北师大版九年级数学上册第一章特殊平行四边形单元测试题(含答案) (10)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:特殊的平行四边形单元测试卷

(典型题汇总)

一、选择题(本大题共6小题,共24分)

1.下列关于▱ABCD的叙述中,正确的是()

A.若AB⊥BC,则▱ABCD是菱形;B.若AC⊥BD,则▱ABCD是正方形;

C.若AC=BD,则▱ABCD是矩形;D.若AB=AD,则▱ABCD是正方形

2.如图1,在△ABC中,D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()

A.若AD⊥BC,则四边形AEDF是矩形;

B.若AD垂直平分BC,则四边形AEDF是矩形;

C.若BD=CD,则四边形AEDF是菱形;

D.若AD平分∠BAC,则四边形AEDF是菱形

图1图2

3.如图2,在菱形ABCD中,对角线AC,BD相交于点O,作OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的度数为()

A.75°B.65°C.55°D.50°

4.如图3,P是矩形ABCD的边AD上的一个动点,矩形的两条边AB,BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是()

A.125

B.65

C.245D.不确定

图3图4 图5

5.如图4,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()

A.2.5 B.5 C.322D.2

6.如图5,在平面直角坐标系中,四边形OABC是正方形,点A的坐标是(4,0),P 为边AB上一点,∠CPB=60°,沿CP折叠正方形OABC,折叠后,点B落在平面内的点B′处,则点B′的坐标为()

A.(2,2 3) B.(32,2-3) C.(2,4-2 3) D.(32,4-2 3)

二、填空题(本大题共6小题,共30分)

7.已知菱形的边长为6,一个内角为60°,则菱形的较短对角线的长是________.

8.如图6所示,在矩形纸片ABCD中,AB=2 cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点B′重合,则AC=________ cm.

图6图7

9.如图7所示,若菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为________.

10.如图8,在正方形ABCD的外侧作等边三角形ADE,则∠BED的度数是________.

图8图9 图10

11.如图9所示,在四边形ABCD中,对角线AC⊥BD,垂足为O,E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.

12.如图10,在矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为________.

三、解答题(共46分)

13.(10分)如图11,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.

(1)求证:四边形BEDF是菱形;

(2)若正方形ABCD的边长为4,AE=2,求菱形BEDF的面积.

图11

14.(10分)如图12,已知平行四边形ABCD的对角线AC,BD相交于点O,AC=20 cm,BD=12 cm,两动点E,F同时以2 cm/s的速度分别从点A,C出发在线段AC上相对运动,点E到点C,点F到点A时停止运动.

(1)求证:当点E,F在运动过程中不与点O重合时,以点B,E,D,F为顶点的四边形为平行四边形;

(2)当点E,F的运动时间t为何值时,四边形BEDF为矩形?

图12

15.(12分)如图13,△ABC是以BC为底的等腰三角形,AD是边BC上的高,E,F分别是AB,AC的中点.

(1)求证:四边形AEDF是菱形;

(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.

图13

16.(14分)如图14,四边形ABCD是正方形,E是直线CD上的点,将△ADE沿AE对折得到△AFE,直线EF交边BC于点G,连接AG.

(1)求证:△ABG≌△AFG;

(2)当DE是线段CD的一半时,请你在备用图中利用尺规作图画出符合题意的图形(保留作图痕迹,不写作法);

(3)在(2)的条件下,求∠EAG的度数.

图14

参考答案

1.C 2.D 3.B 4.A

5.B.

6.C

7.6.

8.4

9.(2+2,2)

10.45°.

11.1212.758

13.解:(1)证明:连接BD交AC于点O,

∵四边形ABCD为正方形,

∴BD⊥AC,OD=OB=OA=OC.

∵AE=CF,∴OA-AE=OC-CF,

即OE=OF,

∴四边形BEDF为平行四边形,且BD⊥EF,

∴四边形BEDF为菱形.

(2)∵正方形ABCD的边长为4,

∴BD=AC=4 2.

∵AE=CF=2,∴EF=AC-2 2=2 2,

∴S菱形BEDF=12BD·EF=12×4 2×2 2=8.

14.解:(1)证明:连接DE,EB,BF,FD.

∵两动点E,F同时以2 cm/s的速度分别从点A,C出发在线段AC上相对运动,∴AE=CF.

∵平行四边形ABCD的对角线AC,BD相交于点O,

∴OD=OB,OA=OC(平行四边形的对角线互相平分),

∴OA-AE=OC-CF或AE-OA=CF-OC,即OE=OF,

∴四边形BEDF为平行四边形(对角线互相平分的四边形是平行四边形),

相关文档
最新文档