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⎢-+--++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎢⎣,表示(),0P t 与1313,48M N ⎛⎛ ⎝⎭⎝⎭的距离之和的2倍,当,,M P N 共线时,取得最小值2MN ,即有2211337224848MN ⎛⎫⎛⎫=-++= ⎪ ⎪ ⎪⎝⎭⎝⎭,故答7. 17.【2018届江苏省泰州中学高三12月月考】在矩形ABCD 中, 3AB =, 1AD =,若M , N 分别在边BC , CD 上运动(包括端点,且满足BM CN BCCD=,则AM AN ⋅的取值范围是__________.【答案】[1,9]【解析】分别以AB,AD 为x,y 轴建立直角坐标系,则()()(0,03,0,3,1,0,1A B C D ),(),设()(3,,,1M b N x ),因为BM CN BCCD=,所以33x b -=,则()3=,1,=3,3x AN x AM -⎛⎫⎪⎝⎭,故()8=1033AM AN x x ⋅+≤≤,所以81193x ≤+≤,故填[1,9]. 18.【2018届安徽省蒙城“五校”联考】在ABC ∆中,点D 在线段BC 的延长线上,且12BC CD =,点O 在线段CD 上(与点,C D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是__________. 【答案】()2,0-19.【2017届四川双流中学高三训练】已知向量(),2a x =-,(),1b y =,其中x ,y 都是正实数,若a b ⊥,则2t x y =+的最小值是___________. 【答案】4【解析】由a b ⊥,得0=⋅b a ,即()()21,2,-=⋅-xy y x ,所以2=xy .又x ,y 都是正实数,所以422222=⋅=⋅≥+=y x y x t .当且仅当y x 2=时取得等号,此时2=x ,1=y ,故答案为:4.20.【2017届江苏南京市盐城高三一模考】在ABC ∆中,已知3AB =,3C π=,则CA CB ⋅的最大值为 . 【答案】32【解析】1cos 2CA CB ba C ab ⋅==,由余弦定理得:2232cos 23a b ab ab ab ab π=+-≥-=,所以32CA CB ⋅≤,当且仅当a b =时取等号21.【2017届浙江杭州地区重点中学高三上学期期中】已知△ABC中,4AB =,2AC =,|(22)|AB AC λλ+-(R λ∈)的最小值为若P 为边AB 上任意一点,则PB PC ⋅的最小值是 .【答案】94-【解析】令()f λ=22222|(22)|(22)2(22)AB AC AB AC AB AC λλλλλλ+-=+-+-⋅=216λ+24(22)λ-+2(22)8cos A λλ-⋅=216[(22cos )(2cos 2)1]A A λλ-+-+,当cos 0A =时,()f λ=221116(221)16[2()]822λλλ-+=-+≥,因为>所以2A π=,则建立直角坐标系,(0,0)A ,(4,0),(0,2)B C ,设(,0)P x (04)x <<,则(4,0)PB x =-,(,2)PC x =-,所以PB PC ⋅=(4)x x --=2(2)4x --;当cos 0A ≠时,()f λ=2116[(22cos )()2A λ--+1cos]2A +≥88cos 12A +=,解得1cos 2A =,所以3A π=,则建立直角坐标系,(0,0)A ,(4,0),B C ,设(,0)P x (04)x <<,则(4,0)PB x =-,(1PC x =-,所以PB PC ⋅=(4)(1)x x --=259()24x --.综上所述,当52x =时,PB PC ⋅取得最小值94-.。
6.5 压轴题高分策略之平面向量最值、取值范围问题-2017年高考数学(文)热点+题型全突破含解析

平面向量中的最值和范围问题,是一个热点问题,也是难点问题,这类试题的基本类型是根据给出的条件求某个量的最值、范围,如:向量的模、数量积、夹角及向量的系数.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数"与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合.在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中高档题.类型一、平面向量与不等式相结合的最值问题【典例1】【2015届吉林省实验中学高三上学期第五次模拟考试】如图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,M N 两点,且,AM xAB AN yAC ==,则x y +的最小值为()A .2B .13C .43D .34【答案】C 【审题指导】本题主要考查向量的线性运算,向量的三点共线,三角形的重心及基本不等式,运用向量的几何运算将AG 表示出来,通过系数相等求出x,y 的关系式,从而求出x+y 的最小值第一步:从第一句话可以得出、、AG AB AC 三者之间的关系,而M 、G 、N 三点共线,可得出另一组关系式CMNA BGQ第二步: 将两组关系式用同一组基底表示,通过系数相等得出x 和y 的关系式第三步:通过观察关系式及所求式子,选择适当的方法求最值。
且仅当时23x y ==取等号,所以选C .学科网【典例2】【2016海南农垦中学考前押题】在ABC ∆中,32,2π==A BC ,则AC AB ⋅的最小值为_______。
【答案】32-【变式训练1】【2015届广东省汕头市高三第一次模拟考试】如图,在ABC ∆中,D 为BC 的中点,E 为AD 上任一点,且BC BA BE μλ+=,则μλ21+的最小值为 .【答案】9 【解析】设,BCa BAb ==,由于D 为AB 的中点,则1,2BDa =,BA b =,则12DA b a =-,因为D 、F 、A 共线,可设(01)DE mDA m =<<,有1()2DE m b a =-,BE BD DE =+=1(1)2m - a ⋅mb b a λμ+=+由于,a b 不共线,则1(1),212m m μλμλ=-=⇒+=,(0,0)λμ>>,由于12λμ+=22(2)24559λμλμμλλμλμ+++=++≥+=,(当且仅当14λ=, 12μ=时取等号),则12λμ+的最小值为9,【变式训练2】【2016届河南省八市重点高中质检】已知平面向量,,a b c 满足1a a a b b c •=•=•=,2a c •=,则a b c ++的取值范围为( ) A .[0,)+∞ B .)+∞C .)+∞D .[4,)+∞【答案】D 【解析】类型二、平面向量与函数相结合的最值问题【典题3】【湖南师范大学中附2016届高三月考文】已知平面向量OA OB OC、、满足:1,0OA OB OC OA OB====.若=+∈,则x y+的最大值是()OC xOA yOB x y R,(,)B.1 C2 A.22D.2【答案】C【解析】试题分析:由1OC =得22()1OC xOA yOB =+=,得221x y +=,设cos ,sin x y θθ==,则cos sin 2sin()4x y πθθθ+=+=+,所以x y +的最大值是2,故选C .考点:向量的运算.【典题4】【2016吉林实验中学月考】在等腰直角ABC ∆中,2,90===∠BC AB ABC,N M ,为AC 边上两个动点,且满足2=MN,则BN BM ⋅的取值范围为______.【答案】322⎡⎤⎢⎥⎣⎦,考点:1。
