2012研究生数值分析课期末考试复习题及答案

合集下载

2012数值分析试题及答案

2012数值分析试题及答案


aii
(bi

n
aij
x
(k j
)
)
,
j 1
i 1,2,, n
(1) 求此迭代法的迭代矩阵 M ;
(2) 证明:当 A 是严格对角占优矩阵, 0.5 时,此迭代格式收敛.
解:迭代法的矩阵形式为:
x(k1) x(k) D 1 (b Ax (k) ) D 1 (D A)x(k) D 1b
x2 3/5
).
线 …
8.对离散数据 xi yi
1 0 1 2 的拟合曲线 y 5 x 2 的均方差为( 2.5 1.58 ).
2 1 1 3
6



9.设求积公式
2
f (x)dx
1
A0 f (1) A1 f (0) A2 f (1) 是插值型求积公式,则积分系
… 数 A0 3/ 4 , A1 0 , A2 9 / 4 .
2
2
2
2
2
2
R[ f ] 0 f (x)dx 0 p1 (x)dx 0 f (x)dx 0 H 3 (x)dx 0 H 3 (x)dx 0 p1(x)dx
2 f (4) ( x ) (x 1 )2 (x 1 )2 dx f (4) () 2 (x2 1)2 dx

四、(10 分)利用复化 Simpson 公式 S2 计算定积分 I
2
cos
xdx
的近似值,并估
0
… 计误差。
… …
解:
I

S2

1 [cos0 6
cos2

2012研究生试题数值分析数值分析

2012研究生试题数值分析数值分析
第 5页 共 6 页
七、(本题满分 10 分)试推导下列求积公式
∫b f (x)dx ≈ (b − a) f ( a + b)
a
2
的截断误差的表达式,并判断其代数精度。
第 6页 共 6 页
2 3 3、设 A = 1 1 ,则 Cond∞ ( A) = ______. 4、已知 3 阶矩阵 A 的特征值分别为 2,-5,6,则矩阵 A 的谱半径是___________. 5、已知 f (x) = x − sin x −1 ,则牛顿法的迭代公式是_______________
第 2页 共 6 页
四 、( 本 题 满 分 10 分 ) 求 函 数 f (x) = sin π x 在 区 间 [0 , 1] 上 的 最 佳 平 方 逼 近 多 项 式 ϕ(x) = a + bx2 。
第 3)试用数值积分法建立常微分方程初值问题:
dy dx
x3 +
=1 x3 =
3
取初始向量 x(0) = [0,0,0]T 迭代求解,求到 x(2) 。
第 1页 共 6 页
三、(本题满分 10 分)已知数据表:
x -1 0 1 2 3 y2 1 3 4 5
通过构造点集 {−1, 0,1, 2,3} 上的正交多项式求一个二次多项式以最小二乘法拟
合上述数据。
10、将向量 s = (−2,1, 0)T 变为与 e1 = (1, 0, 0)T 同向的变换 u = Hs 中的 Householder 矩阵
H = ______。
二、(本题满分 10 分)用 Gauss-Seidel 迭代法求解方程组

x1
+
2x2

2x3

2012级硕士研究生数值分析期末考试试卷及答案

2012级硕士研究生数值分析期末考试试卷及答案

设区间分成 n 等分,则 h=1/n., 故对复合梯形公式,要求
RT ( f ) =| −
即n2 ≥
b − a 2 '' 1 1 1 h f (η ) |≤ ( ) 2 e ≤ × 10 −5 ,η ∈ (0,1) 12 12 n 2
e × 10 5 , n ≥ 212 .85 ,因此 n=213,即将区间[0,1]分成 213 等分时,用复合梯形计 6 1 算,截断误差不超过 × 10 − 5 。 2
为 2 .设 。 位有效数字,
x * 的相对误差限
f ( x ) = 3 x 7 + x 4 + 3x + 1 ,则 f [2 0 ,2 1 ,L ,2 7 ] =

f [2 0 ,21 , L,2 8 ] =
。 , 并计
3. 过点 ( −1,0), ( 2,0) 和 (1,3) 的二次拉格朗日插值函数为 算 L2 ( 0) 4 .设
S1 ( x) = 3.7143 + 1.2429 x
2-范数的误差
4
2.45
|| δ || 2 =
∑ (S (x ) − y )
1
2
i
i
= 0.675 = 0.8216
i= 0
5. 用改进的欧拉公式(预估-校正方法) 解初值问题
dy = x 2 + 100 y 2 , y( 0) = 0 , h 为步长, (1) 取步长 h = 0.1, 计算到 x = 0 .2(保 dx
p ( 2) = 1, 并写出其余项表达式(要求有推导过程) 。
2. 若用复合梯形公式dx ,问区间 [0, 1] 应分成多少等分才能使截断误差不超过
1 × 10 − 5 ? 若改用复合辛普森公式,要达到同样的精度区间[0, 1] 应该分成多少等份? 由下表数 2

长安大学2011-2012学年第一学期研究生《数值分析原理》试题(A)卷及答案

长安大学2011-2012学年第一学期研究生《数值分析原理》试题(A)卷及答案

解得: x1 x2
3 h ,——4 分 5
1 A1 A2 h3 。——4 分 3
2
五. (本题满分 12 分)给定方程组
x1 2 x2 2 x3 5 x1 x2 x3 1 2x 2x x 3 2 3 1
1) (本小题满分 6 分)用三角分解法解此方程组; 2) (本小题满分 6 分)写出解此方程组的雅可比迭代公式,说明收敛性;取初始 向量 x0 (0,0,0) ,当 xk 1 xk 10 时,求其解。
长安大学 2011-2012 学年第一学期研究生 《数值分析原理》试题(A)卷
说明:1.试题共 9 道大题、共 2 页。 2.考试时间两个小时,可带计算器。 3.所有答案都写在答题纸(试卷)上,否则无效。
一. (本题满分 8 分)给定方程 x x 2 0 , x [0,2] ,采用迭代公式
(0 , 0 ) 1/ 2 , (0 , 1 ) 1/ 3 , (0 , 2 ) 1/ 4 , (1 , 1 ) 1/ 4 , (1 , 2 ) 1/ 5 , (2 , 2 ) 1/ 6 , 1 1 1 (0 , f ) ln 2 , (1 , f ) 1 , (2 , f ) ln 2 ; 2 4 2 2
二. (本题满分 8 分)对于定积分 I

1 0
f ( x)dx ,当 M 2 1/8 及 M 4 1/ 32 ,用 11 点的
复化辛普森(Simpson)求积公式求 I 的截断误差为 RS [ f ] ,用 n 个节点的复化梯形 求 积 公 式 求 I 的 截 断 误 差 为 RT [ f ] , 要 使 RT [ f ] RS [ f ] , n 至 少 是 多 少 ? ( M 2 max f ( x) , M 4 max f 解: n1 10 , h1

