应用光学14.5-7
应用光学各章知识点归纳
第一章 几何光学基本定律与成像概念波面:某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。
光的传播即为光波波阵面的传播,与波面对应的法线束就是光束。
波前:某一瞬间波动所到达的位置。
光线的四个传播定律:1)直线传播定律:在各向同性的均匀透明介质中,光沿直线传播,相关自然现象有:日月食,小孔成像等。
2)独立传播定律:从不同的光源发出的互相独立的光线以不同方向相交于空间介质中的某点时彼此不影响,各光线独立传播。
3)反射定律:入射光线、法线和反射光线在同一平面内,入射光线和反射光线在法线的两侧,反射角等于入射角。
4)折射定律:入射光线、法线和折射光线在同一平面内;入射光线和折射光线在法线的两侧,入射角和折射角正弦之比等于折射光线所在的介质与入射光线所在的介质的折射率之比,即nn I I ''sin sin = 光路可逆:光沿着原来的反射(折射)光线的方向射到媒质表面,必定会逆着原来的入射方向反射(折射)出媒质的性质。
光程:光在介质中传播的几何路程S 和介质折射率n 的乘积。
各向同性介质:光学介质的光学性质不随方向而改变。
各向异性介质:单晶体(双折射现象)马吕斯定律:光束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。
费马原理:光总是沿光程为极小,极大,或常量的路径传播。
全反射临界角:12arcsinn n C = 全反射条件:1)光线从光密介质向光疏介质入射。
2)入射角大于临界角。
共轴光学系统:光学系统中各个光学元件表面曲率中心在一条直线上。
物点/像点:物/像光束的交点。
实物/实像点:实际光线的汇聚点。
虚物/虚像点:由光线延长线构成的成像点。
共轭:物经过光学系统后与像的对应关系。
(A ,A ’的对称性)完善成像:任何一个物点发出的全部光线,通过光学系统后,仍然聚交于同一点。
每一个物点都对应唯一的像点。
理想成像条件:物点和像点之间所有光线为等光程。
应用光学_国防科技大学中国大学mooc课后章节答案期末考试题库2023年
应用光学_国防科技大学中国大学mooc课后章节答案期末考试题库2023年1.一个物方、像方折射率相同的折射光学系统对实物成像时,其垂轴放大率,则下面正确的是:答案:成倒立缩小的实像;2.下面说法错误的是:答案:单球面反射镜的节平面是过球面顶点的切平面;3.有一无限远物点,经某一理想光学系统成像,则正确的陈述是:答案:其像点必在理想光学系统的像方焦平面上;4.下面说法错误的是:答案:出射光瞳与入射光瞳相对整个光学系统不共轭;5.教室使用的教学投影仪,为了消除渐晕现象,通常将视场光阑设在:答案:接收屏处6.几何光学中,光学系统成理想像(或称完善像)应满足下列条件之一:答案:物点和像点之间任意两条光路的光程相等;入射光束是同心光束时,出射光束也是同心光束;入射波面是球面波时,出射波面也是球面波;7.下面关于物像及其相关概念的正确陈述是:答案:可以用屏直接接收的物(像)即为实物(像),不能用屏直接接收的物(像)即为虚物(像);实物、虚像对应发散同心光束,虚物、实像对应会聚同心光束;8.增大显微镜数值孔径的方法有:答案:增大物方孔径角增大物方折射率9.远点与视网膜共轭,下面说法错误的是:答案:近视眼的远点在眼睛后方有限远处;远视眼的远点在眼睛前方有限远处;10.关于目视光学仪器,下面说法正确的是:答案:放大镜的焦距越短,其视放大率越大;双目观察仪器的基线越长,其体视放大率越大;显微镜有两级放大,物镜放大物体成像尺寸,目镜放大视角;望远镜的垂轴放大率、轴向放大率和角放大率只与物镜焦距和目镜焦距有关,与共轭面的位置无关;。
应用光学习题(含答案).docx
应用光学习题本习题供学习、复习使用。
精练这些习题及作业和课件上的例题有助于掌握、理解应用光学课程的基本知识、理论和规律。
应用光学的基本问题包括在本习题内,但不仅限于本习题。
本习题仅供课程学习时参考。