最全归纳平面向量中的范围与最值问题(原卷版)--高中数学专项训练

最全归纳平面向量中的范围与最值问题【考点预测】一.平面向量范围与最值问题常用方法:(1)定义法第一步:利用向量的概念及其基本运算将所求问题转化为相应的等式关系第二步:运用基木不等式求其最值问题第三步:得出结论(2)坐标法第一步:根据题意建立适当的直角坐标系并写出相应点的坐标第二步:将平面向量的运算坐标化第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等求解(3)基底法第一步:利用其底转化向量第二步:根据向量运算律化简目标第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等得出结论(4)几何意义法第一步:先确定向量所表达的点的轨迹第二步:根据直线与曲线位置关系列式第三步:解得结果二.极化恒等式(1)平行四边形平行四边形对角线的平方和等于四边的平方和:|a +b |2+|a -b |2=2(|a|2+|b |2)证明:不妨设AB =a ,AD =b ,则AC =a +b ,DB =a -bAC 2=AC 2=a +b 2=a 2+2a ⋅b +b 2①DB 2=DB 2=a -b 2=a 2-2a ⋅b +b 2②①②两式相加得:AC 2+DB 2=2a 2+b 2=2AB 2+AD 2 (2)极化恒等式:上面两式相减,得:14a +b 2-a -b 2 ----极化恒等式①平行四边形模式:a ⋅b =14AC 2-DB 2几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.②三角形模式:a ⋅b =AM 2-14DB 2(M 为BD 的中点)三.矩形大法矩形所在平面内任一点到其对角线端点距离的平方和相等已知点O 是矩形ABCD 与所在平面内任一点,证明:OA 2+OC 2=OB 2+OD 2。
【证明】(坐标法)设AB =a ,AD =b ,以AB 所在直线为轴建立平面直角坐标系xoy ,则B (a ,0),D (0,b ),C (a ,b ),设O (x ,y ),则OA 2+OC 2=(x 2+y 2)+[(x -a )2+(y -b )2]OB 2+OD 2=[(x -a )2+y 2]+[x 2+(y -b )2]∴OA 2+OC 2=OB 2+OD 2四.等和线(1)平面向量共线定理已知OA =λOB +μOC ,若λ+μ=1,则A ,B ,C 三点共线;反之亦然。
破解平面向量最值问题的两个“妙招”

平面向量最值问题一般与动点、参数有关.这类问题具有较强的综合性,通常会考查平面向量的基本定理、共线定理、运算法则、公式,平面几何图形的性质.本文结合例题探讨一下破解平面向量最值问题的两个妙招.一、建立坐标系当遇到与等腰三角形、平行四边形、矩形、圆等规则平面几何图形有关的问题时,可根据几何图形的特点,建立合适的平面直角坐标系,求得各个点的坐标,各条线段的方向向量,便可通过向量的坐标运算求得目标式,再利用二次函数的性质、基本不等式等求得目标式的最值,即可解题.例1.在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1,若点E 为边CD 上的动点,则 AE ∙ BE 的最小值为_____.解:以点D 为原点,DA 所在的直线为x 轴,DC 所在的直线为y 轴建立平面直角坐标系,设E ()0,t ,t ∈[]0,3,则A ()1,0,B æèçø32,C ()0,3,因为 AE ∙ BE =()-1×æèöø-32+t æèçøt-=t 2+32=æèçøt 2t +2116,所以当t = AE ∙ BE 取最小值2116.解答该题,需根据已知条件AD ⊥CD ,来建立平面直角坐标系.求得点A 、B 、C 、D 、E 的坐标,并设出点E 的坐标,便可根据向量的数量积公式求得AE ∙BE 的表达式,最后根据二次函数的性质求得最值.二、几何性质法平面向量具有“数”“形”两重身份.因此在解答平面向量问题时,往往可采用几何性质法来求解.可根据向量的三角形法则、平行四边形法则,绘制相应的几何图形,将向量之间的关系转化为几何关系,灵活运用平面几何图形的性质,如圆、矩形、三角形、平行四边形的性质,寻找到使目标式取最值的临界情形,从而求得最值.例2.已知A 、B 是圆C :()x -12+()y -22=4上的两点,若平面内存在一点Q 使得 QC =λ QA +()1-λQB ,λ∈R ,点P 在直线l :3x +4y +4=0上,求 PA ∙PB 的最小值.解:∵ QC =λ QA +()1-λQB ,λ∈R ,∴A 、B 、C 共线,即AB 是圆C 的直径,∵ BA = PA -PB ,2 PC = PA + PB ,∴ BA 2= PA 2+ PB 2-2 PA ∙ PB ,①4 PC 2= PA 2+ PB 2+2 PA ∙PB ,②由①②可得 PA ∙ PB = PC 2-14BA 2= PC 2-4,∵点C ()1,2到直线l :3x +4y +4=0距离为3,∴ PC 2最小值为9,即 PA ∙PB 的最小值为5.解答本题,需先根据平面向量的共线定理证明A 、B 、C 三点共线,根据圆对称性得出结论:AB 是圆C的直径,然后利用向量的模的公式和向量的数量积公式求得 PA ∙ PB 的表达式,将求 PA ∙PB 的最小值转化为求|| PC 的最小值.而C 为顶点,P 点在直线l 上,只需根据点到直线的距离公式即可求得最小值.例3.已知e 为单位向量,非零向量a 与e的夹角为π3,b 2-4e ∙b +3=0,求||||a -b 的最小值.解:设 OA =a ,OB =b, OC =e ,若OC 在x 轴上,且点A 位于第一象限中,∵a 与e 的夹角为π3,∴点A 在斜率为π3的射线上,考点透视马小芹39设点B 为()x ,y ,由b 2-4e ∙b+3=0得()x -22+y 2=1,即点B 在圆()x -22+y 2=1上,∵||||a -b =|| OA - OB =|| BA ,∴||||a -b 的最小值为点B 到射线OA 的最短距离,即圆心()2,0到射线y =3x 的距离减去半径,∴||||a -b min=3-1.首先以单位向量e 作为解题的突破口,假设e 为水平方向的单位向量,然后将问题中的各个条件转换为几何关系,如将“a 与e 的夹角为π3”转化为“点A 在斜率为π3的射线上”;根据()x -22+y 2=1,将点B 看作圆()x -22+y 2=1上的点,将“||||a -b 的最小值”转化为“点B 到射线OA 的最短距离”等,根据圆的性质来求最值.运用几何性质法解答平面向量最值问题,需仔细研究向量的几何意义,联系直线、中点的向量表达形式,把向量以点和图形的形式呈现出来,将向量的最值问题等价转化为平面几何中的距离、角度的最值问题,结合平面几何图形的性质来求解.虽然平面向量最值问题较为复杂,但是我们只要能根据图形的特点建立合适的平面直角坐标系,根据向量的几何意义构造平面几何图形,便能通过向量的坐标运算,利用平面几何图形的性质,求得问题的答案.本文系江苏省陶研会立项课题《高中生小组合作学习下数学错题反思的有效性研究》(课题批准文号:JSTY624)研究成果(作者单位:江苏省泗洪姜堰高级中学)考点透视特殊与一般思想是重要的数学思想.