2012数值分析试题及答案

2012数值分析试题及答案

2
2
2
2
2
2
R[ f ] 0 f (x)dx 0 p1 (x)dx 0 f (x)dx 0 H 3 (x)dx 0 H 3 (x)dx 0 p1(x)dx
2 f (4) ( x ) (x 1 )2 (x 1 )2 dx f (4) () 2 (x2 1)2 dx
所以,迭代矩阵为 M D 1 (D A) .
当 A 是严格对角占优矩阵, 0.5 时,由于
n
| aij |
(M ) M max | j1 | 1,所以,迭代格式收敛.
1in
2aii
三、(12 分)说明方程 x cosx 0 有唯一根,并建立一个收敛的迭代格式,使
42 ,则 A 的 Doolittle 分解式是( A 13
10 10
2 -2

),Crout
… …

分解式是(
A 13
-02
1 0
12
).
… … …
3.解线性方程组
xx11
4x2 9x2

2 1

Jacobi
迭代矩阵的谱半径
(B)

(
2/3
).
… 封
4.迭代格式 xk1 xk3 3xk2 3xk , k 0,1,2,... 求根 1是( 3 )阶收敛的.
… …
5.设 f (x) sin x ,用以 xi i, i 0,1,2 为节点的二次插值多项式近似 sin1.5 的值,

aii
(bi

n
aij
x
(k j
)

数值分析题库

数值分析题库

一. 单项选择题(每小题2分,共10分)1. 在下列四个数中,有一个数具有4位有效数字,且其绝对误差限为 51021-⨯,则该数是( ) A 0.001523 B 0.15230 C 0.01523 D 1.52300 2. 设方阵A 可逆,且其n 个特征值满足:n λλλ>≥> (21),则1-A 的主特征值是( )A11λ B nλ1 C1λ或n λ D 11λ或nλ13. 设有迭代公式→→+→+=fxB x k k )()1(。

若||B|| > 1,则该迭代公式( )A 必收敛B 必发散C 可能收敛也可能发散4. 常微分方程的数值方法,求出的结果是( )A 解函数B 近似解函数C 解函数值D 近似解函数值 5. 反幂法中构造向量序列时,要用到解线性方程组的( ) A 追赶法 B LU 分解法C 雅可比迭代法D 高斯—塞德尔迭代法二. 填空题(每小题4分,共20分)1. 设有方程组⎪⎩⎪⎨⎧=+-=+-=+02132432132132x x x x x x x x ,则可构造高斯—塞德尔迭代公式为⎪⎩⎪⎨⎧2. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111112101A ,则=∞A3. 设1)0(,2'2=+=y y x y ,则相应的显尤拉公式为=+1n y4. 设1)(+=ax x f ,2)(x x g =。

若要使)(x f 与)(x g 在[0,1]上正交,则a =5. 设T x )1,2,2(--=→,若有平面旋转阵P ,使P →x 的第3个分量为0,则P =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ 三. 计算题(每小题10分,共50分)1. 求27的近似值。

若要求相对误差小于0.1%,问近似值应取几位有效数字?2. 设42)(x x x f -=,若在[-1,0]上构造其二次最佳均方逼近多项式,请写出相应的法方程。

3. 设有方程组⎪⎩⎪⎨⎧=++=++=-+1221122321321321x x x x x x x x x ,考察用雅可比迭代解此方程组的收敛性。

2012数值分析试卷答案

2012数值分析试卷答案

2012数值分析试卷答案科目:数值分析考试时间: 出题教师:集体昆明理工大学2012级硕士研究生试卷考生姓名:专业:学号:考试要求:考试时间150分钟;填空题答案依顺序依次写在答题纸上,填在试卷卷面上的不予计分;可带计算器。

一、填空题(每空2分,共40分)* * *1 •设x 0.231是真值x 0.228的近似值,则x有_______________ 位有效数字,x的相对误差限为 _____________________ 。

2•设f(x) 3x7x43x 1,则f[20,21, ,27] _____________ , f[20,21, ,28] _______ 。

3.过点(1,0), (2,0)和(1,3)的二次拉格朗日插值函数为L2(x)= ___________________ ,并计算L2(0) ___________________ 。

3 24•设f (x) 3x 2x 4x 5在1,1上的最佳二次逼近多项式为________________________ , 最佳二次平方逼近多项式为 _________________ 。

1f—5 •高斯求积公式° x f (x)dx A f(X。

)A f (xj的系数A__________________________________ ,A1 __________ ,节点x0------------------ ,x, ---------------------------6 •方程组Ax b,A D L U,建立迭代公式x(k 1}Bx(k)f,写岀雅可比迭代法和7. A 00 ,其条件数Cond(A )2 1 J2J318.设A,计算矩阵A 的范数,|| A||1 =2,I|A||2 =9 •求方程Xf(x)根的牛顿迭代格式是10.对矩阵A 2作LU 分解,其L= 5,U=二、计算题(每题 10分,共50分)1.求一个次数不高于4次的多项式P(x),使它满2.若用复合梯形公式计算积分2据,0.4 0.43.线性方程组Ax b ,其中A0.4 0.4 0.80.8,b [1,2,3]T ,(1)建立雅可比迭代法和 1高斯-赛德尔迭代法的分量形式。

数值计算(数值分析)试题及答案

数值计算(数值分析)试题及答案

++中的待定系数,使其A f(1)(0)武汉理工大学研究生课程考试标准答案用纸课程名称:数值计算(A ) 任课教师 :一. 简答题,请简要写出答题过程(每小题5分,共30分) 3.14159265358979的近似值,它们各有几位有效数字,绝对误差和相对误差分别是多少?3分)2分)2.已知()8532f x x x =+-,求0183,3,,3f ⎡⎤⎣⎦,0193,3,,3f ⎡⎤⎣⎦.(5分)3.确定求积公式10120()(0)(1)(0)f x dx A f A f A f '≈++⎰中的待定系数,使其代数精度尽量高,并指明该求积公式所具有的代数精度。

解:要使其代数精度尽可能的高,只需令()1,,,m f x x x =使积分公式对尽可能大的正整数m 准确成立。

由于有三个待定系数,可以满足三个方程,即2m =。

由()1f x =数值积分准确成立得:011A A += 由()f x x =数值积分准确成立得:121/2A A += 由2()f x x =数值积分准确成立得:11/3A =解得1201/3,1/6,2/3.A A A === (3分)此时,取3()f x x =积分准确值为1/4,而数值积分为11/31/4,A =≠所以该求积公式的最高代数精度为2次。

