桥梁桩基础设计计算部分要点
桩基础工程量计算
桩基础工程量计算桩基础工程量计算是指根据设计要求和施工方案,对桩基础施工所需要的材料和工作量进行计算和估算的过程。
桩基础通常用于建筑物、桥梁、堤坝等工程的基础中,承受荷载并将荷载传递到地下的深层土体中。
以下是桩基础工程量计算的一般步骤和相关内容。
第一步:确定设计要求在进行桩基础工程量计算之前,首先需要确定设计要求,包括桩的类型、直径或截面尺寸、桩长、桩身和桩头的材料等。
这些设计要求将直接影响桩基础的工程量计算结果。
第二步:桩体积计算根据桩的类型和尺寸,计算桩的体积。
比如,对于圆柱形桩,可以通过计算桩的底面积和桩长来得到桩的体积。
对于其他形状的桩,可以使用相应的公式或几何方程进行计算。
第三步:桩身材料计算桩身材料的计算包括桩的钢筋和混凝土的计算。
根据桩的设计要求和施工方案,计算桩身钢筋的总长度和数量。
同时,根据桩的尺寸和设计强度要求,计算混凝土的用量。
第四步:桩头材料计算桩头材料的计算包括桩头的钢筋和混凝土的计算。
根据设计要求和施工方案,计算桩头钢筋的总长度和数量。
同时,根据桩头的尺寸和设计强度要求,计算混凝土的用量。
辅助工程量计算包括桩基础施工所需的其他材料和工作量的计算。
这些材料和工作量可能包括桩机的使用时间、土方量和回填材料的用量等。
第六步:计算总工程量和成本估算将以上各项工程量计算结果相加,得到桩基础施工的总工程量。
根据工程量计算结果和相关材料的价格,估算桩基础施工的成本。
以上是桩基础工程量计算的一般步骤和相关内容。
在实际工程中,还需要根据具体情况进行调整和细化。
同时,使用计算软件和工程测量仪器可以提高计算的准确性和效率。
桩基础的设计计算 m值法
桩基础的设计计算1.本章的核心及分析方法本节将介绍考虑桩与桩侧土共同抵抗外荷载作用时桩身的内力计算,从而解决桩的强度问题。
重点是桩受横轴向力时的内力计算问题。
桩在横轴向荷载作用下桩身的内力和位移计算,国内外学者提出了许多方法。
目前较为普遍的是桩侧土采用文克尔假定,通过求解挠曲微分方程,再结合力的平衡条件,求出桩各部位的内力和位移,该方法称为弹性地基梁法。
以文克尔假定为基础的弹性地基梁法从土力学观点看是不够严密的,但其基本概念明确,方法简单,所得结果一般较安全,在国内外工程界得到广泛应用。
我国公路、铁路在桩基础的设计中常用的"m"法、就属此种方法,本节将主要介绍"m"法。
2.学习要求本章应掌握桩单桩按桩身材料强度确定桩的承载力的方法," "法计算单桩内力的各种计算参数的使用方法,多排桩的主要计算参数及其各自的含义。
掌握承台计算方法,群桩设计的要点及注意事项,了解桩基设计的一般程序及步骤。
本专科生均应能独立完成单排桩和多排桩的课程设计。
第一节单排桩基桩内力和位移计算一、基本概念(一)土的弹性抗力及其分布规律1.土抗力的概念及定义式(1)概念桩基础在荷载(包括轴向荷载、横轴向荷载和力矩)作用下产生位移及转角,使桩挤压桩侧土体,桩侧土必然对桩产生一横向土抗力,它起抵抗外力和稳定桩基础的作用。
土的这种作用力称为土的弹性抗力。
(2)定义式(4-1)式中:--横向土抗力,kN/m2;--地基系数,kN/m3;--深度Z处桩的横向位移,m。
2.影响土抗力的因素(1)土体性质(2)桩身刚度(3)桩的入土深度(4)桩的截面形状(5)桩距及荷载等因素3.地基系数的概念及确定方法(1)概念地基系数C表示单位面积土在弹性限度内产生单位变形时所需施加的力,单位为kN/m3或MN/m3。
(2)确定方法地基系数大小与地基土的类别、物理力学性质有关。
地基系数C值是通过对试桩在不同类别土质及不同深度进行实测及后反算得到。
桥梁桩基础计算书
桥梁桩基础课程设计桥梁桩基础课程设计一、恒载计算(每根桩反力计算)1、上部结构横载反力N1 N1=12⨯2350=1175kN 2、盖梁自重反力N2 N2=12⨯350=175kN 3、系梁自重反力N312⨯25 ⨯3.5 ⨯0.8 ⨯1=35kN 4、一根墩柱自重反力N4KN N 94.222)1025(5.01.5255.0)1.54.13(224=-⨯⨯⨯+⨯⨯⨯-=ππ(低水位)KN N 47.195255.08.4155.06.8224=⨯⨯⨯+⨯⨯⨯=ππ (常水位)5、桩每延米重N5(考虑浮力) m KN N /96.16152.1425=⨯⨯=π二、活载反力计算1、活载纵向布置时支座最大反力⑴、公路二级:7.875/k q kN m = 193.2k P kN =Ⅰ、单孔布载 55.57822.1932875.74.24=⨯+⨯=)(R Ⅲ、双孔布载 24.427.875(193.2)2766.3082R kN ⨯⨯=+⨯=(2)、人群荷载Ⅰ、单孔布载 113.524.442.72R kN =⨯⨯=1、计算墩柱顶最大垂直反力R 组合Ⅰ:R= 恒载 +(1+u )汽ϕ∑iiyP +人ϕql= 1175+175+(1+0.2)⨯1.245⨯766.308+1.33⨯85.4 =2608.45kN (汽车、人群双孔布载)2、计算桩顶最大弯矩⑴、计算桩顶最大弯矩时柱顶竖向力 R= 1N +2N +(1+u )汽ϕ∑i i y P + 人ϕql 21 = 1175+175+1.2⨯1.245⨯578.55+1.33⨯42.7= 2271.14kN (汽车、人群单孔布载)⑵、计算桩顶(最大冲刷线处)的竖向力0N 、水平力0Q 和弯矩0M0N = max R +3N + 4N (常水位)= 2608.45+35+195.47=2838.92 kN0Q = 1H + 1W + 2W= 22.5+8+10=40.5 kN0M = 14.71H + 14.051W + 11.252W + 0.3活max R= 14.7⨯22.5+14.05⨯8+11.25⨯10+0.3⨯(2608.45-1175-175) = 933.185kN.m活max R ——组合Ⅰ中活载产生的竖向力。
桩基础支护的设计计算方法分析和案例
(四)刚性桩与弹性桩
弹性桩:当桩的入土深度h
5
2 .5
必须考虑桩的实际刚度,按弹性桩来计算。其中 称为桩—
土变形系数,
mb 1 EI
时,桩的相对刚度小,
(详见后述)。一般情况下,桥梁桩基
2 .5