习题中一些问题提供了解答,限于时间,其它则略去。
一、筒答题1、几何光学的基本定律及其内容是什么?答:几何光学的基本定律是自钱传播定律、独立传播定W:、反射定律和折射定律。
直线传播定律:光线在均匀透明介质中按直线传播。
独立传播定律:不同光源的光在通过介质某点时互不影响。
反射定律:反射光线位于入射面内;反射角等于入射角:折射定律:折射光线位于入射面内:入射角和折射角正弦之比,对两种定的介j员来说,是=个和入射角无关的常数n isin/,-msin/。
22、理想光学系统的基点和基面有哪些?理想光学系统的基点包指物方焦点、{象方焦点;物方主点、像方主点:物方节点、像方节点。
基面包括:物方焦平丽、像方然平面:物方主平丽、像方主平面;物方节平面、像方节平面。
3、什么是光学系统的孔役光阑和视场光阙?答:孔径光阑是限制轴上物点成像光束立体角的光阔。
晴荡艾丽王辅前有字亩7茧事宝肯车夜夜古国的光册J。
4、常见非正常跟有哪两种?如何校正常见非正常1'常见正常目艮包括近视酬远视盹近视眼将工二(远附近点)矫正到无限远,远视眼,将一丘丛(远点就近点)矫正到明视距离。
3、光'于系统极限分辨角为多大?采取什么途径可以提岗极限分辨角?答:衍射决定的极限分辨角为0=3®。
可见其与波长和孔役有关。
订蔬小波长D和增大孔径可以提高光学系统的分辨率。
I什么是共和1)也学系统、元学系统物空间、像空间?答:光学系统以一条公共制线通过系统各表面的幽率中心,该轴线称为光轴,这样的系统称为共轴光学系统。
物体所在的空间称为物空间,像所在的空间称为像空间。
、如何确定光学系统的视场Jt阙?答:将系统中除孔径光阑以外的所有光阑对其前面所有的光学零件成像到物空间;这些像中,孔径对入暗中心张角最小的一个像所对应的光阑即为光学系统的视场光阙。
应用光学第四版课程设计
应用光学第四版课程设计1. 课程概述本课程是应用光学第四版的课后设计,旨在帮助学生深入理解应用光学的基本原理和实际应用。
本课程以问题为导向,通过探究光学现象和实验验证,加深对光学知识的理解。
2. 课程目标•熟练掌握应用光学的基本原理和实际应用;•能够理解并解决与应用光学相关的实际问题;•具有一定的实验设计,数据处理和报告撰写能力。
3. 教学内容1.高斯光学•高斯光束的概念及特性•几何光学和物理光学之间的转化•欧拉公式及应用•理想成像系统的特性2.相干光学•干涉和衍射现象•奇异分解定理•自相干和互相干性质•前向散射问题3.激光光学•激光的产生和放大原理•激光谱学的基本概念•激光的各种应用4.光学仪器•光学显微镜和电子显微镜•光谱仪和干涉仪•激光雷达和光学测距仪4. 实验设计本课程设置了两个实验项目,分别为:1.摩尔条纹的实验验证:通过一个简单的光路,让学生了解摩尔条纹的形成原理,并实际验证条纹模型的正确性。
2.激光测距实验:通过使用激光测距仪进行测距,让学生了解激光测距的基本原理,并深入了解仪器的构成和工作原理。
5. 考核方式本课程的考核方式将参考学生成绩的综合发展情况,采用以下方式:1.平时作业:根据学生上课的表现和平时完成资料、练习的情况,进行评估。
2.实验成绩:根据学生完成实验的情况和实验报告的质量,进行评估。
3.期末考试:考试内容涵盖本课程的所有知识点,以选择题、计算题和应用分析题为主。
6. 授课方式本课程将采用线上线下相结合的授课方式。
授课内容将在线上进行,实验将组织线下进行,并采取分散实验时间的方式,确保学生的安全。
7. 参考资料•应用光学(第四版)(美)A·E·西耶(Herbert A.Meyerhoff)著,梁积懋等译•应用光学实验指导书(第四版)郭志华著,吴稳强等译8. 总结本课程通过问题导向的方法,让学生深入理解应用光学的原理和应用,并通过实验验证增强了学生的实践能力。
应用光学课件完整版
一个物点,总是发出同心光束,与球面波相对应; 一个像点,理想情况应该由球面波对应的同心光束汇交 而成,称这种像点为完善像点。
3. 成完善象的条件 发光体每一物点发出球面波,通过光学系统后仍为
