乙醇正丙醇分离设计
精馏塔课程设计-常压、连续精馏塔分离乙醇-正丙醇设计
精馏塔课程设计-常压、连续精馏塔分离乙醇-正丙醇设计精馏塔课程设计-常压、连续精馏塔分离乙醇-正丙醇设计化工原理课程设计设计题目:常压、连续精馏塔分离乙醇-正丙醇设计班级:13级化工一班姓名:周常通学号:2013507092 指导教师:李翠华完成日期:2015 年12 月28日化工系石河子大学化学化工学院化工原理课程设计考核学生姓名周常通系化学工程系专业班级13级化工一班指导教师李翠华课程设计名称常压、连续精馏塔分离乙醇-正丙醇设计评价指标教师评语得分一、课程设计说明书内容完整(计10分)设计说明书内容完整(1.目录、2.任务书、3.流程方案选择说明、4.主体设备工艺设计计算过程、5.附属设备设计选型、6.结构设计、选型、7.工艺设计结果概览、8.结构设计结果概览、9.设计评述、10.参考文献、11.附录)少一部分扣2分(不含目录);少关键部分(4、5、6部分)不得分,总成绩为不合格。
二、设计内容正确,达到设计任务书规定要求(计50分) A.设计、计算过程完整,设计依据说明、论证充分,公式、数据引用正确,计算结果正确,达到任务书规定要求。
(50分) B.设计、计算过程完整,设计依据说明、论证基本充分,计算结果无原则性错误,达到任务书规定要求。
(40分) C.设计、计算过程完整,设计依据说明、论证基本正确,公式、数据引用基本正确,计算结果基本正确,基本达到要求。
(30分)D.设计、计算过程不太完整,设计依据说明、论证不充分,公式、数据引用有错,计算结果有错,不能达到任务书要求。
(30分以下)三、课程设计图纸质量(计30分)A.设计图纸符合国家标准,线性规范,图面质量好,无表达错误,图内文字工整,图纸数量达到要求。
(30分) B.设计图纸符合国家标准,图面质量较好,无原则性表达错误,图纸数量基本达到要求。
(24分) C.设计图纸符合国家标准,图面质量较好,非原则性表达错误较多,图纸数量基本达到要求。
乙醇正丙醇分离设计
化工原理课程设计任务书1.设计题目:常压连续筛板式精馏塔分离乙醇—正丙醇二元物系的设计。
2.原始数据及条件:进料:乙醇含量0.5(摩尔分数,下同),其余为正丙醇,F=3400Kg/h,塔顶进入全凝器,塔板压降0.7Kpa。
分离要求:塔顶乙醇含量0.90;回收率为0.95;全塔效率0.55。
操作条件:塔顶压强1.03atm(绝压);泡点进料;R/Rmin=1.6 。
3.设计任务:(1)完成该精馏塔的各工艺设计,包括设备设计及辅助设备选型。
(2)画出带控制点的工艺流程图、塔板版面布置图、精馏塔设计条件图。
(3)写出该精馏塔的设计说明书,包括设计结果汇总和设计评价。
摘要在本次任务中,根据化工原理课程设计的要求设计的是乙醇----丙醇连续浮阀精馏塔,除了要计算其工艺流程、物料衡算、热量衡算、筛板塔的设计计算,以外,并对精馏塔的主要工艺流程进行比较详细的设计,并画出了精馏塔的工艺流程图和设备条件图。
本次设计选取回流比R=1.8Rmin=1.6×1.34=2.144应用图解法计算理论版数,求得理论塔板NT为12块(包括塔釜再沸器),第6块为进料板。
设计中采用的精馏装置有精馏塔,冷凝器等设备,采用间接蒸汽加热,物料在塔进行精馏分离,余热由塔顶产品冷凝器中的冷却介质带走,完成传热传质. 塔的附属设备中,所有管线均采用无缝钢管。
预热器采用管壳式换热器。
用99.97℃塔釜液加热。
料液走壳程,釜液走管程。
本设计采用了筛板塔对乙醇-丙醇进行分离提纯,塔板为碳钢材料,通过板压降、漏液、液泛、液沫夹带的流体力学验算,均在安全操作围。
关键字:乙醇-丙醇筛板塔物料衡算目录第一章概述51.1 精馏操作对塔设备的要求51.2 板式塔类型61.2.1 筛板塔61.2.2浮阀塔6第二章塔板的工艺设计 (7)2.1 精馏塔全塔物料衡算72.1.1 原料液及塔顶、塔底产品的摩尔分率与物料衡算72.1.2 原料液及塔顶、塔底产品的摩尔质量82.2 理论塔板数的确定82.2.1 理论板层数NT的求取82.2.2 实际板层数的求取10第三章精馏塔的工艺条件及有关物性数据的计算103.1 操作压力计算103.2 操作温度计算113.3 平均摩尔质量计算113.4 平均密度计算123.5 液体平均表面力的计算133.6 液体平均黏度计算15第四章精馏塔的塔体工艺尺寸的计算164.1 塔径的设计计算164.2 塔的有效高度的计算17第五章塔板主要工艺尺寸的计算175.1 溢流装置计算175.2 塔板布置18第六章筛板的流体力学验算196.1 塔板压强降206.1.1 干板阻力c h计算。
分离乙醇正丙醇混合液的精馏塔设计课程设计
一设计任务书 (2)二塔板的工艺设计 (3)(一)设计方案的确定 (3)(二)精馏塔的物料衡算 (3)1.原料液及塔顶、塔釜产品的摩尔分数 (3)2. 物料衡算 (4)(三)物性参数的计算 (4)1.操作温度的确定 (5)2. 密度的计算 (5)3.混合液体表面张力的计算 (11)4.混合物的粘度 (12)5.相对挥发度 (14)(四)理论板数及实际塔板数的计算 (15)1.理论板数的确定 (15)2.实际塔板数确定 (18)(五)热量衡算 (19)1.加热介质的选择 (19)2. 冷却剂的选择: (19)3.比热容及汽化潜热的计算 (19)(六)塔径的初步设计 (25)1.汽液相体积流量的计算 (25)2.塔径的计算与选择 (26)(七)溢流装置 (29)1.堰长 (29)2.弓形降液管的宽度和横截面积 (30)3.降液管底隙高度 (31)4.塔板分布 (31)5. 浮阀数目与排列 (32)(八)汽相通过浮阀塔板的压降 (35)1.精馏段 (35)2.提馏段 (36)(九)淹塔 (37)1.精馏段 (37)2.提馏段 (38)(十)雾沫夹带 (38)(十一)塔板负荷性能图 (40)1.雾沫夹带线 (40)2.液泛线 (41)3.液相负荷上限线 (43)4.漏液线 (43)5.液相负荷下限线 (44)三、塔总体高度计算 (47)1.塔顶封头 (47)2.塔顶空间 (47)3.塔底空间 (48)5.进料板处板间距 (48)6.裙座 (48)四、塔的接管 (50)1.进料管 (50)2.回流管 (50)3.塔底出料管 (51)4.塔顶蒸汽出料管 (51)5.塔底蒸汽管 (51)五、塔的附属设备设计 (52)1.冷凝器的选择 (52)2.再沸器的选择 (53)六、参考文献 (54)七、设计评述 (55)一、设计任务书【设计题目】分离乙醇-正丙醇混合液的精馏塔设计【设计条件】进料:乙醇含量35%(质量分数,下同),其余为正丙醇分离要求:塔顶乙醇含量90%;塔底乙醇含量0.01%生产能力:年处理乙醇-正丙醇混合液25000吨,年工7200小时操作条件:间接蒸汽加热;塔顶压强1.03atm(绝压);泡点进料; R=5【设计计算】塔板的工艺设计(一)设计方案的确定本设计的任务是分离乙醇-正丙醇混合液。