础的桩多属弹性桩。 刚性桩:当桩的入土h
深度时,则桩的相对刚度较
大,可按刚性桩计算
二、“m”法弹性单排桩基桩内力和位移计算
如前所述,“m”法的基本假定是认为桩侧土为文克尔 离散线性弹簧,不考虑桩土之间的粘着力和摩阻力,桩作 为弹性构件考虑,当桩受到水平外力作用后,桩土协调变 形,任一深度Z处所产生的桩侧土水平抗力与该点水平位移 xz成正比,即zx=Cxz,且地基系数C随深度成线性增长, 即C=mz。 基于这一基本假定,进行桩的内力与位移的理论公式 推导和计算。 在公式推导和计算中,取下图1和图2所示的坐标系统, 对力和位移的符号作如下规定:横向位移顺x轴正方向为 正值;转角逆时针方向为正值;弯矩当左侧纤维受拉时为 正值;横向力顺x轴方向为正值,如下图2所示。
EI d x
4
q
dZ
式中:E、I——梁的弹性模量及截面惯矩。
因此可以得到图1所示桩的挠曲微分方程为
EI d xz dZ
4 4
q
zx
b 1 mZx
z
b1
上式中:E、I——桩的弹性模量及截面惯矩 zx——桩侧土抗力zx=Cxz=mZxz,C为地基系数; b1——桩的计算宽度; xz——桩在深度z处的横向位移(即桩的挠度)。 将上式整理可得: 或
X
z
x 0 A1
0
B1
桥梁桩基础设计计算部分要点
一方案比选优化公路桥涵结构设计应当考虑到结构上可能出现的多种作用,例如桥涵结构构件上除构件永久作用(如自重等)外,可能同时出现汽车荷载、人群荷载等可变作用。
《公路桥规》要求这时应该按承载力极限状态和正常使用极限状态,结合相应的设计状况进行作用效应组合,并取其最不利组合进行计算。
1、按承载能力极限状态设计时,可采用以下两种作用效应组合。
(1)基本作用效应组合。
基本组合是承载能力极限状态设计时,永久作用标准值效应与可变作用标准值效应的组合,基本组合表达式为(1-1)或(1-2)γ-桥梁结构的重要性系数,按结构设计安全等级采用,对于公路桥梁,安全等级0一级、二级、三级,分别为1.1、1.0和0.9;γGi-第i个永久荷载作用效应的分项系数。
分项系数是指为保证所设计的结构具有结构的可靠度而在设计表达式中采用的系数,分为作用分项系数和抗力分项系数两类。
当永久作用效应(结构重力和预应力作用)对结构承载力不利时,γGi=1.2;对结构的承载能力有利时,γGi=10;其他永久作用效应的分项系数详见《公路桥规》;γQ1-汽车荷载效应(含汽车冲击力、离心力)的分项系数,取γQ1=1.4;当某个可变作用在效用组合中,其值超过汽车荷载效用时,则该作用取代汽车荷载,其分项系数应采用汽车荷载的分项系数;对专门为承受某种作用而设置的结构或装置,设计时该作用的分项系数取与汽车荷载同值;计算人行道板和人行道栏杆的局部荷载时,其分项系数也与汽车荷载取同值。
γQj-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)、风荷载以外的其他第j个可变作用效应的分项系数,取γQ1=1.4,但风荷载的分项系数取γQ1=1.1;S gik、S gid-第i个永久作用效应的标准值和设计值;S Qjk-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)外的其他第j个可变作用效应的标准值;S ud-承载能力极限状态下,作用基本组合的效应组合设计值,作用效应设计值等于作用效应标准值S d与作用分项系数的乘积。
土木工程知识点-桥梁工程量计算需要注意哪些要点?
土木工程知识点-桥梁工程量计算需要注意哪些要点?随着社会的发展,环境保护要求及施工技术水平的提高,公路工程项目中桥梁工程比重亦在逐渐增大。
桥梁工程一般比路基、路面工程复杂,项目较多,计算工作难度也大。
桥梁工程的计算要点(1)开挖基坑。
桥梁工程中围堰、筑岛根据实际情况详细计算出数量。
基坑的开挖工作应按土方、石方、深度、干处或湿处等不同情况分别统计,基础工程有砌石、混凝土、沉井打桩和灌注桩等多种结构形式。
基础砌石和混凝土圬工,为天然地基上的基础。
砌石基础应按片石、块石分别进行统计,若设计图表上只有砌体总数时,考虑基础外缘和分层砌筑等因素,可分别按80%的片石、20%块石计算。
(2)钻孔的土质划分为八种,并按不同桩径和钻孔的深度划分为多项定额标准,应按地质钻探资料,以照定额土质种类的规定,分别确定其钻孔的工程量。
因钻孔的计量单位是以米计,其钻孔深度,应以地表与设计桩底的深度为准;当在水中采用围堰筑岛填心施工时,就以围堰的顶面与设计桩底的深度为准。
(3)桥梁下部构造工程,有砌石、现浇混凝土和预制安装混凝土构件等不同结构形式。
墩台的计价工程量为墩台身及翼墙、墩台帽、拱、盖梁及耳背墙、桥台的锥形护坡以座计。
台背及锥坡内的填土夯实综合在定额内,不需要另计。
桥台上路面归入路面工程内计算。
(4)桥梁的上部构造工程,划分为行车道系、桥面铺装和人行道系三个部分,有砌石、现浇混凝土、预制安装混凝土构件、钢桁架和钢索吊桥等不同结构形式。
行车道系和桥面铺装都是以m3为计量单位,人行道系则以桥长米作为计量单位。
在计算工程量时,应按行车道系、桥面铺装和人行道系的顺序分别计算工程量以免重复和遗漏。
(5)涵洞工程在概算中通常以洞身、洞口和体积计时,而在预算中要根据施工步骤进行计量,因考虑涵洞所处的地质类型,如软土地基,湿陷性黄土,多年冻土等特殊地质,要进行特殊地基处理。
(6)钢筋工程。
编制概算时,涵洞工程已将钢筋工程的工料消耗综合在定额中,其余的钢筋工程都以混凝土分开计量,单位是T。
桩基设计要点(桥梁工程桩基范围)
当L<0.5时,该层不计算
摩擦桩:【P】=0.5(A*σR+∑ULгp)
当гp <=50kPa时,该层不计算
σR=2m0λ{[σ0]+k2γ2(h-3)}中的有关参数应咨询勘察人员
计算书需将各岩土名称、厚度、参数列明,以便校对 淤泥层(非淤泥质土)较厚时,需考虑负摩阻力 按h<=40米计算
施工配合
设计一所
2020/4/13
桩基设计要点--桩基计算书
一、计算桩基荷载(桩基出图前必须分类计算)
上部结构各种恒载、活载反力计算结果
正确利用上部结构反力: 中墩反力,可直接使用; 边墩反力,注意避免活载的重复计算
双桩时应考虑活载偏载、水平荷载产生的轴力
单桩时应考虑活载偏载、水平荷载产生的弯矩