反射定律可表示为 I I ''
4. 光的折射定律
折射定律可归结为:入射光线、折射光线和投射点
的法线三者在同一平面内,入射角的正弦与折射角正弦
之比与入射角大小无关,而与两介质性质有关。对一定 波长的光线,在一定温度和压力的条件下,该比值为一
常数,等于折射光线所在介质的折射率与入射光线所在
介质折射率之比。
0 i arcsin n12 n2 2 n0
n0 =1
n0 sin i n1 cos ic n12 n22
5. 费马原理(光程极值原理)
1)光程— 光在介质中经过的几何路程l与该介质折射率n的乘积。
s=n • l
均匀介质
m层均匀介质
连续变化的非均匀介质
s=n • l=c • t
m
s
波面可分为:平面波、球面波、任意曲面波。 波面法线方向即为光传播方向。
光源
光线
波面
5. 光束— 与波面对应的法线集合。
同心光束— 波面为球面,聚于一点。 发散光束— 光线在前进方向上无相交趋势。 会聚光束— 光线在前进方向上有相交趋势。
平行光束— 波面为平面。 象散光束— 波面为曲面,不聚于一点。
1. 共轴球面系统的结构参量: 各球面半径:r1 、 r2 …… rk-1 、 rk 相邻球面顶点间隔:d1 、 d2 …… dk-1 各球面间介质折射率:n1 、 n2 …… nk-1 、 nk n 、 k+1
应用光学 教案
应用光学课程教案主页第1 次课应用光学课程教案主页第2 次课第二讲几何光学主要是以光线为基础、用几何的方法来研究光在介质中的传播规律及光学系统的成像特性。
内容:§1—1几何光学的基本定律具体讲述:一、光波与光线1、光波性质性质:光是一种电磁波,是横波。
可见光波,波长范围390nm—780nm光波分为两种:1)单色光波―指具有单一波长的光波;2)复色光波―由几种单色光波混合而成。
如:太阳光2、光波的传播速度ν1)与介质折射率n有关;2)与波长λ有关系。
n = c/vc为光在真空中的传播速度c=3×10m/s;n为介质折射率。
8例题1:已知对于某一波长λ而言,其在水中的介质折射率n=4/3,求该波长的光在水中的传播速度。
解:=3×108/4/3=2.25×10 m/s ncv/=83、光线:没有直径、没有体积却携有能量并具有方向性的几何线。
4、光束:同一光源发出的光线的集合。
会聚光束:所有光线实际交于一点(或其延长线交于一点)发散光束:从实际点发出。
(或其延长线通过一点)说明:会聚光束可在屏上接收到亮点,发散光束不可在屏上接收到亮点,但却可为人眼所观察。
5、波面(平面波、球面波、柱面波)平面波:由平行光形成。
平面波实际是球面波的特例,是∞→R时的球面波。
球面波:由点光源产生。
柱面波:由线光源产生。
二、几何光学的基本定律即直线传播定律、独立传播定律、折射定律、反射定律。
1、直线传播定律:在各向同性的均匀介质中,光沿直线传播(光线是直线)。
直线传播的例子是非常多的,如:日蚀,月蚀,影子等等。
2、独立传播定律:从不同光源发出的光束,以不同的方向通过空间某点时,彼此互不影响,各光束独立传播。
3、反射定律:反射光线和入射光线在同一平面、且分居法线两侧,入射角和反射大小相等,符号相反。
4、折射定律:入射光线、折射光线、通过投射点的法线三者位于同一平面,图1折反定律5、全反射:1)定义:从光密介质射入到光疏介质,并且当入射角大于某值时,在二种介质的分界面上光全部返回到原介质中的现象。
应用光学
第一章 几何光学的基本定律§ 1-1 发光点、波面、光线、光束 返回本章要点 发光点 ---- 本身发光或被照明的物点。
既无大小又无体积但能辐射能量的几何点。
对于光学系统来说, 把一个物体看成由许多物点组成,把这些物点都看成几何点 ( 发光点 ) 。
把不论多大的物体均看作许多 几何点组成。
研究每一个几何点的成像。
进而得到物体的成像规律。
当然这种点是不存在的,是简化了的概念。
一个实际的光源总有一定大小才能携带能量,但在计算时,一 个光源按其大小与作用距离相比很小便可认为是几何点。