乙醇-正丙醇溶液连续板式精馏塔的设计-化工原理课程设计书最终版
青岛科技大学化工课程设计设计题目:乙醇-正丙醇溶液连续板式精馏塔的设计指导教师:屈树国学生姓名:魏慎成张宏生韩尚杰翟喜民冯学栋化工学院—化学工程与工艺专业135班日期2015/12/11目录一设计任务书二塔板的工艺设计(一)设计方案的确定(二)精馏塔设计模拟(三)塔板工艺尺寸计算1)塔径2)溢流装置3)塔板分布、浮阀数目与排列(四)塔板的流体力学计算1)气相通过浮阀塔板的压强降 2)淹塔3)雾沫夹带(五)塔板负荷性能图1)雾沫夹带线2)液泛线3)液相负荷上限4)漏液线5)液相负荷上限(六)塔工艺数据汇总表格三塔的附属设备的设计(一)换热器的选择1)预热器2)再沸器的换热器3)冷凝器的换热器(二)泵的选择四塔的内部工艺结构(一)塔顶(二)进口①塔顶回流进口②中段回流进口(三)人孔(四)塔底①塔底空间②塔底出口五带控制点工艺流程图六主体设备图七附件(一)带控制点工艺流程图(二)主体设备图八符号表九讨论十主要参考资料一设计任务书【设计任务】设计一板式精馏塔,用以完成乙醇-正丙醇溶液的分离任务【设计依据】如表一表一【设计内容】1)塔板的选择;2)流程的选择与叙述;3)精馏塔塔高、塔径与塔构件设计;4)预热器、再沸器热负荷及加热蒸汽消耗量,冷凝器热负荷及冷却水用量,泵的选择;5)带控制点工艺流程图及主体设备图。
二塔板的工艺设计(一)设计方案的确定本设计的任务是分离乙醇—正丙醇混合液,对于二元混合物的分离,应采用连续精馏流程,运用Aspen软件做出乙醇—正丙醇的T-x-y 相图,如图一:图一:乙醇—正丙醇的T-x-y相图由图一可得乙醇—正丙醇的质量分数比为0.5:0.5时,其泡点温度是84.40o C(二)精馏塔设计模拟1.初步模拟过程运用Aspen软件精馏塔Columns模块中DSTWU模型进行初步模拟,并不断进行调试,模拟过程及结果如下:图二:初步模拟模块图三:塔规格初步设计结果由此塔得到的组分如下:图四:塔规格初步设计所得到流股及其组成由上图看出重组分中乙醇的质量分数是 2.0%,其结果是并不符合分离要求,因此运用精馏塔Columns模块中RadFrac模型进行精确模拟设计,并不断进行调试,模拟过程及结果如下:图五:精确模拟模块图六:塔规格精确设计结果图七:塔规格精确设计所得到流股及其组成由图七看出在塔顶乙醇含量和塔底乙醇含量均达到分离要求,因此软件所得计算结果数据如表二:表二对表二数据简单的处理和从软件中可得到如下数据:表三(三)塔板工艺尺寸计算1)塔径空塔气速u=(安全系数)⨯max u ,安全系数=0.6-0.8,max u =(1) 横坐标数值:0.50.50.0029734.067()()0.0481.28 1.644s L s V L V ρρ⨯=⨯= 取板间距:0.40T H m =, 取板上液层高度:0.07L h m = , 则 0.33T L H h m =- 查图可知C 20=0.12 , 0.20.212017.52()0.12()0.1162020C C σ==⨯= (2)max 0.116 2.45u ==/m s取安全系数为0.6,则空塔气速为:max 0.60.6 2.45 1.47u u ==⨯=/m s塔径:1.053D ===m 按标准塔径圆整为: 1.1D m =,则 横截面积:222/40.785 1.10.95T A D m π==⨯=实际空塔气速: '1 1.281.350.95u ==/m s 2)溢流装置选用单溢流弓形降液管,不设进口堰。
分离乙醇—正丙醇混合物系浮阀式精馏塔的设计方案
分离乙醇—正丙醇混合物系浮阀式精馏塔的设计方案第一部分设计方案的确定精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。
精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。
根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。
精馏过程与其他蒸馏过程最大的区别,是在塔两端同时提供纯度较高的液相和气相回流,为精馏过程提供了传质的必要条件。
提供高纯度的回流,使在相同理论板的条件下,为精馏实现高纯度的分离时,始终能保证一定的传质推动力。
所以,只要理论板足够多,回流足够大时,在塔顶可能得到高纯度的轻组分产品,而在塔底获得高纯度的重组分产品。
精馏广泛应用于石油,化工,轻工等工业生产中,是液体混合物分离中首选分离方法。
1.1塔的选择本次课程设计是分离乙醇—正丙醇二元物系,在此我选用连续精馏浮阀塔。
浮阀塔结构简单,有两种结构型式,即条状浮阀和盘式浮阀,它们的操作和性能基本是一致的,只是结构上有区别,其中以盘式浮阀应用最为普遍。
盘式浮阀塔板结构,是在带降液装置的塔板上开有许多升气孔,每个孔的上方装有可浮动的盘式阀片。
为了控制阀片的浮动范围,在阀片的上方有一个十字型或依靠阀片的三条支腿。
前者称十字架型,后者称V型。
目前因V型结构简单,因而被广泛使用,当上升蒸汽量变化时,阀片随之升降,使阀片的开度不同,所以塔的工作弹性较大。
浮阀塔具有以下优点:(1). 生产能力大,由于塔板上浮阀安排比较紧凑,其开孔面积大于泡罩塔板,生产能力比泡罩塔板大 20%~40%,与筛板塔接近。
(2).操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许的负荷波动范围比筛板塔,泡罩塔都大。
最新乙醇-正丙醇连续筛板式精馏塔的设计方案
乙醇-正丙醇连续筛板式精馏塔的设计方案乙醇-正丙醇连续筛板式精馏塔的设计方案流程的设计及说明1 设计思路蒸馏方式的确定蒸馏装置包括精馏塔,原料预热器,精馏釜(再沸器),冷凝器,釜液冷却器和产品冷却等设备,蒸馏过程按操作方式不同可分为连续蒸馏和间歇蒸馏两种流程,连续蒸馏具有生产能力大,产品质量稳定等优点,工业生产中以连续精馏为主,间歇蒸馏具有操作灵活,适应性强等优点,适合小规模,多品种或多组分物系的初步分离。