在解答数学问题时,将特殊问题一般化,有助于了解、掌握问题的本质和通性通法;将一般问题特殊化,有利于快速找到解题的突破口.下面主要谈一谈特殊与一般思想在解答不等式问题中的应用.一、将一般性的问题特殊化将一般性的问题特殊化,需把研究对象或问题从原有的范围缩到较小范围或个别情形进行考查.在一般情况下成立的命题,在一些满足题意的特殊情形下也必然成立.因此,在解答某些含有参数、不确定变量的不等式问题时,可以从题目中的已知条件出发,通过尝试寻找特殊情形,如赋特殊值,考查特殊数,取特殊点、特殊位置,考虑特殊图形等,从中寻得启示.获得结果后,再对其进行验证,便可快速解题.例1.如图,若数轴上A 、B 两点分别表示实数a 、b ,则下列结论正确的是().A.a +b >0B.ab >0C.|a |-|b |>0D.a -b >0分析:题目中的A 、B 、a 、b 的大小均不确定,很难直接得到正确的选项,不妨运用特殊与一般思想,将问题特殊化,根据题意给a 、b 赋予特殊值,将其代入四个选择中进行运算,即可得到正确的答案.解:通过观察数轴,可以得出a <-1,0<b <1,令a =-2,b =0.5,则a +b =-1.5<0,ab =-1<0,|a |-|b |=1.5>0,a -b =-2.5<0,故选C.对于选择题,可通过特殊个例来寻求满足一般情况的结论,将其推广到一般性的问题上,从而获得一般性问题的答案.在运用特殊与一般思想解题时,要关注一些特殊情形:如区间的端点、曲线的切点、中点等,从特殊情形入手,以便将一般性的问题特殊化.例2.已知x i ≥0(i =1,2,3,…,n ),且∑i =1nx i =1,求证:1≤∑i =1n x i ≤n .分析:该例题中的未知量较多,不容易入手,根据化多为少的原则应想办法减少未知量的个数,让问题纪婷吴明忠40。
平面向量中的最值和范围问题

平面向量中的最值和范围问题平面向量中的最值和范围问题,是一个热点问题,也是难点问题,这类试题的基本类型是根据给出的条件求某个量的最值、范围,如:向量的模、数量积、夹角及向量的系数.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合. 考点1、向量的模的范围例1、(1) 已知直角梯形ABCD 中,AD //BC ,090ADC ∠=,1,2==BC AD ,P 是腰DC 上的+的最小值为____________.(2)(2011辽宁卷理)若c b a ,,均为单位向量,且0=⋅b a ,0))((≤--c b c a b -+最大值为( ) A.2-1 B .1 C. 2 D .2(3)(2010浙江卷理)已知平面向量),(,βααβα≠≠01=,且α与αβ-的夹角为120°的取值范围是_____________ .变式:已知平面向量α,β满足||||1αβ==,且α与βα-的夹角为120︒,则|(1)2|t t αβ-+()t R ∈的取值范围是 ;小结1、模的范围或最值常见方法:①通过|a →|2=a →2转化为实数问题;②数形结合;③坐标法. 考点2、向量夹角的范围例2、已知OB →=(2,0),OC →=(2,2),CA →=(2cos α,2sin α),则OA →与OB →夹角的取值范围是( )A.⎣⎡⎦⎤π12,π3B.⎣⎢⎡⎦⎥⎤π4,5π12C.⎣⎢⎡⎦⎥⎤π12,5π12D.⎣⎢⎡⎦⎥⎤5π12,π2小结2、夹角范围问题的常见方法:①公式法;②数形结合法;③坐标法.考点3、向量数量积的范围例3、(1)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,则PB PA ⋅的最小值为( ) (A) 24+- (B) 23+- (C) 224+- (D) 223+-(2)如右图,在梯形ABCD 中,DA=AB=BC =12CD =1.点P 在阴影区域(含边界)中运动,则AP →·BD→的取值范围是 ;小结3、数量积问题涉及的方法较多,常用的方法有:①定义;②模与投影之积;③坐标法;④a →·b →=(a →+b →2)2-(a →-b →2)2.考点4、向量的系数问题:例4、给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧AB ⌒上变动.若OC →=xOA →+yOB →其中x ,y ∈R ,则x +y 的最大值是______.小结4、向量系数问题的一般处理方法:①点乘法;②几何法;③整体法.变式:已知点G 是ABC ∆的重心,点P 是GBC ∆内一点,若,AP AB AC λμλμ=++则的取值范围是( ) A .1(,1)2 B .2(,1)3 C .3(1,)2D .(1,2)专题十、平面向量中的最值和范围问题练习题1、(2011全国新课标理)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p a b πθ+>⇔∈ 22:||1(,]3p a b πθπ+>⇔∈13:||1[0,)3p a b πθ->⇔∈ 4:||1(,]3p a b πθπ->⇔∈其中真命题是( ) A.14,p p B.13,p p C.23,p p D.24,p p2、(2012广东卷)对任意两个非零的平面向量α和β,定义⋅⋅=⋅αβαβββ,若平面向量a 、b 满 足0≥>a b ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则=a b ( )A .12B .1C .32D .523、(201宁波市期末)在ABC∆中,D 为B C 中点,若120=∠A ,,则AD 的最小值是 ( )A.21 B.23C.2D.224、(2011福建卷)已知O 是坐标原点,点A (-1,1)若点M (x,y )为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x ,上的一个动点,则OA OM ⋅的取值范围是( )A .[-1,0]B .[0,1]C .[0,2]D .[-1,2] 5、(2012浙江会考)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 是BC 的中点,P , Q 是正方 体内部及面上的两个动点,则PQ AM ⋅的最大值是( ) A.21 B.1 C.23D.456、(2011全国大纲理)设向量c b a ,,满足1==b a ,21-=⋅b a ,060,=--c b c a ,则c 的最大值等于( ) A .2 B .3 C .2 D .17、如图,在直角梯形ABCD 中,,动点P在以点C 为圆心,且与直线BD 相切的圆内运动,设,则的取值范围是( )O A BCEFxy A. B. C. D.8、(2012安徽卷)若平面向量,a b 满足:23a b -≤;则b a ⋅的最小值是_____;9、已知向量a =),2,1(-x b =),4(y ,若a ⊥b ,则yx 39+的最小值为 ;10、(2012北京卷)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则CB DE ⋅的值为________,DC DE ⋅的最大值为____ __;11、如图,在平面直角坐标系中,正方形OABC 的边长为1,E 为AB 的中点,若F 为正方形 内(含边界)任意一点,则OE OF ⋅的最大值为 ;12、如图,线段AB 长度为2,点,A B 分别在x 非负半轴和y 非负半轴上滑动,以线段AB 为一 边,在第一象限内作矩形ABCD ,1BC =,O 为坐标原点,则OD OC •的范围是 .11题图 12题图13、(2012上海卷理)在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||||||CD CN BC BM =,则AN AM ⋅的取值范围是_________ ;。