今后如需回到光的本质的讨论将特别指出。
波面 --- 发光点在某一时刻发出的光形成波面 如果周围是各向同性均匀介质,将形成以发光点为中心的球面波或平面波 第二章 球面和球面系统§ 2-1 什么是球面系统?由球面组成的系统称为球面系统。
包括折射球面和反射球面反射面:n ' =-n.平面是半径为无穷大的球面,故讨论球面系统具有普遍意义折射系统折反系统§ 2-2 概念与符号规则•概念① 子午平面 —— 包含光轴的平面② 截距:物方截距 —— 物方光线与光轴的交点到顶点的距离像方截距 —— 像方光线与光轴的交点到顶点的距离③ 倾斜角:物方倾斜角 —— 物方光线与光轴的夹角像方倾斜角 —— 像方光线与光轴的夹角返回本章要点•符号规则返回本章要点因为分界面有左右、球面有凹凸、交点可能在光轴上或下,为使推导的公式具有普遍性,参量具有确切意 义,规定下列规则:a. 光线传播方向:从左向右b. 线段:沿轴线段 ( L,L',r ) 以顶点 O 为基准,左“ - ”右“ + ” 垂轴线段 ( h ) 以光轴为准,上“ + ”下“ - ” 间隔 d(O1O2) 以前一个面为基准,左“ - ”右“ + ” c. 角度:光轴与光线组成角度 ( U,U' ) 以光轴为起始边,以锐角方向转到光线,顺时针“ + ”逆时针“ - ”光线与法线组成角度 ( I,I' ) 以光线为起始边,以锐角方向转到法线,顺“ + ”逆“ - ”光轴与法线组成角度 ( φ ) 以光轴为起始边,以锐角方向转到法线,顺“ + ”逆“ - ”§ 2-3 折射球面返回本章要点•由折射球面的入射光线求出射光线已知: r, n, n',L, U 求: L', U',由 以上几个公式可得出 L' 是 U 的 函数这一结论, 不同 U 的光线经 折射后不能相交于一点点-》斑,不完善成像•近轴光线经折射球面折射并成像.1 .近轴光线:与光轴很靠近的光线,即 -U 很小 , sin(-U) ≈ -U ,此时用小写:sin(-U)= - usinI=iL=l 返回本章要点近轴光线所在的区域叫近轴区2 .对近轴光,已知入射光线求折射球面的出射光线:即由 l , u —> l ',u' , 以上公式组变为:当 u 改变时, l ' 不变!点 —— 》点,完善成像 此时 A , A' 互为物像,称共轭点近轴光所成像称为高斯像,仅考虑近轴光的光学叫高斯光学返回本章要点近轴光线经折射球面计算的其他形式(为计算方便,根据不同情况可使用不同公式)利用:可导出返回本章要点4 .(近轴区)折射球面的光焦度,焦点和焦距可见,当( n'-n )/r 一定时, l ' 仅与 l 有关。
应用光学课件
应用光学讲稿
§5-2 望远系统中成像光束的选择 一、双目望远镜
1、光学系统图 、 视放大率: 视放大率: Г=6 成像范围(视场角):2ω=8°30’ 成像范围(视场角):2 =8° ): 出瞳直径: 出瞳直径: 出瞳距离: 出瞳距离: 物镜焦距: 物镜焦距: 目镜焦距: 目镜焦距: D´=5mm l´z≥11mm f´物=108mm f´目=18mm
10 (1) tg ω = ,所以 240
(2)
1 ω = arctg 即为物方视角。 24
1 ω ′ = arctg 即为像方视角。 3
10 tg ω ′ = ,所以 30
(3)出瞳是孔径光阑在系统像空间所成的像,对目镜来说:
l = −240 mm − 30 mm = − 270 mm
应用光学讲稿
出瞳:是光能最集中的地方, 出瞳:是光能最集中的地方,为了看清整个视场 眼睛的瞳孔应该和出瞳重合。 ,眼睛的瞳孔应该和出瞳重合。 对出瞳距离必须有一定的要求,一般仪器大于6毫米, 对出瞳距离必须有一定的要求,一般仪器大于 毫米, 毫米 对于军用仪器,要大一些,可能大于20毫米 毫米。 对于军用仪器,要大一些,可能大于 毫米。 出瞳直径的大小,直接与像的亮暗有关 出瞳直径的大小, 问题:是否出瞳直径越大越好,出瞳距离越长越好? 问题:是否出瞳直径越大越好,出瞳距离越长越好?