本次设计采用连续筛板精馏塔,常压精馏。
2 装置流程的确定(1)物料的储存和输送在流程中设置原料罐,产品罐及离心泵。
原料可泵直接送入塔内,使程序连续稳定的进行。
(2)参数的检测和调控流量,压力和温度是生产中的重要参数,必须在流程中的适当位置装设仪表,以测量这些参数。
同时,在生产过程中,物料的状态。
加热剂和冷却剂的状态都不可能避免的会有一些波动,因此必须在流程中设置一定的阀门。
(3)冷凝装置的确定本设计采用塔顶全凝器,以便于准确地对控制回流比。
(4)热能的利用精馏过程是组分多次部分汽化和多次部分冷凝的过程,耗能较多,因此选择适宜的回流比使过程处于最佳条件下进行,可使能耗至最低。
3 操作条件的确定 (1) 操作压力的选取本次设计采用常压操作。
除热敏性物料外,凡通过常压精馏不难实现分离要求,并能利用江河水或循环水将镏出物冷凝下来的系统。
(2)加料状态的选择本设计选择q=1时进料,原因是使塔的操作稳定,精,提镏段利用相同塔径,便于制造。
(3) 加料方式蒸馏大多采用间接蒸汽加热,设置再沸器。
(4)回流比的选择一般经验值为min )0.21.1(R R -=。
本设计采用min 5.1R R =,初步设定后经过流体力学验算,负荷条件,故选择合理。
塔顶冷凝器的冷凝方式与冷却介质的选择塔顶冷凝温度不要求低于30℃,工业上多用水冷 (5)板式塔类型的选择本次设计采用连续筛板式精馏塔 4 设计方案的确定(1)满足工艺和操作要求(2)满足经济上的要求,安全生产,保护环境。
课程设计:分离乙醇和正丙醇(详细版)
一、课程设计题目乙醇和正丙醇物系分离系统的设计二、课程设计内容(含技术指标)1.设计条件生产能力:25000吨/年(每年按300天生产日计算)原料状态:乙醇含量35%(wt%);温度:25℃;压力:100kPa;泡点进料;分离要求:塔顶馏出液中乙醇含量99%(wt%);塔釜乙醇含量2%(wt%)操作压力:100kPa其它条件:塔板类型:浮阀塔板;塔顶采用全凝器;R=1.5R m2.具体设计内容和要求(1)设计工艺方案的选定(2)精馏塔的工艺计算(3)塔板和塔体的设计(4)水力学验算(5)塔顶全凝器的设计选型(6)塔釜再沸器的设计选型(7)进料泵的选取(8)绘制流程图(9)编写设计说明书(10)答辩三、进度安排四、基本要求教研室主任签名:年月日摘要精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等领域中被广泛应用。
精馏是使易挥发组分进入气相,难挥发组分进入液相,从而使液体混合物分离。
本次设计任务为处理25000吨/年的乙醇和正丙醇混合物。
浮阀塔是在泡罩塔的基础上发展起来的,它主要的改进是取消了升气管和泡罩,在塔板开孔上设有浮动的浮阀,浮阀可根据气体流量上下浮动,自行调节,使气缝速度稳定在某一数值。
这一改进使浮阀塔在操作弹性、塔板效率、压降、生产能力以及设备造价等方面比泡罩塔优越。
但在处理粘稠度大的物料方面,又不及泡罩塔可靠。
浮阀塔广泛用于精馏、吸收以及脱吸等传质过程中。
本设计通过物料衡算,热量衡算,工艺计算,结构设计和校核等一系列工作来设计一个具有可行性的合理的浮阀塔。
关键词浮阀塔乙醇正丙醇回流比第一章绪论1.1浮阀塔的简介:浮阀塔是20世纪50年代开发的一种新塔型,其特点是在筛板塔基础上,在每个筛孔除安装一个可上下移动的阀片。
当筛孔气速高时,阀片被顶起上升,空速低时,阀片因自身重而下降。
阀片升降位置随气流量大小自动调节,从而使进入夜层的气速基本稳定。
又因气体在阀片下侧水平方向进入液层,既减少液沫夹带量,又延长气液接触时间,故收到很好的传质效果。
分离乙醇-正丙醇
100
乙醇
0.601
0.495
0.361
正丙醇
0.899
0.619
0.444
根据内差法求不同温度下的粘度
B 查表,得 ,
查表,得 ,
(1)精馏段粘度:
(1)提留段粘度:
2.2.5相对挥发度
(1)精馏段的平均相对挥发度:
(2)提留段的平均相对挥发度:
2.2.6气液相体积流量计算
kmol/s
(1)精馏段
2.6.2浮阀数目与排列
(1)精馏段
取阀孔动能因子F0=12.则孔速
每层塔板上浮阀数目为
取边缘区宽度 破沫区宽度
计算塔板上的鼓泡区面积,即
其中
所以
浮阀排列方式采用等腰三角形叉排,取同一个横排的孔心距t=75mm
则排间距:
按t=75mm , 以等腰三角形叉排方式作图,排得阀数154个
按N=154重新核算孔速及阀孔动能因子
3.1通过浮阀塔板的压降
气体通过塔板时,需克服塔板本身的干板阻力、板上充气液层的阻力及液体表面张力造成的阻力,这些阻力即形成了塔板的压降。气体通过塔板的压降△Pp可由 和 计算
式中hc——与气体通过塔板的干板压降相当的液柱高度,m液柱;
hl——与气体通过板上液层的压降相当的液柱高度,m液柱;
hσ——与克服液体表面张力的压降相当的液柱高度,m液柱。
由Excel计算结果见表2.3:
表2.3逐板法计算理论塔板数结果
x编号
x的值
y编号
y的值
x1
0.983913
y1
0.9923
x2
0.969513
y2
0.985295
x3
0.945348
乙醇-正丙醇连续筛板式精馏塔的设计方案
乙醇-正丙醇连续筛板式精馏塔的设计方案乙醇-正丙醇连续筛板式精馏塔的设计方案流程的设计及说明1 设计思路蒸馏方式的确定蒸馏装置包括精馏塔,原料预热器,精馏釜(再沸器),冷凝器,釜液冷却器和产品冷却等设备,蒸馏过程按操作方式不同可分为连续蒸馏和间歇蒸馏两种流程,连续蒸馏具有生产能力大,产品质量稳定等优点,工业生产中以连续精馏为主,间歇蒸馏具有操作灵活,适应性强等优点,适合小规模,多品种或多组分物系的初步分离。
本次设计采用连续筛板精馏塔,常压精馏。
2 装置流程的确定 (1)物料的储存和输送在流程中设置原料罐,产品罐及离心泵。
原料可泵直接送入塔内,使程序连续稳定的进行。
(2)参数的检测和调控流量,压力和温度是生产中的重要参数,必须在流程中的适当位置装设仪表,以测量这些参数。
同时,在生产过程中,物料的状态。
加热剂和冷却剂的状态都不可能避免的会有一些波动,因此必须在流程中设置一定的阀门。
(3)冷凝装置的确定本设计采用塔顶全凝器,以便于准确地对控制回流比。
(4)热能的利用精馏过程是组分多次部分汽化和多次部分冷凝的过程,耗能较多,因此选择适宜的回流比使过程处于最佳条件下进行,可使能耗至最低。
