土中水的运动规律
土中水的运动规律
hc
C ed10
通过试验可以得出,在较粗
颗粒土中,毛细水上升一开始进
行的很快,以后逐渐缓慢,细颗
粒土毛细水上升高度较大,但上
升速度较慢。
土中水的运动规律
3.2.3 毛细压力
毛细压力可以用图3.3来说明。 图中两个土粒(假想是球体)的接 触面间有一些毛细水,土粒表面 的湿润作用,使毛细水形成弯液 面。在水和空气的分界面上产生 的表面张力是沿着弯液面切线方 向作用的,它促使两个土粒互相 靠拢,在土粒的接触面上就产生 一个压力,称为毛细压力。
土中水的运动规律
3.1 概述
土中水的运动规律
土中水并非处于静止不变的状态,而是处于运动状态。土 中水的运动原因和形式很多,例如,在重力作用下,地下水的 流动(土的渗透性问题);在土中附加应力作用下孔隙水的挤出 (土的固结问题);由于表面张力作用产生的水分移动(土的毛 细现象);在土颗粒分子引力作用下结合水的移动(如冻结时土 中水分的移动);由于孔隙水溶液中离子浓度的差别产生的渗 附现象等。土中水的运动将对土的性质产生影响,在许多工程 实践中碰到的问题,如流沙、冻胀、渗透固结、渗流时的边坡 稳定等,都与土中水的运动有关。故本章着重研究土中水的运 动规律。
dQadh
dQ k h Fdt l
adhk h Fdt l
k al lnh1 F(t2 t1) h2
土中水的运动规律
2) 现场抽水试验
(1)无压完整井
q ln( R )
k
(H
2
r0
h
2 0
)
(2)无压非完整井
k
qlnrR0
水文地质学基础 第四章 地下水运动的基本规律.
1.渗透与渗流
渗透: 地下水在岩石空隙中的运动
渗流是一种假想水流。
假想水流应满足下列条件: (1)性质(如密度、粘滞
性等)和真实地下水相同; (2)充满含水层的整个空
间; (3)运动时,在任意岩石
体积内所受的阻力与真实水流 相同;
(4)通过任一断面的流量 及任一点的压力或水头均和实 际水流相同。 渗流区或渗流场:假想水流所 占据的空间。
• 流线:是渗流场中某一瞬时的一条线,线上各水 质点在此瞬时的流向均与此线相切。
• 迹线:则是对水质点运动所拍的电影。在稳定流 条件下,流线与迹线重合。
一、均质各向同,流线与等水头线构成 正交网格。 • 分析均质各向同性介质中的稳定流网。 • 徒手绘制定性流网
地下水的运动绝大多数服从Darcy定律。
二、非线性渗透定律—哲才(Chezy)定律
地下水在较大的空隙中运动且流速较大时,呈紊 流运动,此时的渗流服从哲才定律。有:
1
Q KI 2
1
V KI 2
即此时渗透流速V与水力梯度I的1/2次方成正比.
4.2 流 网
• 流网:在渗流场的某一典型剖面或切面上,由一 系列等水头线与流线组成的网格.
2.层流和紊流
层流运动:水质点作有秩序的、互不混杂的流动. 紊流运动:水质点无秩序的、互相混杂的流动.
地下水在岩石空隙中的运动速度一般较慢,大多为层流 运动。只有在大裂隙、溶洞中地下水流速大,才可能出现紊 流运动。此外,在抽水井附近小范围内,当降深很大时,流 速增大,也可出现紊流现象。
3. 稳定流和非稳定流
实际流速,ω有:
Q Kw h KwI Vw L
Q= ω/·u= ω·ne·u=
4.水文地质学基础-地下水的基本运动规律
4.1 重力水运动的基本规律
渗透系数(K)的影响因素:
d0 —— 孔隙直径;γ——水的重率;μ——动力粘滞系数
K与岩石空隙性质、水的某些物理性质有关。
(1)孔隙直径大则渗透性强,取决于最小孔隙直径。 (2)圆管通道:形状弯曲而变化时,渗透性较差。 (3)颗粒分选性:比对孔隙度的影响要大。 (4)水的物理性质:粘滞性大的液体K<粘滞性小的液体
4.1 重力水运动的基本规律
4.1.4渗透系数 渗透系数(K)是水力梯度等于1时的渗透流速,单位:m/d,cm/s. 关系: V = K I 1)I为定值时,K大,V大;K小,V小(V=KI); 2)V为定值时,K大,I小等水位线疏;K小,I大等水位线密。 渗透系数可定量说明岩石的渗透性:K大→渗透性强;K小→渗 透性弱。
Q K ω I K M 1 I H H H H b a b K a 2 L K 2 2 Ha H b 2L
4.2 流 网