设计一所
2020/4/13
桩基设计要点--设计图纸
桩基平面布置图 桩基大样设计图 钻孔平面布置图 地质纵剖面及桩底标高设计图
设计一所
2020/4/13
桩基设计要点--桩基平面布置图
反映以下内容
每柱(或桥台)下的桩基位置,应以与桥梁里程线距离、桩中心坐标确定。 每一桩基的编号(可用编号图例、文字、方向顺序表示)。 每一桩基的直径(不得仅用图例表示)。 说明桩基机械施工前必须进行人工探孔3米,确认无地下管线,方可施工。 同一联预应力梁、钢梁、同一承台、桥台必须进行人工探孔后,方可进行开钻。 说明如发现管线,应将其管线情况(性质、管径、管材、走向、埋深等)以书面资
桩基设计要点 (桥梁所
桩基设计要点 (桥梁工程桩基范围)
设计工作程序 设计注意事项 设计图纸
◇ 提出地质勘察技术要求 ◇ 桩基计算书 ◇ 桩基设计图 ◇ 施工配合
桩基础设计计算
第四章桩基础的设计和计算桩基础具有承载力高、稳定性好、沉降变形小、抗震能力强,以及能适应各种复杂地质条件的显著优点,是桥梁工程的常用基础结构。
在受到上部结构传来的荷载作用时,桩基础通过承台将其分配给各桩,再由桩传递给周围的岩土层。
当为低承台桩基础时,承台同时也将部分荷载传递给承台周边的土体。
由于桩基础的埋置深度更大,与岩土层的接触界面和相互作用关系更为复杂,所以桩基础的设计计算远比浅基础繁琐和困难。
本章主要依据《铁路桥涵地基和基础设计规范》TB 10002.5-2005(以下简称《铁路桥涵地基规范》)的相关规定介绍铁路桥涵桩基础的设计与计算。
第一节桩基础的设计原则设计桩基础时,应先根据荷载、地质及水文等条件,初步拟定承台的位置和尺寸、桩的类型、直径、长度、桩数以及桩的排列形式等,然后经过反复试算和比较将其确定下来。
在上述设计过程中,设计者必须注意遵守相关设计规范的基本原则和具体规定,因此,在讨论设计计算方法之前,先将桩基础的设计原则介绍如下。
一、承台座板底面高程的确定低承台桩基和高承台桩基在计算原理及方法上没有根本的不同,但将影响到施工难易程度和桩的受力大小,故在拟定承台座板底面高程时,应根据荷载的大小、施工条件及河流的地质、水文、通航、流冰等情况加以决定。
一般对于常年有水且水位较高,施工时不易排水或河床冲刷深度较大的河流,为方便施工,多采用高承台桩基。
若河流不通航无流冰时,甚至可以把承台座板底面设置在施工水位之上,使施工更加方便。
但若河流航运繁忙或有流冰时,应将承台座板适当放低或在承台四周安设伸至通航或流冰水位以下一定深度的钢筋混凝土围板,以避免船只、排筏或流冰直接撞击桩身。
对于有强烈流冰的河流,则应将承台底面置于最低流冰层底面以下且不少于0.25m处。
低承台桩基的稳定性较好,但水中施工难度较大,故多用于季节性河流或冲刷深度较小的河流。
若承台位于冻胀性土中时,承台座板底面应置于冻结线以下不少于0.25m处。
桥梁桩基础计算
桩长计算一、计算参数根据XXX桥《岩土工程勘察报告》取如下参数:(1)桩长埋入黄土地基容许承载力[б0]黄土:[б0]=164KPa(2)钻孔桩桩周的摩阻力标准值τi黄土:τi =80KPa桩长验算例:1号桥墩二、上部和下部荷载(1)上部荷载支点最大反力:中梁:949 kN;边梁:893 kN每个桥墩上部荷载为2*949+2*893=3684kN(2)单个桥墩下部结构自重盖梁N1=26*22.1=574.6kN墩柱N2=26*2*16.78*3.1416*0.75*0.75=1541.9kN系梁N3=26*7.49=194.7kN承台N3=26*88.2=2293.2kN桩基N5=26*4*L*3.1416*0.75*0.75=183.8LkN 桩基取自重的一半计算91.9LkN每个桩基承受的荷载为1/4* 51N N+3684/4=1/4*(574.6+1541.9+194.7+2293.2+91.9L)+3684/4= 1151.1+23L+921=2072.1+23L(kN)二、桩基轴向受压承载力容许值[Ra]按照《公路桥涵地基与基础设计规范》 JTG D63-2007中5.3.3条 摩擦桩单桩轴向受压承载力容许值:[][][])3(21a 22001-+=+=∑=h k f m q q A l q u R a r n i r p i ik γλ 其中r q =0.7*0.7*(164+1.5*18*(L-3)=13.23L+40.67则单桩轴向受压承载力容许值[Ra]=1/2*4.71*(80*L )+3.1416*0.75*0.75*(13.23L+40.67)=211.8L+71.9三、结论当N<[Ra],桩长满足设计要求。
即2072.1+23L <211.8L+71.9L>10.6桩顶至冲刷线5m根据甘肃地区地震区带划分,本桥址地处青藏北部地震区南北地震带兰州—通渭地震亚带,桥址地震动峰值加速度为0.2g ,为8度区,加之桥址处为饱和黄土地质,地质情况较差,建议采用钻孔灌注桩群桩基础,桩径1.5m,桩长30m 。
桥梁施工与桩基计算
Qiaoliang Gongcheng Shigong Zuzhi Yu Zhuangji Jisuan桥梁工程施工组织与桩基计算第一篇桥梁工程施工组织第一章桥梁工程施工的一般方法第一节桥梁桩基施工桥梁基础根据地质条件与地理条件的不同,一般采用台式基础与桩式基础,对多跨桥梁及地质条件复杂的桥梁多采用桩式基础。
以下着重说明桥梁桩基的施工。
根据桩基的施工方法不同,桩基一般分为预制桩、灌注桩和管柱基础三类。
预制桩是将各种预先制好的桩以不同的沉桩方式沉入地基内达到所需要的深度;灌注桩是在现场地基中采用钻、挖孔机械或人工成孔,然后浇注钢筋混凝土或混凝土而成的桩;管柱基础是将预制的大直径钢筋混凝土或预应力混凝土或钢管柱用大型的振动桩锤沿导向结构振动下沉到基岩,然后在管内钻岩成孔,下放钢筋笼骨架,灌注混凝土,将管桩柱嵌固于岩层。
由于灌注桩桩径大,承载力高,用钢筋量小,成本低,并在施工过程中可避免挤土及噪声等对周围环境的影响,在桥梁基础施工中较广泛采用,所以下面主要介绍灌注桩的施工方法。
灌注桩根据成孔方式不同分为人工挖孔、机械钻、挖孔等。
一、人工挖孔施工对雨水较少且土层与岩层较密实地区的桩基,适宜用人工挖孔灌注桩。