3 操作条件的确定 (1) 操作压力的选取本次设计采用常压操作。
除热敏性物料外,凡通过常压精馏不难实现分离要求,并能利用江河水或循环水将镏出物冷凝下来的系统。
(2)加料状态的选择本设计选择q=1时进料,原因是使塔的操作稳定,精,提镏段利用相同塔径,便于制造。
(3) 加料方式蒸馏大多采用间接蒸汽加热,设置再沸器。
(4)回流比的选择一般经验值为min )0.21.1(R R -=。
本设计采用min 5.1R R =,初步设定后经过流体力学验算,负荷条件,故选择合理。
塔顶冷凝器的冷凝方式与冷却介质的选择塔顶冷凝温度不要求低于30℃,工业上多用水冷 (5)板式塔类型的选择本次设计采用连续筛板式精馏塔 4 设计方案的确定(1)满足工艺和操作要求(2)满足经济上的要求,安全生产,保护环境。
乙醇和正丙醇物系分离系统设计方案
乙醇和正丙醇物系分离系统设计方案1 绪论目前研究最为热门的精馏塔可算是填料塔,也是取得许多成果的领域。
规整填料及各种高效填料开发成功后,在工业上的应用范围逐步扩大,打破了填料只适用于小塔的概念,而且在减压和常压精馏场合呈现出了取代板式塔的趋势,尤其是在老塔的扩充改造中。
板式塔是目前最主要的精馏塔塔型,对它的研究一直长盛不衰。
筛板塔和浮阀塔成功取代泡罩塔是效益巨大的成果,板式塔的设计已达到较高的水平,结果比较可靠。
具有各种特点的新型塔板的开发研究不断展开。
随着筛板塔泡罩塔的不断改进,浮阀塔产生了,它结合了两者的优点有具有自己的特点。
本设计中我们选用浮阀塔,浮阀塔具有结构简单,造价低,制造方便,塔板开孔率大,生产能力大等优点。
但在设计中使用不当,会引起阀片脱落或卡死等现象,使塔板效率和操作弹性下降。
由于浮阀塔的上述优点,且加工方便,故有关浮阀塔板的研究开发远较其他形式的塔板广泛,是目前新型塔板研开发的主要方向。
近年来与浮阀塔一直成为化工生中主要的传质设备,为减少对传质的不利影响,可将塔板的液体进入区制突起的斜台状,这样可以降低进口处的速度使塔板上气流分布均匀。
浮阀塔多用不锈钢板或合金。
实际操作表明,浮阀在一定程度的漏夜状态下,使其操作板效率明显下降,其操作的负荷范围较泡罩塔窄,但设计良好的塔其操作弹性仍可达到满意的程度。
本设计是采用浮阀塔板连续精馏分离乙醇和正丙醇的混合溶液,由于浮阀塔的研究比较成熟,因此本设计的结果有较高的可信度。
2 设计方案说明2.1设计方案的确定2.1.1装置流程的确定装置包括精馏塔,原料预热器,再沸器,冷凝器,釜液冷却器和产品冷却器等设备。
蒸馏过程按操作方式的不同,分为连续蒸馏和间歇蒸馏两种流程。
连续蒸馏具有生产能力大,产品质量稳定等特点,适合原料处理量大且需获得组成一定的产品的混合物的分离,工业生产中以连续蒸馏为主。
因此本设计中采用连续精馏。
由于乙醇-正丙醇物系可以用循环水作冷却介质,减少冷却费用。
乙醇正丙醇分离设计
化工原理课程设计任务书1.设计题目:常压连续筛板式精馏塔分离乙醇—正丙醇二元物系的设计。
2.原始数据及条件:进料:乙醇含量0.5(摩尔分数,下同),其余为正丙醇,F=3400Kg/h,塔顶进入全凝器,塔板压降0.7Kpa。
分离要求:塔顶乙醇含量0.90;回收率为0.95;全塔效率0.55。
操作条件:塔顶压强1.03atm(绝压);泡点进料; R/Rmin=1.6 。
3.设计任务:(1)完成该精馏塔的各工艺设计,包括设备设计及辅助设备选型。
(2)画出带控制点的工艺流程图、塔板版面布置图、精馏塔设计条件图。
(3)写出该精馏塔的设计说明书,包括设计结果汇总和设计评价。
摘要在本次任务中,根据化工原理课程设计的要求设计的是乙醇----丙醇连续浮阀精馏塔,除了要计算其工艺流程、物料衡算、热量衡算、筛板塔的设计计算,以外,并对精馏塔的主要工艺流程进行比较详细的设计,并画出了精馏塔的工艺流程图和设备条件图。
本次设计选取回流比R=1.8Rmin=1.6×1.34=2.144应用图解法计算理论版数,求得理论塔板NT为12块(包括塔釜再沸器),第6块为进料板。
设计中采用的精馏装置有精馏塔 ,冷凝器等设备,采用间接蒸汽加热,物料在塔内进行精馏分离,余热由塔顶产品冷凝器中的冷却介质带走,完成传热传质. 塔的附属设备中,所有管线均采用无缝钢管。
预热器采用管壳式换热器。
用99.97℃塔釜液加热。
料液走壳程,釜液走管程。
本设计采用了筛板塔对乙醇-丙醇进行分离提纯,塔板为碳钢材料,通过板压降、漏液、液泛、液沫夹带的流体力学验算,均在安全操作范围内。
关键字:乙醇-丙醇筛板塔物料衡算目录第一章 概述 (4)1.1 精馏操作对塔设备的要求 (4)1.2 板式塔类型 (4)1.2.1 筛板塔 (4)1.2.2浮阀塔 (5)第二章 塔板的工艺设计 (6)2.1 精馏塔全塔物料衡算 (6)2.1.1 原料液及塔顶、塔底产品的摩尔分率与物料衡算 (6)2.1.2 原料液及塔顶、塔底产品的摩尔质量 (6)2.2 理论塔板数的确定 (6)2.2.1 理论板层数NT 的求取 (6)2.2.2 实际板层数的求取 (8)第三章 精馏塔的工艺条件及有关物性数据的计算 (9)3.1 操作压力计算 (9)3.2 操作温度计算 (9)3.3 平均摩尔质量计算 (9)3.4 平均密度计算 (10)3.5 液体平均表面张力的计算 (11)3.6 液体平均黏度计算 (13)第四章 精馏塔的塔体工艺尺寸的计算 (14)4.1 塔径的设计计算 (14)4.2 塔的有效高度的计算 (15)第五章 塔板主要工艺尺寸的计算 (16)5.1 溢流装置计算 (16)5.2 塔板布置 (17)第六章 筛板的流体力学验算 (19)6.1 塔板压强降 (19)6.1.1 干板阻力c h 计算。
乙醇正丁醇正丙醇的分离工艺流程图
乙醇正丁醇正丙醇的分离工艺流程图Separating a mixture of ethanol, n-butanol, and n-propanol into their individual components requires a careful and efficient process. The challenge lies in the fact that these alcohols have similar physical properties, such as boiling points and solubility, making it difficult to separate them using simple distillation or solvent extraction alone.分离乙醇、正丁醇和正丙醇的混合物成分需要一种谨慎而高效的工艺。