应用光学讲稿
二 光阑概念 1、孔径光阑(Aperture Stop) 、孔径光阑( ) 光束口径的光阑 2、视场光阑(Field Stop) 、视场光阑( ) 限制成像范围的光阑 底片框 3、消杂光光阑(False 、消杂光光阑( Light Stop) )
应用光学教学课件完整
• 图1-9
※光学系统 的作用之一是对物体成像,因此必须搞 清物像的基本概念和它们的关系。
※物体通过光学系统(光组)成像,光学系统(各 种光学仪器)由一系列光学零件 组成。。
※光学系统一般是轴对称的,有一条公共轴线,
全反射现象
当
一般情况下,光线射至透明介质的分界面时将发 生反射和折射现象。
光 由
由公式 n sin I n' sin I ' 可知
光
密
sin I sin I '
介 质
射
即折射光线较入射光线偏离法线
向
光
疏
sin I ' 不可能大于1,此时入射光线将不能射入
另一介质。
按照反射定律在介面上全部被反射回原介质
原点
+
-
原点
※ 原点规定:
(1)曲率半径 r ,以球面顶点O为原点,球
心C在右为正,在左为负。
E
A
C
O +r
E
A
C
-r O
(2)物方截距L 和像方截距L’ 也以顶点O为原点,到光线
与光轴交点,向右为正,向左为负。
E
A
A’
O
C
-L
+L’
E
A
A’
O
C
-L’
-L
(3)球面间隔 d 以前一个球面的顶点为原点, 向右为正,向左为负。
(在折射系统中总为正,在反射和折反系统中才有为负的情况)
O1
O2
+d
O1
O2
《应用光学》课程教学大纲
应用光学Applied optics一、课程基本情况课程类别: 专业任选课课程学分: 3学分课程总学时: 48学时(讲课: 48学时)课程性质: 必修开课学期: 第7学期先修课程: 高等数学适用专业: 光电信息科学与工程, 物理学1教材: 《工程光学基础教程》, 机械工业出版社, 编者: 郁道银, 出版年份: 2007.4o 开课院系: 物理与光电工程学院光电工程系二、课程性质、课程的教学目标和任务2应用光学是光信息科学与技术专业的技术基础课。
它主要是要让学生学会解决几何光学、典型光学仪器原理、光度学、色度学、光纤光学系统、激光光学系统及红外光学系统等的基础理论和方法。
它包括了此类专业学生必备的光学知识, 为光学仪器、微光夜视、激光红外等学科奠定了理论基础和应用基础, 在培养光学和光电类人才中具有不可替代的地位。
本课程从光波、光线和成像等几何光学的概念出发讲述了光线在介质中传播的基本规律, 描述了近轴光学、理想光学系统和平面镜及棱镜的成像性质和规律, 讨论了常用光学仪器的工作原理、成像性能和分辨率。
通过本课程的学习, 学生应能对光学的基本概念、基本原理和典型系统有较为深刻的认识, 为学习光学设计、光信息理论和从事光学研究打下坚实的基础三、教学内容和要求3.章节名称几何光学基本定律与成像概念(8学时)(1)掌握: 几何光学基本定律: 光的直线传播定律、光的独立传播定律、反射定律和折射定律、光路的可逆性、费马原理(最短光程原理): 应用光学中的符号规那么, 单个折射球面的光线光路计算公式、单个折射面的成像公式, 包括垂轴放大率、轴向放大率、角放大率、拉赫不变量等公式。