流线(flow line, stream line)是渗流场中某一瞬时的一条 线,线上各个水质点在此时刻的流向均与此线相切。 迹线(path line)是渗流场中某一时间段内某一水质点的运动 轨迹。
h1 0
K
M
h2
0’ L
dh dx 单宽流量为: v K dh dh q v K M 1 KM dx dx
qdx KMdh
L
0
qdx KMdh
h1 L h2 0 h1
h2
分离变量并积分:
q dx KM dh h1 h2 q KM KMI L
0 h1 L h2
h1 h2 h1 h2 qK KM I 2 L
土壤物理知识点总结图解
土壤物理知识点总结图解一、土壤颗粒性质1. 土壤颗粒组成土壤由砂、粉砂、壤土和粘土组成,颗粒大小依次减小。
2. 颗粒形态土壤颗粒的形态多种多样,有圆形、角形、片状等。
3. 颗粒结构土壤颗粒的结构有单粒结构、胶结结构、复合结构等。
二、土壤孔隙结构1. 孔隙分类土壤孔隙包括毛管孔隙、颗粒间隙和大孔隙。
2. 孔隙特征毛细管作用使土壤中的水分能上升,在土壤中形成一种特殊的溶液吸附现象,使土壤能保持一定量的水分。
3. 孔隙组成毛细管作用和颗粒结构使得土壤中有多样化的孔隙组成。
三、土壤水分运动1. 土壤中的水分形态土壤中的水分主要包括毛细吸附水、毛管水和重力水。
2. 水分运动过程水分在土壤中的运动主要有渗流、毛细吸附运动和重力排水等。
四、土壤气体运动1. 土壤中的气体土壤中的气体主要包括氧气、二氧化碳、氮气等,它们对土壤有着重要的影响。
2. 气体运动规律土壤中的气体运动与水分运动联系紧密,同时还受温度、湿度等因素的影响。
五、土壤热量传导1. 热量传导的方式土壤中的热量主要通过传导、对流和辐射传导等方式进行。
2. 土壤热力学性质土壤的热导率、热容量等热力学性质对热量传导具有重要的影响。
六、土壤质地与结构1. 土壤质地土壤质地主要指土壤中砂、粉砂和粘土的含量比例,它对土壤的肥力和透水性等具有重要影响。
2. 土壤结构土壤结构可分为状结构、团粒结构、板状结构等,不同的土壤结构对土壤的通透性、保水性等有重要影响。
七、土壤物理性质与植物生长1. 土壤物理性质对植物生长的影响土壤的通透性、保水性、含氧量等物理性质对植物生长有着直接的影响。
2. 土壤改良通过改良土壤的物理性质,可以提高土壤的肥力、改善土壤的透气性和透水性,促进植物生长。
通过以上内容的学习,对土壤物理知识有了更全面的认识。
在实际的土壤改良和农业生产过程中,对这些知识的理解和掌握将发挥重要作用。
同时,也希望通过图解和详细解释,能更好地帮助读者理解和应用这些知识。
第2章 土中水的运动规律
地下水并非处于静止不动的状态,而是运动着的。
地下水的运动不仅与工程的设计方案、施工方法与工期、工程投资以及工程长期使用都有着密切关系,而且,若对地下水处理不当,还可能产生不良影响,甚至发生工程事故。
因此,在工程建设中,必须对地下水进行研究。
本章重点研究土中水的运动规律及其对土性质的影响。
毛细水是受到水与空气交界面处表面张力的作用、存在于地下水位以上的透水层中自由水。
土的毛细现象是指土中水在表面张力的作用下,沿着细的孔隙向上及向其他方向移动的现象。
土体能够产生毛细现象的性质称为土的毛细性。
土的毛细性,是引起路基冻害、地下室过分潮湿的主要原因,在工程中必须引起高度重视。
一、土层中的毛细水带土层中由于毛细现象所湿润的范围称为毛细水带。
毛细水带根据形成条件和分布状况,分为正常毛细水带、毛细网状水带和毛细悬挂水带三种,如图2-1所示。
1.正常毛细水带(又称毛细饱和带)它位于毛细水带的下部,主要是由潜水面直接上升而形成的,与地下潜水连通。
毛细水几乎充满了全部孔隙。
正常毛细水带随着地下水位的升降而变化。
2.毛细网状水带它位于毛细水带的中部。
当地下水位急剧下降时,它也随之急速下降,这时在较细的毛细孔隙中有一部分毛细水来不及移动,仍残留在孔隙中,而较粗的毛细孔隙中由于毛细水的下降,孔隙中会留下气泡,毛细水便呈网状分布。
毛细网状水带中的水,可以在表面张力和重力作用下移动。
3.毛细悬挂水带它位于毛细带的上部,是由于地表水渗入而形成的,水悬挂在土颗粒之间,不与中部或下部的毛细水相连。
当地表有水补给时,毛细悬挂水在重力作用下向下移动。
上述三个毛细水带不一定同时存在,这取决于当地的水文地质条件。