挑战在于这些醇类具有类似的物理性质,如沸点和溶解度,这使得使用简单的蒸馏或溶剂萃取单独分离它们变得困难。
One potential approach to separating these alcohols is through fractional distillation, a process that takes advantage of the small differences in boiling points between the compounds. By gradually heating the mixture and collecting the fractions that evaporate at different temperatures, it is possible to separate the alcohols based on their boiling points.分离这些醇类的一种潜在方法是通过分馏过程,利用化合物间较小的沸点差异。
乙醇-正丙醇的分离设计.doc
乙醇-正丙醇的分离设计.化工原理课程设计作业1。
设计主题:常压连续筛板蒸馏塔中乙醇-正丙醇二元体系的分离设计。
2.原始数据和条件:提要:乙醇含量为0.5(摩尔分数,下同),其余为正丙醇,F=3400Kg千克/小时,塔顶进入全冷凝器,塔板压降为0.7千帕。
分离要求: 塔顶乙醇含量为0.90;回收率为0.95。
整个塔的效率是0.55。
操作条件:塔顶压力为1.03atm(绝对压力);泡点进料;R/Rmin=1.6 .3.设计任务:(1)完成精馏塔的工艺设计,包括设备设计和辅助设备选型。
(2)绘制带控制点的工艺流程图、塔盘布置图和精馏塔设计工况图。
(3)编写精馏塔的设计规范,包括设计结果总结和设计评价。
本课题根据化工原理课程设计的要求,设计了乙醇-常压连续筛板精馏塔分离乙醇-正丙醇二元体系。
2.原始数据和条件:提要:乙醇含量为0.5(摩尔分数,下同),其余为正丙醇,F=3400Kg千克/小时,塔顶进入全冷凝器,塔板压降为0.7千帕。
分离要求: 塔顶乙醇含量为0.90;回收率为0.95。
整个塔的效率是0.55。
操作条件:塔顶压力为1.03atm(绝对压力);泡点进料;R/Rmin=1.6 .3.设计任务:(1)完成精馏塔的工艺设计,包括设备设计和辅助设备选型。
(2)绘制带控制点的工艺流程图、塔盘布置图和精馏塔设计工况图。
(3)编写精馏塔的设计规范,包括设计结果总结和设计评价。
在本课题中,根据化工原理课程设计的要求,设计的是乙醇:乙醇-丙醇筛板塔物料平衡目录第一章总结了51.1精馏操作对塔设备的要求51.2板式塔51.2.1筛板塔51.2.2浮阀塔6第二章塔板工艺设计72.1精馏塔总塔物料平衡72.1进料液和塔顶、塔底产品摩尔分数和物料平衡72.1.2原料液和塔顶、塔底产品摩尔质量72.2理论塔板数的测定72.2.1理论塔板数的测定NT 72.2.2实际塔板数的测定9第3章精馏塔工艺条件和相关物理性能数据的计算103.1操作压力的计算103.2操作温度的计算103.3平均摩尔质量的计算103.4平均密度的计算113.5液体平均表面张力的计算123.6液体平均粘度的计算14第4章蒸馏塔的工艺尺寸计算154.1塔直径的计算154.2塔有效高度的计算16第5章塔盘主要工艺尺寸的计算175.1溢流装置的计算175.2塔盘的布置18第6章塔盘的流体力学计算XXXX 3月[4] 《化工工艺设计手册上》,6月XXXX版[5] 《化工工艺设计手册下》,6月XXXX 版[6] 《化工原理》(第二卷),大连理工大学编辑。
分离乙醇正丙醇混合液的精馏塔设计课程设计共46页文档
TOC \o "1-3" \h \u 一设计任务书..PAGEREF _Toc7399 2二塔板的工艺设计 (5)(一)设计方案的确定 (5)(二)精馏塔的物料衡算 (5)1.原料液及塔顶、塔釜产品的摩尔分数 (5)2. 物料衡算 (6)(三)物性参数的计算 (6)1.操作温度的确定 (7)2. 密度的计算 (7)3.混合液体表面张力的计算 (11)4.混合物的粘度 (12)5.相对挥发度 (13)(四)理论板数及实际塔板数的计算 (14)1.理论板数的确定 (14)2.实际塔板数确定 (18)(五)热量衡算 (18)1.加热介质的选择 (18)2. 冷却剂的选择: (19)3.比热容及汽化潜热的计算 (19)(六)塔径的初步设计 (23)1.汽液相体积流量的计算 (23)2.塔径的计算与选择 (23)(七)溢流装置 (25)1.堰长 (25)2.弓形降液管的宽度和横截面积 (25)3.降液管底隙高度 (26)4.塔板分布 (26)5. 浮阀数目与排列 (26)(八)汽相通过浮阀塔板的压降 (29)1.精馏段 (29)2.提馏段 (30)(九)淹塔 (30)1.精馏段 (30)2.提馏段 (31)(十)雾沫夹带 (31)(十一)塔板负荷性能图 (32)1.雾沫夹带线 (32)2.液泛线 (34)3.液相负荷上限线 (35)4.漏液线 (35)5.液相负荷下限线 (35)三、塔总体高度计算 (38)1.塔顶封头 (39)2.塔顶空间 (39)3.塔底空间 (39)5.进料板处板间距 (40)6.裙座 (40)四、塔的接管 (40)1.进料管 (40)2.回流管 (41)3.塔底出料管 (41)4.塔顶蒸汽出料管 (41)5.塔底蒸汽管 (42)五、塔的附属设备设计 (42)1.冷凝器的选择 (42)2.再沸器的选择 (43)六、参考文献................................................. .. (5)4七、设计评述................................................. .. (5)5一、设计任务书【设计题目】分离乙醇-正丙醇混合液的精馏塔设计【设计条件】进料:乙醇含量35%(质量分数,下同),其余为正丙醇分离要求:塔顶乙醇含量90%;塔底乙醇含量0.01%生产能力:年处理乙醇-正丙醇混合液25000吨,年工7200小时操作条件:间接蒸汽加热;塔顶压强1.03atm(绝压);泡点进料; R=5【设计计算】塔板的工艺设计(一)设计方案的确定本设计的任务是分离乙醇-正丙醇混合液。