①挖掘:为防止矿石杂物滚落伤人,在挖孔桩孔中一般设一高出地面300mm的围护。
并设通风设备以满足孔内供氧量。
挖掘工作可单、双班作业,在粘土层采用锄头或钢铲挖掘,铁绞车提升;当到达岩石层时采用风镐松动或用风钻钻孔再浅眼爆破松动,炮眼深度:硬岩层一般不超过0.4m,软岩层不超过0.8m。
并严格控制用药量,装药深度不得超过炮眼深度的三分之一,其引爆采用电雷管。
爆除的石渣用铁绞车提出孔外。
提升出的土渣、石渣待基桩挖掘将完时一次性用汽车外运至指定的弃土场。
若挖掘时出现地下水及时汇报监理工程师。
②护壁:护壁工作每1米进行一次,以防止坍孔,护壁在松土层可采用240mm红砖砌筑,在岩石层一般采用上150mm至100mm厚的现浇混凝土护壁。
简述桩基础设计步骤
简述桩基础设计步骤一、概述桩基础是一种常见的基础形式,广泛应用于建筑物、桥梁、码头等工程中。
桩基础设计的目的是确保结构物的安全、稳定和经济。
本文将从桩基础设计步骤的角度出发,对桩基础设计进行详细阐述。
二、地质勘探地质勘探是桩基础设计的第一步。
通过地质勘探可以了解地下情况,包括土层厚度、土层性质、地下水位等信息。
在实际工程中,常用的地质勘探方法有钻孔取样、试坑观测等。
三、荷载计算荷载计算是桩基础设计的核心环节。
荷载计算需要考虑到结构物自身重量和外部荷载,并根据不同荷载情况进行不同的计算方法。
常见的荷载计算方法有极限状态设计法和现状状态设计法。
四、桩型选择根据荷载计算结果,需要选择合适的桩型。
常见的桩型有钢筋混凝土灌注桩、钢管灌注桩等。
选择合适的桩型需要考虑到多个因素,如荷载大小、桩长、施工条件等。
五、桩长确定桩长的确定需要考虑到土层的稳定性和承载力。
在实际工程中,常用的方法有静载试验法、动力触探法等。
六、桩身直径确定桩身直径的确定需要根据荷载计算结果和土层情况进行综合考虑。
一般情况下,桩身直径取荷载计算结果与土层情况两者之间的较小值。
七、钢筋配筋设计钢筋混凝土灌注桩需要进行钢筋配筋设计。
钢筋配筋设计需要考虑到多个因素,如荷载大小、混凝土强度等。
八、施工方案设计根据以上设计结果,制定详细的施工方案。
在施工方案中需要考虑到多个因素,如施工设备选择、现场环境条件等。
九、总结以上是桩基础设计步骤的详细阐述。
在实际工程中,还需要根据具体情况进行适当调整和改进。
只有通过科学合理的设计和精细规范的施工才能确保结构物安全可靠。
桥梁桩基础的分类及承载力计算
xz
Q0 a3EI
Ax
M0 a 2 EI
Bx
z
Q0 a 2 EI
A
M0 a EI
B
Mz
Q0 a
Am
M 0 Bm
(3-1) (3-2) (3-3)
Qz Q0 AQ aM0BQ
(3-4)
2.对于 ah 2.5 的 嵌岩桩:
xz
Q0 a3EI
Ax0
M0 a 2 EI
B
0 x
• 作用:1)固定桩位,做钻孔导向;
•
2)保护孔口,防止坍塌;
•
3)隔离地面水,保持水头差。
• 埋护筒要求: • 1)平面位置应埋设正确; • 2)筒顶标高应高出地下水位和施工最高水位
1.5~2.0m。 • 3)筒底应低于施工最低水位0.1`0.3m • 4) 护筒四周应夯填密实的粘土,埋在稳定土层中。 • 3.制备泥浆: • 作用: • 1)产生较大的悬浮液压力,防止塌孔; • 2)在孔壁表面形成胶泥层,有护壁作用; • 3)泥浆比重大,具有浮渣作用,利于钻渣的排出。
•
b1=Kf·K0·K·b(或d)
b(或d)—与外力H作用方向相垂直平面上
桩的宽度(或直径);
Kf——形状换算系数。(可查表)。 K0——受力换算系数。 K——桩间相互影响系数。
4.刚性桩与弹性桩 刚性桩:桩的入土深度
系数, a 5 m b1
h 2.5 a
a ; 其中, 为变形
EI
弹性桩:桩的入土深度 h
• 6)长期荷载作用下,桩身总摩阻会减小, 而桩端总阻力增加。
• 7)相同土层中,长桩发挥的摩阻力大于 短桩。
二、轴向荷载下桩的破坏模式
桩基础工程计算规则
桩基础工程计算规则桩基础工程计算规则主要涉及到桩基础的设计和计算方法。
在桥梁、大型建筑物等工程中,桩基础是一种常用的基础形式,它通过承担恒载和变载的作用,将上部结构的荷载传递到地下的稳定土层或岩石中,以保证工程的稳定与安全。
下面将介绍桩基础工程计算规则的主要内容。
1.桩的类型和选择在进行桩基础设计时,需要根据工程的具体情况选择合适的桩类型。
常见的桩类型包括钻孔灌注桩、灌注桩、摩擦桩、扩底桩等。
选择桩类型时需要考虑土层的性质、荷载特点、建筑物的结构形式等因素。
2.桩的承载力计算桩的承载力是指桩能够承受的荷载大小。
在计算桩的承载力时,可以采用静力法、动力法和现场试验法。
常用的计算方法有挖方法、桥梁挠度法、侧壁法等。
需要考虑桩的长细比、桩身土壤摩擦力、桩端阻力等因素。
3.桩的沉降计算桩基础在承受荷载作用时,会产生一定的沉降变形。
在进行桩基础设计时,需要对桩的沉降进行计算。
常用的计算方法有弹性沉降法、弹塑性沉降法和有限元分析法。
需要考虑桩的刚度、土体的力学特性、荷载的大小等因素。
4.桩的稳定性计算桩基础在承受侧向荷载作用时,需要保持稳定。
因此需要进行桩的稳定性计算。
常用的计算方法有弯矩反扭矩法、修正弯矩法和弯矩面法。
需要考虑桩的几何形状、土的力学性质、侧阻力的大小等因素。
5.钢筋混凝土桩的设计钢筋混凝土桩是一种常见的桩类型,在设计时需要考虑桩身的截面形状和尺寸,桩端的处理方式以及钢筋的布置等。
桩身的设计可以根据承载力或变形要求进行,桩端可以采用扩底、加固筒等方式进行处理。
总结而言,桩基础工程计算规则是根据土体特性、荷载情况等因素,通过选择合适的桩类型,利用各种计算方法进行桩的承载力、沉降和稳定性等方面的计算,以确保桩的设计满足工程要求。
这些规则是工程设计师进行桩基础设计时的重要参考,能够有效保证工程的安全和稳定。
桥梁桩基础设计计算
第一章桩基础设计一、设计资料 1、地址及水文河床土质:从地面(河床)至标高32.5m 为软塑粘土,以下为密实粗砂,深度达30m ;河床标高为40.5m ,一般冲刷线标高为38.5m ,最大冲刷线为35.2m ,常水位42.5m 。
2、土质指标表一、土质指标3、桩、承台尺寸与材料承台尺寸:7.0m ×4.5m ×2.0m 。
拟定采用四根桩,设计直径 1.0m 。