(2分)4.求矩阵101010202A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的谱半径。

解 ()()101101322I A λλλλλλλ--=-=--- 矩阵A 的特征值为1230,1,3λλλ=== 所以谱半径(){}max 0,1,33A ρ== (5分)5. 设10099,9998A ⎛⎫= ⎪⎝⎭计算A 的条件数()(),2,p cond A P =∞.解:**19899-98999910099-100A A A A --⎛⎫⎛⎫=⇒== ⎪ ⎪-⎝⎭⎝⎭矩阵A 的较大特征值为198.00505035,较小的特征值为-0.00505035,则1222()198.00505035/0.0050503539206cond A A A -=⨯==(2分)1()199********c o n d A A A -∞∞∞=⨯=⨯=(3分)22001130101011010220100110110()(12)()(12)()()()()()x x x x x x x x H x y y x x x x x x x x x x x x x x y x x y x x x x ----=-+-------''+-+---(5分)并依条件1(0)1,(0),(1)2,(1) 2.2H H H H ''====,得2222331()(12)(1)2(32)(1)2(1)211122H x x x x x x x x x x x =+-+-+-+-=++ (5分)2.已知()()()12,11,21f f f -===,求()f x 的Lagrange 插值多项式。

数值分析报告期末考试复习题及其问题详解

数值分析报告期末考试复习题及其问题详解

数值分析期末考试复习题及其答案1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。

(4分)解:由已知可知,n=65.01021,0,6,10325413.0016*1=⨯==-=⨯=ε绝对误差限n k k X 2分 620*21021,6,0,10325413.0-⨯=-=-=⨯=ε绝对误差限n k k X 2分2. 已知⎢⎢⎢⎣⎡=001A 220- ⎥⎥⎥⎦⎤440求21,,A A A ∞ (6分) 解:{},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 ()A A A T max 2λ= 1分⎢⎢⎢⎣⎡=001A A T 420 ⎥⎥⎥⎦⎤-420⎢⎢⎢⎣⎡001 220- ⎥⎥⎥⎦⎤440=⎢⎢⎢⎣⎡001 080 ⎥⎥⎥⎦⎤3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式② 当a 为何值时,)(1k k x x ϕ=+ (k=0,1……)产生的序列{}k x 收敛于2解:①Newton 迭代格式为:xa x x x ax a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(22321+=+=---=-=+ϕ 3分②时迭代收敛即当222,11210)2(',665)('2<<-<-=-=a a x a x ϕϕ 3分4. 给定线性方程组Ax=b ,其中:⎢⎣⎡=13A ⎥⎦⎤22,⎥⎦⎤⎢⎣⎡-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收敛(8分)解:所给迭代公式的迭代矩阵为⎥⎦⎤--⎢⎣⎡--=-=ααααα21231A I B 2分其特征方程为 0)21(2)31(=----=-αλαααλλB I 2分即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(<B ρ,当且仅当5.00<<α 2分5. 设方程Ax=b ,其中⎢⎢⎢⎣⎡=211A 212 ⎥⎥⎥⎦⎤-112,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765b 试讨论解此方程的Jacobi 迭代法的收敛性,并建立Gauss-Seidel 迭代格式 (9分)解:U D L A ++=⎢⎢⎢⎣⎡--=+-=-210)(1U L D B J 202-- ⎥⎥⎥⎦⎤-012 3分0,03213=====-λλλλλJ B I 2分即10)(<=J B ρ,由此可知Jacobi 迭代收敛 1分 Gauss-Seidel 迭代格式:⎪⎩⎪⎨⎧--=--=+-=++++++)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(12276225k k k k k k k k k x x x x x x x x x (k=0,1,2,3……) 3分6. 用Doolittle 分解计算下列3个线性代数方程组:i i b Ax =(i=1,2,3)其中⎢⎢⎢⎣⎡=222A 331 ⎥⎥⎥⎦⎤421,23121,,974x b x b b ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (12分)解:①11b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9741x A=⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211=LU 3分 由Ly=b1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡974 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 1分 由Ux1=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 得x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 2分 ②22b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 由Ly=b2=x1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 1分 由Ux2=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 得x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 2分 ③33b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0由Ly=b3=x2,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 1分 由Ux3=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 得x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-025.0375.0 2分7. 已知函数y=f(x)有关数据如下:要求一次数不超过3的H 插值多项式,使'11'33)(,)(y x H y x H i i == (6分)解:作重点的差分表,如下:3分21021101011001003))(](,,,[))(](,,[)](,[][)(x x x x x x x x f x x x x x x x f x x x x f x f x H --+--+-+= =-1+(x+1)-x(x+1)+2x.x(x+1)=232x x + 3分8. 有如下函数表:试计算此列表函数的差分表,并利用Newton 前插公式给出它的插值多项式 (7分)解:由已知条件可作差分表,3分i ih x x i =+=0 (i=0,1,2,3)为等距插值节点,则Newton 向前插值公式为: 033210022100003!3))()((!2))((!1)()(f h x x x x x x f h x x x x f h x x f x N ∆---+∆--+∆-+==4+5x+x(x-1)=442++x x 4分9. 求f(x)=x 在[-1,1]上的二次最佳平方逼近多项式)(2x P ,并求出平方误差 (8分)解:令22102)(x a x a a x P ++= 2分取m=1, n=x, k=2x ,计算得: (m,m)=dx ⎰-111=0 (m,n)=dx x ⎰-11=1 (m,k)= dx x ⎰-112=0(n,k)= dx x ⎰-113=0.5 (k,k)= dx x ⎰-114=0 (m,y)= dx x ⎰-11=1(n,y)=dx x⎰-112=0 (k,y)= dx x ⎰-113=0.5得方程组:⎪⎩⎪⎨⎧==+=5.05.005.011201a a a a 3分解之得c a a c a 2,1,210-=== (c 为任意实数,且不为零)即二次最佳平方逼近多项式222)(cx x c x P -+= 1分 平方误差:32),(22222222=-=-=∑=i i i y a fp f ϕδ 2分10. 已知如下数据:用复合梯形公式,复合Simpson 公式计算⎰+=10214dx x π的近似值(保留小数点后三位) (8分)解:用复合梯形公式:)}1()]87()43()85()21()83()41()81([2)0({1618f f f f f f f f f T ++++++++==3.139 4分用复合Simpson 公式: )}1()]43()21()41([2)]87()85()83()81([4)0({2414f f f f f f f f f S ++++++++==3.142 4分11. 计算积分⎰=20sin πxdx I ,若用复合Simpson 公式要使误差不超过51021-⨯,问区间]2,0[π要分为多少等分?若改用复合梯形公式达到同样精确度,区间]2,0[π应分为多少等分? (10分)解: ①由Simpson 公式余项及x x f x x f sin )(,sin )()4(==得544)4(2041021)1()4(360)(max )4(1802)(-≤≤⨯≤=≤n x f n f R x n πππππ 2分即08.5,6654≥≥n n ,取n=6 2分即区间]2,0[π分为12等分可使误差不超过51021-⨯ 1分②对梯形公式同样1)(''max 20≤≤≤x f x π,由余项公式得51021)2(122)(-⨯≤≤n f R n ππ2分即255,2.254=≥n n 取 2分即区间]2,0[π分为510等分可使误差不超过51021-⨯ 1分12. 用改进Euler 格式求解初值问题:⎩⎨⎧==++1)1(0sin 2'y x y y y 要求取步长h 为0.1,计算y(1.1)的近似值 (保留小数点后三位)[提示:sin1=0.84,sin1.1=0.89] (6分)解:改进Euler 格式为:⎪⎩⎪⎨⎧++=+=+-++-+)],(),([2),(1111n n n n n n n n n n y x f y x f hy y y x hf y y 2分 于是有⎪⎩⎪⎨⎧+++-=+-=+-++-+-+)sin sin (05.0)sin (1.012112121n n n n n n n n n n n n n x y y x y y y y x y y y y (n=0,1,2……) 2分 由y(1)=0y =1,计算得⎪⎩⎪⎨⎧=≈=+-=-838.0)1.1(816.0)1sin 11(1.01121y y y 2分 即y(1.1)的近似值为0.83813. ][],[],,[lim ],[),,(],,[)(0'000000'x f x x f x x f x x f b a x b a C x f x x ==∈∈→证明:定义:设(4分)证明:]['],[],[],[lim ][][lim]['00000000000x f x x f x x f x x f x x x f x f x f x x x x ===--=→→故可证出 4分14. 证明:设nn RA ⨯∈,⋅为任意矩阵范数,则A A ≤)(ρ (6分)证明:设λ为A 的按模最大特征值,x 为相对应的特征向量,则有Ax=λx 1分 且λρ=)(A ,若λ是实数,则x 也是实数,得Ax x =λ 1分而x x ⋅=λλ x A x ,⋅≤⋅⋅≤λ故x A Ax 2分由于A x 0x ≤≠λ得到,两边除以 1分故A A ≤)(ρ 1分 当λ是复数时,一般来说x 也是复数,上述结论依旧成立。