乙醇和正丙醇物系分离系统设计方案
乙醇和正丙醇物系分离系统设计方案1 绪论目前研究最为热门的精馏塔可算是填料塔,也是取得许多成果的领域。
规整填料及各种高效填料开发成功后,在工业上的应用范围逐步扩大,打破了填料只适用于小塔的概念,而且在减压和常压精馏场合呈现出了取代板式塔的趋势,尤其是在老塔的扩充改造中。
板式塔是目前最主要的精馏塔塔型,对它的研究一直长盛不衰。
筛板塔和浮阀塔成功取代泡罩塔是效益巨大的成果,板式塔的设计已达到较高的水平,结果比较可靠。
具有各种特点的新型塔板的开发研究不断展开。
随着筛板塔泡罩塔的不断改进,浮阀塔产生了,它结合了两者的优点有具有自己的特点。
本设计中我们选用浮阀塔,浮阀塔具有结构简单,造价低,制造方便,塔板开孔率大,生产能力大等优点。
但在设计中使用不当,会引起阀片脱落或卡死等现象,使塔板效率和操作弹性下降。
由于浮阀塔的上述优点,且加工方便,故有关浮阀塔板的研究开发远较其他形式的塔板广泛,是目前新型塔板研开发的主要方向。
近年来与浮阀塔一直成为化工生中主要的传质设备,为减少对传质的不利影响,可将塔板的液体进入区制突起的斜台状,这样可以降低进口处的速度使塔板上气流分布均匀。
浮阀塔多用不锈钢板或合金。
实际操作表明,浮阀在一定程度的漏夜状态下,使其操作板效率明显下降,其操作的负荷范围较泡罩塔窄,但设计良好的塔其操作弹性仍可达到满意的程度。
本设计是采用浮阀塔板连续精馏分离乙醇和正丙醇的混合溶液,由于浮阀塔的研究比较成熟,因此本设计的结果有较高的可信度。
2 设计方案说明2.1设计方案的确定2.1.1装置流程的确定装置包括精馏塔,原料预热器,再沸器,冷凝器,釜液冷却器和产品冷却器等设备。
蒸馏过程按操作方式的不同,分为连续蒸馏和间歇蒸馏两种流程。
连续蒸馏具有生产能力大,产品质量稳定等特点,适合原料处理量大且需获得组成一定的产品的混合物的分离,工业生产中以连续蒸馏为主。
因此本设计中采用连续精馏。
由于乙醇-正丙醇物系可以用循环水作冷却介质,减少冷却费用。
分离乙醇正丙醇混合液的精馏塔课程设计说明书
一设计任务书 (2)二塔板的工艺设计 (3)(一)设计方案的确定 (3)(二)精馏塔的物料衡算 (3)1.原料液及塔顶、塔釜产品的摩尔分数 (3)2. 物料衡算 (4)(三)物性参数的计算 (4)1.操作温度的确定 (5)2. 密度的计算 (5)3.混合液体表面力的计算 (11)4.混合物的粘度 (12)5.相对挥发度 (14)(四)理论板数及实际塔板数的计算 (15)1.理论板数的确定 (15)2.实际塔板数确定 (18)(五)热量衡算 (19)1.加热介质的选择 (19)2. 冷却剂的选择: (19)3.比热容及汽化潜热的计算 (19)(六)塔径的初步设计 (25)1.汽液相体积流量的计算 (25)2.塔径的计算与选择 (26)(七)溢流装置 (29)1.堰长 (29)2.弓形降液管的宽度和横截面积 (30)3.降液管底隙高度 (31)4.塔板分布 (31)5. 浮阀数目与排列 (32)(八)汽相通过浮阀塔板的压降 (35)1.精馏段 (35)2.提馏段 (36)(九)淹塔 (37)1.精馏段 (37)2.提馏段 (38)(十)雾沫夹带 (38)(十一)塔板负荷性能图 (40)1.雾沫夹带线 (40)2.液泛线 (41)3.液相负荷上限线 (43)4.漏液线 (43)5.液相负荷下限线 (44)三、塔总体高度计算 (47)1.塔顶封头 (47)2.塔顶空间 (47)3.塔底空间 (48)5.进料板处板间距 (48)6.裙座 (48)四、塔的接管 (50)1.进料管 (50)2.回流管 (50)3.塔底出料管 (51)4.塔顶蒸汽出料管 (51)5.塔底蒸汽管 (51)五、塔的附属设备设计 (52)1.冷凝器的选择 (52)2.再沸器的选择 (53)六、参考文献.............................................................. . (54)七、设计评述.............................................................. . (55)一、设计任务书【设计题目】分离乙醇-正丙醇混合液的精馏塔设计【设计条件】进料:乙醇含量35%(质量分数,下同),其余为正丙醇分离要求:塔顶乙醇含量90%;塔底乙醇含量0.01%生产能力:年处理乙醇-正丙醇混合液25000吨,年工7200小时操作条件:间接蒸汽加热;塔顶压强1.03atm(绝压);泡点进料;R=5【设计计算】塔板的工艺设计(一)设计方案的确定本设计的任务是分离乙醇-正丙醇混合液。
分离乙醇—正丙醇混合物系浮阀式精馏塔的设计方案
分离乙醇—正丙醇混合物系浮阀式精馏塔的设计方案第一部分设计方案的确定精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。
精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。
根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。
精馏过程与其他蒸馏过程最大的区别,是在塔两端同时提供纯度较高的液相和气相回流,为精馏过程提供了传质的必要条件。
提供高纯度的回流,使在相同理论板的条件下,为精馏实现高纯度的分离时,始终能保证一定的传质推动力。
所以,只要理论板足够多,回流足够大时,在塔顶可能得到高纯度的轻组分产品,而在塔底获得高纯度的重组分产品。
精馏广泛应用于石油,化工,轻工等工业生产中,是液体混合物分离中首选分离方法。
1.1塔的选择本次课程设计是分离乙醇—正丙醇二元物系,在此我选用连续精馏浮阀塔。
浮阀塔结构简单,有两种结构型式,即条状浮阀和盘式浮阀,它们的操作和性能基本是一致的,只是结构上有区别,其中以盘式浮阀应用最为普遍。
盘式浮阀塔板结构,是在带降液装置的塔板上开有许多升气孔,每个孔的上方装有可浮动的盘式阀片。
为了控制阀片的浮动范围,在阀片的上方有一个十字型或依靠阀片的三条支腿。
前者称十字架型,后者称V型。
目前因V型结构简单,因而被广泛使用,当上升蒸汽量变化时,阀片随之升降,使阀片的开度不同,所以塔的工作弹性较大。
浮阀塔具有以下优点:(1). 生产能力大,由于塔板上浮阀安排比较紧凑,其开孔面积大于泡罩塔板,生产能力比泡罩塔板大 20%~40%,与筛板塔接近。