当地下水位较低时,可能同时出现三种毛细水带;当地水位很高时,可能就只有正常毛细水带,而没有毛细悬挂水带和毛细网状水带。
在毛细水带内,土的含水量随着深度而变化,自地下水位向上含水量逐渐减少,但到毛细悬挂水带后,含水量反而有所增加,如图2-1所示。
土中水的运动规律
土中水的运动规律土中水的运动规律是指水在土壤中的流动和分布的规律。
土壤中的水分运动是一个复杂的过程,受到多个因素的影响,如土壤类型、土壤孔隙度、水力条件、根系活动以及气候等。
通过研究土中水的运动规律,可以更好地理解水分循环和地下水资源的形成与分布,对水文循环模型的建立和水资源管理具有重要意义。
1. 水分下渗规律土壤中的水分主要通过下渗进入深层土壤或地下水层。
下渗规律取决于土壤的孔隙度和渗透性,水分的下渗速率与土壤孔隙度呈正相关关系。
土壤孔隙度越高,水分下渗的速率越快。
此外,土壤质地也影响下渗规律,例如,砂土的渗透性较好,能够较快地将水分下渗到深层。
2. 土壤中水分的传导规律土壤中的毛细现象是水分在土壤中传导的重要机制之一。
毛细现象是由于土壤颗粒表面的毛细管作用引起的。
水分分子在土壤孔隙中通过毛细现象向上运动,这种运动规律被称为上升运动。
毛细现象的主要影响因素包括土壤颗粒间的间隔距离、土壤颗粒表面的湿度和土壤毛细管的直径。
3. 根系对土壤中水分的摄取规律植物根系是水分在土壤中运动的重要因素之一。
根系通过吸收土壤中的水分供给植物的生长和代谢所需。
根系的分布范围和活动水平会影响水分在土壤中的分布和运动规律。
在干旱季节,植物的根系会向深层土壤迁移,从而增加了土壤中水分的储存量。
4. 土壤中水分的蒸发规律土壤中的水分在受到外界环境的作用下会发生蒸发。
土壤中水分的蒸发过程可以通过温度、湿度和风速等因素来描述。
温度越高,湿度越低,风速越大,土壤中的水分蒸发越快。
此外,土壤表面的覆盖物(如植被)也会影响土壤中水分的蒸发规律,植被的存在可以减缓土壤中水分的蒸发速率。
5. 土壤中水分的径流规律当土壤中的水分超过其持水能力时,多余的水分会以径流的形式流出。
土壤中水分的径流规律受到降雨强度、土壤质地、土壤饱和度和土壤坡度等因素的影响。
降雨强度越大,土壤的饱和度越高,土壤中水分的径流量越大。
综上所述,土中水的运动规律受到多个因素的综合影响。
土中水的运动规律
土中水的运动规律土壤中的水分是一种重要的自然资源,它对植物生长和生态系统的维持起着至关重要的作用。
土壤中的水分运动规律是指水分在土壤中的流动和分布特征,了解土中水的运动规律对于合理地利用和管理水资源具有重要意义。
水分在土壤中的运动主要有三种形式:下渗、上升和水分的水平运动。
下面将对这三种形式进行详细解释。
首先,下渗是指在降雨或灌溉等外界输入水分的作用下,水分由土壤表面逐渐向下渗透的过程。
下渗的速率与土壤的性质密切相关,包括土壤的渗透性、含水量和坡度等。
渗透性较强的土壤能够较快地将水分吸收并向下渗透,而具有较低渗透性的土壤则会形成水分渗透的阻碍。
其次,上升是指土壤中的水分由根系吸力和毛细作用等因素的作用下,逆向运动向土壤表面移动的过程。
植物根系的吸力和土壤毛细作用是上升的主要驱动力,它们能够克服重力和土壤水分的阻力,使水分从较深层次向上运动,满足植物对水分的需求。
最后,水分的水平运动是指水分在土壤中沿着水势梯度从高水势区向低水势区移动的过程。
土壤水分的水势梯度是由土壤的物理结构和含水量分布所决定的,水分会沿着水势梯度向低水势移动。
水分的水平运动在土壤湿润和干燥的交界处较为明显,能够调节土壤中的水分分布,维持土壤的湿润程度。
影响土中水的运动规律的因素有很多,包括土壤类型、土壤质地、地形坡度、降雨量和植被状况等。
土壤类型和质地决定了土壤的渗透性和蓄水能力,影响了水分的下渗和水平运动;地形坡度对水分的下渗和水平运动有很大的影响,陡坡地的水分会迅速流失;降雨量的大小和分布影响了土壤中的水分储备和水分的下渗速率;植被状况能够通过根系吸力的作用促进水分的上升运动。
在实际生产和生活中,我们可以根据土中水的运动规律进行水资源的合理利用和管理。
例如,在农业生产中,我们可以根据土壤类型和质地选择合适的灌溉方式和灌溉量,以确保水分能够充分渗透到作物根区并被利用;在城市建设中,可以合理规划排水系统,避免水分的积聚和滞留,防止城市内涝的发生。
土力学土质学第三章.