(完整)数值分析学期期末考试试题与答案(A),推荐文档

(完整)数值分析学期期末考试试题与答案(A),推荐文档

期末考试试卷( A 卷)2007 学年第二学期 考试科目: 数值分析 考试时间: 120 分钟学号 姓名 年级专业100011. 用计算机求11000时,应按照 n 从小到大的顺序相加。

n1n2. 为了减少误差 ,应将表达式 2001 1999 改写为 2进行计算。

( )2001 19993. 用数值微分公式中求导数值时,步长越小计算就越精确。

( )4. 采用龙格-库塔法求解常微分方程的初值问题时, 公式阶数越高,数值解越精确。

( )5. 用迭代法解线性方程组时, 迭代能否收敛与初始向量的选择、 系数矩阵及其演变方式有关,与常数项无关。

( ) 二、填空每空 2 分,共 36 分)1. 已知数 a 的有效数为 0.01 ,则它的绝对误差限为 _______ ,相对误差限为 _1 0 1 02. 设 A0 2 1 ,x 5 ,则 A 1____________________________ _, x 2 ______ ,Ax1 3 0 13. 已知 f (x) 2x 54x 35x,则 f[ 1,1,0] , f[ 3, 2, 1,1,2,3] .14. 为使求积公式 f (x)dx A 1f ( 3) A 2f (0) A 3f ( 3)的代数精度尽量高,应使13 3A 1 , A 2 , A 3,此时公式具有 次的代数精度。

5. n 阶方阵 A 的谱半径 ( A)与它的任意一种范数 A 的关系是 .6. 用迭代法解线性方程组 AX B 时,使迭代公式 X (k 1)MX (k)N (k 0,1,2,K )产 生的向量序列X (k)收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B时,系数矩阵A可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即A LU. 若采用高斯消元法解AX B,其中A 4 2,则21L ___________ ,U ____________ ;若使用克劳特消元法解AX B ,则u11 _______ ;若使用平方根方法解AX B,则l11与u11的大小关系为(选填:>,<,=,不一定)。

2012研究生数值分析课期末考试复习题及答案

2012研究生数值分析课期末考试复习题及答案

、填空1.设X 彳3149541…,取5位有效数字,则所得的近似值x= 2.3150f X 1,X 22.设一阶差商f x 2 f x 11 4 33x 2 x 12 1y' f(X, y)y(X0)y0近似解的梯形公式是f X 2,X 3f x 3 f x 2 X 3 X 2 则二阶差商f ^,X2,X311/63.设X (2, 3, 1),则||X|2 714 ||X|| 3。

p4924.4.求方程x x 1.25 0的近似根,用迭代公式x J x 匸25,取初始值X o那么X 11.5y k6、 1 1 A 5 1,则A 的谱半径Q 【盘)=7、 2 设 f(x) 3x 5, X k kh, k 0,1,2,…,贝卩 f 人几 1, Xn 23 和 f Xi , X n 1, Xi 2 , Xn38若线性代数方程组AX=b 的系数矩阵A 为严格对角占优阵,贝U 雅可比迭代和高斯-塞德尔迭代都 收敛9、解常微分方程初值问题的欧拉(Euler )方法的局部截断误差为 O(h )5. 解初始值问题y 10、为了使计算 10表达式改写成 二、计算题 1、已知 敛的简单迭代函数 2 3— 2 3 1 (X 1) (X 1)的乘除法运算次数尽量的少,应将 y 10 — 1 — 2 — X 1 X 1 X 1 蛊=机刃的00)满足■ 3V 妙⑵,使轧严护(心)/ =,试问如何利用骰㈤构造一个收 0, 1…收敛? (X ),可得3x (X) 3x 1 X 2( (X) 3X) (X)(X ) (X ) 3),故(X ) 1(X-3I 2 11 2 2、试确定常数A ,B , fl L / W 心铝Ej(0) +&S ) 有尽可能高的代数精度。

试问所得的数值积分公式代数精度是多少?它是否为 Gauss 型的? X k 1(X k ) 3X k , k=0,1,•… 收敛。

C 和a ,使得数值积分公式 A C —,B 9 16"9,aY 5,该数值求积公式具有 5次代数精确度,它是 Gauss 型的3、利用矩阵的LU 分解法解方程组y4、写出求解下列初始值问题 y ⑴ 迭代式及四阶龙格-库塔法迭代式。

常州大学2012-2013级研究生数值分析试卷A解答及评分标准

常州大学2012-2013级研究生数值分析试卷A解答及评分标准

一.(1)已知函数24()73f x x x =++,用秦九昭方法计算(2)f ;(2)秦九昭方法计算任一n 次多项式在任一点函数值至多需要多少次乘法? (3)至少写出四种减少误差危害的常用手段。

解:(1)2422()73(31)7f x x x x x =++=++22(2)(321)2759f =⨯++=………… 5 分(2) 秦九昭方法计算任一n 次多项式在任一点函数值至多需要n 次乘法。

………… 5 分(3) A )防止大数“吃”小数; B )避免除数绝对值远远小于被除数绝对值的除法;C )避免相近数相减;D )避免使用不稳定的算法;E )注意简化计算步骤,减少运算次数;………… 5 分二.给定方程组123311413132156x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ (1)以分量形式写出解此线性方程组的Jacobi 迭代格式和Gauss -Seidel 迭代格式; (2)求1A 和A∞;(3)判断Gauss -Seidel 迭代格式的敛散性。