与平面向量有关的最值或范围问题

与平面向量有关的最值或范围问题与平面向量有关的最值或范围问题,频频出现在高考试卷及各地模拟试卷中,这类问题常和其他知识交汇考查,解法比较灵活,对能力要求较高,往往成为试卷中的亮点.本文总结解决这类问题的几种基本方法,供同学们参考.例1.若非零向量,a b 满足31-≤a b ,则⋅a b 的最小值为 . 【解析】31-≤a b 22961⇔+-⋅≤a b a b , 又22966+≥≥-⋅a b a b a b , 所以121-⋅≤a b ,112⋅≥-a b , 当132==a b ,且,a b 方向相反时取等号, 所以⋅a b 的最小值为112-.例2.若1===+=a b c b ,求()()-⋅-a c b c 的最小值.【解析】由,=+=a b a b 得2222+⋅+=a a b b ,即222+⋅=a b ,所以0⋅=a b ,又1=c ,所以()⋅+≤+=c a b c a b ,所以()()-⋅-a c b c =()2⋅-⋅++=a b c a b c ()11-⋅+≥c a b 当c 与+a b 方向相同时取等号,所以()()-⋅-a c b c 的最小值为1-.【点评】这两道题均在平面向量与不等式知识的交汇,试题新颖,解法灵活.-≤⋅≤a b a b a b 是数量积性质⋅≤a b a b 的等价转换,其应用往往被同学们忽略,注意例1是利用≥-⋅a b a b 利用进行缩小变换,例2是利用()⋅+≤+c a b c a b 进行放大变换,解决这类问题要紧盯目标,进行有目的的放缩.二、建立直角坐标系求最值或范围例 3.已知平行四边形ABCD 中,2,1,AB AD BD === ,,E F 分别在边,BC CD 上,BE CD CF BC =u u u r u u u r u u u r u u u r,求AE AF ⋅u u u r u u u r的最大值与最小值【解析】由2,1,AB AD BD ===60BAD ∠=o ,以A 为坐标原点,以AB 所在直线为x 轴,建立如图所示的平面直角坐标系,则()2,0B ,52C ⎛ ⎝⎭,12D ⎛ ⎝⎭,由BE CD CF BC =u u u r u u u r u u u r u u u r 可得2EB CF =u u u r u u u r ,设)()112E x x -,2,2F x ⎛ ⎝⎭,其中1522x ≤≤, 由BE CD CF BC =u u u r u u u r u u u r u u u r 可得2CF BE =u u u r u u u r 可得212142x x =-,所以AE AF ⋅u u u r u u u r =)1212x x x +-)11121422x x x ⎛⎫-+- ⎪⎝⎭=2114123x x -+-=23462x ⎛⎫--+ ⎪⎝⎭,所以当12x =时AE AF ⋅u u u r u u u r 取到最大值5,当152x =时AE AF ⋅u u ur u u u r 取到最大值2.例4.已知a ,b 均为单位向量,0,1⋅=⋅=⋅=a b a c b c ,求证:对任意正实数m,恒有m m++≥bc a 并指出等号成立的条件.【解析】由题意,可设()()()1,0,0,1,,x y ===a b c , 由1⋅=⋅=a c b c 可得11==y x ,,即()1,1=c , 所以11,1m m m m ⎛⎫++=++ ⎪⎝⎭b c a ,m m++≥=≥=bc a 当1m =时取等号.【点评】坐标是向量代数化的媒介,通过向量的坐标表示可将向量问题转化为代数问题来解决,而坐标的获得通常要借助于直角坐标系.对于平面几何图形有关的一些向量问题,可通过建立适当的直角坐标系,使图形中复杂的几何关系转化为简单明朗的代数关系,减少推理过程,有效地降低思维量,起到事半功倍的效果(如例3).另外,若题中由互相垂直的单位向量,也可以通过建立坐标系,把向量问题转化为代数问题,再利用函数或不等式等知识问求解(如例4).三、转化为三角函数求最值或范围例5.△ABC 中2π3ACB ∠=,△ABC 的外接圆O 的半径为1,若,OC xOA yOB =+u u u r u u u r u u u r求x y -的取值范围. 【解析】由2π3ACB ∠=可得2π3AOB ∠=,设2π03AOC αα⎛⎫∠=<< ⎪⎝⎭,则2π3BOC α∠=-, 则,,OC OA xOA OA yOB OA OC OB xOA OB yOB OB ⎧⋅=⋅+⋅⎪⎨⋅=⋅+⋅⎪⎩u u u r u u u r u u u r u u u r u u u r u u u v u u u r u u u r u u u r u u u r u u u r u u u v即1cos ,221cos ,32x y x y απα⎧=-⎪⎪⎨⎛⎫⎪-=-+ ⎪⎪⎝⎭⎩ 所以2121222πcos cos 3232333x y x y x y αα⎛⎫⎛⎫⎛⎫-=---+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=221cos cos cos 332ααααα⎛⎫--+= ⎪⎝⎭π6α⎛⎫+ ⎪⎝⎭, 由2π03α<<可得ππ5π666α<+<, 根据cos y x =在π5π,66⎛⎫⎪⎝⎭上是减函数,可得πcos 6α⎛⎫<+< ⎪⎝⎭, 所以x y -的取值范围是()1,1-.【点评】本题若直接从这一向量表达式出发去求x y -的最大值,显然有困难.该解法通过利用向量的数量积运算实现了用三角函数表示x y - ,进而巧妙利用三角函数的有界性求出x y -的取值范围,体现了三角函数的工具性.本题是把含,x y 的代数式借组向量用三角函数表示,有时也可以通过引进角,把向量的数量积表示为三角函数求最值或范围,请看例6:例6.已知△ABC 的外接圆O 的半径为2,CB CA =u u u r u u r,求CB CA ⋅u u u r u u r 的最小值.【解析】设COA α∠=,由CB CA =u u u r u u r可知COB α∠=,2AOB α∠=或2π2α-,所以4cos OC OA α⋅=u u u r u u u r ,4cos OC OB α⋅=u u u r u u u r ,4cos2OA OB α⋅=u u u r u u u r,所以()()CA CB OA OC OB OC ⋅=-⋅-=u u r u u u r u u u r u u u r u u u r u u u r 2OA OB OC OA OC OB OC ⋅-⋅-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r=4cos24cos 4cos 4ααα--+=2218cos 8cos 8cos 22ααα⎛⎫-=-- ⎪⎝⎭2≥,当π3α=时取等号. 四、构造几何图形求最值或范围OC xOA yOB =+u u u r u u u r u u u r例7.