v q F
v0
q F
v F n v0 F
达西定律的适用范围
1、粗粒土
Reynold试验:
Re
vd
当1≤Re≤10时(层流),达西定律适用。
适用于:中砂、细砂、粉砂; 不适用:粗砂、砾石、卵石等。
2、粘土(非线性渗透)
v a
c b
0 I0
I
v kI I0
三、土的渗透系数
1、室内试验测定法 ➢ 常水头渗透试验
土柱体内水的重力在ab方向的分力,与水流 方向一致;
w (1 n)lF cos
土柱体内土颗粒作用于水的力在ab方向的分 力,与水流方向一致;
lFT
水渗流时,土柱中的颗粒对水的阻力,与水 流方向相反;
根据水流方向作用在土柱体ab内水上力的平衡条件:
wh1F wh2F wnlF cos w (1 n)lF cos lFT 0
1、流网及其性质
➢ 流网:等势线和流线交织成的网格; ➢ 流网性质:流网是相互正交的网格;
流网为曲边正方形; 任意两相邻等势线间的水头损失相等; 任意两相邻流线间的单位渗流量相等。
2、流网的绘制
3、流网的工程应用
(1) 渗流速度计算
任意两等势线间水头差: h h n 1
则所求网格内的渗流速度: v kI k h kh l (n 1)l
即:
wh1 wh2 wl cos lT 0
其中:
cos z1 z2
l
所以可得:
T
w
(h1
z1) (h2 l
z2 )
w
H1
H2 l
wI
动水力计算公式为:
GD T wI
2、流砂现象、管涌和临界水力梯度
土中水的运动规律
土中水的运动规律土中水的运动规律主要涉及到土壤水分运动的过程和影响因素。
土壤是地球陆地上的一种自然资源,可提供植物生长所需的水分和养分。
了解土中水的运动规律有助于进行合理的土壤管理和水资源利用。
1. 水的入渗:土壤中的水分是通过入渗过程进入土壤中的。
入渗是指自由水通过土壤表面进入土壤深层的过程。
入渗速率受土壤质地、土壤毛细管力、土壤的初始水分含量、土壤的坡度等因素的影响。
一般来说,砂质土壤的入渗速率较快,粘土质土壤的入渗速率较慢。
2. 土壤水分的分布:土壤中的水分分布是不均匀的,通常出现水分下渗和水分上升的现象。
水分下渗是指自由水在土壤中向下移动,直到达到地下水位或土层底部。
而水分上升则是指土壤中的毛细水在根系的吸引作用下向上移动。
土壤中的水分下渗和上升过程受土壤的质地、根系的吸水能力以及外界环境的影响。
3. 土壤中水分的保持:土壤中的水分在自由水的下渗和毛细水的上升过程中容易流失,因此需要采取措施进行水分保持。
常见的水分保持方式包括覆盖物(如秸秆、覆膜等)的使用、植被覆盖以及合理的灌溉管理等。
这些措施可以有效减少土壤水分的蒸发和多余流失。
4. 土壤水分的运动路径:土壤中的水分在运动过程中存在多个运动路径。
主要包括:大孔隙流动(通过土壤中的大孔隙直接流动)、毛细流动(通过毛细孔隙的连通路径上升和下降)、分散波动流动(由于土壤颗粒无序排列而产生的波动流动)和根系吸水。
不同路径的运动主要取决于土壤的孔隙结构和根系的分布情况。
5. 影响土中水运动的因素:土中水运动的过程受多种因素的影响。
主要包括土壤质地、土壤结构、土壤含水量、温度、压力和植被覆盖等。
土壤质地和结构的不同会影响土壤中的孔隙结构和通道的大小和连通性,从而影响水分的运动速率和路径。
土壤含水量的变化会改变土壤中的毛细力和浸润能力,进而影响水分的入渗和上升。
温度和压力的变化还会影响水分的气体交换和蒸发速率。
综上所述,土中水的运动规律主要包括水的入渗、分布、保持和运动路径等方面。
精品课件- 土中水的运动规律
三、毛细水上升高度
1、理论计算公式 • 假设一根直径为d的毛细管插入水中,可以看到水会沿毛细管上升。其上升最大高度
为:
• 式中:水的表面张力(见P32表2—1); • d----毛细管直径,m; • γw-----水的重度,取10kN/m3。 • 从上式可以看出,毛细水上升高度与毛细管直径成反比,毛细管直径越细时,毛细
水上升高度越大。
• 2、经验公式
• 在天然土层中,毛细水的上升高度是不能简单地直接采用上面的公式的。这是 因为土中的孔隙是不规则的,与园柱状的毛细管根本不同,使得天然土层中的 毛细现象比毛细管的情况要复杂得多。例如,假定粘土颗粒直径为d=0.0005mm 的圆球、那么这种均粒土堆积起来的孔隙直径
dφ1×10-5cm,代入上式可得毛细水上升高度为dmax=300m,这是根本不可能的。 实际上毛细水上升不过数米而已。
68
82
60
165.5
112
239.6
120
359.2
180
• 由上表可见,砾类与粗砂,毛细水上升高度很小;细砂和粉土,不仅毛细水高 度大,而且上升速度也快,即毛细现象严重。但对于粘性土,由于结合水膜的 存在,将减小土中孔隙的有效直径,使毛细水在上升时受到很大阻力,故上升 速度很慢。
四、毛细压力(自学)
• 土层发生冻胀的原因,不仅是由于水分冻结成水时其体积要增大9%的缘故,而主 要是由于土层冻结时,周围未冻结区中的水分会向表层冻结区迁移集聚,使冻结区 土层中的水分增加,冻结的水分逐渐增多,土体积也随之发生膨胀隆起。
(2)融陷现象:当土层解冻时,土中积聚的冰晶体融化,土体随之下陷,这种现象 称为融陷现象。
• 3、毛细悬挂水带
• 它位于毛细水带的上部。这一带的毛细水是由地表水渗入而形成的,水 悬挂在土颗粒之间。当地表有水补给时,毛细悬挂水在重力作用下向下 移动。
西交大本科《土力学》NO2
2.1 土中的结合水