解:(1)Jacobi 迭代(1)()()123(1)()()213(1)()()312(4)/3(3)/3(62)/5k k k k k k k k k x x x x x x x x x +++=--=+-=-+, 0,1,2,k = Gauss-Seidel 迭代(1)()()123(1)(1)()213(1)(1)(1)312(4)/3(3)/3(62)/5k k k k k k k k k x x x x x x x x x ++++++=--=+-=-+, 0,1,2,k =………… 5 分(2)17A =,8A∞=;………… 5 分(3)因为方程组系数矩阵严格对角占优,所以Gauss -Seidel 迭代格式收敛。

………… 5 分三. 已知方程2()30x f x e x =-=,(1)证明该方程在区间[0.6,1.2]上存在唯一实根; (2)叙述牛顿法求方程()0f x =根的方法思想;(3)以初值01x =,用牛顿法求上述方程的近似解,要求误差不超过210- 。

数值分析2012考试卷

数值分析2012考试卷

研究生考试命题纸沈阳工业大学 2012 / 2013 学年 第 一 学期课程名称:数值分析 课程编号:000304 任课教师:陈欣 曲绍波 考试形式:闭 卷一、填空(每题3分,共15分)1. 二分法是求解 方程f (x )=0的 根一种方法,其前提是f (x )在有根区间[a ,b ]内单调且 。

2. 设矩阵⎪⎪⎭⎫ ⎝⎛-=0112A ,则1A = 、=2A 、)(A ρ= 。

3. 对于正数a ,使用牛顿法于方程02=-a x 所得到的迭代格式为 ,其收敛阶为 、求110(取x 0=10)的第一个近似值为 。

4. 幂法用来计算实矩阵A 的 特征值及对应的 ,在计算过程中进行“归一化”处理的原因是为了 。

5. 高斯求积公式)33()33()(11f f dx x f +-≈⎰-的代数精度为 ,当区间不是[-1,1],而是一般区间[a , b ]时,需要做变换 ,使用该公式计算≈⎰311dx x。

二、解答下列各题(每题5分,共10分)1. 请写出经过点A (0,1),B (2,3),C (4,5)的拉格朗日插值多项式形式。

说明插值基函数的性质以及拉格朗日插值法的优缺点。

2. 设n 阶可逆矩阵A 已经分解成A =LU ,其中L 下三角矩阵,U 单位上三角矩阵,推导出解线性方程组AX =b 的计算公式。

三、(10分)用不选主元的直接三角分解法解下面线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=-+-=-+-=-342424344343232121x x x x x x x x x x 四、(20分,每题10分)对于线性方程组⎪⎩⎪⎨⎧=++=++=-+9223122321321321x x x x x x x x x 1. 分别写出使用GS 迭代法,SOR 迭代法(ω=1.3)求解的迭代格式,并对初始向量(1,0,0)T ,分别计算第一步近似解向量;2. 分别讨论求解此方程的J —方法和GS —方法的收敛性。

五、(10分)给出函数表如下,用牛顿向前插值公式求f (2.03)的近似值。

研究生《数值分析》复习题

研究生《数值分析》复习题
0
1 1 1 ⩽ ∵ ∗ < ∗ S S − x∗ M i ( 3 ) 1 4 ∑ ∗ ∗ ∴ εr (A ) ⩽ · |xi − xi | 4 M i=1 ( 3 ) 1 ∑ ∗ ∗ ∴ εr (A ) ⩽ |xi − xi | M i=1
(k = 0, 1, · ·· , n − 2)
类似地,由 (n − 1) 次多项式 y = xn−1 可证明

求三次样条插值 M0 , M1 , M2 , M3 满足的方程组 M x = b. 第一种边界条件的三弯矩方程 x0 ̸= x2 2 1 M0 0 x0 + x2 x1 ̸= 2 0.5 2 0.5 M1 = −3 0.5 2 0.5 M2 −3 3、设 xi = i + 1 (i = 0, 1, · · · , n − 1),f (x) 为首项系数为一的 1 2 M3 18 n 次多项式,Rn−1 (x) 为其在上述结点上的 (n − 1) 次插值多 项式的余项,求证:|Rn−1 (0)| = |Rn−1 (n + 1)| = n! 7、利用表中数据求方程 x − e−x = 0 的根: |Rn−1 (x)| = f (n) (ξ ) n! ωn (x) = ωn (x) = |ωn (x)| n! n! |Rn−1 (0)| = |ωn (0)| = n! |Rn−1 (n + 1)| = |ωn (n + 1)| = n! 4、令 Vn (x) = Vn (x0 , x1 , · · · , xn−1 , x) 1 1 . = . . 1 1 x0 x1 . . . xn−1 x x2 0 x2 1 . . . x2 n−1 x2 ··· ··· .. . ··· ··· xn 0 xn 1 . . . xn n−1 xn x e