已知单位向量a ,b 满足a ⋅b =-12,向量c 满足()()12-⋅-=--a c b c a c b c ,求c 的最大值. 【解析】设向量a ,b ,c 的起点为O ,终点分别为A ,B ,C ,由a ·b =-12得△AOB =120°,由()()12-⋅-=--a c b c a c b c 得△ACB =60°, 所以点C 在△AOB 的外接圆上,当OC 经过圆心时,|c |最大,在△AOB 中,AB =3,由正弦定理得△AOB 外接圆的直径是3sin120°=2.所以c 的最大值为2.【点评】该解法是利用向量的几何意义,构造共圆的四点,再利用正弦定理去求解.由于向量本身具有代数形式和几何形式双重身份,所以在解决向量问题过程中要形成见数思形、以形助数的思维习惯,以加深理解知识要点,增强应用意识.五、利用基本不等式求最值或范围例8.已知△ABC 中,边BC 中点为D ,点E 在中线AD 上,若AD u u u r =4,求()EA EB EC ⋅+u u u r u u u r u u u r的最小值.【解析】由边BC 中点为D ,可得2EB EC ED +=u u u r u u u r u u u r,因为点E 在中线AD 上,所以()EA EB EC ⋅+u u u r u u u r u u u r =22cos π2EA ED EA ED EA ED ⋅==-u u u r u u u r u u u r u u u r u u u r u u u r2222822EA ED AD ⎛⎫⎛⎫+⎪ ⎪≥-=-=- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r ,点E 为AD 中点时取等号, 所以()EA EB EC ⋅+u u u r u u u r u u u r的最小值为8-.【点评】本题根据,EA ED u u u r u u u r反向,把数量积转化为转化为长度之积,再利用基本不等式求最值,体现了向量与基本不等式的交汇,一般来说,要利用这种方法求最值,首先需要把数量积转化为正数的和或积,再利用)0,0a b a b +≥>>,22a b ab +⎛⎫≤ ⎪⎝⎭或()()2222a b a b +≤+求最值. 六、平面向量最值或范围练习题1.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=u u u r u u u r,O 为坐标原点,则OB 的取值范围是() A .(1⎤⎦B .(1⎤⎦ C.1⎤⎦D .)1,+∞2.如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠===o若点E 为边CD 上的动点,则AE BE ⋅u u u r u u u r的最小值为 ( )A .2116 B .32C .2516 D .3 3.已知a b u r r 、均为单位向量,且0.a b ⋅=r r若435,c a c b -+-=r r r r 则c a +r r 的取值范围是( )A.3,⎡⎣B .[]3,5C .[]3,4D.5⎤⎦4.在锐角ABC V 中,602B AB AC u u u v u u u v ,=︒-=,则AB AC u u u v u u u v⋅的取值范围为( ) A .()0,12B .1,124⎡⎫-⎪⎢⎣⎭C .(]0,4D .(]0,2 5.ABC ∆中,5AB =,10AC =,25AB AC ⋅=u u u r u u u r,点P 是ABC ∆内(包括边界)的一动点,且32()55AP AB AC R λλ=-∈u u u r u u u r u u u r ,则||AP uuu r的最大值是( )ABCD6.已知a r , b r 是平面内两个互相垂直的单位向量,若向量c r 满足()()0a c b c -⋅-=r r r r,则c r 的最大值是( )A .1B .2C .D .7.如图,菱形ABCD 的边长为3,对角线AC 与BD 相交于O 点,|AC u u u rE 为BC 边(包含端点)上一点,则|EA u u u r|的取值范围是_____,EA ED ⋅u u u r u u u r的最小值为_____.8.已知非零平面向量a r ,b r ,c r 满足0a b ⋅=r r ,a c b c ⋅=⋅r r r r,且||2a b -=r r ,则a c c ⋅r rr 的最大值为________.9.已知平面向量a b r r ,满足:2a b ==r r ,⊥r ra b ,22230-⋅+=r r r r b b c c ,则2a c +r r的最大值是__________.10.已知向量序列:1a u r ,2a u u r ,3a u u r ,n a ⋅⋅⋅u u r ,⋅⋅⋅满足如下条件:12a =u r ,d =u r ,121a d ⋅=-u r u r ,且1(2,3,4,)n n a a d n --==⋯u u r u u u r r,则1a u r ,2a u u r ,3a u u r ,⋅⋅⋅,n a u u r ,⋅⋅⋅中第______项最小.【答案】1.C 【解析】法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 1,O 在BM 的延长线上时,OB 1. 故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,ax cy +≤=,取等号条件:ay cx =,令OB d ==,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,11d ≤≤. 故选:C2.A 【解析】连接BD,取AD 中点为O,可知ABD △为等腰三角形,而,AB BC AD CD ⊥⊥,所以BCD V 为等边三角形,BD =(01)DE tDC t =≤≤u u u v u u u vAE BE ⋅u u u v u u u v 223()()()2AD DE BD DE AD BD DE AD BD DE BD DE DE =+⋅+=⋅+⋅++=+⋅+u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v=233322t t -+(01)t ≤≤,所以当14t =时,上式取最小值2116,选A. 3.B 【解析】因为a b u r r 、均为单位向量,且0a b ⋅=r r ,所以设()1,0a =r,(0,1)b =r ,(,)c x y =r ,代入435,c a c b -+-=r r r r5=,即点(),x y 到点(4,0),(0,3)A B 的距离和为5,所以点(),x y 的轨迹是点(4,0),(0,3)之间的线段,线段AB 的方程为1(04)43x yx +=≤≤即34120(04)x y x +-=≤≤,c a +=r r(1,0)M -到线段AB 上点的距离,最小值为点(1,0)M -到线段34120(04)x y x +-=≤≤的距离,min31235c a--+==r r,最大值为5MA =.所以c a +r r的取值范围为[]3,5.故答案为:B.4.A 【解析】以B 为原点,BA 所在直线为x 轴建立坐标系,△602B AB AC BC =︒-==u u u v u u u v u u u v,,△C , 设0A x (,)△ABC V 是锐角三角形,△120A C +=︒,△3090A ︒︒<<,即A 在如图的线段DE 上(不与D E ,重合), △14x <<,则221124AB AC x x x u u u v u u u v ()⋅=-=--, △AB AC u u u v u u u v⋅的范围为012(,). 