(2)了解: 共轴球面系统公式、成像条件的概念和相关表述、球面反射镜成像公式;(3)理解: 马吕斯定律;重点:应用光学中的符号规那么, 单个折射球面的光线光路计算公式难点: 单个折射面的成像公式.章节名称理想光学系统(8学时)(1)掌握共轴理想光学系统的成像性质、无限远的轴上(外)物点的共帆像点及光线、无限远的轴上(外)像点的对应物点及光线的性质、物(像)方焦距的计算公式、物方主平面与像方主平面的性质, 光学系统的节点及性质、图解法求像的方法、解析法求像方法(牛顿公式、高斯公式)(2)了解理想光学系统的放大率概念及公式, 理想光学系统两焦距之间的关系, 理想光学系统的组合公式、多个光组组成的理想光学系统的成像公式;重点:物(像)方焦距的计算公式、物方主平面与像方主平面的性质, 光学系统的节点及性质、解析法求像方法难点: 图解法求像的方法.章节名称平面与平面系统(8学时)(1)掌握;折射棱镜的作用, 其最小偏向角公式及应用, 光楔的偏向角公式及其应用;(2)了解;反射棱镜的种类、基本用途、成像方向判别、棱镜色散、色散曲线、白光光谱的概念、常用的光学材料种类和特点;(3)理解;平面光学元件的种类和作用、平面镜的成像特点和性质, 平面镜的旋转特性, 光学杠杆原理和应用;重点: 平面镜系统中光线旋转和平移难点:其最小偏向角公式及应用, 光楔的偏向角公式及其应用.章节名称光学系统中的光束限制(6学时)(1)掌握: 孔径光阑、入瞳、出瞳、孔径角的定义及它们的关系、视场光阑、入窗、出窗、视场角的定义及它们的关系;(2)了解: 照相系统的基本结构、成像关系和光束限制、望远系统的基本结构、成像关系和光束限制、显微系统的基本结构、成像关系和光束限制, 物方远心光路原理;(3)理解光瞳衔接原那么及其作用、场镜的定义、作用和成像关系、景深、远景景深、近景景深的概念, 景深公式和影响因素;重点:孔径光阑位置求解难点: 视场光阑、入窗、出窗、视场角的定义及它们的关系.章节名称光度学和色度学基础(4学时)(2)(1)掌握:光度学中辐射量和光学量的定义、单位, 光度学基本量的定义和单位, 辐射量和光学量的关系;了解: 光传播过程中光学量的主要变化规律;4(3)理解: 颜色的基本概念、性质、定律和相关实验、CIE标准色度学系统简介;重点: 光度学基本量定义难点: 光度学中辐射量计算5.章节名称光线的光路计算及像差理论(7学时)(1)掌握: 像差的定义、种类和消像差的基本原那么;(2)了解: 7种几何像差的定义、影响因素、性质和消像差方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当眼睛在无调节的自然放松状态下,f =- 16.67mm,由奈奎斯特极限确定的y’min=0.004mm
min
0.004 206265" 49" 16.67
当入瞳直径为D时,理想光学系统的极限分辨角为
min 1.22 D
对中心波长555nm的光线得到眼睛的衍射极限分辨角为
影响人眼像差 的主要因素
瞳孔大小 的影响
泪膜的影响
物距的影响
快速调节 的影响
§14.7人眼波前像差测量方法
14.7.1
基于Scheiner原理的光线追迹方法
原理:由两条光线入射到角 膜上,中心光线平行于眼的 光轴,外围光线的入射角度 可以调节,以补偿眼睛的像 差。调节外围光线的入射角, 使得它和中心光线在视网膜 上重合,此时被测客体得到 一个清晰的光点。根据外围 光线相对于光轴的角度倾斜 量就可以计算出改点的波前 像差值了。
应用光学
第十四章 眼睛
姓名:徐超 学号:20145208003
§14.5 眼睛的视角分辨率 §14.6 眼睛像差的表述
§14.7 人眼波前像差测量方法
§14.5 眼睛的视角分辨率
1· 人眼的分辨率是眼睛的重要光学特性,同 时也是目视光学仪器设计的重要依据之一。 2· 用其它观测设备(如照相机、CCD等) 替 代人眼时也可据此作为参考。
Hale Waihona Puke 优点:采样点多、测量速度快和客观性的特点,是现在应用较为广泛的方 法。
其中波前像差Zernike 多项式系数由下列公式推出:
式中,W( x,y)表示实际的人眼波前像差;Δ x , Δ y 表示实际波前和理想波前在位置传感器上的位置 偏移量,是微透镜的焦距。
14.7.4角膜波前像差的计算