桩身混凝土用20号,其受压弹性模量h E =×104MPa 4、荷载情况上部为等跨25m 的预应力梁桥,混凝土桥墩,承台顶面上纵桥向荷载为:恒载及一孔活载时:5659.4NKN =∑、298.8HKN =∑、3847.7MKN m =∑g恒载及二孔活载时:6498.2NKN =∑。
桩(直径1.0m )自重每延米为:21.01511.78/4q KN m π⨯=⨯=故,作用在承台底面中心的荷载力为:5659.4(7.0 4.5 2.025)7234.4298.83847.7298.8 2.04445.3N KN H KN M KN=+⨯⨯⨯===+⨯=∑∑∑ 恒载及二孔活载时:6498.2(7.0 4.5 2.025)8073.4N KN =+⨯⨯⨯=∑桩基础采用冲抓锥钻孔灌注桩基础,为摩擦桩 二、单桩容许承载力的确定根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度,设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度为3h ,则:002221[]{[](3)}2h i i N p U l m A k h τλσγ==++-∑当两跨活载时:8073.213.311.7811.7842h N h =+⨯+⨯计算[P]时取以下数据:桩的设计桩径1.0m ,冲抓锥成孔直径为1.15m ,桩周长22202021211.15 3.6,0.485,0.740.9, 6.0,[]550,12/40,120,a a a u m A m m K Kp KN m Kp Kp ππλσγττ⨯=⨯==========1[] 3.16[2.740( 2.7)120]0.700.90.7852[550 6.012( 3.33)]2057.17 5.898.78k p h h N h m=⨯⨯+-⨯+⨯⨯⨯+⨯⨯+-==+∴= 现取h=9m ,桩底标高为26.2m 。
桥梁桩基设计规范要求解析
桥梁桩基设计规范要求解析桥梁桩基是桥梁工程中一种常见的基础形式,其设计规范要求具有一定的技术标准和积累的经验。
本文将对桥梁桩基设计规范的要求进行解析,以帮助读者更好地了解和应用于实际工程中。
一、设计依据桥梁桩基的设计需要依据相关的技术规范和标准,主要包括国家《公路桥涵设计通用规范》、《钢筋混凝土桥梁设计规范》等。
这些规范对桥梁桩基的设计方法、承载力计算、桩身和桩顶处理等方面提出了具体要求,设计人员应该熟悉并按照执行。
二、地质勘察桥梁桩基的设计必须结合地质勘察的结果进行,地质勘察是为了了解地下土体的性质、层位及地下水位等信息。
设计人员需要根据地质勘察报告的结果,综合考虑土体的强度、稳定性、水位等因素,确定合理的桩的长度和直径。
三、桩基承载力计算桥梁桩基的承载力是设计的重点,其计算方法主要有静力计算和动力计算两种。
静力计算是根据土壤强度理论和桩的受力特点,通过确定桩侧阻力和桩端承载力来评估桩基的承载力。
动力计算是通过实测或理论分析得到桩的动力性质,再根据相关的公式,计算桩基的承载力。
四、桩身和桩顶处理桩身的处理包括桩身的加固和防护,一般采用的方式是进行混凝土加固或者钢筋混凝土套筒。
桩顶的处理主要是为了保证桥台与桩基的良好衔接,一般采用的方式有桩顶修整、加盖钢板或者布置预应力钢筋等。
五、桩基的质量和安全控制桥梁桩基的设计不仅要满足承载力要求,还需要对其质量和安全进行控制。
在桥梁施工过程中,需要对桩机进行检测,保证桥梁桩基的垂直度和质量符合规范要求。
同时,施工人员还需要密切监测桩体的竖向位移和沉降情况,及时采取措施进行调整和修复。
六、桥梁桩基的监测和维护一旦桥梁桩基完成施工,还需要对其进行定期的监测和维护。
监测工作主要包括桩基的竖向位移、沉降、倾斜等情况,及时发现并解决问题。
维护工作则包括定期对桩基进行检查和修复,确保桥梁的长期稳定运行。
总结桥梁桩基设计规范要求涉及了设计依据、地质勘察、承载力计算、桩身和桩顶处理、质量和安全控制以及监测和维护等方面。
桥梁桩基设计要点
桥梁桩基设计要点摘要:任何的桥梁工程项目实施中,对桩基设计都有着严格的设计标准,为实现桩基设计优化,设计人员应根据桥梁工程的结构特点和要求,做好相应的承载力分析与计算。
但我国很多的桥梁工程桩基设计中,经常存在着桩基设计方面的问题。
未来的各类桥梁工程实施中,工程企业都应采用新的设计理念和思路,提高桩基设计质量。
关键词:桥梁桩基;设计要点1设计背景桥梁基础是桥梁设计的重要内容,钻(挖)孔灌注桩基础(以下简称“桩基础”)是桥梁最常用、最主要的的基础形式之一,本文主要针对钻孔灌注桩基础展开讨论。
在桥梁结构设计中,桩基设计是一项十分重要的内容,桥梁桩基作为隐蔽工程,其设计是否合理,对桥梁安全及工程规模有着重大的影响,对桥梁施工和工程进度也有一定影响。
因此,在桩基设计中应坚持因地制宜、精心设计的原则,切实加强设计要点的掌握,更好地控制桥梁桩基设计质量。
桥梁桩基础设计,需要根据桥位处的水文条件、现场地形地质条件、上部结构型式、施工要求等因素全面考虑,合理确定桩基础的构造和配筋。
在桥梁桩基础设计中存在一些通病或常见问题,这些通病或问题影响到设计质量,有的可能影响到桥梁安全、工程规模、施工及工程进度,影响到设计单位在业主心目中的形象,应引起设计人员的重视和注意。
2桥梁桩基设计要点当前的交通事业发展中,人们对桥梁工程的建设施工质量提出了越来越高的要求和标准,桩基作为桥梁工程的基础结构,其设计关系到整体桥梁结构的性能。
因此,任何的桥梁工程建设中,施工人员都应加强对桩基设计的质量管理,以保障桩基设计与桥梁工程现场、结构的一致性。
2.1勘查施工环境进行施工前勘察时,根据勘察重点不同,分阶段完成勘察工作。
在初勘阶段,应重点勘察桥梁工程所处的地形、地质等自然环境条件,初勘阶段通过钻孔探测辅助物探的方式确定地质。
桥梁工程处于亚热带海洋气候区,全年湿润多雨,初勘后分析该项目区内土质复杂,下水位深1.3m,桩基施工受自然环境的影响较大。
公路桥梁桩基础课程设计任务书(桩柱式桥墩,含计算书)
公路桥梁桩基础课程设计任务书(桩柱式桥墩,含计算书)桥梁桩基础课程设计任务书一、桩基础课程设计资料该公路桥梁采用桩柱式桥墩,预计尺寸如下图1所示。