故选A .5.C 【解析】依题意510cos 25AB AC A ⋅=⨯=u u u v u u u v,1πcos ,23A A ==.由余弦定理得BC ==222AB BC AC +=,三角形ABC 为直角三角形.设35AD AB =,过D 作//DP AC ',交BC 于'P ,过'P 作//EP AB ',交AC 于E .由于()3255AP AB AC R λλ=-∈u u u v u u u v u u u v,根据向量加法运算的平行四边形法则可知,P 点位于线段DP '上,由图可知AP u u u r 最长时为AP 'u u u v .由于π3,2,3AD BD CAB P DB ∠'==∠==,所以πtan 3BP BD '==.所以AP '==u u u v故选C.6.C 【解析】试题分析:由于垂直,不妨设,,,则,,表示到原点,表示圆心,为半径的圆,因此的最大值,故答案为C.7.⎡⎣23 4.【解析】根据菱形性质可得OC=则BO=(1)作AF△BC,则AF==此时AE最短,当E与C重合时,AE最长,故AE≤≤,即|EAu u u r|△⎡⎣;(2)以O为原点,BD所在直线为x轴建系如图:则AB(C(0,D,0),所以BC:y2x=-设E(m,2m-则2123,,22224EA ED m m m m⎛⋅=-+=++⎝⎭u u u r u u u r,其中m⎡⎤∈⎣⎦对称轴为m⎡⎤=⎣⎦,故当m=EA ED⋅u u u r u u u r最小,最小值为234.故答案为:;234.8.1【解析】建立平面直角坐标系,根据题意可设:(),0,a m=r()0,,b n m=r、n>0,(),c x y=r,△224mx nym n-=⎧⎨+=⎩,△a cc===⋅r r r , 而()(22222222221111111221444n m m n m n m n m n ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭,1≤,即a c c ⋅r rr 的最大值为1,故答案为:1 9.6【解析】因为2a b ==r r ,⊥r ra b ,不妨令=u u u r r OA a ,OB b =u u u r r ,以OA u u u r 方向为x 轴,OB uuu r方向为y 轴,建立平面直角坐标系, 则(2,0)=r a ,(0,2)=r b ,设(,)==r u u u rc OC x y ,由22230-⋅+=r r r r b b c c 可得22860-++=y x y ,即22(3)1x y +-=, 所以向量rc 所对应的点(,)C x y 在以(0,3)N 为圆心,以1为半径的圆上运动,又2+=r r a c (,)C x y 与定点(4,0)M -之间的距离,因此max116=+==CMMN .故答案为610.5【解析】1n n a a d --=u u r u u u r r Q ,所以1(1)k a a k d =+-u u r u r r, 因为121a d ⋅=-u r r ,所以112a d ⋅=-u r r ,所以221(1)na a n d ⎡⎤=+-⎣⎦u u r u r u r 22211(1)2(1)a n d n a d =+-+-⋅u r u r r r214(1)(1)8n n =+---21(5)28n =-+.∴当5n =时,2n a u u r 取最小值2.故答案为:5.。
高考数学压轴题突破140 平面向量最值五种求解小绝招.doc

高考数学压轴题突破140 平面向量最值五种求解小绝招一.方法综述平面向量中的最值与范围问题是一种典型的能力考查题,能有效地考查学生的思维品质和学习潜能,能综合考察学生分析问题和解决问题的能力,体现了高考在知识点交汇处命题的思想,是高考的热点,也是难点,其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量夹角、系数的范围的等,解决思路是建立目标函数的函数解析式,转化为求函数的最值,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合.二.解题策略类型一与向量的模有关的最值问题【指点迷津】由已知条件得四点共圆是解题关键,从而转化为求外接圆直径处理.类型二与向量夹角有关的范围问题【指点迷津】求变量的取值范围、最值,往往要将目标函数用某个变量表示,转化为求函数的最值问题,期间要注意变量之间的关系,进而得解.类型三与向量投影有关的最值问题类型五平面向量系数的取请点击此处输入图片描述值范围问题【指点迷津】(1)向量的运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题;学*科网(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题;(3)向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.类型六平面向量与三角形四心的结合:【指点迷津】平面向量中有关范围最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.。
求解平面向量最值问题的几个途径

思路探寻平面向量最值问题通常要求根据给出的条件,求向量的模的最小值、数量积的最大值、夹角的最值等.解答此类问题,需要根据已知条件和向量知识,求得目标式,然后把问题转化为函数问题、几何最值问题.与此同时,由于平面向量具有“数”与“形”的双重身份,所以在解题时要灵活运用数形结合思想.那么求解这类问题有哪些途径呢?下面举例说明.一、根据三角函数的有界性对于一些与向量的数量积、夹角、模有关的最值问题,通常可根据向量的数量积公式,通过向量运算求得目标式.此时目标式为关于某个夹角的三角函数式,那么就可以将问题看作三角函数最值问题.通过三角恒等变换化简目标式,便可利用三角函数的有界性求得最值.在利用三角函数的有界性求最值时,要明确夹角的取值范围,熟悉并灵活运用正弦、余弦、正切函数的单调性和有界性.例1.如图1,若△ABC 中,AB =2,∠ACB =π4,O 是△ABC 外接圆的圆心,则 OC ∙ AB + CA ∙CB 的最大值为______.解:因为∠ACB =π4,O 是△ABC 外接圆的圆心,则∠AOB =2∠ACB =π2,又因为AB =2,所以OA =OB =2,即外接圆的半径r =2.则 OC ∙ AB + CA ∙ CB = OC ∙() OB - OA +()OA - OC ∙()OB - OC= OC ∙ OB - OC ∙ OA + OA ∙ OB - OA ∙ OC - OC ∙ OB + OC 2= OA ∙ OB + OC 2-2 OA ∙ OC ,因为∠AOB =π2,OA ⊥OB ,即 OA ∙ OB =0.故 OC ∙ AB + CA ∙ CB = OC 2-2 OA ∙ OC =|| OC 2-2|| OA ∙||OC cos ∠AOC =2-4cos ∠AOC ,因为A 与C 不重合,所以 OA 与OC 的夹角的范围为(]0,π,故-1≤cos ∠AOC <1,所以当cos ∠AOC =-1,即当O 为AC 的中点时, OC ∙ AB + CA ∙CB 取得最大值2-4×()-1=6.