图中实线表示角膜表面,虚线 表示是参考球面,其曲率半径R 由仪器给出。对于每一个xoy平 面上的点,仪器给出的数据是 与该点对应的相对高度K值,即 沿着半径方向的实际角膜表面 与参考球面的差值。据图,角 膜表面沿z方向的相对高度值可 由下面的公式求出:
1 ·所谓人眼的分辨能力指的是成像在中央凹区时的分 辨能力。
频率
2 ·眼睛能分辨出两个非常近的点的能力称为 眼睛的分 辨率(分辨本领) 3 ·眼睛的分辨率由视神经细胞的尺寸决定的奈奎斯特 极限、光瞳直径决定的衍射极限和眼睛光学系统的像差 三者决定 4 ·奈奎斯特极限是一个图像传感器能够分辨的 最高空间频率等于它的空间采样频率的一半,此 频率称为奈奎斯特极限频率
瞄准精度和分辨率是两个概念,又有一定的联系,
经验证明,人眼的最高瞄准精度约为分辨率的1/5至 1/10
§14.6 眼睛像差的表述
18世纪中期,人们就发现在眼睛光学系统中存在单色
像差。 人眼系统的单色像差主要来源:
1·角膜和晶状体表面不理想,表面曲率存在局部偏差 2·角膜和晶状体及玻璃体不同轴 3·角膜和晶状体及玻璃体的内含物不均匀,导致折射率 局部偏差。
1.22 0.00055 140 206265 D D
可以看出,极限分辨角不仅与入射光线的波长有关,而 且还与眼睛的瞳孔直径有关。
在白天,当瞳孔直径为2mm时,眼睛的衍射极限分辨角约
为70” 眼睛光学系统的衍射极限决定的分辨角要大于奈奎斯特 极限分辨角 随着眼瞳直径的增大,眼睛的像差也增大,此时眼睛的 像差决定了视角分辨,分辨角反而增大。 ε = 50~120”; 在良好的照明条件下,一般认为 ε = 60” = 1’
14.7.2基于Tscherning原理的网格视网膜成像方法
原理:激光束经扩束准直后照明 一个13*13的光点掩盖模板,遮蔽 中心点,从而产生整齐排列的168 个光点阵列,经过一定的光学系 统并经过眼光学系统后在视网膜 上成像。当眼光学系统存在像差 时,光点阵列在视网膜上的像将 发生扭曲。通过一个同轴相机记 录下此扭曲的光点阵列,并和无 像差时的光点阵列比较,通过位 置偏差计算可求得眼波像差。
14.7.3 基于Hartmann-Shack(H-S)原理的波前传感 方法
原理:当来自眼底的波前 通过分光镜和理想的参考 波前一起穿过阵列透镜, 在位置传感器上聚焦, 理 想的波前所呈的应该是标 准规则的点阵图,而来自眼 球的实际波前的聚焦点和 标准的聚焦点存在一点的 位置偏移, 通过分析实际 光斑的质心偏移量计算实 际波前的斜率, 从而重建 波前的表面形态。
认为人眼的极限分辨角为1´。
在设计光学系统时就必须考虑眼睛的分辨率。
眼睛虽具有发现一个平面上两根平行直线的不重合
能力,但也有一定的限度,这个不重合限度的极限 值称为人眼的瞄准精度 人眼的瞄准精度一般用角度值来表示,即两线宽的 几何中心线对人眼的张角小于某一角度值α 时,虽 然还存在着不重合,但眼睛已经认为是完全重合的, 这时α 角度值即为人眼瞄准精度。
把眼的光学系统近似为对称光学系统,对于特定的视场当
用幂级数对眼波前像差进行展开。
由上一章13.20(a)
可表示为
角标m和n分别表示r和cosθ 的级次
Zernike多项式
n是大于零的整数,表示级数;m的取值为-n,-n+2,….,0,….,n。 具体形式为:
实际应用中,最常用前35项Zernike多项式,见书P376。
1·人眼的分辨率一般用极限分辨角来表示。 2·眼睛在看物空间两点时,这两点对眼睛物方节点的 张角成为两点间的角距离或称为视角 3·人眼刚能将两点分开的视角称为眼睛的极限分辨角 4·人眼分辨率与极限分辨角成反比关系
眼睛的视角
物体在网膜上所成象的大小决定 于物体对人眼的张角,称之为视角。
y y tg l l e'