图2-2 结合水的形态与黏性土稠度之间的关系
2.1 土中的结合水
2.1.2 双电层理论及其工程应用 1. 双电层理论
与其他土不同,黏性土含有相当数量的结合水,在黏粒周围形成一 层水化膜。水化膜的厚度主要取决于结合水含量的多少。当土粒表面与 水溶液相互作用达到平衡时,在土粒周围形成一定的电场,电场的强度 随土粒表面距离的增加而衰减,衰减的快慢取决于土粒表面的静电引力 和布朗运动扩散力相互作用的结果。在最靠近土粒表面的地方,静电引 力最强,极性水分子和水化离子被紧紧地吸附在土粒表面,形成强结合 水层,其也称为吸附层或固定层。在土粒表面处,阳离子的浓度最大。 随着土粒表面距离的加大,阳离子的浓度逐渐降低,直至达到孔隙中水 溶液的正常浓度,这个范围实际上为弱结合水层,也称为扩散层。
2.1 土中的结合水
弱结合水的存在是土具有可塑性的主要原因。土处于可塑 状态的含水量变化范围,大体上相当于土粒所能够吸附的弱结 合水的含量,其含量的大小主要取决于土的比表面大小和矿物 成分。比表面大和矿物亲水能力强的土,能够吸附较多的弱结 合水,其保持可塑状态的含水量的变化范围也越大。当土的含 水量进一步增加时,土中除结合水外,已有相当数量的水处于 电场引力影响范围以外,成为自由水。这时土粒之间被自由水 隔开,土体不能承受任何剪应力而呈流动状态,如图2-2(c) 所示。因此,黏性土中水的形态可被用来解释其稠度状态发生 改变的原因。
2.1 土中的结合水
弱结合水层呈定向排列,但定向程度及与土粒表面连接的牢固 程度均不及强结合水。其主要特点是:密度比强结合水小,但仍比 普通液态水大;具有较高的黏滞性、弹性和抗剪强度;不能传递静 水压力,但水膜较厚的弱结合水能向邻近的较薄水膜处缓慢移动;
土中水的运动规律
土中水的运动规律土中水的运动规律土中水的运动规律是指在土壤中的水分在不同条件下的运动方式和规律。
对于农业生产、水资源管理等领域而言,了解土中水的运动规律对于实现高效用水、科学灌溉等方面具有重要的指导意义。
首先,土中水的运动受到土壤的渗透性和土壤含水量的影响。
不同类型的土壤对水分的渗透性有差异,例如,沙质土壤的渗透性较好,而粘性土壤的渗透性较差。
当土壤中的含水量较低时,水分更容易渗透进入土壤。
然而,当土壤中的含水量达到一定程度时,增加的水分会以多孔隙或毛细管的形式存储在土壤中。
因此,合理掌握土壤渗透性和含水量,有助于合理利用土地资源和水资源。
其次,土中水的运动受到水分的压力和土壤孔隙结构的作用。
土壤中的水分存在一定的压力,使得水分向低压力区域移动。
此外,土壤的孔隙结构也会影响水分的流动速度和方向。
当土壤中孔隙较大、连通性好时,水分的运动速度相对较快;相反,当孔隙较小、连通性差时,水分的运动速度较慢。
了解土壤孔隙结构和水分压力,有助于科学排水、提高灌溉效果。
此外,土中水的运动还受到土壤的水分流动无序性和重力作用的影响。
土壤中的水分运动往往呈现无序性,存在较为复杂的渗流路径和流向。
水分在流动过程中受到土壤颗粒的摩擦、黏附力和重力的作用,这些因素会影响水分运动的方向和速度。
因此,在农业生产中,合理安排灌溉方式和施肥间隔,有助于优化土壤中水分的分布和运动。
综上所述,土中水的运动规律与土壤的渗透性、含水量、水分压力、孔隙结构、无序性以及重力作用密切相关。
了解土中水的运动规律,可以指导农业生产中的灌溉施肥、水资源管理等工作,实现高效用水、提高农作物产量、保护水资源等目标。
因此,在实际应用中,我们应当结合具体的土壤条件和需求,科学合理地利用土中水的运动规律,推动农业的可持续发展。
土中水的运动规律
土中水的运动规律概述土中水的运动是地下水循环过程的重要组成部分,对于土壤水分的分布和地下水资源的利用有着重要的影响。
了解土中水的运动规律对于水资源的管理和环境保护具有重要的意义。
本文将深入探讨土中水的运动规律,包括水分在土壤中的渗透过程、水分的迁移与输送以及水分在土壤中的储存。
水分的渗透过程驱动力:毛细力和重力土壤中的水分向下渗透的过程主要受到两种驱动力的作用:毛细力和重力。
毛细力是由于土壤颗粒表面的毛细现象引起的,在细小土壤孔隙中,水分分子的作用力会使得水向上升或向下降。
重力是指因重力作用而使水分向下渗透。
孔隙度和土壤质地的影响水分的渗透过程受到土壤的孔隙度和质地的影响。
孔隙度是指土壤中的孔隙空间所占总体积的比例,决定了土壤的持水能力和透水性。
质地是指土壤中各种颗粒的相对含量和大小,影响土壤的孔隙结构和水分的渗透能力。
粘土质地的土壤孔隙较小,导致水分渗透速度较慢;砂质质地的土壤孔隙较大,使得水分能够较快地渗透。
饱和渗透和非饱和渗透水分的渗透过程可以分为饱和渗透和非饱和渗透。
饱和渗透发生在土壤中的孔隙充满水分的情况下,水分向下渗透的速度相对较快。
非饱和渗透则发生在土壤孔隙中既有空气又有水分的情况下,水分的渗透速度较慢。
在非饱和状态下,水分的渗透速度与土壤的毛细力有关。
渗透系数和渗透速率渗透系数是衡量土壤水分渗透能力的指标,表示单位时间内单位面积的水分通过土壤垂直渗透的能力。
渗透速率则表示单位时间内单位面积的水分通过土壤垂直渗透的实际速度。
渗透系数和渗透速率可以通过实验测定或数学模型进行估算。
水分的迁移与输送饱和带和不饱和带在地下水埋藏层中,饱和带是指地下水完全填充土壤孔隙的区域,不饱和带是指地下水面以下的土层中同时存在水和空气的区域。
饱和带和不饱和带之间存在一条分界线,称为水位面,水位面上方是不饱和带,下方是饱和带。