桥面宽7米,两边各0.5米人行道。
设计荷载为公路Ⅱ级,人群:3.5kN/m2.1、桥墩组成该桥墩基础由两根钻孔灌注桩组成。
桩径采用φ=1.2m,墩柱直径采用φ=1.0m。
桩底沉淀土厚度t=(0.2~0.4)d。
局部冲刷线处设置横系梁。
2、地质资料标高25m以上桩侧土为软塑亚粘土,其各物理性质指标为:容量γ=18.5kN/m3,土粒比重G=2.70g/cm3,天然含水量ω=21%,液限ωl=22.7%,塑限ωp=16.3%。
标高25m以下桩侧及桩底土均为硬塑性亚粘土,其物理性质指标为:容量γ=19.5kN/m3,土粒比重G=2.70g/cm3,天然含水量ω=17.8%,液限ωl=22.7%,塑限ωp=16.3%。
3、桩身材料桩身采用25号混凝土浇注,混凝土弹性模量Eh=2.85×104MPa,所供钢筋有Ⅰ级钢和Ⅱ级钢。
4、计算荷载1)一跨上部结构自重G=2350kN;2)盖梁自重G2=350kN;3)局部冲刷线以上一根柱重G3应分别考虑最低水位及常水位情况;4)公路Ⅱ级:双孔布载,以产生最大竖向力;单孔布载,以产生最大偏心弯矩。
支座对桥墩的纵向偏心距为b=0.3m(见图2)。
计算汽车荷载时考虑冲击力。
5)人群荷载:双孔布载,以产生最大竖向力;单孔布载,以产生最大偏心弯矩。
6)水平荷载(见图3)制动力:H1=22.5kN(4.5);盖梁风力:W1=8kN(5);柱风力:W2=10kN(8)。
采用常水位并考虑波浪影响0.5m,常水位按45m计,以产生较大的桩身弯矩。
W2的力臂为11.25m。
活载计算应在支座反力影响线上加载进行。
支座反力影响线见图4.5、设计要求确定桩的长度,进行单桩承载力验算。
桥梁桩基础课程设计计算书一、恒载计算(每根桩反力计算)在进行恒载计算时,需要计算上部结构横载反力N1、盖梁自重反力N2、系梁自重反力N3、一根墩柱自重反力N4以及桩每延米重N5.其中,需要考虑浮力对桩每延米重的影响。
公路桥梁桩基础课程设计任务书(桩柱式桥墩,含计算书)
桥梁桩基础课程设计任务书1、桥墩组成:该桥墩基础由两根钻孔灌注桩组成。
桩径采用φ=1.2m ,墩柱直径采用φ=1.0m 。
桩底沉淀土厚度t = (0.2~0.4)d 。
局部冲刷线处设置横系梁。
2、地质资料:标高25m 以上桩侧土为软塑亚粘土,其各物理性质指标为:容量γ=18.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量%21=ω,液限%7.22=l ω,塑限%3.16=p ω。
标高25m 以下桩侧及桩底土均为硬塑性亚粘土,其物理性质指标为:容量γ=19.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量%8.17=ω,液限%7.22=l ω,塑限%3.16=p ω。
3、桩身材料:桩身采用25号混凝土浇注,混凝土弹性模量αMP E h 41085.2⨯=,所供钢筋有Ⅰ级钢和Ⅱ级纲。
4、计算荷载⑴ 一跨上部结构自重G=2350kN ;⑵ 盖梁自重G 2=350kN⑶ 局部冲刷线以上一根柱重G 3应分别考虑最低水位及常水位情况;⑷公路Ⅱ级 :双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。
支座对桥墩的纵向偏心距为3.0=b m (见图2)。
计算汽车荷载时考虑冲击力。
⑸ 人群荷载:双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。
⑹ 水平荷载(见图3)制动力:H 1=22.5kN (4.5);盖梁风力:W 1=8kN (5);柱风力:W 2=10kN (8)。
采用常水位并考虑波浪影响0.5m ,常水位按45m计,以产生较大的桩身弯矩。
W2的力臂为11.25m。
活载计算应在支座反力影响线上加载进行。
支座反力影响线见图4。
2、桩基础配筋图3、桩基础钢筋数量表桥梁桩基础课程设计计算书一、恒载计算(每根桩反力计算)1、上部结构横载反力N1N1=1/2*G1=1/2*2000(30/20)^1.2=1626.7KN2、盖梁自重反力N2221135017522N G kN=⨯=⨯=3、系梁自重反力N331(0.71)(11) 3.325292N kN =⨯⨯⨯⨯⨯⨯=(?)4、一根墩柱自重反力N4低水位:()22411258.32510 5.1223.8544N kNππ⨯⨯=⨯⨯+-⨯⨯=常水位:()2241125 4.825108.6196.9144N kNππ⨯⨯=⨯⨯+-⨯⨯=5、桩每延米重N5(考虑浮力)()25 1.22510116.964N kN π⨯=-⨯⨯=二、活载反力计算1、活载纵向布置时支座最大反力⑴、公路II 级:7.875/k q kN m =,193.5k p kN =Ⅰ、 单孔布载 1290.76R kN =Ⅲ、双孔布载 2581.52R kN =⑵、人群荷载ϕ人=1.33三、荷载组合1、计算墩柱顶最大垂直反力R组合Ⅰ:R= 恒载 +(1+u )汽ϕ汽车+ 人ϕ人群 (汽车、人群双孔布载)1175175(10.3) 1.25581.521 1.33 3.524.42408.55R kN =+++⨯⨯⨯+⨯⨯=2、计算桩顶最大弯矩⑴、计算桩顶最大弯矩时柱顶竖向力组合Ⅰ:R= 1N +2N +(1+u )汽ϕ∑i i y P + 人ϕql 21(汽车、人群单孔布载)11175175 1.3 1.25290.761 1.33 3.524.41879.282R kN =++⨯⨯⨯+⨯⨯⨯=⑵、计算桩顶(最大冲刷线处)的竖向力0N 、水平力0Q 和弯矩0M0N = max R +3N + 4N (常水位)2408.5529196.912631.71kN=++=0Q = 1H + 1W + 2W 22.581040.5kN=++= 0M = 14.71H + 14.051W + 11.252W + 0.3活max R=()14.722.514.05811.25100.32408.551175175873.22kN m⨯+⨯+⨯+⨯--=⋅活max R ——组合Ⅰ中活载产生的竖向力的较大者。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一方案比选优化公路桥涵结构设计应当考虑到结构上可能出现的多种作用,例如桥涵结构构件上除构件永久作用(如自重等)外,可能同时出现汽车荷载、人群荷载等可变作用。