(2).操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许的负荷波动范围比筛板塔,泡罩塔都大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理课程设计任务书1.设计题目:常压连续筛板式精馏塔分离乙醇—正丙醇二元物系的设计。
2.原始数据及条件:进料:乙醇含量0.5(摩尔分数,下同),其余为正丙醇,F=3400Kg/h,塔顶进入全凝器,塔板压降0.7Kpa。
分离要求:塔顶乙醇含量0.90;回收率为0.95;全塔效率0.55。
操作条件:塔顶压强1.03atm(绝压);泡点进料; R/Rmin=1.6 。
3.设计任务:(1)完成该精馏塔的各工艺设计,包括设备设计及辅助设备选型。
(2)画出带控制点的工艺流程图、塔板版面布置图、精馏塔设计条件图。
(3)写出该精馏塔的设计说明书,包括设计结果汇总和设计评价。
摘要在本次任务中,根据化工原理课程设计的要求设计的是乙醇----丙醇连续浮阀精馏塔,除了要计算其工艺流程、物料衡算、热量衡算、筛板塔的设计计算,以外,并对精馏塔的主要工艺流程进行比较详细的设计,并画出了精馏塔的工艺流程图和设备条件图。
本次设计选取回流比R=1.8Rmin=1.6×1.34=2.144应用图解法计算理论版数,求得理论塔板NT为12块(包括塔釜再沸器),第6块为进料板。
设计中采用的精馏装置有精馏塔 ,冷凝器等设备,采用间接蒸汽加热,物料在塔内进行精馏分离,余热由塔顶产品冷凝器中的冷却介质带走,完成传热传质. 塔的附属设备中,所有管线均采用无缝钢管。
预热器采用管壳式换热器。
用99.97℃塔釜液加热。
料液走壳程,釜液走管程。
本设计采用了筛板塔对乙醇-丙醇进行分离提纯,塔板为碳钢材料,通过板压降、漏液、液泛、液沫夹带的流体力学验算,均在安全操作范围内。
关键字:乙醇-丙醇筛板塔物料衡算目录第一章概述 (5)1.1 精馏操作对塔设备的要求 (5)1.2 板式塔类型 (6)1.2.1 筛板塔 (6)1.2.2浮阀塔 (6)第二章塔板的工艺设计 (7)2.1 精馏塔全塔物料衡算 (7)2.1.1 原料液及塔顶、塔底产品的摩尔分率与物料衡算 (7)2.1.2 原料液及塔顶、塔底产品的摩尔质量 (8)2.2 理论塔板数的确定 (8)2.2.1 理论板层数NT的求取 (8)2.2.2 实际板层数的求取 (10)第三章精馏塔的工艺条件及有关物性数据的计算 (10)3.1 操作压力计算 (10)3.2 操作温度计算 (11)3.3 平均摩尔质量计算 (11)3.4 平均密度计算 (12)3.5 液体平均表面张力的计算 (13)3.6 液体平均黏度计算 (15)第四章精馏塔的塔体工艺尺寸的计算 (16)4.1 塔径的设计计算 (16)4.2 塔的有效高度的计算 (17)第五章塔板主要工艺尺寸的计算 (17)5.1 溢流装置计算 (17)5.2 塔板布置 (19)第六章筛板的流体力学验算 (20)6.1 塔板压强降 (20)6.1.1 干板阻力c h计算。
干板阻力由下式计算: (20)6.2 液面落差 (21)6.3 雾沫夹带量的验算 (21)6.4漏液的验算 (21)6.5 液泛验算 (21)第七章塔板负荷性能图 (22)7.1 漏液线(气相负荷下限线) (22)7.2 液沫夹带线 (23)7.3 液相负荷下限线 (24)7.4 液相负荷上限线 (24)7.5 液泛线 (24)7.6 负荷性能图 (25)第一章概述1.1 精馏操作对塔设备的要求精馏所进行的是气、液两相之间的传质,而作为气、液两相传质所用的塔设备,首先必须要能使气、液两相得到充分的接触,以达到较高的传质效率。
但是,为了满足工业生产和需要,塔设备还得具备下列各种基本要求:(1) 气、液处理量大,即生产能力大时,仍不致发生大量的雾沫夹带、拦液或液泛等破坏操作的现象。
(2) 操作稳定,弹性大,即当塔设备的气(汽)、液负荷有较大范围的变动时,仍能在较高的传质效率下进行稳定的操作并应保证长期连续操作所必须具有的可靠性。
(3) 流体流动的阻力小,即流体流经塔设备的压力降小,这将大大节省动力消耗,从而降低操作费用。
对于减压精馏操作,过大的压力降还将使整个系统无法维持必要的真空度,最终破坏物系的操作。
(4) 结构简单,材料耗用量小,制造和安装容易。
(5) 耐腐蚀和不易堵塞,方便操作、调节和检修。
(6) 塔内的滞留量要小。
实际上,任何塔设备都难以满足上述所有要求,况且上述要求中有些也是互相矛盾的。
不同的塔型各有某些独特的优点,设计时应根据物系性质和具体要求,抓住主要矛盾,进行选型。
1.2 板式塔类型气-液传质设备主要分为板式塔和填料塔两大类。
精馏操作既可采用板式塔,也可采用填料塔,本设计介绍板式塔。
板式塔为逐级接触型气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种。
板式塔在工业上最早使用的是泡罩塔、筛板塔,特别是在本世纪五十年代以后,随着石油、化学工业生产的迅速发展,相继出现了大批新型塔板,如S型板、浮阀塔板、多降液管筛板、舌形塔板、穿流式波纹塔板、浮动喷射塔板及角钢塔板等。
目前从国内外实际使用情况看,主要的塔板类型为浮阀塔、筛板塔及泡罩塔,而前两者使用尤为广泛,因此在此讨论浮阀塔与筛板塔的设计。
1.2.1 筛板塔筛板塔是传质过程常用的塔设备,它的主要优点有:结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右。
处理能力大,比同塔径的泡罩塔可增加10~15%。
塔板效率高,比泡罩塔高15%左右。
压降较低,每板压力比泡罩塔约低30%左右。
本设计采用其进行二元物系的分离。
1.2.2浮阀塔浮阀塔是在泡罩塔的基础上发展起来的,它主要的改进是取消了升气管和泡罩,在塔板开孔上设有浮动的浮阀,浮阀可根据气体流量上下浮动,自行调节,使气缝速度稳定在某一数值。
这一改进使浮阀塔在操作弹性、塔板效率、压降、生产能力以及设备造价等方面比泡罩塔优越。
但在处理粘稠度大的物料方面,又不及泡罩塔可靠。
浮阀塔广泛用于精馏、吸收以及脱吸等传质过程中。
塔径从200mm到6400mm,使用效果均较好。
国外浮阀塔径,大者可达10m,塔高可达80m,板数有的多达数百块。
浮阀塔之所以这样广泛地被采用,是因为它具有下列特点:处理能力大,比同塔径的泡罩塔可增加20~40%,而接近于筛板塔。