土中水在饱和带和不饱和带之间的迁移与输送过程受到土壤水分势差的驱动。
土壤水分势差土壤水分势差是指不同位置处土壤水分的能量差别,是土壤水分迁移与输送的主要驱动力。
水文地质学---地下水运动的基本规律
(以此种情况居多)
说明:只要施加微小的水力梯度,结合水就会流动,但 此时的V十分微小;随着I加大,曲线斜率(K)逐渐增大,然
后趋于定值
较多的学者认为,粘性土(包括相当致密的粘土在内)中
的渗透,通常仍然服从达西定律。例如,奥尔逊曾用高岭土作
渗透试验,加压固结使高岭土孔隙度从58.8%降到22.5%,施 加水力梯度I =0.2~40,结果得出V - I 关系为一通过原点的直
第四章 地下水运动的基本规律
4.1.6 达西定律的适用范围 1<Re<10,层流,适用,地下水低速运动,粘 滞力占优势; 10<Re<100,层流,不适用,地下水流速增大, 为过渡带,由粘滞力占优势的层流转变为以惯性 力占优势的层流运动; Re>100,紊流,不适用。
达西定律是描述层流状态下渗透流速与水头损失关系的 规律,即渗流速度V与水力坡度I成线性关系只适用于层流范 围。在水利工程中,绝大多数渗流,无论是发生于砂土中或 一般的粘性土中,均属于层流范围,故达西定律均可适用。 但以下两种情况可认为超出达西定律适用范围。
第四章 地下水运动的基本规律 ①从微观角度研究地下水运动的难度有两个方面:
A)要获得微观角度每一个空间点的水流运动参数,首 先必须获得空隙的几何参数(查明每一个空隙与固体颗粒 之间的边界位置等) B)从微观角度来看地下水流在空间上是不连续的。固 体颗粒部分是没有水流的,因此从微观角度地下水的运动 参数在空间上是不连续的,有很多地方运动参数是零。 也就是说描述水流运动的物理量是非连续函数,因此 基于连续函数的许多微积分方法无法应用。
普通水流的流向是从总水头高的地方流向总水头低的地方 水流量的大小取决于水头差和水头损失 地下水水的流向也是从高水头流向低水头 流量的大小也取决于水头差和水头损失 普通水流在管道中运动取决于管道大小、形状及管壁的粗糙度 渗流运动取决于多孔介质空隙大小、形状以及其连通性
土中水的运动规律
土中水的运动规律以土中水的运动规律为标题,我们来探讨一下土壤中水分的运动方式和规律。
土壤中的水分运动与土壤的物理性质、水分状况以及外部环境等有关,它对农田的灌溉和排水、水资源的利用和保护具有重要意义。
我们来讨论土壤中水分的来源。
土壤中的水分主要来自降水和地下水的补给,其中降水是土壤水分的主要补给来源。
雨水透过土壤表层,渗入土壤中形成入渗水,这部分水分被土壤颗粒吸附和保持,为土壤中的毛细水。
当土壤中的毛细水达到饱和状态时,超过土壤毛细水能力的雨水将向下渗透,形成深层水。
我们来看土壤中水分的运动方式。
土壤中的水分主要有三种运动方式:入渗、上升和下渗。
入渗是指降水透过土壤表层,渗入土壤中的过程。
土壤的入渗性取决于土壤的质地、结构、含水量以及降雨的强度等因素。
质地较粗糙的土壤,如砂土,入渗速度较快;而质地较细腻的土壤,如黏土,入渗速度较慢。
此外,土壤的结构也对入渗有影响,土壤结构疏松的入渗性较好,而结构紧密的土壤入渗性较差。
上升是指土壤中的水分通过毛细力向上运动的过程。
土壤中的毛细水能够被土壤颗粒吸附和保持,形成毛细管系统。
当土壤中的毛细力大于重力时,水分就能够向上运动,这种现象称为毛细上升。
毛细上升对植物的根系吸收水分起到了重要的作用。
下渗是指土壤中的水分向下运动的过程。
当土壤中的毛细水达到饱和状态时,超过土壤毛细水能力的雨水将向下渗透。
下渗速度取决于土壤的质地、结构、含水量以及渗透层的下边界等因素。
土壤质地较粗糙、结构疏松的下渗速度较快,而质地较细腻、结构紧密的下渗速度较慢。
我们来讨论土壤中水分的分布规律。
土壤中的水分分布主要取决于土壤的水分势差和地形。
水分势差是指土壤水分与周围环境之间的差异,它决定了水分的运动方向和速度。
一般情况下,水分势差大的地方水分运动较快,水分势差小的地方水分运动较慢。
地形对土壤中水分的分布也有一定的影响,比如山坡上部水分相对较多,容易形成积水,而山坡下部水分较少,容易出现干旱现象。
土中水的运动规律
土中水的运动规律土中水的运动规律主要包括渗流、重力流和径流等。
下面将依次介绍它们的特点和相关参考内容。
渗流是指水分在土壤中通过孔隙和颗粒间隙的逐渐移动和传导过程。
其运动方向和速率主要受到土壤水分势、土壤类型、孔隙度、土壤水分饱和度、土壤结构等因素的影响。
渗流过程也受到达西定律和泥土水分运动定律的约束。
参考内容:- 达西定律:由法国科学家亨利·达西提出。
其核心原理是根据达西定律,单位时间内渗透液体体积通过渗流截面的速度与压力梯度成正比。
参考文献:P. Englezos, "The Darcy law and interfacial transport," Chemical Engineering Education, vol. 47, no. 4, pp. 226-230, 2013.- 泥土水分运动定律:由裴元宽等人提出。
通过试验和模型分析,研究土壤水分运动的物理方程、影响因素以及渗透速度等。
参考文献:S. Cui, M. Shi and H. Cui, "Simulation of soil moisture distribution under oil spill using Richa rds’ equation," Journal of Hydrology, vol. 587, p. 124955, 2020.重力流是指较大量的水通过土壤表面流动的现象。