首先根据三角形和圆的性质、向量的数量积公式求得目标式,将所求目标转化为有关∠AOC 的三角函数式;然后确定∠AOC 的取值范围,即可根据余弦函数的有界性确定目标式的最值.图1图2二、利用平面几何图形的性质对于与图形有关的平面向量问题,通常可先根据向量的几何意义画出几何图形,并确定向量所表示的点的轨迹;然后分析图形中点、线、图形之间的位置关系,利用平面几何图形的性质求最值.例2.在矩形ABCD 中,AB =2,BC =3,2 BE =EC ,P 是平面ABCD 内的动点,且 AP ∙ AB =AP 2.若0<t <1,则|| BE +t DE +|| PE +(t -1)DE 的最小值为______.解:由 AP ∙ AB = AP 2知: AP ∙( AB - AP )= AP ∙ PB =0,即 AP ⊥ PB ,所以P 在以AB 为直径的圆上,F 为圆心,于是以B 为原点,以BC 、BA 分别为x 、y 轴建立如图2所示的平面直角坐标系,所以A (0,2),D (3,2),E (1,0),F (0,1),若P (x ,y ),则x 2+(y -1)2=1,则 BE =(1,0), DE =(-2,-2),PE =(1-x ,-y ),所以 BE +tDE =(1-2t ,-2t ), PE +(t -1)DE =(3-x -2t ,2-y -2t ),则|| BE +t DE +|| PE +(t -1)DE 可看作点H (3-2t ,2-2t )到G (2,2)、P (x ,y )的距离之和,又(3-2t ,2-2t )在直线x -y -1=0上,1<x <3,由图2可知G (2,2)关于DE 对称点为G ′(3,1),故(|PH |+|GH |)min =|FG ′|-1=2,此时x =2,y =1,t =12.我们先根据矩形的特征建立平面直角坐标系;然后设P 点的坐标,求得各个向量的坐标以及 BE +tDE 、 PE +(t -1)DE 的表达式,即可根据其几何意义,将求||BE +t DE +|| PE +(t -1) DE 的最小值转化为求点H (3-2t ,2-2t )到G (2,2)、P (x ,y )的距离之和的最小值;最后根据矩形和圆的对称性,确定H 的位置,即可求得最小值.47思路探寻例3.已知非零平面向量a ,b ,c 满足||||a -b =2,且(c -a )∙(c -b )=0,若a 与b 的夹角为θ,且θ∈éëùûπ6,π3,则||c 的最大值是______.解:根据题意,作出如图3所示的图形.令a =OA,b = OB,c = OC,可得:||AB=2,且∠ACB=90°,取AB中点为M,则||CM=12||AB=1,则点C在以AB为直径的圆M上运动.由图可知,当O,M,C三点共线时,|| OC取得最大值,即|| OCmax=|| OM+1;不妨设三角形OAB的外接圆圆心为G,则GM⊥AB,在三角形OAB中,由正弦定理可得:2||OG=ABsinθ,即||OG=1sinθ,θ∈éëùûπ6,π3,故当θ=π6时,||OG max=2,||GM max=||OG2max-1=3;当O,M,G三点共线时,|| OM取得最大值,此时|| OMmax=||OG max+||GM max=2+3.故当θ=π6,且O,M,G,C四点共线时,|| OC max=3+3.根据题意和向量的几何意义作出几何图形,便可根据平面向量的基本定理以及正弦定理,确定||c 取得最大值的情形:O,M,G,C四点共线,即可利用数形结合思想求得最值.图3图4三、利用二次函数的性质在求解向量的最值问题时,可根据题意选取合适的基底,将目标式用基底表示出来,建立关于参数的关系式;也可根据题意建立适当的直角坐标系,通过平面向量的坐标运算,求得各点的坐标、向量的坐标以及目标式.最后将问题转化为函数最值问题,利用二次函数的性质来求最值.例4.已知在菱形ABCD中,AB=6,∠BAD=60°,CE=2EB,CF=2FD,点M在线段EF上,且AM=xAB+12 AD.若点N为线段BD上一个动点,则 AN∙ MN的最小值为______.解:因为CE=2EB,CF=2FD,所以BE=13 BC, DF=13 DC,所以AE=AB+BE=AB+13 AD,AF=AD+DF=13 AB+ AD,因为点M在线段EF上,可设AM=λAE+(1-λ)AF=λ(AB+13 AD)+(1-λ)·(13 AB+ AD)=(13+23λ) AB+(1-23λ) AD,而AM=xAB+12 AD,所以ìíîïïx=13+23λ,1-23λ=12,解得λ=34,x=56,所以 AM=56 AB+12 AD,则|| AM2=æèöø56 AB+12 AD2=2536 AB2+56 AB∙ AD+14 AD2=49,所以|| AM=7,因为点N为线段BD上一个动点,可设AN=μAB+(1-μ)AD,μ∈[]0,1,所以MN=AN-AM=μAB+(1-μ)AD-(56 AB+12 AD)=(μ-56) AB+(12-μ) AD,所以AN∙MN=[μAB+(1-μ)AD]∙[(μ-56) AB+(12-μ)AD]=μ(μ-56) AB2+(-2μ2+73μ-56) AB∙ AD+(1-μ)(12-μ) AD2=36μ2-42μ+3=36æèöøμ-7122-374≥-374,则当μ=712时, AN∙ MN的最小值为-374.由于∠BAD=60∘,AB=6,所以以向量AB,AD为基底,根据平面向量的线性运算法则和数量积公式,求AN∙MN的表达式,最终将问题转化为二次函数的最值问题.通过配方,根据二次函数的单调性即可求得目标式的最值.由此可见,求解平面向量最值问题,关键是运用转化思想和数形结合思想,通过平面直角坐标系、平面向量的坐标运算法则、平面向量基本定理、向量的几何意义,根据目标式的结构特征,将原问题转化为三角函数、平面几何、二次函数最值问题.(作者单位:甘肃省康乐县第一中学)48。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高考地位】平面向量中的最值和范围问题,是一个热点问题,也是难点问题,这类试题的基本类型是根据给出的条件求某个量的最值、范围,如:向量的模、数量积、夹角及向量的系数.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合.在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中高档题.【方法点评】方法一 利用基本不等式求平面向量的最值使用情景:一般平面向量求最值问题解题模板:第一步 利用向量的概念及其基本运算将所求问题转化为相应的等式关系;第二步 运用基本不等式求其最值问题; 第三步 得出结论.例1设M 是△ABC 内一点,且23AB AC ⋅=,30BAC ∠=︒,定义()(,,)f M m n p =,其中m ,n ,p 分别是△MBC ,△MCA ,△MAB 的面积,若1()(,,)2f M x y =,则14x y +的最小值是( )A .8B .9C .16D .18例 2 如右图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,N M 两点,且,AM x AB AN y AC ==,则2x y +的最小值为( )A .2B .13C .3223+ D .34【变式演练1】如图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,M N 两点,且,AM x AB AN y AC ==,则x y +的最小值为( )A .2B .13 C .43 D .34【变式演练2】已知点A (1,-1),B (4,0),C (2,2).