操作弹性大,一般约为5~9,比筛板、泡罩、舌形塔板的操作弹性要大得多。
塔板效率高,比泡罩塔高15%左右。
压强小,在常压塔中每块板的压强降一般为400~660N/m2。
液面梯度小。
使用周期长。
粘度稍大以及有一般聚合现象的系统也能正常操作。
结构简单,安装容易,制造费为泡罩塔板的60~80%,为筛板塔的120~130%。
其缺点是处理易结焦、高粘度的物料时,阀片易与塔板粘结;在操作工程中有时会发生阀片脱落或卡死等现象,使塔板效率下降。
第二章塔板的工艺设计2.1 精馏塔全塔物料衡算2.1.1 原料液及塔顶、塔底产品的摩尔分率与物料衡算乙醇的摩尔质量M A=46Kg/Kmol,正丙醇的摩尔质量M B=60Kg/Kmol 总物料 F = D + W易挥发组分 F χ F = D χ D + W χW 若以塔顶易挥发组分为主要产品,则回收率η为 %100⨯=FD Fx DX η式中 F 、D 、W ——分别为原料液、馏出液和釜残液流量,kmol/h ; χF 、χD 、χW ——分别为原料液、馏出液和釜残液中易挥发组分的摩尔分率。
已知原料乙醇组成: X F =0.5塔顶组成: X D =0.92 F=3000Kg/hη=0.95原料处理量 F=533400=56.09 %1005.015.6490.0⨯⨯⨯=D η D= 22.77Kmol/h 物料衡算式:F=D+W 64.15=33.86+WF X F =D X D +W X W 64.15×0.5=0.90×33.86+ W X W 联立代入求解: W=32.37Kmol/h X W=0.04832.1.2 原料液及塔顶、塔底产品的摩尔质量MF=0.5×46+0.5×60=54.4Kg/kmolMD=0.9×46+0.1×60=47.12Kg/kmolMW=0. 053×46+0.947×60=59.33Kg/kmol2.2 理论塔板数的确定2.2.1 理论板层数NT 的求取本设计采用图解法求解理论塔板数。
① 由手册查得乙醇—正丙醇气液平衡数据,绘出x-y 图,见图2-1 X/ 液相0.126 0.188 0.210 0.358 0.461 0.546 0.600 0.663 0.884 1.0 Y/ 气相0.240 0.318 0.349 0.550 0.650 0.711 0.760 0.799 0.914 1.0 0.0000.1000.2000.3000.4000.5000.6000.7000.8000.9001.00000.10.20.30.40.50.60.70.80.91图2.1乙醇-正丙醇x-y 关系② 求最小回流比与操作回流比采用作图法求最小回流比。
在图2.1中对角线上,自点e (0.5,0.5)作垂线ef 即为进料线,该线与平衡线的交点坐标为y q=0.671,x q =0.50故最小回流比为q q q min y y χχ--=D R =73.150.0671.00.6710.90=-- 取操作回流比为R=1.6min R =1.6×1.34=3.12③ 求精馏塔的气、液相负荷上升蒸汽量: D R V )1(+== (2.144+1) ×33.86=93.81Kmol/h 下降液体量: RD L ==2.144×33.86=71.04 K mol/h 上升蒸汽量: F q D R V )1()1('--+== V = 93.81Kmol/h 下降液体量=L+F=72.60+64.15=126.18Kmol/h④ 求操作线方程精馏段操作线方程:22.036.090.046.10686.3346.1066.721+=⨯+=+=+x x x V D x V L y D n n 提馏段操作线方程:016.035.1053.046.10629.3046.10675.136''1-=⨯-=-+--++=+x x x W qF L W x W qF L qF L y W m m 5.图解法求理论板层数采用图解法求理论塔板数,如图2.2所示.求解结果为 总理论板层数N 精=13.5 进料板位置N T =62.2.2 实际板层数的求取精馏段实际板层数N 精=5/0.555=11.53≈12提馏段实际板层数N 提=7/0.555=12.5≈13第三章 精馏塔的工艺条件及有关物性数据的计算3.1 操作压力计算塔顶操作压力PD=101.3 kpaqF RD L +='每层塔板压降△P=0.7 kpa进料板压力PF=101.3+0.7×10=109.3 kpa精馏段平均压力Pm=(101.3+108.3)/2=105.5 kpa 塔釜压力Pm=101.3+0.7×23=117.4 kpa提馏段平均压力Pm=(108.3+117.4)/2=112.85 kpa3.2 操作温度计算进料板温度 C t F ︒=52.91塔顶温度 C t D ︒=1.80塔釜温度 C t W ︒=97.99精馏段平均温度 C t m ︒=+=81.852/)15.8015.88( 提馏段平均温度 C t m ︒=+=06.942/)97.9915.88(、3.3 平均摩尔质量计算塔顶平均摩尔质量的计算由理论板的计算过程可知,90.01==D x y ,x1=0.85mol Kg M VD m /41.4760)90.01(4690.0=⨯-+⨯=mol Kg M LD m /1.4860)85.01(4685.0=⨯-+⨯=进料板平均摩尔质量的计算由理论板的计算过程可知,66.0=F y ,462.0=F xmol Kg M VFm /76.5060)66.01(4666.0=⨯-+⨯=mol Kg M LFm /53.5360)462.01(46462.0=⨯-+⨯=精馏段的平均摩尔质量为mol Kg M Vm /51.492/)76.5041.47(=+=mol Kg M Lm /15.512/)53.531.48(=+=3.4 平均密度计算(1)气相平均密度计算由理想气体状态方程式计算,即3/75.1)15.27354.08(314.811.4945.104m Kg RT M p m Vm mVm =+⨯⨯==ρ(2)液相平均密度计算表温度 (℃)0 20 40 60 80 100 乙醇(kg/m 3)829.1 808.9 787.9 765.7 742.3 717.4 正丙醇(kg/m 3)828.9 810.1 790.6 770.2 748.7 726.1 液相平均密度计算依下式计算,即:LBB LA ALm a a ρρρ+=1塔顶液相平均密度的计算。