研究生数值分析期末考试试卷参考答案

研究生数值分析期末考试试卷参考答案

研究生数值分析期末考试试卷参考答案太原科技大学硕士研究生2012/2013学年第1学期《数值分析》课程试卷参考答案一、填空题(每小题3分,共30分)1、x x ++11;2、2;3、20;4、6;5、kk k k k x x x x x cos 11sin 1----=+ ( ,1,0=k ); 6、12121)(2++=x x x f ;7、311+=+k k x x ( ,1,0=k );8、12-n ;9、2; 10、+++++++--100052552452552052552525524;二、(本题满分10分)解:Gauss-Seidel 迭代方法的分量形式为+--=+--=++-=++++++3221522)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x -----5分取初始向量T x )0,0,0()0(=时,则第一次迭代可得===315)1(3)1(2)1(1x x x ,--------------7分答案有错误第二次迭代可得=-==7119)2(3)2(2)2(1x x x ,-----------9分所以T x )7,11,9()2(-=.---------------10分三、(本题满分10分)解:构造正交多项式:取)()()()(,)(,1)(01112010x x x x x x x ?β?α?α??--=-==,1)()(402040200=∑∑===i i i i i x x x ??α,1)()(402140211=∑∑===i i i i i x x x ??α,2)()(402040211=∑∑===i i i i x x ??β;所以点集{}1,0,1,2,3-上的正交多项式为12)(,1)(,1)(2210--=-==x x x x x x .-------------------------5分则矩阵???????? ?-----=221111*********A , ??=14000100005A A T ,????? ??=3915y A T ;法方程=????? ??????? ??391514000100005210c c c ----------------8分解得===1431093210c c c ;--------9分所以要求的二次多项式为35667033143)12(143)1(109322++=--+-+=x x x x x y .-----------10分四、(本题满分10分)解:取基函数210)(,1)(x x x ==??,则1),(1000=?=dx ??,31),(10201=?=dx x ??, 51),(10411=?=dx x ?? ππ?2sin ),(100=?=xdx f , 3102141sin ),(πππ?-=?=xdx x f----------------------------------6分法方程-=???? ???????? ??34125131311πππb a -----------------8分解得-=+=33454151543ππππb a .---------------9分所以最佳平方逼近多项式233)45415(1543)(x x ππππ?-++=.---------10分五、(本题满分10分)解:在区间[]1,+n n x x 上对微分方程),(y x f dxdy =进行积分得 ??=++11),(n n n n x x x x dx y x f dx dxdy 即=-+n n y y 1?+1),(n n xx dx y x f -------2分对上式等号右边的积分采用梯形公式进行求解,即+1),(n n x x dx y x f []n n f f h +=+12-------5分所以原微分方程初值问题的数值求解公式为11()2n n n n h y y f f ++=++.-------6分上述数值求解公式的截断误差为 ))](,())(,([2)()(1111n n n n n n n x y x f x y x f h x y x y R +--=++++---8分而又由泰勒公式得)()()()(2'1h O x hy x y x y n n n ++=+;)())(,())(,(11h O x y x f x y x f n n n n +=++;所以))](,()())(,([2)()()()(2'1n n n n n n n n x y x f h O x y x f h x y h O x hy x y R ++--++=+ )()())(,()(22'h O h O x y x hf x hy n n n =+-= 故该方法是一阶的方法.-----------------10分六、(本题满分20分)解:(1)构造的差商表如下:x )(x f 一阶差商二阶差商三阶差商 1 22 4 23 5 1 21- 4 8 3 121 -----------------------------15分(2)取2、3、4作为插值点,----------------------------------------------------17分构造的二次牛顿插值多项式为84)3)(2()2(4)(22+-=--+-+=x x x x x x P -----19分所以25.6)5.3()5.3(2=≈P f .------------------------------20分七、(本题满分10分)解:由泰勒公式可得)2)(()2()('b a x f b a f x f +-++=ξ,),(b a ∈ξ. 把上式代入积分公式?b a dx x f )(可得dx b a x f b a f dx x f b a b a+-++=?)2)(()2()('ξ ?+-++-=b a dx b a x f b a f a b )2)(()2()('ξ 故求积公式的截断误差表达式为?+-b a dx b a x f )2)(('ξ,),(b a ∈ξ.-----------5分当1)(=x f 时,求积公式左边=右边=a b -.当x x f =)(时,求积公式左边=右边=222a b -. 当2)(x x f =时,求积公式左边=333a b -,右边=()()92a b a b +-,左边≠右边. -----8分所以求积公式具有一次代数精度.-------------------------- -----10分。

西安理工大学研究生《数值分析》复习题

西安理工大学研究生《数值分析》复习题
-1 0 1 3 2 2
.。
x y
(4)设 I ( f )
则其 2 次 Lagrange 插值多项式为
.,2 次拟合多项式为 。
.。

1
0
1 e x dx ,则用梯形公式所得近似值为
y f ( x, y ), y (a) a xb
(5)求解常微分方程处值问题
6 4 2
b 的经验公式。 x
四、利用矩阵的三角分解法,解方程组 五 给定方程 x Lnx 2 0 。 (1)分析该方程存在几个根,找出每个根所在的区间; (2)构造求近似根 的迭代公式,并证明所用的迭代公式是收敛的。
1 1 1 2 1 3 1 x1 1 x2 六 求解矛盾方程组 2 5 2 1 x3 2 3 1 5
ax 2 bx ,求证:用欧拉法以 h 为步长所得近似解 2
yn 的整体截断误差为 n y( xn ) yn
八 给定线性方程组 Ax b ,其中 A
1 ahxn 。 2
3 2 3 , b ,用迭代公式 x(k 1) x(k ) (b Ax(k ) ) 1 2 1
b 的经验公式。 x
ax 2 bx ,求证:用欧拉法以 h 为步长所得近似解 2
yn 的整体截断误差为 n y( xn ) yn
八 给定线性方程组 Ax b ,其中 A
1 ahxn 。 2
(k 0,1,2 )
3 2 3 , b ,用迭代公式 x( k 1) x( k ) (b Ax( k ) ) 1 2 1
x2
. 试在 M

2012数值分析试卷Microsoft Word 文档

2012数值分析试卷Microsoft Word 文档

一.填空题(每小题3分,共27分):1.计算40的近似值时,要使其相对误差限001.0*<r ε,只需取 位有效数字; 2.设近似数1,2*2*1-==x x 的误差限分别为01.0和02.0,则≈)(*2*1x x ε ;3.设求积公式)()(0k ban k k x f A dx x f ⎰∑=≈是插值型求积公式,则0nk k A ==∑.4.若)(x P 是],[)(b a C x f ∈的最佳4次逼近多项式,则)(x P 在],[b a 上至少有 个偏差点; 5.在求积公式中,辛甫生公式至少具有 次代数精度;6.将⎪⎪⎭⎫ ⎝⎛-=1111A 分解为下三角阵L 与上三角阵U 之积, 即LU A =,则L =, U =;7.用牛顿迭代法解方程10x xe -=的迭代公式为8. 将],[b a 区间n 等分,步长n ab h -=,分点),,1,0(n k kh a x k =+=,则],[b a 等分为n 个子区间,即∑-==1],[n k k I b a ,子区间],[1+=k k k x x I .则计算定积分()baI f x dx =⎰的复化辛普森公式为n S =.9. 计算定积分()b aI f x dx =⎰的复化梯形公式的误差表达式为n I T -= 二.单选题(每小题3分,共24分):1. 根据数值运算误差分析的方法与原则, 无需避免的是 ( );A. 绝对值很大的数除以绝对值很小的数B. 两个非常相近的数相乘C. 绝对值很大的数加上绝对值很小的数D. 两个非常相近的数相减2. 设 )(,),(),(10x l x l x l n 分别为节点 n x x x ,,,10 上的 n 次拉格朗日插值基函数, 则 ∑=≡-ni iix l x 0)()2(( );A .2-x B.2-i xC.0D. 13. 设 n ()[,],()f x C a b P x ∈是)(x f 的最佳一致逼近多项式, 则其逼近标准是依据( ); A. 2min[()()]kbn aa f x P x dx -⎰C. n minmax ()()ia a x bf x P x ≤≤- D. n maxmin()()ka x ba f x P x ≤≤-4. 设 )(],,[)(x P b a C x f ∈是)(x f 的最佳平方逼近多项式, 则其逼近标准是依据( ); A. 2min[()()]kbn aa f x P x dx -⎰B.C. n minmax ()()ia a x bf x P x ≤≤- D. n maxmin()()ka x ba f x P x ≤≤-5. 若牛顿-柯特斯公式只有一个求积节点, 则柯特斯系数 =)0(0C ( A );A.1B.0C.2/1D.a b - 6.插值型求积公式 ∑==nk k kn x f AI 0)( 的代数精度最高可达到 ( ) 次;A.nB.1+nC.n 2D.12+n7. 用迭代法解方程 )5.1(01023==--x x x , 则该方程最好改写为 ( ) ; A.2/11x x += B.321x x += C.13-=x x D. 1/1-=x x8. 迭代法)()()1(k k k x Ax b x+-=+解线性方程组b Ax =收敛的充要条件是( );A .1)(<A ρB. 1)(<-A b ρC. 1)(<-A I ρD. 1)(<+A I ρ三.解答题(共39分)1.(7分) 求 32()21f x x x x =++- 在区间 [-1,1] 上的2次最佳一致逼近多项式()2P x2. (15分) 己知)(x f 的函数表如下,解答下述问题:(1)填写差商表.i x)(i x f ],[1+i i x x f ],,[21++i i i x x x f ],,[3+i i x x f ],,[4+i i x x f6 1 10 3 46 4 82 6212(2)写出函数)(x f 的牛顿插值多项式. (3)写出插值余项的表达式.3.(7分)求简单迭代法),...2,1,0(,121=+=+k x x x kk k 的收敛阶。