《公路桥规》要求这时应该按承载力极限状态和正常使用极限状态,结合相应的设计状况进行作用效应组合,并取其最不利组合进行计算。
1、按承载能力极限状态设计时,可采用以下两种作用效应组合。
(1)基本作用效应组合。
基本组合是承载能力极限状态设计时,永久作用标准值效应与可变作用标准值效应的组合,基本组合表达式为(1-1)或(1-2)γ0-桥梁结构的重要性系数,按结构设计安全等级采用,对于公路桥梁,安全等级一级、二级、三级,分别为1.1、1.0和0.9;γGi-第i个永久荷载作用效应的分项系数。
分项系数是指为保证所设计的结构具有结构的可靠度而在设计表达式中采用的系数,分为作用分项系数和抗力分项系数两类。
当永久作用效应(结构重力和预应力作用)对结构承载力不利时,γGi=1.2;对结构的承载能力有利时,γGi=10;其他永久作用效应的分项系数详见《公路桥规》;γQ1-汽车荷载效应(含汽车冲击力、离心力)的分项系数,取γQ1=1.4;当某个可变作用在效用组合中,其值超过汽车荷载效用时,则该作用取代汽车荷载,其分项系数应采用汽车荷载的分项系数;对专门为承受某种作用而设置的结构或装置,设计时该作用的分项系数取与汽车荷载同值;计算人行道板和人行道栏杆的局部荷载时,其分项系数也与汽车荷载取同值。
γQj-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)、风荷载以外的其他第j个可变作用效应的分项系数,取γQ1=1.4,但风荷载的分项系数取γQ1=1.1;S gik、S gid-第i个永久作用效应的标准值和设计值;S Qjk-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)外的其他第j个可变作用效应的标准值;S ud-承载能力极限状态下,作用基本组合的效应组合设计值,作用效应设计值等于作用效应标准值S d与作用分项系数的乘积。
S Q1k、S Q1d-汽车荷载效用含汽车冲击力、离心力)的标准值和设计值;φc-在作用效应组合中,除汽车荷载效应效应(含汽车冲击力、离心力)以外其他可变作用效应的组合系数,当永久作用与汽车荷载和人群荷载(或其他一种可变作用)组合时,人群荷载(或其他一种可变作用)的组合系数取0.80;当除汽车荷载(含汽车冲击力、离心力)以外尚有两种其他可变作用参与组合时,其组合系数取0.70;尚有三种可变作用组合时,其组合系数取0.60;尚有四种及多于四种的可变作用参与组合时取0.50。
(2)偶然荷载。
永久作用标准值效应与可变作用某种代表值效应、一种偶然作用标准值效应相组合。
偶然作用的效应分项系数取1.0与偶然作用同时出现的可变作用,可根据观测资料和工程经验取用适当的代表值。
地震作用标准值及其表达式按现行《公路工程抗震设计规范》中的规定采用。
表1-1 永久作用效应的分项系数7基础变位作用混凝土和垢土结构0.50.5钢结构111.1 上部荷载计算1.1.1 永久荷载主要考虑桩基础上部结构的自重荷载,其他形式的永久作用如砼收缩作用等可忽略。
计算简式如下:永久荷载=预应力T型梁重+盖梁重+系梁重+墩身重(1-3)钢筋与混凝土的比例小于3%,不考虑钢筋的重量。
1 T梁自重——单位体积重26KN/m3G T梁=205.96×26=5354.96KN2 墩身重——单位体积重24KN/m3,则:墩身体积3.14×/4×15.14=30.43墩身重量G墩身=24×30.43=730.32 KN3 盖梁重——单位体积重24KN/m3体积:V1=11.95×0.85×2=20.32V2= (11.95×2-1.35×2)/2×0.85×2=18.02V3=2×0.35×0.5×2=0.75盖梁体积V改良体积= V1 +V2 +V3=20.32+18.02+0.75=39.0924×39.09=938.16KN4 系梁重——单位体积重24KN/m3系梁体积V系梁体积=7.25×1.8×1.5=19.58 m3系梁重量G系梁=24×19.58=469.92 KN5 桥面铺装——单位体积重26KN/m3桥面铺装体积V桥面铺装=38.27 m3;G桥面铺装=38.27×26=995.02 KN6 防撞墙——单位体积重24KN/m3;=21.06m3;防撞墙体积V防撞墙G防撞墙=21.06×24=505.44 KN作用在墩身底面总的垂直永久荷载为:G= G T梁/2+G墩身+G盖梁/2+G系梁/2+G桥面铺装/2+G防撞墙/2=5354.96/2+730.32+938.16/2+469.92/2+995.02/2+505.44/2=4862.07 KN1.1.2 可变荷载为高速公路桥梁,可变荷载主要考虑汽车荷载、汽车冲击力、汽车制动力(风荷载,流水荷载,温度荷载等均可忽略)几个方面。
(1) 汽车荷载计中汽车荷载采用2车道荷载进行分析,由于汽车荷载等级为公路-Ⅰ级,据《公路桥涵设计通用规范》JTCD-60-2004,车道荷载计算图示如下:P k一集中荷载标准值q k一均布荷载标准值据《公路桥涵设计通用规范》JTCD-60-2004,公路-Ⅰ级车道荷载的均布荷载标准值为q k=10.5KN/m标准值按以下规定选取:桥梁计算跨径小于或等于5m时,P k=180 KN;算跨径等于或大于50m时,P k=360KN;桥梁计算跨径在5m~50m之间时P k值采用直线内插求得。
计算剪力效应时,上述集中荷载标准值P k应乘以1.2的系数。
P k=180+180/45×(30-5)=280KNq k =10.5 (KN / m )计算剪力效应时集中荷载标准值Pk乘以1.2;汽车荷载P k=280×1.2+10.5×30=651 KN(2)汽车冲击力据《公路桥涵设计通用规范》JTCD-60-2004,汽车荷载的冲击力标准值为汽车荷载标准值乘以冲击系数μ。