平面区域D 由所有满足AP AB AC λμ=+(1≤λ≤a ,1≤μ≤b )的点P (x,y )组成的区域.若区域D 的面积为8,则a+b 的最小值为 . 【变式演练3】平行四边形ABCD 中,60,1,2,BAD AB AD P ∠===为平行四边形内一点,且22AP =,若),(R AD AB AP ∈+=μλμλ,则2u λ+的最大值为 .方法二 利用向量的数量积m n m n ⋅≤求最值或取值范围使用情景:涉及数量积求平面向量最值问题解题模板:第一步 运用向量的加减法用已知向量表示未知向量;第二步 运用向量的数量积的性质求解; 第三步 得出结论.例3 已知OAB ∆的顶点坐标为(0,0)O ,(2,9)A ,(6,3)B -, 点P 的横坐标为14,且OP PB λ=,点Q 是边AB 上一点,且0OQ AP ⋅=. (1)求实数λ的值与点P 的坐标; (2)求点Q 的坐标;MNA BGQ(3)若R 为线段OQ (含端点)上的一个动点,试求()RO RA RB ⋅+的取值范围.【变式演练4】已知向量,a b 不共线,t 为实数.(Ⅰ)若OA a =,OB tb =,1()3OC a b =+,当t 为何值时,,,A B C 三点共线; (Ⅱ)若||||1a b ==,且a 与b 的夹角为120,实数1[1,]2x ∈-,求 ||a xb -的取值范围.【变式演练5】若直线10()ax y a a R +-+=∈与圆224x y +=交于A 、B 两点(其中O 为坐标原点),则AO AB ⋅的最小值为( )A .1B .2C .3D .4方法三 建立直角坐标系法使用情景:一般向量求最值或取值范围类型解题模板:第一步 根据题意建立适当的直角坐标系并写出相应点的坐标;第二步 将平面向量数量积的运算坐标化;第三步 运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等求解即可.例3 在ABC ∆中,O 为中线AM 上一个动点,若2AM =,则()OA OB OC ⋅+的最小值是__________.例 4 在Rt ABC ∆中,BC a =,若长为2a 的线段PQ 以A 点为中点,问PQ 与BC 的夹角θ取何值时BP CQ ⋅的值最大?并求出这个最大值.【变式演练6】如图,在等腰直角三角形ABC 中,,D ,E 是线段BC 上的点,且,则的取值范围是( )A .B .C .D .【变式演练7】在平面上,121212,1,AB AB OB OB AP AB AB ⊥===+.若12OP <,则OA 的取值范围是( )A .⎥⎦⎤⎢⎣⎡25,0 B .⎥⎦⎤⎢⎣⎡27,25 C .⎥⎦⎤⎢⎣⎡2,25 D .722⎛ ⎝【高考再现】1. 【2016年高考四川理数】在平面内,定点A ,B ,C ,D 满足DA =DB =DC ,DA ⋅DB =DB ⋅DC =DC ⋅DA =-2,动点P ,M 满足AP =1,PM =MC ,则2BM的最大值是( ) (A )434 (B )494(C )37634+ (D )372334+2.【2016高考浙江理数】已知向量a 、b , |a | =1,|b | =2,若对任意单位向量e ,均有 |a ·e |+|b ·e |≤6 ,则a ·b 的最大值是 . 3.【2015高考福建,理9】已知1,,AB AC AB AC t t⊥== ,若P 点是ABC ∆ 所在平面内一点,且4AB AC AP ABAC=+,则PB PC ⋅ 的最大值等于( )A .13B .15C .19D .214.【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 . 5.【2015高考浙江,理15】已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = .6.【2015高考湖南,理8】已知点A ,B ,C 在圆221x y +=上运动,且AB BC ⊥,若点P 的坐标为(2,0),则PA PB PC ++的最大值为( ) A.6 B.7 C.8 D.97.【2015高考上海,文13】已知平面向量a 、b 、c 满足b a ⊥,且}3,2,1{|}||,||,{|=c b a ,则||c b a ++的最大值是 .【反馈练习】1.【 2017届湖南长沙长郡中学高三摸底测试数学试卷,理15】已知AD 是ABC ∆的中线,(,)AD AB AC R λμλμ=+∈,0120,2A AB AC ∠=•=-,则||AD 的最小值是 .2. 【2017届浙江名校协作体高三上学期联考数学试卷,理15】已知点()1,0A m -,()1,0B m +,若圆C :2288310x y x y +--+=上存在一点P ,使得0PA PB ⋅=,则正实数...m 的最小值为 .3.【 2017届山西大学附中高三二模测试数学试卷,理15】在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈,则2λμ-的取值范围是___________.4.【 2016届湖北省沙市中学高三考前最后一卷理科数学试卷,理14】已知(1,0)A ,曲线:C e ax y =恒过点B ,若P 是曲线C 上的动点,且AB AP ⋅的最小值为2,则a = .5.【 2016届江苏省苏锡常镇四市高三教学情况调研二数学试卷,理16】在平面直角坐标系xOy 中,设点(1 0)A ,,(0 1)B ,,( )C a b ,,( )D c d ,,若不等式2(2)()()CD m OC OD m OC OB OD OA -⋅+⋅⋅⋅≥对任意实数a b c d ,,,都成立,则实数m 的最大值是 .6.【 016届江苏省南京市高三第三次学情调研测试数学试卷,理14】在半径为1的扇形AOB 中,∠AOB =60o,C 为弧上的动点,AB 与OC 交于点P ,则⋅OP BP 的最小值是 .7.【 2016届江苏省扬州中学高三3月质量检测数学试卷,理15】平行四边形ABCD 中,60,1,2,BAD AB AD P ∠===为平行四边形内一点,且22AP =,若),(R ∈+=μλμλ,则2u λ+的最大值为 .8.【 2016届浙江省绍兴市一中高三9月回头考数学试卷,文15】已知向量αβγ、、满足1α=,αββ-=,()()0αγβγ-⋅-=.若对每一确定的β,γ的最大值和最小值分别是m n 、,则对任意β,m n -的最小值是 .9.【 2014-2015学年江苏省盐城市高一下学期期末考试数学试卷,理14】已知正方形ABCD 的边长为1,直线MN 过正方形的中心O 交边,AD BC 于,M N 两点,若点P 满足2(1)OP OA OB λλ=+-(R λ∈),则PM PN ⋅的最小值为 .10. 【2016届江苏省泰州中学高三上学期第二次月考数学试卷,理18】设ABC ∆是边长为1的正三角形,点321,,P P P 四等分线段BC (如图所示).(1)求112AB AP AP AP ⋅+⋅的值; (2)Q 为线段1AP 上一点,若112AQ mAB AC =+,求实数m 的值; (3)P 为边BC 上一动点,当PA PC ⋅取最小值时,求PAB ∠cos 的值.。