数值分析试题(A)参考答案2012.6

数值分析试题(A)参考答案2012.6

湖南大学研究生课程考试命题专用纸考试科目: 数值分析 (A 卷)参考答案 专业年级: 11级各专业 考试形式: 闭 卷(可用计算器) 考试时间:120分钟……………………………………………………………………………………………………………………… 注:答题(包括填空题、选择题)必须答在专用答卷纸上,否则无效。

一、简答题(20分)1、避免误差危害的主要原则有哪些?答:(1)两个同号相近的数相减(或异号相近的数相减),会丧失有效数字,扩大相对误差,应该尽量避免。

(2分)(2)很小的数做分母(或乘法中的大因子)会严重扩大误差,应该尽量避免。

(3分)(3)几个数相加减时,为了减少误差,应该按照绝对值由大到小的顺序进行。

(4分)(4)采用稳定的算法。

(5分)2.求解线性方程组的高斯消元法为什么要选主元?哪些特殊的线性方程组不用选主元?答:(1) 若出现小主元,将会严重扩大误差,使计算失真,所以高斯消元法选主元。

(3分)(2)当系数矩阵是对称正定矩阵时,高斯消元法不用选主元。

(4分)(3)当系数矩阵是严格对角占优或不可约对角占优时,高斯消元法不用选主元。

(5分)3.求解非线性方程的Newton 迭代法的收敛性如何?答:(1) Newton 迭代法是局部收敛的,即当初值充分靠近根时,迭代是收敛的。

(2分)(2)用Newton 迭代法求方程0)(=x f 的单根时,其收敛至少是平方收敛,若求重根,则只有线性收敛。

(5分)4.Newton-Cotes 积分公式的稳定性怎么样?答:(1)Newton-Cotes 积分公式当7≤n 时,Cotes 系数都为小于1的正数,因此是稳定的。

(3分)(2)当8>n 时,出现了绝对值大于1的Cotes 系数, 因此是不稳定。

(5分)二、(10分) 证明函数)(x f 关于点k x x x ,...,,10的k 阶差商],...,,[10k x x x f 可以写成对应函数值k y y y ,...,,10的线性组合,即∑==k j jjk x w y x x x f 010)('],...,,[ 其中节点))...()(()(10k x x x x x x x w ---=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

、填空1.设X 彳3149541…,取5位有效数字,则所得的近似值x= 2.3150f X 1,X 22.设一阶差商f x 2 f x 11 4 33x 2 x 12 1y' f(X, y)y(X0)y0近似解的梯形公式是f X 2,X 3f x 3 f x 2 X 3 X 2 则二阶差商f ^,X2,X311/63.设X (2, 3, 1),则||X|2 714 ||X|| 3。

p4924.4.求方程x x 1.25 0的近似根,用迭代公式x J x 匸25,取初始值X o那么X 11.5y k6、 1 1 A 5 1,则A 的谱半径Q 【盘)=7、 2 设 f(x) 3x 5, X k kh, k 0,1,2,…,贝卩 f 人几 1, Xn 23 和 f Xi , X n 1, Xi 2 , Xn38若线性代数方程组AX=b 的系数矩阵A 为严格对角占优阵,贝U 雅可比迭代和高斯-塞德尔迭代都 收敛9、解常微分方程初值问题的欧拉(Euler )方法的局部截断误差为 O(h )5. 解初始值问题y 10、为了使计算 10表达式改写成 二、计算题 1、已知 敛的简单迭代函数 2 3— 2 3 1 (X 1) (X 1)的乘除法运算次数尽量的少,应将 y 10 — 1 — 2 — X 1 X 1 X 1 蛊=机刃的00)满足■ 3V 妙⑵,使轧严护(心)/ =,试问如何利用骰㈤构造一个收 0, 1…收敛? (X ),可得3x (X) 3x 1 X 2( (X) 3X) (X)(X ) (X ) 3),故(X ) 1(X-3I 2 11 2 2、试确定常数A ,B , fl L / W 心铝Ej(0) +&S ) 有尽可能高的代数精度。

试问所得的数值积分公式代数精度是多少?它是否为 Gauss 型的? X k 1(X k ) 3X k , k=0,1,•… 收敛。

C 和a ,使得数值积分公式 A C —,B 9 16"9,aY 5,该数值求积公式具有 5次代数精确度,它是 Gauss 型的3、利用矩阵的LU 分解法解方程组y4、写出求解下列初始值问题 y ⑴ 迭代式及四阶龙格-库塔法迭代式。

X 1 2X 2 2X 1 5X 2 3x 1 X 2 8 3y,(1 23X 3 14 2X 3 18 5X 3 20X 2)的欧拉迭代式,欧拉预-校7.已知单调: 连续函数y f X的如下数据1 gt 22 ,假定g 是准确的,而对的测量有 秒的误差,证明1J匕败-十1) I 在点±片=处取到极大值4令 厶=/^' 得 h<0.C06_ 9羽当增加时 的绝对误差增加,而相对误差却减少。

解: e(S) e r (S) e(S) 1 ,2 2gt,e(S) 1 *22gto.1gt 1 ,22gt1 22gt O.1gto.2 t ,er(S).6.在 X 上给出f X的等距节点函数表,若用二次插值求e 的近似要使截断误差不超过10 ,问使用函数表的步长应取多少?解: f(x) r (k) z 、 Xf (X) e[4,4],考察点 x o h,x o , x o h 及x X o th, t 1.则 R 2(x)f (3)()3!4e3! e 46 (t 1)h th (t 2 h 3. 3 3[(X (X o h)](X 1)ht(t 1)(t3!(4,4).X o )[X (X o 1) e 4h 3h)]S 5.设(0) 1.321497. 写出误差估计式。

解:由所斤给条件可埃尔米特插值法确定多项式P(x)用插值法计算约为多少时f x(小数点后至少保留4位)0.2008解:作辅助函数g x f x则问题转化为为多少时, g x此时可作新的关于g X i的函数表。

f x单调可连续知g x也单调连续,因此可对的数值进行反插。

的牛顿型插值多项式:为g (y) 0.11 0.097345(y 2.23) 00.255894(y 2.23)(y 1.10) 451565(y 0.17)y 2. 23)(y 1.10)8. 殳函不咼于区间[0,3]3的多项式上具有四阶连续导数,试P(x)使其满足用埃尔米特插值法求一个P (0) 0 P(1) (1) 3 P (2) 1x2P3(X )5x37x2 2由题意可设R(x) f(x) p 3(x) k(x) <(>1)( 2)为确定待定函数F辅助函数g(t f(t) P3(t)k(t)t(1)(t2)x2g t在[0,3]上存在四阶导数且在[0,3]上至少有5个零点t为二重零点),反复应用罗尔定理,知至少有一个零点9、利用从而得误差估计k(x) : f ⑷()4! 。