冲击系数μ可按下式计算:f表示结构基频(HZ);当f<1.5HZ时,μ=0.05;当f>14HZ时,μ=0.45;当1.5HZ≤f≤14 HZ时,μ=0.176lnf-0.0157;汽车冲击力=汽车荷载×μ此桥的频率f=4HZ,带入式中,故u=0.228;则汽车冲击力N1=651×0.228=148.43 KN(3)汽车制动力一个设计车道上由汽车荷载产生的制动力标准值按规范规定的车道荷载标准值在加载长度上计算以总重力的10%计算,但公路—Ⅰ级汽车荷载的制动力标准值不得小于165KN。
10%的总重力=322 KN>165KN;取汽车制动力N2=322 KN;由以上计算可变荷载可归纳列入下表:表1-2 可变荷载(4)偶然荷载本合同段区内50年超越概率10%的地震动峰值加速度小于0.05g,地震动反应谱特征周期小于0.35s,对应地震基本烈度小于Ⅵ度,故地震力可不进行计算。
1.1.3 上部荷载总算据《公路桥涵设计通用规范》JTCD-60-2004;(1-4)其中:γ0=1.1;γQj=1.2;S Q1=1.4;竖向荷载P V=1.1×(1.2×4862.07+1.4×(651+148.43+322))=8144.94KN横向荷载P H=322×1.4=450.80KN弯矩=2690.625表1-3桩顶上部荷载总算表竖向荷载(KN)水平荷载(KN)弯矩() 8144.94450.802690.6252.1 方案一:单排墩柱式桩基础(1)2.1.1 工程地质介绍总体上桥位区内地形变化较大,相差高度大,桥位覆盖层厚度小,下伏基岩为花岗岩,岩石风化强烈,全风化层厚度大,最大厚度将近30米,该层在水的作用下岗地边坡坡面抗冲刷能力差,洼地内上部承载力偏低,桥位中风化基岩埋深大,且受地域地质影响,中风化花岗岩岩体破碎,桥位洼地内地下水位埋深浅,中风化基岩虽破碎,但饱和单轴抗压强度高,可作为桩基的持力层。
2.1.2 基础类型的选择选择桩基础是,根据设计要求和现场的条件,并考虑各种不同情况,包括荷载的大小和性质、地质和水文地质条件、料具的用量价格(包括料具的数量)、施工难易程度、物质供应和交通运输条件以及施工条件等等,经过综合考虑后对以下四个可能的基础类型,进行比较选择,采用最佳方案高承台桩基础。
本设计桩基础,因为有很好的承载力的持力层,按柱桩进行设计计算。
浅基础:建筑物的浅平基多用砖、石、混凝土或钢筋混凝土等材料组成,因为材料的抗拉性能差,截面强度要求较高,埋深较小,用料省,无需复杂的施工设备,因而工期短,造价低,但只适宜于上部荷载较小的建筑物。
低承台:稳定性较好,但水中施工难度较大,故多用于季节性河流或冲刷深度较小的河流,航运繁忙或有强烈流水的河流。
位于旱地、浅水滩或季节性河流的墩台,当冲刷不深,施工排水不太困难时,选用低承台桩基有利于提高基础的稳定性。
高承台:由于承台位置较高或设在施工水位以上,可减少墩台的坞工数量,可避免或减少水下施工,施工较为方便,且经济。
高桩承台基础刚度较小,在水平力的作用下,由于承台及桩基露出地面的一段自由长度周围无土来共同承担水平外力,桩基的受力情况较为不利,桩身的内力和位移都将大于低承台桩基,在稳定性方面也不如低承台桩基。
沉井:沉井基础占地面积小,施工方便,对邻近建筑物影响小,沉井内部空间还可得到充分利用。
沉井法适用于地基深层土的承载力大,而上部土层比较松软,易于开挖的地层。
根据《公路桥涵地基与基础设计规范》(JTJ024-85)的规定,选钻孔桩、钻(挖)孔桩适用于各类土层(包括碎石类土层和岩石层)。
一般情况下桩基础设计需经过以下步骤:(1)通过环境条件、结构荷载条件、地质施工条件、经济条件等确定桩型;(2)确定基桩几何尺寸;(3)确定桩数及平面布置;(4)验算桩身结构强度。
本设计根据实际情况做出以下计算。
2.1.3桩基础的设计(1)桩身设计1.桩材选择:根据本工程的特点,选择钢筋混凝土钻孔灌注桩。
2.桩径:初步选定桩径为1.80m。
3.桩长:由于设计桩为端承桩,根据(JTJ024-85.《公路桥涵与基础设计规范》第4.3.5条);当河床岩层有冲刷时,桩基须嵌入基岩,按桩底嵌固设计,其应嵌入基岩的深度按下式计算;圆形桩:(2-1)——在基岩顶面处的弯矩();——桩嵌入基岩中(不计风化层)的有效深度不得小于0.5m;——天然湿度的岩石单轴极限抗压强度(kpa);——钻孔桩的设计直径(m);——系数,根据岩层侧面构造而定,节理发达的取小值,节理发达的取大值;h==1.6m故设计嵌入深度h=1.6m;4.验算单桩承载力;根据(JTJ024-85.公路桥涵与基础设计规范第4.3.4条);支撑在基岩上或嵌入基岩内的钻(挖)孔桩、沉桩、和管桩的单桩轴向受压容许承载力可按下式计算;(2-2) 单桩轴向受压允许承载力(KN);天然湿度的岩石单轴极限抗压强度(Kpa);桩嵌入基岩深度(m);U——桩嵌入基岩部分的横截面周长(m),对于钻孔桩和管桩按设计直径采用;A——桩底横截面面积(m2),对于钻孔桩和管桩按设计直径采用;根据清孔情况,岩石的破碎程度等因素而定的系数,按下表2-1取用;表2-1 系数C1、C2值条件C1C2良好的0.60.05一般的0.50.04较差的0.40.03122 对于钻孔桩,系数C1、C2值可降低20%采用;取C1=0. 4×0.8=0.32;C2=0.03×0.8=0.024;将各系数值统计到下表2-2;表2-2承载力公式系数表C1C2(Kpa)()(m)(m)0.320.02435000 2.54 2.65 1.6[p]=(0.32×2.54+0.024×5.65×1.6) ×35000=35920.64KN满足上部荷载的要求;2.1.4 沉降计算根据简化法计算单桩沉降量,即在竖向工作荷载作用下,单桩沉降S由桩身压缩变形和桩端土的压缩变形组成,本设计为端承桩,故计算公式为:(2-3) 式中:N——作用于桩顶的竖向压力(KN),桩自重对没有影响,所以不考虑桩身自重;E——桩身材料的受压弹性模量(Mpa),取2.80×104 Mpa;l——桩的长度(m),实际桩长为23.06+1.6=24.66m;63-2007《公路桥涵地——桩底处岩层的竖向抗力地基系数,根据(JTG-基与基础设计规范》表P.0.2-2)取值,即在表2-3中取值;A——桩的横截面面积;表2-3 岩石地基抗力系数C0编号(Kpa)C o(KN/m2)110003000002不小于25000335000a标准值;当1000<R a<25000时,可用直线内插法确定C o。