主要是由于降雨强度大于土壤的渗透能力,导致多余的水不能渗入土壤而形成地面径流。
重力流的运动规律与地形、土壤类型、孔隙度、土壤饱和度等因素密切相关。
参考内容:- 地面径流模型:通过建立数学模型,模拟降雨对地面径流的影响。
其中著名的模型包括NRCS-CN模型和SWMM模型。
参考文献:R. H. Hawkins and R. A. Ward, "Storm Water Management Model - Version 5 - Reference Manual," UrbanWater Resources Research Program, School of Civil Engineering, Purdue University, West Lafayette, 2013.- 降雨径流响应模型:研究降雨时间和强度对地面径流的影响,从而预测土地利用变化对水文过程的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
•
(2)考虑竖直向渗流时(水流方向与土层垂直)
总的流量等于每一土层的流量,总的截面积等于各 土层的截面积,总的水头损失等于每一层的水头损失之和 h h h 。 k q q (h h ) q (h h ) q (h h ) h h h FI F H F (H H ) F q h q h k k k Fk Fk
•
v k (I I 0 )
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
• •
三、土的渗透系数 土的渗透系数可由经验参考数值确定,也可通过室 内试验、现场抽水试验测定。 • 1、室内常水头渗透试验 • 试验装置见图3-7。由试验测得的结果计算如下: • • • • 2、变水头渗透试验 Ql k HFt 试验装置如图3-8。由此可求得渗透系数: al h1 3、现场抽水试验 k ln Ft h2 现场抽水试验见图3-9。从而求得渗透系数为:
•
•
多年冻土:冻结状态持续三年或三年以上的土层。
冻土的危害:冻土由冻结及融化两种作用引起。在 冻结时,由于水结成冰体积要膨胀9%,引起土体膨胀, 使地面隆起,称为冻胀现象。冻胀引起路基开裂、路面鼓 包、开裂,建筑物上抬、开裂、倾斜,甚至倒塌。融化时 ,土中冰融化成水使土的含水量增加,强度下降,冰水积 聚,容易引起路面翻浆冒泥,使路面破坏、建筑物也融陷 。
z0 0.28
T
m
7 0.5
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
The End
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
图 土 层 中 的 毛 细 水
3-1
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
s D w sat w
•
产生流砂时的水力梯度称为临界水力梯度:
' sat G 1 I cr 1 w w 1 e
1 e
w
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
•
• • • •
流砂现象主要发生在细砂、粉砂、粉土等土层中, 粗砂、粘土等不易产生流砂。 处理流砂的方法主要有: (1)人工降低地下水位,减小水头梯度; (2)打板桩,增加排水路径,间接降低水头梯度; (3)水下施工法。
3、毛细悬挂水带:位于毛细水带上部。主要为地表 水渗入而形成,水悬挂在土颗粒之间,不与中部或下部毛 细水相连,当地表有大气降水补给时,毛细悬挂水在重力 作用下向下移动(图3-1)。
•
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
• •
二、毛细水上升高度及上升速度 毛细水的上升高度,可根据水的表面张力以及水在 毛细管内弯液面的角度进行计算(图3-2)。 • 毛细水上升的最大高度为:
•
• •
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
• •
• •
• •
3、土的结构构造 天然土层不是各向同性的,因此渗透性也一样。如 黄土具有竖向大孔隙,因此它竖直方向的渗透系数比水平 方向大得多。层状粘土常夹有薄层粉砂层,它在水平方向 的渗透系数比竖直方向要大。 4、水的粘滞度 水在土中的流速与水的容重和粘滞度有关,而它们 又与温度有关。水的容重随温度变化可以忽略,水的粘滞 系数随温度的变化对渗透系数的影响可用下式修正: 5、土中气体 t k10 kt 土孔隙中的密闭气泡,会阻塞水的渗流,从而降低 10 土的渗透性。
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
第一节 土的毛细性
• • 一、土层中的毛细水带 1、正常毛细水带(又称毛细饱和带):位于毛细水 带下部,地下潜水面以上,几乎充满全部孔隙。正常毛细 水带会随着地下水位的升降而作相应的移动。
•
2、毛细网状水带:位于毛细水带中部,正常毛细水 带之上。当地下水位急剧下降时,正常毛细水也随之急速 下降,在较小毛细孔隙中仍残留一部分毛细水来不及移动 ,而较大的孔隙因毛细水下降而留下气泡,毛细水呈网状 分布。