式为1R(x) 4!f ⑷()x(x 1)2(x 2) (0,3)Remez算法,计算函数f(x) sin ,在区间[0,1]上的次最佳致逼近多项式P2( X (要求精度为0.0005).'二乘法求一个计算均方误差。

10、用最小形如y a bx的经验公式,使它与下列数据拟合,并19 25 31 38 4419.0 32.3 49.0 73.3 37.8解:因唤)=1吶=J有宓V尿(X.) =V 1- €斗4(阿则)=@=钝}=工视Cx)=^ V = 5S27.4 4(职a = W(兀冶® =Z £ =7貯冷9久+ 4(純」)=2-彌(兀)肌=Z £ = 27 L亠皿i~:4 斗@1・勿=工例区)*产S =369321.5.幻+釘T70 =271_4 4 = A972S0455327<i + 7277699A =369321.5 i = 0.0500351=>T = 0_9726045 + 0.0500351x\PIE =||班-口=0.130207526.11、确定下列求积公式中的待定参数, 求积公式所具有的代数进度。

使其代数精度尽量高,并指明所构造出的hh f(x)dxA f( h) A f (0) Af(h);2) h2hf(x)dx A i f( h) Aof(0)Af(h);3) 11f (x)dxf( 1) 2f(x i) 3f(X2);3 ;h[f(0) f(h)]ah 2[f '(0) f '(h)].24)hf(x)dx1 1解:(1三个参数,代入A 1(2 f(x) 1,x,x 2,A 1 A 0 A 1h(A 1 A 1) 2h (A 1 A 1)2hA OQ h x 3dxh hhf(x)dxh( h 3f(h)3 4hh)3 )三个参数,代入 2h 2h 3 3hx 4 dx A i1h 3 4 h 3 1h 3h( h)4 h(h)43 3f(0)f(h)具有三次代数精度.A 1 A 0 A 4h . 21,x,x ,hA 1 hA 1 0( h 2)A 1 h 2A 1 161338h 3 4 38h 3 x dx ( h) h 0(h) 3 3 34 . 64,5 8h 4 4 x dx h h( h h 0 15 3 3 8h 4h8hf(x)dxf( h)f(0)30 2h 2h2hf(x ) 2h Q 2h 8:(h)4⑶当f (x) 1时, 有两个参数,令f(x) 2X 1 2X 123x 2 c 2 3x 2 1 f(x)dx[f(3x,x 2精确成立X 1 0.68990 或X 2 0.12660" A 1A O 8h34h 38h 316h 5 3f(h)具有三次代数精度. 1) 2f(x i ) 3f(X 2)]. X 1X 2 0.289900.52660'x 3dx1f (x)dxf (x)dx [f( 1) [f( 1) 均具有2次代数精度. 2x 3 3x 3]2 f(0.68990) 2f ( 0.28990)3f( 0.12660)]/3 3 f(0.52660)]/ 312[1 1] X 2时,求积公式精确成立 ;[0 h⑷ f (x) 1,x 时,有 0 1dx 故令f (X)h 2 x 2dx 0 h 2] ah 2[2 2h] 0, hxdx 1 12 当 f(x) X 3时, 'x 3dx 0 2[0 h 3] h 212[0 3h 2] f (X) 0 故只有三次代数精度 f (x)dx ;[0 h 4] h 2122x [0 4h 3]. 2ah (11).12.对线性代数方程组 和高斯—赛德尔(G-S ) 说明收敛的理由。

X 1 X 2 X 1 x x X 3 5x 4 4x 3 x 4 3x 2 x 31 6 8 3迭代法均收敛的迭代格式,UR1-•讥站 *因其变换后为導价冇程组.且皿tS 对瞬占K” Jacobi )迭代法设法导出使雅可比(要求分别写出迭代格式,并19 -I=7 =1 -I 10 0 -1-1L0'' S 5 6 碗雅可比和高斯-S 德尔迭代法戒te 叙{w = f).L2.…)髙斯-赛億芻代恪式为:- 丘设方程组严-巨(? + 穿,坨+10)€心£ =y (冲仆:】_理刚+羽 曽2二丄(=址7十:^'+$)■ 4 亠科z = £(-斗严:十十6m = 0.1.1 )证明用雅可比迭代法和高斯-赛德尔迭代法解此方程组要么同时收敛, 要么同时发散。

当同时收敛时,试比较其收敛速度。

叱;: 大.于1.囲雨雅可比和简聊一翻<;1(;法上市柯同的師欝般\⑵雅可比相再斯一春樓尔法同时枚遞时.P (^2)= 故鬲斯=奏從r 坯代法收澈出 14. 写出用四阶经典的龙格一库塔方法求解下列初值问题的计算公式13. 设线性方程组为a 2i X i a 22 X 2b ? aii a 22 0证! Cl ) 可出法的迭代矩阵为3 =赛鮎法达此境盯车为虫G ,共谱卓径为巩■£2 •沁 ±而高斯― 屜抿 巩耳;猪 侃;?J 冋时小于h 爭于或y X 1) y(0) 1; y, 0 X 1;2)y ' 3y (1 X),0 X 1; y(0) 1.解:令为=0-2切=/(兀壬)=耳+片为 L L Tj冬*区十十片+訥)=耳十+耳+M=11(耳+儿)21£ 二 亠 亠^3 =/:石十?片+二兀,十£十几+冷■咫=1」1(&十片)十011• 七 & ■瓦二yx 耳+九耳+盹)二兀+丹-儿+陆二1 222(耳+>>) + 0.222 『Hl = +—(i| +2tj + 2km 十血)=0.2214% 十]…2214儿 +0.0214o *,雄=3(儿40.1殆氏1 +兀代+ 0.1}耘=3(儿+ (Hfc )『(1十工中+0.1〉 比=3仏+02姐川1 +耳+ 02) !1 =片十〒%+2E : +旳十朋一h y n 2(K 2 K 3); f (X n , y n ); f (X n th,y n thKJ f(X n (1 t)h, y n (1 t)hK 1).证:由1%函数府泰勒展开有用3 = yOQ -知6} -讥切A £(也」也》f 卜碍7卩 2^ i !L |L 瓷由二亓甬?^?的泰勒斥幵有 弘1 = %-亍(X 厂©〕=对~予[{/\%儿}一£代亠艸- £ (X h 莎tfg J«) - aFy - (/(和 ACg. h 〕fl - rtft+X 仇」iXl -门的X. ] J -。

相关文档
最新文档