q ln(r2 / r1 ) k 2 (h2 h12 )
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
• • • •
4、成层土的渗透系数 对于有水平分层的沉积土层,分层对渗透系数影响 很大(图3-11)。 (1)考虑水平向渗流时(水流方向与土层平行) 各层土的水头梯度相同,总的流量等于各土层流量 之和,总的截面积等于各层土截面之和。 q q1 q2 k1 F1 I1 k2 F2 I 2 k1h1 k2 h2 ki hi kh FI FI FI h1 h2 hi
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
• •
三、毛细压力
干燥的砂呈松散状态,无粘结力,水下的饱和砂土 也无粘结力。但有一定含水量的湿砂(非饱和砂土)能捏 成团,显示一定的联结力,这是因为毛细压力作用的结果
。也称假内聚力(图3-4)。(如第四次中东战争中的巴
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
• •
四、动水力及渗流破坏 水在土中渗流时受到土颗粒的阻力T,同样水流也有 一个力作用于土颗粒上,我们把水流作用在单位体积土体 上的力称为动水力GD,也称渗流力,动水力的作用方向与 水流方向一致。
• • •
•
•
(3)温度的因素:冻胀现象与温度下降速度和冷冻强度有关。 气温骤降且冷却强度很大时,土的冻结面迅速下移,冻结速度很快, 土中结合水及毛细水不向冻结区迁移,冻土无明显的冻胀。气温缓慢 下降,冷却强度小,负温持续时间长,有利于未冻结区水分向冻结区 迁移,出现冻胀。
•
胰腺癌生活如何护理 /a/yixianaihuli/2014/1103/126.html
GD T w I 1、动水力的计算公式:
2、流砂现象、管涌和临界水头坡度 如果渗流的方向自下而上时,动水力方向与重力方 向相反,这将减少颗粒间的压力。当动水压力等于土的浮 容重时,土粒间压力为零,土处于悬浮状态,这种现象称 1 为流砂。即: G I '
列夫防线)。
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
第二节 土的渗透性
•
• •
一、渗流模型
二、土的层流渗透定律 土中孔隙水在压力梯度下发生渗流一般符合达西( H·Darcy)定律: v kI 水的渗透速度与水头梯度成正比。达西定律适用于 层流的情况,一般只适用于中砂、细砂、粉砂等。对于粗 砂、砾石、卵石等粗粒土就不适用了。而在粘性土中,由 于结合水的存在,渗流受粘滞作用而阻碍,只有克服结合 水的抗剪强度后才能开始渗流。此时达西定律可修正为:
1 2 1 2 1 2 1 2 i i v 1 2 1 1 2 2 1 2
1 1
2 2
1
2
i
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
•
三、影响土的渗透性的因素
•
•
1、土的粒度成分及矿物成分
颗粒大小、形状及级配,影响孔隙大小及形状,也 影响渗透性。土颗粒越粗、越浑圆、越均匀时,渗透性就 大。砂土含较多粉土及粘土颗粒时,其渗透系数就大大降 低。 土的矿物成分对卵石、砂土和粉土等粗粒土的渗透 性影响不大,但对粘性土的渗透性影响较大,主要是由于 其亲水性和有机质的含量。 2、结合水膜厚度 粘性土结合水膜较厚时,会阻塞土的孔隙,降低土 的渗透性。如在粘土中加入高价离子的电解质,会使土粒 扩散层厚度减薄,粘土颗粒会凝聚成粒团,土的孔隙因而 增大,土的渗透性也增大。
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
第三节 流网及其应用
•
本节内容自习。
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
第四节 土在冻结过程中水分的迁移和积聚
• • • • 一、冻土现象及其对工程的危害 在严寒地区或当气温下降至零度以下时,土中水分 冻结成冰而成为冻土。根据其冻融情况可分为: 季节性冻土:冬季冻结、夏季全部融化的冻土; 隔年冻土:一、两年不融化的土层称为隔年冻土;
土质学与土力学
人防教研室 赵佩胜
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
第三章 土中水的运动规律
• 水以各种形式存在于土中,这在前面已讲过。同时 土中水在不断地运动,如水的渗透,毛细水运动等,这些 运动对土的性质影响很大。 • 土的毛细性是指土能够产生毛细现象的性质。毛细 现象是指土中水在表面张力作用下,沿着孔隙形成的管道 向上运动的现象。这部分孔隙中的水称为毛细水。 • 毛细水的危害:引起路基冻害,地下室过分潮湿, 土地沼泽化、盐渍化。
中 国 人 民 解 放 军 理 工 大 学 工 程 兵 工 程 学 院 多 媒 体 教 学 课 件
• •
三、冻结深度 为了克服冻融对建筑物的危害,设计中应将基础底 面置于当地冻结深度以下。土的冻结深度与当地的气候、 土的类别、湿度、地面覆盖等有关,在工程实践中用标准 冻结深度表示(地表无积雪和草皮等覆盖条件下,多年实 测最大冻结深度的平均值称为标准冻结深度)。《公路桥 涵地基与基础设计规范》(JTJ024-85)给出了我国东北 和华北地区的标准冻深图,也可根据当地气象观测资料按 下式计算: