2018年金牛区二诊数学试卷答案
2018年四川省成都市中考数学二诊试卷含答案
2018年四川省成都市中考数学二诊试卷一、选择题(本大题共10小题,共30.0分)1.化简的结果是A. 3B.C.D. 92.下列运算正确的是A. B. C. D.3.如图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是A. B. C. D.4.把写成n为整数的形式,则n为A. 1B.C. 2D.5.谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转打一数学学习用具,谜底为A. 量角器B. 直尺C. 三角板D. 圆规6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的众数、极差分别为A. 、B. 、3C. 、D. 、37.将抛物线向左平移2个单位长度,再向下平移3个单位长度,则平移后所得到的抛物线解析式是A. B.C. D.8.若关于x的一元二次方程有实根,则m的取值范围是A. B. C. 且 D. 且9.如图:有一块含有的直角三角板的两个顶点放在直尺的对边上,如果,那么的度数是A. B. C. D.10.如图,正五边形ABCDE内接于,若的半径为5,则的长度为A.B.C.D.二、填空题(本大题共9小题,共36.0分)11.因式分解:______.12.如图,在“”网格中,有3个涂成黑色的小方格若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是______.13.如图,▱ABCD中,点E在边AD上,以BE为折痕,将向上翻折,点A正好落在CD上的F点,若的周长为8 cm,的周长为20cm,则FC的长为______cm.14.把直线向上平移m个单位后,与直线的交点在第一象限,则m的取值范围是______.15.某班体育委员对本班学生一周锻炼时间单位:小时进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是______小时.16.若是关于字母a,b的二元一次方程的一个解,代数式的值是______.17.如图,同心圆的半径为6,8,AB为小圆的弦,CD为大圆的弦,且ABCD为矩形,若矩形ABCD面积最大时,矩形ABCD的周长为______.18.如图,在矩形ABCD中,将绕点A按逆时针方向旋转一定角度后,BC的对应边交CD边于点连接、若,,,则结果保留根号.19.在平面直角坐标系,对于点和,给出如下定义:若,则称点Q为点P的“可控变点”例如:点的“可控变点”为点,点的“可控变点”为点点的“可控变点”坐标为______;若点P在函数的图象上,其“可控变点”Q的纵坐标的取值范围是,实数a的值为______.三、计算题(本大题共1小题,共6.0分)20.先化简,再求值:,其中四、解答题(本大题共8小题,共78.0分)21.计算:;解不等式,并把解集在数轴上表示出来.22.为了测量白塔的高度AB,在D处用高为米的测角仪 CD,测得塔顶A的仰角为,再向白塔方向前进12米,又测得白塔的顶端A的仰角为,求白塔的高度参考数据,,,,结果保留整数23.某销售公司年终进行业绩考核,人事部门把考核结果按照A,B,C,D四个等级,绘制成两个不完整的统计图,如图1,图2.参加考试的人数是______,扇形统计图中D部分所对应的圆心角的度数是______,请把条形统计图补充完整;若考核为D等级的人中仅有2位女性,公司领导计划从考核为D等级的人员中选2人交流考核意见,请用树状图或表格法,求所选人员恰为一男一女的概率;为推动公司进一步发展,公司决定计划两年内考核A等级的人数达到30人,求平均每年的增长率精确到,24.如图,已知,是直线AB和某反比例函数的图象的两个交点.求直线AB和反比例函数的解析式;观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;反比例函数的图象上是否存在点C,使得的面积等于的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.25.如图,是的外接圆,,,过点B的直线l是的切线,点D是直线l上一点,过点D作交CB延长线于点E,连接AD,交于点F,连接BF、CD交于点G.求证: ∽ ;当时,求的值;若CD平分,,连接CF,求线段CF的长.26.为进一步缓解城市交通压力,湖州推出公共自行车公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数称为存量情况,表格中时的y的值表示8:00点时的存量,时的y值表示9:00点时的存量以此类推,他发现存量辆与为整数满足如图所示的一个二次函数关系.根据所给图表信息,解决下列问题:______,解释m的实际意义:______;求整点时刻的自行车存量y与x之间满足的二次函数关系式;已知10::00这个时段的还车数比借车数的2倍少4,求此时段的借车数.27.在正六边形ABCDEF中,N、M为边上的点,BM、AN相交于点P如图1,若点N在边BC上,点M在边DC上,,求证:;如图2,若N为边DC的中点,M在边ED上,,求的值;如图3,若N、M分别为边BC、EF的中点,正六边形ABCDEF的边长为2,请直接写出AP的长.28.如图,直线l:与x轴、y轴分别相交于A、B两点,抛物线经过点B,交x轴正半轴于点C.求该抛物线的函数表达式;已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;将点A绕原点旋转得点,连接、,在旋转过程中,一动点M从点B出发,沿线段以每秒3个单位的速度运动到,再沿线段以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?2018年四川省成都市中考数学二诊试卷解析一、选择题(本大题共10小题,共30.0分)29.化简的结果是A. 3B.C.D. 9【答案】A【解析】解:,故A正确,故选:A.根据算术平方根是非负数,可得答案.本题考查了二次根式的化简,算术平方根是非负数.30.下列运算正确的是A. B. C. D.【答案】C【解析】解:A、,此选项计算错误;B、,此选项计算错误;C、,此选项计算正确;D、,此选项计算错误;故选:C.根据合并同类项法则、同底数幂的除法、同底数幂的乘法和幂的乘方分别计算即可判断.本题主要考查幂的运算,解题的关键是熟练掌握同底数幂的除法、同底数幂的乘法、幂的乘方及积的乘方运算的法则.31.如图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是A.B.C.D.【答案】B【解析】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.32.把写成n为整数的形式,则n为A. 1B.C. 2D.【答案】B【解析】解:把写成n为整数的形式为,则n为.故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.33.谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转打一数学学习用具,谜底为A. 量角器B. 直尺C. 三角板D. 圆规【答案】D【解析】解:圆规有两只脚,一铁脚固定,另一脚旋转,故选:D.利用圆规的特点直接得到答案即可.本题考查了简单的数学知识,稍有点数学常识的同学就会做出正确的回答,难度不大.34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的众数、极差分别为A. 、B. 、3C. 、D. 、3【答案】C【解析】解:这组数据中出现次数最多,有4次,这组数据的众数为,最大数据为、最小数据为,极差为,故选:C.根据众数和极差的定义分别进行解答即可.本题主要考查极差与众数,解题的关键是掌握极差最大值最小值、一组数据中出现次数最多的数据叫做众数.35.将抛物线向左平移2个单位长度,再向下平移3个单位长度,则平移后所得到的抛物线解析式是A. B.C. D.【答案】C【解析】解:将抛物线向左平移2个单位长度,再向下平移3个单位长度,平移后所得抛物线解析式为,故选:C.直接根据平移的规律即可求得答案.本题主要考查函数图象的平移,掌握平移的规律是解题的关键,即“左加右减,上加下减”.36.若关于x的一元二次方程有实根,则m的取值范围是A. B. C. 且 D. 且【答案】D【解析】解:关于x的一元二次方程有实根,,并且,且.故选:D.由于x的一元二次方程有实根,那么二次项系数不等于0,并且其判别式是非负数,由此可以建立关于m的不等式组,解不等式组即可求出m的取值范围.本题考查了根的判别式的知识,总结:一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根.此题切记不要忽略一元二次方程二次项系数不为零这一隐含条件.37.如图:有一块含有的直角三角板的两个顶点放在直尺的对边上,如果,那么的度数是A. B. C. D.【答案】B【解析】解:,,,,,,故选:B.直接利用平行线的性质进而结合等腰直角三角形的性质得出答案.此题主要考查了平行线的性质以及等腰直角三角形的性质,正确应用平行线的性质是解题关键.38.如图,正五边形ABCDE内接于,若的半径为5,则的长度为A.B.C.D.【答案】B【解析】解:连接OA、OB,五边形ABCDE是正五边形,,的长度,故选:B.连接OA、OB,根据正五边形的性质求出,根据弧长公式计算即可.本题考查的是正多边形的性质、弧长的计算,掌握正多边形的中心角的计算公式、弧长的计算公式是解题的关键.二、填空题(本大题共9小题,共36.0分)39.因式分解:______.【答案】【解析】解:原式.故答案为:.直接利用完全平方公式分解因式得出答案.此题主要考查了公式法分解因式,正确应用公式是解题关键.40.如图,在“”网格中,有3个涂成黑色的小方格若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是______.【答案】【解析】解:如图,可选2个方格完成的图案为轴对称图案的概率.故答案为:.根据轴对称的性质设计出图案即可.本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.41.如图,▱ABCD中,点E在边AD上,以BE为折痕,将向上翻折,点A正好落在CD上的F点,若的周长为8 cm,的周长为20cm,则FC的长为______cm.【答案】6【解析】解:,;的周长为,的周长为 cm,分析可得:的周长的周长.故答案为6.根据折叠的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.42.把直线向上平移m个单位后,与直线的交点在第一象限,则m的取值范围是______.【答案】【解析】解:方法一:直线向上平移m个单位后可得:,联立两直线解析式得:,解得:,即交点坐标为,交点在第一象限,,解得:.故答案为:.方法二:如图所示:把直线向上平移m个单位后,与直线的交点在第一象限,则m的取值范围是.故答案为:.直线向上平移m个单位后可得:,求出直线与直线的交点,再由此点在第一象限可得出m的取值范围.本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横、纵坐标均大于0.43.某班体育委员对本班学生一周锻炼时间单位:小时进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是______小时.【答案】11【解析】解:由统计图可知,一共有:人,该班这些学生一周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,该班这些学生一周锻炼时间的中位数是11,故答案为:11.根据统计图中的数据可以得到一共多少人,然后根据中位数的定义即可求得这组数据的中位数.本题考查折线统计图、中位数,解答本题的关键是明确中位数的定义,利用数形结合的思想解答.44.若是关于字母a,b的二元一次方程的一个解,代数式的值是______.【答案】24【解析】解:把,代入,得,.故答案为:24.把,代入原方程可得的值,把代数式变形为,然后计算.本题考查了公式法分解因式,把作为一个整体是解题的关键,而也需要运用公式变形,以便计算.45.如图,同心圆的半径为6,8,AB为小圆的弦,CD为大圆的弦,且ABCD为矩形,若矩形ABCD面积最大时,矩形ABCD的周长为______.【答案】【解析】解:连接OA,OD,作,,,根据矩形的面积和三角形的面积公式发现:矩形的面积为面积的4倍,、OD的长是定值,当的正弦值最大时,三角形的面积最大,即,则,,,,则矩形ABCD的周长是:.故答案是:.连接OA,OD,作,,,将此题转化成三角形的问题来解决,根据三角函数的定义可以证明三角形的面积,根据这一公式分析面积的最大值的情况,然后熟练应用勾股定理,以及直角三角形斜边上的高等于两条直角边乘积除以斜边求得长方形的长和宽,进一步求其周长.本题考查了垂径定理和矩形的性质,考生应注意熟练运用勾股定理,来求边长和周长.46.如图,在矩形ABCD中,将绕点A按逆时针方向旋转一定角度后,BC的对应边交CD边于点连接、若,,,则结果保留根号.【答案】【解析】解:连接AC,AG,,由旋转可得,,,,,∽,,,,是等腰直角三角形,,设,则,,中,,,解得,舍去,,中,,,故答案为:.先连接AC,AG,,构造直角三角形以及相似三角形,根据∽,可得到,设,则,,中,根据勾股定理可得方程,求得AB的长以及AC的长,即可得到所求的比值.本题主要考查了旋转的性质,相似三角形的判定与性质,等腰直角三角形的性质,解一元二次方程以及勾股定理的综合应用,解决问题的关键是作辅助线构造直角三角形以及相似三角形,依据相似三角形的对应边成比例,将转化为,并依据直角三角形的勾股定理列方程求解,从而得出矩形的宽AB,这也是本题的难点所在.47.在平面直角坐标系,对于点和,给出如下定义:若,则称点Q为点P的“可控变点”例如:点的“可控变点”为点,点的“可控变点”为点点的“可控变点”坐标为______;若点P在函数的图象上,其“可控变点”Q的纵坐标的取值范围是,实数a的值为______.【答案】【解析】解:根据定义,点的“可控变点”坐标为;依题意,图象上的点P的“可控变点”必在函数的图象上,如图.当时,,此时,抛物线的开口向下,故当时,随x的增大而减小,即:,当时,,,,当时,,抛物线的开口向上,故当时,随x的增大而减小,即:,又,的值是:.故答案为,.直接根据“可控变点”的定义直接得出答案;时,求出x的值,再根据“可控变点”的定义即可解决问题.本题主要考查了二次函数图象上点的坐标特征,解答本题的关键是熟练掌握新定义“可控变点”,解答此题还需要掌握二次函数的性质,此题有一定的难度,属于创新题目,中考常考题型.三、计算题(本大题共1小题,共6.0分)48.先化简,再求值:,其中【答案】解:原式,当时,原式.【解析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.四、解答题(本大题共8小题,共78.0分)49.计算:;解不等式,并把解集在数轴上表示出来.【答案】解:原式;,解不等式得:,解不等式得:,不等式组的解集为,在数轴上表示为.【解析】先求出每一部分的值,再代入求出即可;先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组、在数轴上表示不等式组的解集、零指数幂、负整数指数幂、特殊角的三角函数值等知识点,能求出每一部分的值是解的关键,能正确根据不等式的解集得出不等式组的解集是解的关键.50.为了测量白塔的高度AB,在D处用高为米的测角仪 CD,测得塔顶A的仰角为,再向白塔方向前进12米,又测得白塔的顶端A的仰角为,求白塔的高度参考数据,,,,结果保留整数【答案】解:设,在中,,在中,,由题意得,,解得:,故AB米.答:这个电视塔的高度AB为23米.【解析】设,在中表示出CE,在中表示出FE,再由米,可得出关于x的方程,解出即可得出答案.本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形,难度一般.51.某销售公司年终进行业绩考核,人事部门把考核结果按照A,B,C,D四个等级,绘制成两个不完整的统计图,如图1,图2.参加考试的人数是______,扇形统计图中D部分所对应的圆心角的度数是______,请把条形统计图补充完整;若考核为D等级的人中仅有2位女性,公司领导计划从考核为D等级的人员中选2人交流考核意见,请用树状图或表格法,求所选人员恰为一男一女的概率;为推动公司进一步发展,公司决定计划两年内考核A等级的人数达到30人,求平均每年的增长率精确到,【答案】50【解析】解:参加考试的总人数为人,扇形统计图中D部分所对应的圆心角的度数是,C等级人数为,补全图形如下:故答案为:50、;画树状图为:共有20种等可能的结果数,其中恰好抽到一名男生和一名女生的结果数为12,所以恰好抽到一名男生和一名女生的概率;设增长率是x,根据题意,得:,解得:负值舍去,所以,答:每年的增长率为.由A等级人数及其百分比可得总人数,用乘以D等级人数所占比例可得其圆心角度数,再用总人数减去其他学生人数求得C等级人数即可补全图形;画树状图展示所有20种等可能的结果数,再找出恰好抽到一名男生和一名女生的结果数,然后利用概率公式求解.设增长率是x,根据“两年内考核A等级的人数达到30人”列出关于x的方程,解之即可得.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式求事件A或B的概率也考查了统计图和一元二次方程.52.如图,已知,是直线AB和某反比例函数的图象的两个交点.求直线AB和反比例函数的解析式;观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;反比例函数的图象上是否存在点C,使得的面积等于的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.【答案】解:设反比例函数解析式为,把代入,可得,反比例函数解析式为;把代入,可得,即,,设直线AB的解析式为,把,代入,可得,解得,直线AB的解析式为;由题可得,当x满足:或时,直线AB在双曲线的下方;存在点C.如图所示,延长AO交双曲线于点,点A与点关于原点对称,,的面积等于的面积,此时,点的坐标为;如图,过点作BO的平行线,交双曲线于点,则的面积等于的面积,的面积等于的面积,由可得OB的解析式为,可设直线的解析式为,把代入,可得,解得,直线的解析式为,解方程组,可得;如图,过A作OB的平行线,交双曲线于点,则的面积等于的面积,设直线的解析式为“,把代入,可得“,解得b“,直线的解析式为,解方程组,可得;综上所述,点C的坐标为,,【解析】运用待定系数法,根据,,即可得到直线AB和反比例函数的解析式;根据直线AB在双曲线的下方,即可得到x的取值范围;分三种情况进行讨论:延长AO交双曲线于点,过点作BO的平行线,交双曲线于点,过A作OB 的平行线,交双曲线于点,根据使得的面积等于的面积,即可得到点C的坐标为,,本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.53.如图,是的外接圆,,,过点B的直线l是的切线,点D是直线l上一点,过点D作交CB延长线于点E,连接AD,交于点F,连接BF、CD交于点G.求证: ∽ ;当时,求的值;若CD平分,,连接CF,求线段CF的长.【答案】证明:如图1中,,,是切线,,,,,,∽ ;解:如图2中,∽ ;四边形ACED是矩形,:DE::2:4,,∽ ,.解:如图3中,,,,易证 ≌ , ∽ ,::AC,,设,则,,,,,可得,,,设CF交AB于H.则.【解析】只要证明,即可;首先证明BE:DE::2:4,由 ∽ ,可得;想办法证明AB垂直平分CF即可解决问题;本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.54.为进一步缓解城市交通压力,湖州推出公共自行车公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数称为存量情况,表格中时的y的值表示8:00点时的存量,时的y值表示9:00点时的存量以此类推,他发现存量辆与为整数满足如图所示的一个二次函数关系.根据所给图表信息,解决下列问题:______,解释m的实际意义:______;求整点时刻的自行车存量y与x之间满足的二次函数关系式;已知10::00这个时段的还车数比借车数的2倍少4,求此时段的借车数.【答案】13 7:00时自行车的存量【解析】解:,,则m的实际意义:7:00时自行车的存量;故答案为:13,7:00时自行车的存量;由题意得:,设二次函数的关系式为:,把、和分别代入得:,解得:,;当时,,当时,,设10::00这个时段的借车数为x,则还车数为,根据题意得:,,答:10::00这个时段的借车数为3辆.根据等量关系式:借车数还车数:00的存量,列式求出m的值,并写出实际意义;先求出9点时自行车的存量,当时所对应的y值,即求出n的值;再设一般式将三点坐标代入求出解析式;先分别计算9::00和10::00的自行车的存量,即当和时所对应的y值,设10::00这个时段的借车数为x,根据上一时段的存量还车数借车数此时段的存量,列式求出x的值即可.本题是二次函数的应用,理解各量的实际意义:还车数、借车数、存量;弄清等量关系式:上一时段的存量还车数借车数此时段的存量,考查了利用待定系数法求二次函数的关系式,并根据图象理解真正意义.55.在正六边形ABCDEF中,N、M为边上的点,BM、AN相交于点P如图1,若点N在边BC上,点M在边DC上,,求证:;如图2,若N为边DC的中点,M在边ED上,,求的值;如图3,若N、M分别为边BC、EF的中点,正六边形ABCDEF的边长为2,请直接写出AP的长.【答案】证明:在正六边形ABCDEF中,,,,≌ ,,,∽ ,,;延长BC,ED交于点H,延长BN交DH于点G,取BG的中点K,连接KC,在正六边形ABCDEF中,,,,,,,,,,,,,≌ ,,,,,四边形MABG是平行四边形,,,即,如图3,过N作,交AB的延长线于H,,,中,,,,,中,,连接FC,延长FC与AN交于G,设FC与BM交于K,易证 ≌ ,,,,,,,,,,,,,,,设,,由得:,,.【解析】先证明 ≌ ,得,再证明 ∽ ,列比例式可得结论;作辅助线,构建等边三角形的三角形的中位线CK,先证明是等边三角形得:,,由 ≌ ,得,,利用四边形MABG是平行四边形,得,所以,即;如图3,作辅助线,构建直角三角形和全等三角形,根据直角三角形的性质得:,,利用勾股定理求,证明 ≌ ,利用和,列比例式可得:,设,,根据得:,可得结论.本题是相似三角形的综合题,考查了正六边形的性质、全等三角形和相似三角形的性质和判定、平行四边形的性质和判定、平行线分线段成比例定理等知识,一般情况下,正多边形的题解答都比较麻烦,熟练掌握正多边形的定义及性质是关键,第三问比较复杂,辅助线的作法是关键.56.如图,直线l:与x轴、y轴分别相交于A、B两点,抛物线经过点B,交x轴正半轴于点C.求该抛物线的函数表达式;已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;将点A绕原点旋转得点,连接、,在旋转过程中,一动点M从点B出发,沿线段以每秒3个单位的速度运动到,再沿线段以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?【答案】解:将代入,得,点B的坐标为,。
四川省成都市2018年中考数学二模试卷 含答案
2018年四川省成都市中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>52.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m33.如图,几何体的左视图是()A.B.C.D.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》6.某校举行汉字听写大赛,参赛学生的成绩如下表:对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是67.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣38.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠29.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.(10分)已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.(1)求证:AB2=AE•AD;(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E 与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是三角形.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D 不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).28.(12分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.2018年四川省成都市中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).2.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3【分析】根据同类项的定义、幂的运算法则逐一计算即可判断.【解答】解:A、3x、4y不是同类项,不能合并,此选项错误;B、(﹣a)3•a2=﹣a5,此选项错误;C、(x3y)5=x15y5,此选项错误;D、m10÷m7=m3,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同类项的定义、幂的运算法则.3.如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.6.某校举行汉字听写大赛,参赛学生的成绩如下表:A.平均数是92B.中位数是92C.众数是92D.极差是6【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.7.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣3【分析】由平移的规律即可求得答案.【解答】解:将抛物线y=x2向下平移3个单位,则函数解析式变为y=x2﹣3,将y=x2﹣3向左平移1个单位,则函数解析式变为y=(x+1)2﹣3,故选:D.【点评】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:C.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.9.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补【分析】根据两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补解答即可.【解答】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2016的长.【解答】解:根据题意得:l1==,l2==,l3===π,则L2016=,故选:B.【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出l2016的长.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=8.【分析】利用平方差公式分解因式,进而把已知代入求出答案.【解答】解:∵x﹣=1,∴2x﹣y=2,则4x2﹣y2=(2x+y)(2x﹣y)=4×2=8.故答案为:8.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=2.【分析】根据翻折变换,可知△ONC≌△AOM,且是Rt△,在△ONC中解得NO.【解答】解:根据翻折变换,可知△ONC≌△AOM,且是Rt△,∵AC=,∠CAB=30°,∴在Rt△ONC,解得ON=1,∴MN=2.故答案为2.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为y=﹣x.【分析】直接利用一次函数图象平移规律进而得出答案.【解答】解:把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为:y=﹣(x﹣1)﹣1=﹣x.故答案为:y=﹣x.【点评】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.【分析】(1)直接利用零指数幂、负指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案;(2)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】(1)解:()﹣1﹣(π﹣2018)0﹣4cos30°=﹣2+2﹣1﹣4×=﹣3;(2)解不等式①得:x≤4解不等式②得:x≤2;∴不等式组的解集为:2≤x≤4不等式组的解集在数轴上表示:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)【分析】分别在直角三角形中,利用锐角三角函数定义表示出AC与BC,根据AC﹣BC=AB求出PC的长即可.【解答】解:在Rt△ACP中,tan∠PAC=,即AC=,在Rt△BCP中,tan∠CBP=,即BC=,由AB=AC﹣BC,得到﹣=10000,解得:PC=≈3388,则飞机飞行的高度为3388m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)【分析】(1)总人数以及条形统计图求出喜欢“花椒饼”的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率;(3)设小吃产业年营业额平均增长率为x,根据等量关系为:2011年的利润×(1+增长率)2=2013年的利润,把相关数值代入即可列出方程.【解答】解:(1)喜欢花椒饼的人数为50﹣14﹣21﹣5=10(人),补全条形统计图如下:(2)列表如下:则P=.(3)设小吃产业年营业额平均增长率为x,由题意可得:50×(1+x)2=60.5,解得:x=10%,答:这两年平均增长率是10%.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;还考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.【分析】(1)把点A坐标分别代入反比例函数y=,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想. 20.(10分)已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点,AD 交BC 于点E ,连接AB . (1)求证:AB 2=AE •AD ;(2)过点D 作⊙O 的切线,与BC 的延长线交于点F ,若AE =2,ED =4,求EF 的长.【分析】(1)点A 是劣弧BC 的中点,即可得∠ABC =∠ADB ,又由∠BAD =∠EAB ,即可证得△ABE ∽△ADB ,根据相似三角形的对应边成比例,即可证得AB 2=AE •AD ;(2)由(1)求得AB 的长,又由BD 为⊙O 的直径,即可得∠A =90°,由DF 是⊙O 的切线,可得∠BDF =90°,在Rt △ABD 中,求得tan ∠ADB 的值,即可求得∠ADB 的度数,即可证得△DEF 是等边三角形,则问题得解.【解答】解:(1)证明:∵点A 是劣弧BC 的中点, ∴∠ABC =∠ADB .(1分) 又∵∠BAD =∠EAB , ∴△ABE ∽△ADB .(2分) ∴.∴AB 2=AE •AD .(2)解:∵AE =2,ED =4, ∵△ABE ∽△ADB ,∴,∴AB2=AE•AD,∴AB2=AE•AD=AE(AE+ED)=2×6=12.∴AB=2(舍负).(4分)∵BD为⊙O的直径,∴∠A=90°.又∵DF是⊙O的切线,∴DF⊥BD.∴∠BDF=90°.在Rt△ABD中,tan∠ADB=,∴∠ADB=30°.∴∠ABC=∠ADB=30°.∴∠DEF=∠AEB=60°,∠EDF=∠BDF﹣∠ADB=90°﹣30°=60°.∴∠F=180°﹣∠DEF﹣∠EDF=60°.∴△DEF是等边三角形.∴EF=DE=4.(5分)【点评】此题考查了相似三角形的判定与性质,圆的切线的性质,以及三角函数等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4.【分析】由折线统计图得出这五天游客数量从小到大排列为结果,再根据中位数的定义求解可得.【解答】解:将这5天的人数从小到大排列为21.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4,故答案为:23.4.【点评】本题主要考查折线统计图与中位数,解题的关键是根据折线统计图得出数据,并熟练掌握中位数的概念.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是9.【分析】把代数式分解因式,然后把数值代入,计算得出答案即可.【解答】解:x2﹣2xy+y2=(x﹣y)2当x=5.4,y=2.4时,原式=(5.4﹣2.4)2=9,故答案为9.【点评】此题考查因式分解和代数式的求值,掌握完全平方公式是解决问题的关键.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为4.【分析】根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.【解答】解:连接CD,当CD⊥AB时,CD取得最小值,∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴AC=4,BC===4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵点E与点D关于AC对称,∴CE=CD,∴∠CED=∠CDE,∵∠EFD+∠CED=90°,∠CDF+∠CDE=90°,∴∠F=∠CDF,∴CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4,故答案为4【点评】本题考查了圆的综合题、轴对称的性质,垂线段最短,直角三角形30度角性质等知识,解题的关键是求出CD的最小值,学会利用垂线段最短解决最值问题,属于中考常考题型.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是等腰直角三角形.【分析】根据旋转的性质知:两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,则易证△ACF是等腰直角三角形.【解答】解:在矩形ABCD中,根据勾股定理知AC=,在矩形AEFG中,根据勾股定理知AF=.∵根据旋转的性质知,矩形ABCD和AEFG是两个大小完全相同的矩形,∠CAF=90°,∴AB=AE=GF,BC=AD=AG,∴AC=AF,∴△ACF是等腰直角三角形,故填:等腰直角.【点评】本题考查了旋转的性质、等腰直角三角形的判定与性质以及矩形的性质.注意,旋转前后的图形全等.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是y3<y2<y1(用“>”“<”或“=”连接).【分析】先确定抛物线对称轴为直线x=﹣1,然后二次函数的性质,通过比较三个点到直线x=﹣1的距离的大小得到y1、y2、y3的大小关系.【解答】解:∵抛物线的对称轴与x轴交于点(﹣1,0),∴抛物线的对称轴为直线x=﹣1,∵点(2,y1)到直线x=﹣1的距离最大,点(0,y3)到直线x=﹣1的距离最小,∴y3<y2<y1.故答案为y3<y2<y1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.运用二次函数的性质是解决本题的关键.五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【分析】(1)根据利润=销售价﹣进价列关系式;(2)总利润=每个的利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;(3)利用函数的性质求最值.【解答】解:由题意得:(1)50+x﹣40=x+10(元)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)【点评】应用题中求最值需先求函数表达式,再运用函数性质求解.此题的关键在列式表示销售价格和销售量.27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D 不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=4;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为1﹣cosα(用含α的表达式表示).【分析】(1)先求出BE的长度后发现BE=BD的,又∠B=60°,可知△BDE是等边三角形,可得∠BDE=60°,另外∠DEF=60°,可证得△CDF是等边三角形,从而CF=CD=BC﹣BD;(2)证明△EBD∽△DCF,这个模型可称为“一线三等角•相似模型”,根据“AA”判定相似;【思考】由角平分可联系到角平分线的性质“角平分线上点到角两边的距离相等”,可过D作DM⊥BE,DG⊥EF,DN⊥CF,则DM=DG=DN,从而证明△BDM≌△CDN可得BD=CD;【探索】由已知不能求得C△ABC=AB+BC+AC=2AB+2OB=2(m+m cosα),则需要用m和α是三角函数表示出C△AEF ,C△AEF=AE+EF+AF=AG+AH=2AG;题中直接已知点O是BC的中点,应用(2)题的方法和结论,作OG⊥BE,OD⊥EF,OH⊥CF,可得EG=ED,FH=DF,则C△AEF=AE+EF+AF=AG+AH=2AG,而AG=AB﹣BO,从而可求得.【解答】(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF.又∠B=∠C=60°,∴△EBD∽△DCF;【思考】存在,如图②,过D作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别是M、G、N,∵ED平分∠BEF且FD平分∠CFE.∴DM=DG=DN.又∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≌△CDN,∴BD=CD,即点D是BC的中点,∴=;【探索】如图③,连接AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别是G、D、H.则∠BGO=∠CHO=90°,∵AB=AC,O是BC的中点,∴∠B=∠C,OB=OC,∴△OBG≌△OCH,∴OG=OH,GB=CH,∠BOG=∠COH=90°﹣α,则∠GOH=180°﹣(∠BOG+∠COH)=2α,∴∠EOF=∠B=α由(2)题可猜想应用EF=ED+DF=GE+FH(可通过半角旋转证明),=AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,则C△AEF设AB=m,则OB=m cosα,GB=m cos2α.====1﹣cosα.故答案是:1﹣cosα.。
【高三数学试题精选】2018年高考数学二诊试卷(成都市理科附答案和解释)
2018年高考数学二诊试卷(成都市理科附答案和解释)
5 2018年四川省成都市高考数学二诊试卷(理科)
一、选择题本大题共12个小题,每小题5分,共60分
1.已知复数z= ,则z的共轭复数是()
A.1﹣iB.1+ic.iD.﹣i
2.设Sn是等差数列{an}的前n项和,a1=2,a5=3a3,则a3=()A.﹣2B.0c.3D.6
3.已知向量, =(3,),∈R,则“=﹣6”是“ ”的()
A.充要条B.充分不必要条
c.必要不充分条D.既不充分也不必要条
4.设函数f(x)=lg2x,在区间(0,5)上随机取一个数x,则f(x)<2的概率为()
A. B. c. D.
5.一个几何体的三视图如图所示,则它的体积为()
A. B. c.20D.40
6.已知x,满足条(为常数),若目标函数z=x+3的最大值为8,则=()
A.﹣16B.﹣6c. D.6
7.定义运算a*b为执行如图所示的程序框图输出的S值,则的值为()
A. B. c.4D.6
8.如图,在正四棱锥S﹣ABcD中,E,,N分别是Bc,cD,Sc的中点,动点P在线段N上运动时,下列四个结论
①EP⊥Ac;
②EP∥BD;。
四川省成都市金牛区2018届高三二诊模拟数学文科参考答案
20.解: (1)设 P(x,y),则 PA 的中点为( y 轴相切 所以 |
|洠t
0 㘱t 0 |
( 2 )设所作切线方程是 y 㘱 t洠
t洠
洠
|
洠
㘹x 㘱 洠 t洠
0
洠
,化简得:
0 ,令
洠
, , PA
洠
洠
=2,即
因
洠 、
0
㘱
洠 0 0 㘱⸸ 0 , 洠 㘱⸸ 0 0
∈ h⸸,
t t洠
洠 0
0
㘱
t
0
,因该切线与圆 E 相切,则
⸸
洠‹ 洠
| 0=
洠 洠 0
0㘱
, 故△QMN 的面积的最小值是 洠
洠h
0
㘱
0㘱
洠h
洠‹
1 1 x 1 解 :(1) f ( x ) 0 a ln x , 记 h ( x ) ln x ( x 0), 则 h '( x ) 2 . x x x
易知,当x (0,1) 时, h ( x ) 单减;当x (1, ) 时, h ( x ) 单增. h ( x ) min h (1) 1, a的取值范围是 ( ,1]
' (2)当a=1时,g(x)=x 2 -x -x 2 ln x,g( x)=x -1 2 x ln x,
金牛区数学二诊模拟文科参考答案
一、选择题 1 A 2 A 3 D 14、 4 D 7 5 A 6 B 15、 2 7 C 16、 8 B 2
9 B
10 A
11 C
12 C
二、填空题 13、 6
三 、 解 答 题 : 17 、 解 :( 1 ) 由 已 及 正 弦 定 理 有 : sinAcosB=2sinCcosA-cosAsinB 所以 A=
2018年四川省成都市金牛区中考数学二诊试卷
2018年四川省成都市金牛区中考数学二诊试卷一、选择题1.(3分)(2018•金牛区模拟)﹣8的相反数是()A.B.﹣8C.8D.﹣2.(3分)(2018•金牛区模拟)如图所示,该几何体的主视图是()A.B.C.D.3.(3分)(2018•金牛区模拟)2017下半年,四川货物贸易进出口总值为2328.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2328.7亿元用科学记数法表示是()A.2.3287×1011B.2.3287×1010C.2.3287×103D.2.3287×1084.(3分)(2018•金牛区模拟)使代数式y=有意义的自变量x的取值范围是()A.x≠4B.x>3C.x≥3D.x≥3且x≠4 5.(3分)(2018•金牛区模拟)下列计算中,正确的是()A.x3•x2=x4B.(x+y)(x﹣y)=x2+y2C.(x﹣3)2=x2﹣6x+9D.3x3y2÷xy2=3x46.(3分)(2018•金牛区模拟)一元二次方程x2﹣x﹣3=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.(3分)(2018•金牛区模拟)根据PM2.5空气质量标准:24小时PM2.5均值在0~35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()天数12211PM2.51820212930 A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米8.(3分)(2018•金牛区模拟)如图,在平行四边形ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF :S△BFA=9:25,则DE:EC=()A.2:5B.3:2C.2:3D.5:39.(3分)(2018•金牛区模拟)如图,AB为圆O的直径,点C在圆O上,若∠OCA=60°,AB=4,则长为()A.B.C.D.10.(3分)(2018•金牛区模拟)对于二次函数y=﹣x2+2x+8.有下列四个结论:①它的对称轴是直线x=1;②当x>1时,y的值随x的增大而减小;③x=﹣2是方程﹣x2+2x+8=0的一个根;④当﹣2<x<4时,﹣x2+2x+8>0.其中正确的结论的个数为()A.1B.2C.3D.4二、填空题11.(3分)(2016•孝感)分解因式:2x2﹣8y2=.12.(3分)(2018•金牛区模拟)如图,Rt△ABC中,∠ACB=90°,过点C的直线DF与∠BAC的平分线AE平行,若∠B=40°,则∠BCF=度.13.(3分)(2018•金牛区模拟)将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:14.(3分)(2018•金牛区模拟)如图,在平面直角坐标系中有一个长方形ABCO,C点在x轴上,A点在y轴上,B点坐标(8,4),将长方形沿EF折叠,使点B落到原点O处,点C落到点D处,则△ODF的面积等于.三、解答题15.(2018•金牛区模拟)(1)计算:20180﹣|﹣|+(﹣)﹣1+2cos30°(2)解不等式组:16.(2018•金牛区模拟)先化简,再从﹣2,2,0和4选一个合适的值代入.17.(2018•金牛区模拟)某课外研究小组为了解学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名同学的兴趣爱好(每人只能选其中一项),并将调查结果绘制成统计图,请根据图中提供的信息解答下列问题:(1)在这次考察中一共调查了名学生,请补全条形统计图;(2)被调查同学中恰好有4名学来自初一2班,其中有2名同学选择了篮球,有2名同学选择了乒乓球,曹老师打算从这4名同学中选择两同学了解他们对体育社团的看法,请用列表法或画树状图法,求选出的两人恰好都选择同一种球的概率.18.(2018•金牛区模拟)如图,某中学在主楼的顶部D和大门A的上方之间挂一些彩旗,经测量,大门距主楼的距离BC=90m,在大门处测得主楼顶部的仰角是30°,而当时测倾器离地面BE=1.5m.求:学校主楼CD的高度(结果精确到0.01m)19.(2018•金牛区模拟)如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A.B两点,与反比例函数y2=的图象分别交于C.D两点,点D(2,﹣3),OA=2.(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;(2)直接写出k1x+b﹣≥0时自变量x的取值范围.(3)动点P(0,m)在y轴上运动,当|PC﹣PD|的值最大时,直接写出P点的坐标.20.(2018•金牛区模拟)如图,已知在△ABP中,C是BP边上一点,PA是⊙O 的切线,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:∠PAC=∠PBA;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=8,AF:FD=1:3,GF=1①求CF的长;②求cos∠ACE的值.一、填空题21.(3分)(2018•金牛区模拟)一元二次方程x2+4x﹣5=0的两根分别为a和b,则a2+b2的值为.22.(3分)(2018•金牛区模拟)若关于x的方程无解,则m的值为.23.(3分)(2012•成都)有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a ﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是.24.(3分)(2013•呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(﹣6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为.25.(3分)(2018•金牛区模拟)如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则点E运动过程中,DF的最小值是.二、解答题26.(2018•金牛区模拟)某超市欲购进一种今年新上市的产品,购进价为20元/件,为了调查这种新产品的销路,该超市进行了试销售,得知该产品每天的销售量t(件)与每件的销售价x(元/件)之间有如下关系:t=﹣20x+800(20≤x≤40)(1)请写出该超市销售这种产品每天的销售利润y(元)与x之间的函数关系式,并求出超市能获取的最大利润是多少元.(2)若超市想获取1500元的利润.求每件的销售价.(3)若超市想获取的利润不低于1500元,请求出每件的销售价X的范围?27.(2018•金牛区模拟)如图1,已知△ABC中,∠ABC=45°,点E为AC上的一点,连接BE,在BC上找一点G,使得AG=AB,AG交BE于K.(1)若∠ABE=30°,且∠EBC=∠GAC,BK=6,求EK的长度.(2)如图2,过点A作DA⊥AE交BE于点D,过D.E分别向AB所在的直线作垂线,垂足分别为点M、N,且NE=AM,若D为BE的中点,证明:(3)如图3,将(2)中的条件“若D为BE的中点”改为“若(n是大于2的整数)”,其他条件不变,请直接写出的值.28.(2018•金牛区模拟)抛物线y=x2+bx+5经过点A(t,0)和点B(5t,0).(t >0)(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=2x+5相交于C.D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.2018年四川省成都市金牛区中考数学二诊试卷参考答案与试题解析一、选择题1.(3分)(2018•金牛区模拟)﹣8的相反数是()A.B.﹣8C.8D.﹣【解答】解:﹣8的相反数是﹣8,故C符合题意,故选:C.2.(3分)(2018•金牛区模拟)如图所示,该几何体的主视图是()A.B.C.D.【解答】解:该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选:D.3.(3分)(2018•金牛区模拟)2017下半年,四川货物贸易进出口总值为2328.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2328.7亿元用科学记数法表示是()A.2.3287×1011B.2.3287×1010C.2.3287×103D.2.3287×108【解答】解:2328.7亿=2.3287×1011,故选:A.4.(3分)(2018•金牛区模拟)使代数式y=有意义的自变量x的取值范围是()A.x≠4B.x>3C.x≥3D.x≥3且x≠4【解答】解:要使代数式y=有意义,则,解得:x≥3且x≠4,故选:D.5.(3分)(2018•金牛区模拟)下列计算中,正确的是()A.x3•x2=x4B.(x+y)(x﹣y)=x2+y2C.(x﹣3)2=x2﹣6x+9D.3x3y2÷xy2=3x4【解答】解:A、x3•x2=x5,此选项错误;B、(x+y)(x﹣y)=x2﹣y2,此选项错误;C、(x﹣3)2=x2﹣6x+9,此选项正确;D、3x3y2÷xy2=3x2,此选项错误;故选:C.6.(3分)(2018•金牛区模拟)一元二次方程x2﹣x﹣3=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【解答】解:∵△=(﹣1)2﹣4×1×(﹣3)=13>0,∴该方程有两个不相等的实数根.故选:B.7.(3分)(2018•金牛区模拟)根据PM2.5空气质量标准:24小时PM2.5均值在0~35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()天数12211PM2.51820212930 A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米【解答】解:一共7个数据,按照从小到大的顺序排列,第4个数据是21,故中位数是21微克/立方米.故选:A.8.(3分)(2018•金牛区模拟)如图,在平行四边形ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF :S△BFA=9:25,则DE:EC=()A.2:5B.3:2C.2:3D.5:3【解答】解:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∴△DFE∽△BFA,∴S△DEF :S△BFA=()2,∴=,∴DE:EC=3:2,故选:B.9.(3分)(2018•金牛区模拟)如图,AB为圆O的直径,点C在圆O上,若∠OCA=60°,AB=4,则长为()A.B.C.D.【解答】解:∵∠OCA=56°,OA=OC,∴∠A=60°,∴∠BOC=120°,∵AB=4,∴BO=2,∴的长为:.故选:B.10.(3分)(2018•金牛区模拟)对于二次函数y=﹣x2+2x+8.有下列四个结论:①它的对称轴是直线x=1;②当x>1时,y的值随x的增大而减小;③x=﹣2是方程﹣x2+2x+8=0的一个根;④当﹣2<x<4时,﹣x2+2x+8>0.其中正确的结论的个数为()A.1B.2C.3D.4【解答】解:y=﹣x2+2x﹣1+9=﹣(x﹣1)2+9,∴抛物线的对称轴为x=1,故①正确;∵a<0,对称轴为x=1,∴当x>1时,y的值随x的增大而减小,故②正确;当x=﹣2时,﹣(﹣2)2+2×(﹣2)+8=0,∴x=﹣2是方程﹣x2+2x+8=0的一个根,故③正确;令y=0得:﹣x2+2x+8=0,解得:x=﹣2或x=4,∴当﹣2<x<4时,﹣x2+2x+8>0,故④正确.故选:D.二、填空题11.(3分)(2016•孝感)分解因式:2x2﹣8y2=2(x+2y)(x﹣2y).【解答】解:2x2﹣8y2=2(x2﹣4y2)=2(x+2y)(x﹣2y).故答案为:2(x+2y)(x﹣2y).12.(3分)(2018•金牛区模拟)如图,Rt△ABC中,∠ACB=90°,过点C的直线DF与∠BAC的平分线AE平行,若∠B=40°,则∠BCF=65度.【解答】解:∵Rt△ABC中,∠ACB=90°,∠B=40°,∴∠BAC=50°,又∵AE平分∠BAC,∴∠CAE=25°,∴Rt△ACE中,∠AEC=65°,∵CD∥AE,∴∠BCF=∠AEC=65°,故答案为:65.13.(3分)(2018•金牛区模拟)将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:y=﹣5(x+5)2﹣3【解答】解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,故答案为:y=﹣5(x+5)2﹣3.14.(3分)(2018•金牛区模拟)如图,在平面直角坐标系中有一个长方形ABCO,C点在x轴上,A点在y轴上,B点坐标(8,4),将长方形沿EF折叠,使点B落到原点O处,点C落到点D处,则△ODF的面积等于6.【解答】解:由B点坐标(8,4),可得OC=8,BC=OD=4,在Rt△ODF中,DF2+OD2=OF2,即(8﹣OF)2+42=OF2,解得OF=5,在Rt△ODF中,DF===3,∴△ODF的面积=DO×DF=×4×3=6.故答案为:6.三、解答题15.(2018•金牛区模拟)(1)计算:20180﹣|﹣|+(﹣)﹣1+2cos30°(2)解不等式组:【解答】解:(1)原式=1﹣﹣2+2×=1﹣﹣2+=﹣1;(2),由①得:x>2.5,由②得:x≥4,则不等式组的解集为x≥4.16.(2018•金牛区模拟)先化简,再从﹣2,2,0和4选一个合适的值代入.【解答】解:原式=[﹣]÷=•=•=2(x+4)=2x+8,∵(x+2)(x﹣2)≠0且x≠0,∴x≠±2、0,则x=4,∴原式=2×4+8=16.17.(2018•金牛区模拟)某课外研究小组为了解学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名同学的兴趣爱好(每人只能选其中一项),并将调查结果绘制成统计图,请根据图中提供的信息解答下列问题:(1)在这次考察中一共调查了60名学生,请补全条形统计图;(2)被调查同学中恰好有4名学来自初一2班,其中有2名同学选择了篮球,有2名同学选择了乒乓球,曹老师打算从这4名同学中选择两同学了解他们对体育社团的看法,请用列表法或画树状图法,求选出的两人恰好都选择同一种球的概率.【解答】解:(1)由题意可知这次考察中一共调查了=60(名)∴该校喜欢足球的学生有:60×20%=12名,补全统计图如图:故答案为:60;(2)把2名选择了篮球和2名选择了乒乓球的叙述分别标记为A,B和a,b,根据题意列表如下:A B a bA(A,B)(A,a)(A,b)B(B,A)(B,a)(B,b)a(a,A)(a,B)(a,b)b(b,A)(b,B)(b,a)由可知总有12种等可能性结果,其中两人恰好都选择同一种球的情况有4种,所以两人恰好都选择同一种球的概率==.18.(2018•金牛区模拟)如图,某中学在主楼的顶部D和大门A的上方之间挂一些彩旗,经测量,大门距主楼的距离BC=90m,在大门处测得主楼顶部的仰角是30°,而当时测倾器离地面BE=1.5m.求:学校主楼CD的高度(结果精确到0.01m)【解答】解:过E做EN平行于BC交DC于N,∠DEN=30°且BC=EN,DN=EN•tan∠DEN=90•tan30°=30m,DC=DN+NC=DN+EB=30+1.5≈53.46m.19.(2018•金牛区模拟)如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A.B两点,与反比例函数y2=的图象分别交于C.D两点,点D(2,﹣3),OA=2.(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;(2)直接写出k1x+b﹣≥0时自变量x的取值范围.(3)动点P(0,m)在y轴上运动,当|PC﹣PD|的值最大时,直接写出P点的坐标.【解答】解:(1)∵点D(2,﹣3)在反比例函数y2=的图象上,∴k2=2×(﹣3)=﹣6,∴y2=﹣;如图,作DE⊥x轴于E∵OA=2∴A(﹣2,0),∵A(﹣2,0),D(2,﹣3)在y1=k1x+b的图象上,,解得k1=﹣,b=﹣,∴y=﹣x﹣;(2)由图可得,当k1x+b﹣≥0时,x≤﹣4或0<x≤2.(3)由,解得或,∴C(﹣4,),作C(﹣4,)关于y轴的对称点C'(4,),延长C'D交y轴于点P,∴由C'和D的坐标可得,直线C'D为y=x﹣,令x=0,则y=﹣,∴当|PC﹣PD|的值最大时,点P的坐标为(0,﹣).20.(2018•金牛区模拟)如图,已知在△ABP中,C是BP边上一点,PA是⊙O 的切线,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:∠PAC=∠PBA;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=8,AF:FD=1:3,GF=1①求CF的长;②求cos∠ACE的值.【解答】解:(1)如图1,连接BD,∵AD是⊙O直径,∴∠ABD=90°,∴∠ABP+∠DBP=90°,∵∠CAD=∠DBP,∴∠ABP+∠CAD=90°∵AP是⊙O的切线,∴∠PAD=90°,∴∠PAC+∠CAD=90°,∴∠PAC=∠ABP;(2)①如图2,连接BD,∵AD是⊙O直径,∴∠ABD=90°,∵CF⊥AD,∴∠AFG=90°=∠ABD,∵∠FAG=∠BAD,∴△FAG∽△BAD,∴=,∴AF•AD=AG•AB,∵AG•AB=8,∴AF•AD=8,∵AF:FD=1:3,设AF=a,∴FD=3a,∴AD=AD+FD=4a,∴a•4a=8,∴a=(舍负取正),∴AF=,AD=4连接CD,∵AD是⊙O直径,∴∠ACD=90°,∴∠CAF+∠ADC=90°,∵CF⊥AD,∴∠AFC=90°,∴∠CAF+∠ACF=90°,∴∠ADC=∠ACF,∵∠ACD=∠AFC=90°,∴△ACD∽△AFC,∴,∴AC2=AF•AD=8,在Rt△ACF中,根据勾股定理得,CF==;②∵△FAG∽△BAD,∴,∴,∴AB=BD,在Rt△ABD中,AD=4,根据勾股定理得,AB2+BD2=AD2,∴2BD2+BD2=32,∴BD=,∴cos∠ADB===.∵∠ACE=∠ADB,∴cos∠ACE=.一、填空题21.(3分)(2018•金牛区模拟)一元二次方程x2+4x﹣5=0的两根分别为a和b,则a2+b2的值为26.【解答】解:∵方程x2+4x﹣5=0的两根分别为a和b,∴a+b=﹣4,ab=﹣5,则a2+b2=(a+b)2﹣2ab=16+10=26,故答案为:26.22.(3分)(2018•金牛区模拟)若关于x的方程无解,则m的值为2或1.【解答】解:方程去分母得,mx﹣x+2=4,则x=,当分母x﹣2=0即x=2时,方程无解,所以m﹣1=1即m=2时方程无解,当m﹣1=0时,整式方程无解,即m=1,故答案为:2或123.(3分)(2012•成都)有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a ﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是.【解答】解:∵x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,∴△>0,∴[﹣2(a﹣1)]2﹣4a(a﹣3)>0,∴a>﹣1,将(1,0)代入y=x2﹣(a2+1)x﹣a+2得,a2+a﹣2=0,解得(a﹣1)(a+2)=0,a1=1,a2=﹣2.可见,符合要求的点为0,2,3.∴P=.故答案为:.24.(3分)(2013•呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(﹣6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为(0,12)或(0,﹣12).【解答】解:设线段BA的中点为E,∵点A(4,0)、B(﹣6,0),∴AB=10,E(﹣1,0).(1)如答图1所示,过点E在第二象限作EP⊥BA,且EP=AB=5,则易知△PBA 为等腰直角三角形,∠BPA=90°,PA=PB=;以点P为圆心,PA(或PB)长为半径作⊙P,与y轴的正半轴交于点C,∵∠BCA为⊙P的圆周角,∴∠BCA=∠BPA=45°,即则点C即为所求.过点P作PF⊥y轴于点F,则OF=PE=5,PF=1,在Rt△PFC中,PF=1,PC=,由勾股定理得:CF==7,∴OC=OF+CF=5+7=12,∴点C坐标为(0,12);(2)如答图2所示,在第3象限可以参照(1)作同样操作,同理求得y轴负半轴上的点C坐标为(0,﹣12).综上所述,点C坐标为(0,12)或(0,﹣12).故答案为:(0,12)或(0,﹣12).25.(3分)(2018•金牛区模拟)如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则点E运动过程中,DF的最小值是2.【解答】解:取线段AC的中点G,连接EG,如图所示.∵AC=BC=8,∠BCA=60°,∴△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG.在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=CD=BC=2.故答案为:2.二、解答题26.(2018•金牛区模拟)某超市欲购进一种今年新上市的产品,购进价为20元/件,为了调查这种新产品的销路,该超市进行了试销售,得知该产品每天的销售量t(件)与每件的销售价x(元/件)之间有如下关系:t=﹣20x+800(20≤x≤40)(1)请写出该超市销售这种产品每天的销售利润y(元)与x之间的函数关系式,并求出超市能获取的最大利润是多少元.(2)若超市想获取1500元的利润.求每件的销售价.(3)若超市想获取的利润不低于1500元,请求出每件的销售价X的范围?【解答】解:(1)由已知y=(x﹣20)t=(x﹣20)(﹣20x+800)=﹣20x2+1200x﹣16000=(30﹣20)(﹣20×30+800)=2000当x=﹣时,y最大(2)当1500=﹣20x2+1200x﹣16000解得x1=35,x2=25所以每件的销售价为35元和25元.(3)由(2)结合函数图象可知超市想获取的利润不低于1500元,x的取值范围为:25<x<3527.(2018•金牛区模拟)如图1,已知△ABC中,∠ABC=45°,点E为AC上的一点,连接BE,在BC上找一点G,使得AG=AB,AG交BE于K.(1)若∠ABE=30°,且∠EBC=∠GAC,BK=6,求EK的长度.(2)如图2,过点A作DA⊥AE交BE于点D,过D.E分别向AB所在的直线作垂线,垂足分别为点M、N,且NE=AM,若D为BE的中点,证明:(3)如图3,将(2)中的条件“若D为BE的中点”改为“若(n是大于2的整数)”,其他条件不变,请直接写出的值.【解答】解:(1)如图1中,作AJ⊥BE于J.在Rt△ABK中,∵∠BAK=90°,∠ABK=30°,BK=6,∴AK=BK=3,AB==3,∵AB=AG,∠BAC=90°,∴∠ABC=∠AGB=45°,∠CBE=∠CAG=15°,∵∠AKE=∠BKG,∴∠AEJ=∠AGB=45°,在Rt△ABJ中,AJ=AB=,BJ=AJ=,∵EJ=AJ=,∴BE=BJ+JE=+,∴EK=BE﹣BK=.(2)如图2中,连接EG.∵DM⊥AB,EN⊥BA,∴∠AMD=∠N=∠DAE=90°,∴∠MAD+∠NAE=90°,∠NAE+∠NEA=90°,∴∠MAD=∠NEA,在△MAD和△NEA中,,∴△MAD≌△NEA,∴AD=AE,∵∠BAC=∠DAE=90°,∴∠BAD=∠GAE,在△BAD和△GAE中,,∴△BAD≌△GAE,∴BD=EG=DE,∠ABD=∠AGE,∵∠AKB=∠EKG,∴∠KEG=∠KAB=90°,∴△DGE是等腰直角三角形,设AD=AE=a,∴∠ADE=∠EDG=45°,∴∠ADG=90°,∴DE=BD=EG=a,DG=DE=2a,在Rt△ADG中,AG==a,∴==,∴.(3)如图2中,设BD=k,则DE=nk,则EG=BD=k,在Rt△DEG中,DG=•k,在Rt△BEG中,BG=•k,∵△ABC是等腰直角三角形,∴AG=BG=••k,∴==.28.(2018•金牛区模拟)抛物线y=x2+bx+5经过点A(t,0)和点B(5t,0).(t >0)(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=2x+5相交于C.D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【解答】解:(1)将A(t,0)、B(5t,0)代入y=x2+bx+5,得:,解得:,.∵t>0,∴b=﹣6,∴该抛物线所对应的函数解析式为y=x2﹣6x+5.(2)①联立抛物线与直线CD的解析式成方程组,得:,解得:,,∴点C的坐标为(0,5),点D的坐标为(8,21).设点P的坐标为(x,x2﹣6x+5)(1<x<5),则点N的坐标为(x,2x+5),∴PN=2x+5﹣(x2﹣6x+5)=﹣x2+8x,=PN•(x D﹣x C)=×8(﹣x2+8x)=﹣4x2+32x=﹣4(x﹣4)2+64.∴S△PCD∵a=﹣4<0,∴当x=4时,S取最大值,最大值为64,△PCD∴在点P运动过程中,△PCD的面积存在最大值,最大值为64.②∵∠CQN=∠PMB=90°,∴若△CNQ与△PBM相似,则有=或=.设点P的坐标为(x,x2﹣6x+5)(1<x<5),则点N的坐标为(x,2x+5),点M 的坐标为(x,0),点Q的坐标为(x,5),∴CQ=x,NQ=2x,PM=﹣x2+6x﹣5,BM=5﹣x.当=时,有=,解得:x1=,x2=5(舍去),∴点P的坐标为(,﹣);当=时,有=,解得:x3=3,x4=5(舍去),∴点P的坐标为(3,﹣4).综上所述:存在点P,使得△CNQ与△PBM相似,点P的坐标为(,﹣)或(3,﹣4).。
2018最新试题资料-2018年九年级数学下二诊试题(成都市金牛区附答案)
2018年九年级数学下二诊试题(成都市金牛区附答案)
5 c 1=0 一个解的取值范围是()
A059 x 061 B060 x 061 c061 x062 D062 x 063
8某外贸司要出口一批规格为 150g 的苹果,现有两个厂家提供货,它们的价格相同,
苹果的品质也相近,质检员分别从甲、乙两厂的产品中随机抽取了 50 个苹果称重,并将所
得数据处理后,制成如下表格根据表中信息判断,下列说法错误的是()
A本次的调查方式是抽样调查
B甲、乙两厂被抽取苹果的平均质量相同
c被抽取的这 100个苹果的质量是本次调查的样本
D甲厂苹果的质量比乙厂苹果的质量波动大
9将抛物线 =2(x-1)
2 +
3 向右平移 2 个单位后所得抛物线的表达式为()
A=2(x-1)
2 +5
B=2(x-1)
2 +1
c=2(x-1)
2 +3
D=2(x-3)
2 +3
10如图,△ABc 内接于半径为 5 的圆心,圆心到弦 Bc 的距离等于 3,则 tanA 等于()
第 II 卷(非选择题,共 70 分)
二、填空题(本大题共 4 个小题,每个小题 4 分,共 16 分,。
成都市金牛区2018-2019学年九年级下期第二次诊断考试数学试卷word版
成都市金牛区2018-2019学年九年级下期二诊数 学 试 卷A 卷(100分)一、选择题(每小题3分,共30分)1.给出四个实数2,3,0,-1.其中负数是( )A .2B .3C .0D .-12.目前我国能制造芯片的最小工艺水平已经达到7纳米,居世界前列在5G 时代赢得了一席地,已知1纳米=0.00 000 0001米,用科学记数法将7纳米表示为( )A .0.7×810- 米B .7×910- 米C .0.7×1010- 米D .7×1010- 米3.如图,是由三个相同的小正方体组成的几何体,该几何体的俯视图是( )A .B .C .D .4.在平面直角坐标系的第四象限内有一点P ,点P 到x 轴的距离为4,到y 轴的距离为3,则点P 的坐标是( )A .(3,-4)B .(4,-3)C .(-4,3)D .(-3,4) 5.下列运算正确的是( )A .x-2x=-1B .2x-y=xyC .422x x x =+D .6328)2(a b a -=-6.如图,AB ⊥CD ,且AB=CD ,E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE=8,BF=6,AD=10,则EF 的长为( )A .4B .27C .3D .25 7.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是( )A .中位数31,众数是22B .中位数是22,众数是31C .中位数是26,众数是22D .中位数是22,众数是26第6题图 第7题图8.分式方程12112-=--x x x ,解的情况是( ) A .x=1B .x=2C .x=-1D .无解 9.如图,边长为2的正方形ABCD 内接于⊙O ,则阴影部分的面积为( )A .12+πB .12-π C .14+π D .14-π 10.已知抛物线c bx ax y ++=2(0≠a )的对称轴为直线x=2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线一定过原点②方程02=++c bx ax 0≠a 的解为x=0或x=4,③a-b+c <0;④当0<x <4时,02<++c bx ax ;⑤当x <2时,y 随x 增大而增大,其中结论正确的个数( )A .1B .2C .3D .4第9题图 第10题图 二、填空题(每小题4分,共16分)11.若372=-+a b b a ,则=ba 12.如图,在△ABC 中,AB=AC ,点D 在边AC 上,使得BD=BC ,若∠A=40°,则∠ABD 的度数为13.袋子中有10个除颜色外完全相同的小球在看不到球的条件下,随机地从袋中摸出一个球,记录颜色后放回,将球摇匀重复上述过程1500次后,共到红球300次,由此可以估计袋子中的红球个数是14.如图,在矩形ABCD 中,AB=3BC ,以点A 为圆心,AD 为半径画弧交AB 于点E 连接CE ,作线段CE 的中垂线交AB 于点F ,连接CF ,则sin ∠CFB=第12题图 第14题图三、解答题(共54分)15.(1)计算:01)2019(2|213|30tan 3-+--︒--π(2)解不等式组:⎪⎩⎪⎨⎧-≤--->+x x x x x 3222123)1(216.化简:2162422--÷⎪⎭⎫ ⎝⎛-+-a a a a17.某校为了预测本校九年级男生毕业体育测试达标情况,随机抽取该年级部分男生进行一次测试(满分50分,成绩均记为整数分),并按测试成绩m (单位:分)分类:A 类(45<m ≤50),B 类(40<m ≤45),C 类(35<m ≤40),D 类(m ≤35)绘制出如图所示的不完整条形统计图,请根据图中信息解答下列问题:(1)=a ,=b ,=c(2)补全条形统计图;(3)若该校九年级男生有600名,D 类为测试成绩不达标,请估计该校九年级男生毕业体育测试成绩能达标的有多少名?18.成都市在地铁施工期间,交管部门计划在施工路段设高为3米的矩形路况警示牌BCEF (如图所示BC=3米)警示牌用立杆AB 支撑,从侧面D 点测到路况警示牌顶端C 点和底端B 点的仰角分别是60°和45°,求立杆AB 的长度(结果精确到整数,73.13≈,41.12≈)19.如图所示,一次函数y=x+3与x 轴、y 轴分别交于点A 、B ,将直线AB 向下平移与反比例函数x m y =(x >0)交于点C 、D ,连接BC 交x 轴于点E ,连接AC ,已知BE=3CE ,且S △ACE =49. (1)求直线BC 和反比例函数解析式;(2)连接BD ,求△BCD 的面积.20.如图,在△ABC 中,AB=AC ,以AB 为直径的圆O 交AC 于点D ,交BC 于点E ,以点B 为顶点作∠CBF ,使得∠CBF=21∠BAC ,交AC 延长线于点F 连接BD 、AE ,延长AE 交BF 于点G , (1)求证:BF 为⊙O 的切线;(2)求证:AC?BC=BD?AG ;(3)若BC=210,CD :CF=4:5,求⊙O 的半径.B 卷(50分)一、填空题(每小题4分,共20分)21.已知方程组⎩⎨⎧-=+=+7232ay bx by ax 的解x 、y 满足x+y=2,则代数式a+2b 的值为22.我国魏晋时期的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式,后人借助这种分割方法所得的图形证明了勾股定理.如图所示,若a=2,b=3,现随机向该图形内掷一枚小针,则针尖落在阴影域内的概率为 23.如图,矩形ABCD 中,AB=5,BC=7,点E 是对角线AC 上的动点EH ⊥AD ,垂足为H ,以EH 为边作正方形EFGH ,连结AF ,则∠AFE 的正弦值为第22题图 第23题图24.如图,在等腰直角三角形ABC 中,∠ACB=90°,在△ABC 内一点P ,已知∠1=∠2=∠3,将△BCP 以直线PC 为对称轴翻折,使点B 与点D 重合,PD 与AB 交于点E ,连结AD ,将△APD 的面积记为S1 ,将△BPE 的面积记为S2 ,则12S S 的值为 25.已知一次函数y=-x+m 的图象与反比例函数xy 2 的图象交于A 、B 两(点A 在点B 的左侧),点P 为x 轴上一动点,当有且只有一个点P ,使得∠APB=90°,则m 的值为第24题图 第25题图二、解答题(共30分)26.为更新果树品种,某果园计划新购进A 、B 两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A 种树苗的单价为7元/棵,购买B 种苗所需费用y (元)与购买数量x (棵)之间存在如图所示的函数关系.(1)求y 与x 的函数关系式;(2)若在购买计划中,B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.27.(1)△ABC 和△CDE 是两个等腰直角三角形,如图1,其中∠ACB=∠DCE=90°,连结AD 、BE ,求证:△ACD ≌△BCE .(2)△ABC 和△CDE 是两个含30°的直角三角形,其中∠ACB=∠DCE=90°,∠CAB=∠CDE=30°,CD <AC ,△CDE 从边CD 与AC 重合开始绕点C 逆时针旋转一定角度α(0°<α<180°); ①如图2,DE 与BC 交于点F ,与AB 交于点G ,连结AD ,若四边形ADEC 为平行四边形,求AG BG 的值; ②若AB=10,DE=8,连结BD 、BE ,当以点B 、D 、E 为顶点的三角形是直角三角形时,求BE 的长.28.在平面直角坐标系中,如图1,抛物线y=ax^2 +bx+c 的对称轴为23 x,与x 轴的交点A (-1,0)与y 轴交于点C (0,-2).(1)求抛物线的解析式; (2)如图2.点P 是直线BC 下方抛物线上的一点,过点P 作BC 的平行线交抛物线于点Q (点Q 在点P 右侧),连结BQ ,当△PCQ 的面积为△BCQ 面积的一半时,求P 点的坐标;(3)现将该抛物线沿射线AC 的方向进行平移,平移后的抛物线与直线AC 的交点为A'、C'(点C'在点A'的下方),与x 轴的交点为B',当△AB'C'与△AA'B'相似时,求出点A ′的横坐标.。
2018年四川省成都市金牛区中考数学二诊试卷
B.20 微克/立方米
C.19 微克/立方米
D.18 微克/立方米
8.(3 分)如图,在平行四边形 ABCD 中,E 为 CD 上一点,连接 AE,BD,且 AE,BD 交
于点 F,S△DEF:S△BFA=9:25,则 DE:EC=( )
A.2:5
B.3:2
C.2:3
D.5:3
9.(3 分)如图,AB 为圆 O 的直径,点 C 在圆 O 上,若∠OCA=60°,AB=4,则 长为 ()
足分别为点 M、N,且 NE=AM,若 D 为 BE 的中点,证明:
(3)如图 3,将(2)中的条件“若 D 为 BE 的中点”改为“若
(n 是大于 2 的整数)”,
其他条件不变,请直接写出 的值.
28.抛物线 y=x2+bx+5 经过点 A(t,0)和点 B(5t,0).(t>0) (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线 y=2x+5 相交于 C.D 两点,点 P 是抛物线上的动点且位于 x 轴下方,
(1)在这次考察中一共调查了
名学生,请补全条形统计图;
(2)被调查同学中恰好有 4 名学来自初一 2 班,其中有 2 名同学选择了篮球,有 2 名同学
选择了乒乓球,曹老师打算从这 4 名同学中选择两同学了解他们对体育社团的看法,请
用列表法或画树状图法,求选出的两人恰好都选择同一种球的概率.
18.如图,某中学在主楼的顶部 D 和大门 A 的上方之间挂一些彩旗,经测量,大门距主楼
一个动点,连接 EC,将线段 EC 绕点 C 按逆时针方向旋转 60°得到 FC,连接 DF,则
点 E 运动过程中,DF 的最小值是
.
二、解答题 26.某超市欲购进一种今年新上市的产品,购进价为 20 元/件,为了调查这种新产品的销路,
[K12学习]四川省成都市2018届高三数学第二次诊断性检测试题 理
四川省成都市2018届高三数学第二次诊断性检测试题 理第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|11}P x x =-<,{|12}Q x x =-<<,则PQ =( )A .1(1,)2- B .(1,2)- C .(1,2) D .(0,2)2.已知向量(2,1)a =,(3,4)b =,(,2)c k =.若(3)//a b c -,则实数的值为( ) A .8- B .6- C .1- D .3.若复数满足3(1)12i z i +=-,则z 等于( )A .2 B .32 C .2 D .124.设等差数列{}n a 的前项和为n S .若420S =,510a =,则16a =( ) A .32- B .12 C .16 D .325.已知m ,是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( )A .若m α⊂,则m β⊥B .若m α⊂,n β⊂,则m n ⊥C .若m α⊄,m β⊥,则//m αD .若m αβ=,n m ⊥,则n α⊥6.若6(x-的展开式中含32x 项的系数为160,则实数的值为( )A .B .2-C .D .- 7.已知函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的部分图象如图所示.现将函数()f x 图象上的所有点向右平移4π个单位长度得到函数()g x 的图象,则函数()g x 的解析式为( )A .()2sin(2)4g x x π=+B .3()2sin(2)4g x x π=+C .()2cos 2g x x =D .()2sin(2)4g x x π=-8.x ≤≤”是“223x x+≤≤”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件9.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为( )A .3B .CD .24π 10.执行如图所示的程序框图,若输出的结果为56,则判断框中的条件可以是( )A .7?n ≤B .7?n >C .6?n ≤D .6?n > 11.已知函数()1ln m f x n x x =--(0,0)m n e >≤≤在区间[1,]e 内有唯一零点,则21n m ++的取值范围为( )A .22[,1]12e e e e ++++ B .2[,1]12e e ++C .2[,1]1e +D .[1,1]2e +12.已知双曲线C :22221(0,0)x y a b a b-=>>右支上的一点P ,经过点P 的直线与双曲线C 的两条渐近线分别相交于A ,B 两点.若点A ,B 分别位于第一,四象限,O 为坐标原点.当12AP PB =时,AOB ∆的面积为2b ,则双曲线C 的实轴长为( ) A .329 B .169 C .89 D .49第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知132a =,231()2b =,则2log ()ab = .14.如图是调查某学校高三年级男女学生是否喜欢篮球运动的等高条形图,阴影部分的高表示喜欢该项运动的频率.已知该年级男生女生各500名(假设所有学生都参加了调查),现从所有喜欢篮球运动的同学中按分层抽样的方式抽取32人,则抽取的男生人数为 .15.已知抛物线C :22(0)y px p =>的焦点为F ,准线与轴的交点为A ,P 是抛物线C 上的点,且PF x ⊥轴.若以AF 为直径的圆截直线AP 所得的弦长为,则实数p 的值为 .16.已知数列{}n a 共16项,且11a =,84a =.记关于的函数321()3n n f x x a x =-2(1)n a x +-,*n N ∈.若1(115)n x a n +=≤≤是函数()n f x 的极值点,且曲线8()y f x =在点16816(,())a f a 处的切线的斜率为15.则满足条件的数列{}n a 的个数为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()cos 22x x f x =21cos 22x -+. (1)求函数()f x 的单调递减区间;(2)若ABC ∆的内角A ,B ,C 所对的边分别为,,,1()2f A =,a =sin 2sin B C =,求.18.近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方APP 中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出200条较为详细的评价信息进行统计,车辆状况的优惠活动评价的22⨯列联表如下:(1)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与车辆状况好评之间有关系?(2)为了回馈用户,公司通过APP 向用户随机派送每张面额为元,元,元的三种骑行券.用户每次使用APP 扫码用车后,都可获得一张骑行券.用户骑行一次获得元券,获得元券的概率分别是12,15,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为X ,求随机变量X 的分布列和数学期望. 参考数据:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.如图,D 是AC 的中点,四边形BDEF 是菱形,平面BDEF ⊥平面ABC ,60FBD ∠=,AB BC ⊥,AB BC ==(1)若点M 是线段BF 的中点,证明:BF ⊥平面AMC ; (2)求平面AEF 与平面BCF 所成的锐二面角的余弦值.20.已知椭圆C :22221(0)x y a b a b +=>>的左右焦点分别为1F ,2F ,左顶点为A ,离心率为2,点B 是椭圆上的动点,1ABF ∆的面积的最大值为12. (1)求椭圆C 的方程;(2)设经过点1F 的直线与椭圆C 相交于不同的两点M ,N ,线段MN 的中垂线为'l .若直线'l 与直线相交于点P ,与直线2x =相交于点Q ,求PQMN的最小值. 21.已知函数()ln 1f x x x ax =++,a R ∈.(1)当时0x >,若关于的不等式()0f x ≥恒成立,求的取值范围; (2)当*n N ∈时,证明:223ln 2ln 242n n <++21ln 1n nn n ++⋅⋅⋅+<+. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑。
2018年四川省成都市中考数学二模试卷((有答案))AUMAHP
2018年四川省成都市中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>52.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m33.如图,几何体的左视图是()A.B.C.D.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是67.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣38.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠29.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.(10分)已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.(1)求证:AB2=AE•AD;(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E 与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是三角形.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D 不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).28.(12分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.2018年四川省成都市中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).2.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3【分析】根据同类项的定义、幂的运算法则逐一计算即可判断.【解答】解:A、3x、4y不是同类项,不能合并,此选项错误;B、(﹣a)3•a2=﹣a5,此选项错误;C、(x3y)5=x15y5,此选项错误;D、m10÷m7=m3,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同类项的定义、幂的运算法则.3.如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是6【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.7.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣3【分析】由平移的规律即可求得答案.【解答】解:将抛物线y=x2向下平移3个单位,则函数解析式变为y=x2﹣3,将y=x2﹣3向左平移1个单位,则函数解析式变为y=(x+1)2﹣3,故选:D.【点评】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:C.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.9.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补【分析】根据两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补解答即可.【解答】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2016的长.【解答】解:根据题意得:l1==,l2==,l3===π,则L2016=,故选:B.【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出l2016的长.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=8.【分析】利用平方差公式分解因式,进而把已知代入求出答案.【解答】解:∵x﹣=1,∴2x﹣y=2,则4x2﹣y2=(2x+y)(2x﹣y)=4×2=8.故答案为:8.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=2.【分析】根据翻折变换,可知△ONC≌△AOM,且是Rt△,在△ONC中解得NO.【解答】解:根据翻折变换,可知△ONC≌△AOM,且是Rt△,∵AC=,∠CAB=30°,∴在Rt△ONC,解得ON=1,∴MN=2.故答案为2.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为y=﹣x.【分析】直接利用一次函数图象平移规律进而得出答案.【解答】解:把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为:y=﹣(x﹣1)﹣1=﹣x.故答案为:y=﹣x.【点评】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.【分析】(1)直接利用零指数幂、负指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案;(2)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】(1)解:()﹣1﹣(π﹣2018)0﹣4cos30°=﹣2+2﹣1﹣4×=﹣3;(2)解不等式①得:x≤4解不等式②得:x≤2;∴不等式组的解集为:2≤x≤4不等式组的解集在数轴上表示:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)【分析】分别在直角三角形中,利用锐角三角函数定义表示出AC与BC,根据AC﹣BC=AB求出PC的长即可.【解答】解:在Rt△ACP中,tan∠PAC=,即AC=,在Rt△BCP中,tan∠CBP=,即BC=,由AB=AC﹣BC,得到﹣=10000,解得:PC=≈3388,则飞机飞行的高度为3388m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)【分析】(1)总人数以及条形统计图求出喜欢“花椒饼”的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率;(3)设小吃产业年营业额平均增长率为x,根据等量关系为:2011年的利润×(1+增长率)2=2013年的利润,把相关数值代入即可列出方程.【解答】解:(1)喜欢花椒饼的人数为50﹣14﹣21﹣5=10(人),补全条形统计图如下:(2)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.(3)设小吃产业年营业额平均增长率为x,由题意可得:50×(1+x)2=60.5,解得:x=10%,答:这两年平均增长率是10%.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;还考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.【分析】(1)把点A坐标分别代入反比例函数y=,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想. 20.(10分)已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点,AD 交BC 于点E ,连接AB . (1)求证:AB 2=AE •AD ;(2)过点D 作⊙O 的切线,与BC 的延长线交于点F ,若AE =2,ED =4,求EF 的长.【分析】(1)点A 是劣弧BC 的中点,即可得∠ABC =∠ADB ,又由∠BAD =∠EAB ,即可证得△ABE ∽△ADB ,根据相似三角形的对应边成比例,即可证得AB 2=AE •AD ;(2)由(1)求得AB 的长,又由BD 为⊙O 的直径,即可得∠A =90°,由DF 是⊙O 的切线,可得∠BDF =90°,在Rt △ABD 中,求得tan ∠ADB 的值,即可求得∠ADB 的度数,即可证得△DEF 是等边三角形,则问题得解.【解答】解:(1)证明:∵点A 是劣弧BC 的中点, ∴∠ABC =∠ADB .(1分) 又∵∠BAD =∠EAB , ∴△ABE ∽△ADB .(2分) ∴.∴AB 2=AE •AD .(2)解:∵AE =2,ED =4, ∵△ABE ∽△ADB ,∴,∴AB2=AE•AD,∴AB2=AE•AD=AE(AE+ED)=2×6=12.∴AB=2(舍负).(4分)∵BD为⊙O的直径,∴∠A=90°.又∵DF是⊙O的切线,∴DF⊥BD.∴∠BDF=90°.在Rt△ABD中,tan∠ADB=,∴∠ADB=30°.∴∠ABC=∠ADB=30°.∴∠DEF=∠AEB=60°,∠EDF=∠BDF﹣∠ADB=90°﹣30°=60°.∴∠F=180°﹣∠DEF﹣∠EDF=60°.∴△DEF是等边三角形.∴EF=DE=4.(5分)【点评】此题考查了相似三角形的判定与性质,圆的切线的性质,以及三角函数等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4.【分析】由折线统计图得出这五天游客数量从小到大排列为结果,再根据中位数的定义求解可得.【解答】解:将这5天的人数从小到大排列为21.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4,故答案为:23.4.【点评】本题主要考查折线统计图与中位数,解题的关键是根据折线统计图得出数据,并熟练掌握中位数的概念.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是9.【分析】把代数式分解因式,然后把数值代入,计算得出答案即可.【解答】解:x2﹣2xy+y2=(x﹣y)2当x=5.4,y=2.4时,原式=(5.4﹣2.4)2=9,故答案为9.【点评】此题考查因式分解和代数式的求值,掌握完全平方公式是解决问题的关键.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E 与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为4.【分析】根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.【解答】解:连接CD,当CD⊥AB时,CD取得最小值,∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴AC=4,BC===4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵点E与点D关于AC对称,∴CE=CD,∴∠CED=∠CDE,∵∠EFD+∠CED=90°,∠CDF+∠CDE=90°,∴∠F=∠CDF,∴CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4,故答案为4【点评】本题考查了圆的综合题、轴对称的性质,垂线段最短,直角三角形30度角性质等知识,解题的关键是求出CD的最小值,学会利用垂线段最短解决最值问题,属于中考常考题型.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是等腰直角三角形.【分析】根据旋转的性质知:两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,则易证△ACF是等腰直角三角形.【解答】解:在矩形ABCD中,根据勾股定理知AC=,在矩形AEFG中,根据勾股定理知AF=.∵根据旋转的性质知,矩形ABCD和AEFG是两个大小完全相同的矩形,∠CAF=90°,∴AB=AE=GF,BC=AD=AG,∴AC=AF,∴△ACF是等腰直角三角形,故填:等腰直角.【点评】本题考查了旋转的性质、等腰直角三角形的判定与性质以及矩形的性质.注意,旋转前后的图形全等.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是y3<y2<y1(用“>”“<”或“=”连接).【分析】先确定抛物线对称轴为直线x=﹣1,然后二次函数的性质,通过比较三个点到直线x=﹣1的距离的大小得到y1、y2、y3的大小关系.【解答】解:∵抛物线的对称轴与x轴交于点(﹣1,0),∴抛物线的对称轴为直线x=﹣1,∵点(2,y1)到直线x=﹣1的距离最大,点(0,y3)到直线x=﹣1的距离最小,∴y3<y2<y1.故答案为y3<y2<y1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.运用二次函数的性质是解决本题的关键.五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【分析】(1)根据利润=销售价﹣进价列关系式;(2)总利润=每个的利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;(3)利用函数的性质求最值.【解答】解:由题意得:(1)50+x﹣40=x+10(元)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)【点评】应用题中求最值需先求函数表达式,再运用函数性质求解.此题的关键在列式表示销售价格和销售量.27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D 不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=4;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为1﹣cosα(用含α的表达式表示).【分析】(1)先求出BE的长度后发现BE=BD的,又∠B=60°,可知△BDE是等边三角形,可得∠BDE=60°,另外∠DEF=60°,可证得△CDF是等边三角形,从而CF=CD=BC﹣BD;(2)证明△EBD∽△DCF,这个模型可称为“一线三等角•相似模型”,根据“AA”判定相似;【思考】由角平分可联系到角平分线的性质“角平分线上点到角两边的距离相等”,可过D作DM⊥BE,DG⊥EF,DN⊥CF,则DM=DG=DN,从而证明△BDM≌△CDN可得BD=CD;【探索】由已知不能求得C△ABC=AB+BC+AC=2AB+2OB=2(m+m cosα),则需要用m和α是三角函数表示出C△AEF ,C△AEF=AE+EF+AF=AG+AH=2AG;题中直接已知点O是BC的中点,应用(2)题的方法和结论,作OG⊥BE,OD⊥EF,OH⊥CF,可得EG=ED,FH=DF,则C△AEF=AE+EF+AF=AG+AH=2AG,而AG=AB﹣BO,从而可求得.【解答】(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,。
成都市2018级高三二诊数学(理)答案
4x1 +2y1 =0
m EC =0
,得
令z1 =1,得 m = (
2,
1).
-1,
→
z1 =0
-y1 +2
m EA =0
ìï2y2 =0
→
ï
nDE =0
,得 í4
由
令z2 =1,得 n = (
0,
1).
-1,
4
→
ï x2 + z2 =0
nDF =0
3
î3
由
{
{
{
数学(理科)“二诊”考试题参考答案 第
5 分
在 Rt△ BMN 中,BM = BN2 + MN2 = 32 +42 =5
在 △ ABM 中,∵AB = 29 ,∴AM2 +BM2 =22 +52 =29=AB2
∴AM ⊥ BM
又 AM ⊥ DE ,BM ∩ DE = M ,BM ,
DE ⊂ 平面
BCED ,
7 分
∴AM ⊥ 平面 BCED
二、填空题:(每小题 5 分,共 20 分)
13.-1;
14.3;
三、解答题:(共 70 分)
1
15. ;
2
16.
b <c < a .
17.解:(Ⅰ )由已知及正弦定理,得 2s
i
nBc
o
s
C -s
i
nAc
os
C =s
i
nCc
osA .
∴ 2s
i
nBc
o
s
C =s
i
nAc
o
s
C +cosAs
f(
e
e
∴f(
x )在 [
2018年四川省成都市中考数学二诊试卷含答案解析
{ ������
=
������−1 3
解得:
������
=
2������
+ 3
10
,
即交点坐标为(������3−1,2������
+ 3
10),
∵ 交点在第一象限,
{ ������−1 > 0
∴
3
2������
+ 3
10
>
0,
解得:������ > 1.
5
故答案为:������ > 1. 方法二:如图所示: 把直线������ = −������ + 3向上平移 m 个单位后,与直线������ = 2������ + 4的交点在第一象限, 则 m 的取值范围是������ > 1. 故答案为:������ > 1.
6. 在一次中学生田径运动会上,参加男子跳高的 15 名运动员的成绩如下表所示:
成绩/������
1.50
1.60
1.65
1.70
1.75
1.80
人数
2
3
2
3
4
1
则这些运动员成绩的众数、极差分别为( )
A. 1.70、0.25
B. 1.75、3
C. 1.75、0.30
D. 1.70、3
【答案】C 【解析】解: ∵ 这组数据中1.75������出现次数最多,有 4 次, ∴ 这组数据的众数为1.75������,
【答案】B
【解析】解:连接 OA、OB, ∵ 五边形 ABCDE 是正五边形, ∴ ∠������������������ = 360 ∘ ÷ 5 = 72 ∘ ,
成都市2018届高中毕业班第二次诊断性检测数学(文)试题解析版
2 2p 2, p 2 2 . AF 2 2
1 2 x cos x , 则 不 等 式 f x 1 f 1 3x 0 的 解 集 2
, 0 1,
【 解 析 】 易 知 函 数 f x 为 偶 函 数 , 当 x 0 时 , f x x sin x , 设
) D. 0, 2
1 2
B. 1, 2
C. 1, 2
【解析】由题意得 3a b 3, 1 ,所以 6 k 0, k 6 .故选 B. 考点:1、平面向量坐标运算;2、平面向量共线的坐标表示. 3.若复数 z 满足 1 i z 1 2i ,则 z 等于(
D. g x 2sin 2 x
T 5 3 , T , 2 , 4 8 8 4
5 5 , 2 得 sin 1 , , f x 2sin 2 x , 4 4 8 4 2sin 2x .故选 D. 4 4
S n 2 4 6 2n ,
所以 S n n n 1 56 ,所以 n 7 ,所以则判断 框中的条件可以是 n 6? .故选 D. 考点:1、算法与程序框图;2、等差数列求和. 11.已知数列 an 满足:当 n 2 且 n N 时,有
*
an an 1 1 3 .则数列 an 的前 200 项的和为(
n
) D. 0
A. 300 【答案】 A
B. 200
C. 100
【解析】当 n 为偶数时,则 an an 1 3 , 所以 a1 a2 a3 a4 a5 a6 a199 a200 3 , 所以 a1 a2 a3 a200 a1 a2 a3 a4 a199 a200 3 100 300 . 故选 A. 考点:数列求和 12.已知函数 f x 的取值范围为( A.
2018年四川省成都市金牛区高考数学二诊试卷(文科)及答案(Word完美版)
2018年四川省成都市金牛区高考数学二诊试卷(文科)一、选择题(本题共12小题,每小题5分,共60分.)1.(5分)已知集合A={x|x2﹣16≤0},B={x|lg|x﹣2|>0},则A∩B=()A.[﹣4,1)∪(3,4]B.[﹣4,﹣3)∪(﹣1,4]C.(﹣4,1)∪(3,4) D.(﹣4,﹣3)∪(﹣1,4)2.(5分)已知为复数z的共轭复数,(1﹣i)z=2i,则=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i3.(5分)已知a,b都是实数,那么“2a>2b”是“a2>b2”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.5.(5分)一只蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点距离都大于2的区域内的概率为()A.1﹣B.C.D.6.(5分)在△ABC 中,内角A,B,C 所对的边分别是a,b,c,已知,b= a,A=2B,则cosB=()A.B.C.D.7.(5分)“孙子定理”是中国古代求解一次同余式组的方法.是数论中一个重要定理西方又称之为“中国剩余定理”.一元线性同余方程组问题最早可见于中国南北朝时期(公元 5 世纪)的数学著作《孙子算经》.若正整数N 除以正整数m 后的余数为n,则记为N≡n(mod m),例如83≡5(mod 6)若执行如图所示的程序框图,则输出的结果为()A.2019 B.2023 C.2031 D.20478.(5分)若ω>0,函数的图象向右平移个单位长度后与函数y=sinωx图象重合,则ω的最小值为()A.B.C.D.9.(5分)已知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f(0)=0,当x∈(0,1]时,f(x)=log2x,则在区间(8,9)内满足方f(x)程f(x)+2=f()的实数x为()A.B.C.D.10.(5分)已知四边形ABCD是边长为2的菱形,∠BAD=60°,沿对角线BD将△ABD折起使A位于新位置A′,且A′C=,则三棱锥A′﹣BCD的外接球的表面积为()A.B.C.6πD.25π11.(5分)已知⊙O 是等边△ABC 的外接圆,其半径为4,M 是△ABC 所在平面内的动点,且|OM|=1,则||的最大值为()A.4 B.6 C.8 D.1012.(5分)已知实数x,y 满足3x﹣y≤ln (x+2y﹣3)+ln (2x﹣3y+5),则x+y=()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.(5分)已知等差数列{a n}前15项的和S15=30,则a2+a9+a13=.14.(5分)已知向量=(1,),||=3,向量与向量的夹角为120°,则•(﹣)=15.(5分)已知x,y满足约束条件,则目标函数z=mx+y(m∈[﹣1,1])的最大值和最小值的差等于.16.(5分)已知双曲线C:﹣=1 (a>0,b>0),点A、B 在双曲线C 的左支上,O 为坐标原点,直线BO与双曲线的右支交于点M.若直线AB 与AM 的斜率分别为 3 和1,则双曲线的离心率为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(12分)在△ABC 中,角A,B,C 的对边分别为a,b,c,满足btanA=(2c﹣b )tanB.(1)求角A;(2)若a=,b=3,求△ABC 的面积.18.(12分)某班有30 名学生,其中有60%的同学爱好体育锻炼.经体检调查,这30 名同学的健康指数(百分制)如下茎叶图所示.体检评价标准指出:健康指数不低于70 者为身体状况好,健康指数低于70 者为身体状况一般.(1)根据以上资料完成下面的2×2 列联表,并判断可否有99%的把握认为“身体状况好与爱好体育锻炼有关系”?(2)从健康指数高于90 的 5 人中随机选取 2 人,求这两人中恰好有一人爱好体育锻炼的概率.附:K2=19.(12分)如图所示的几何体QPABCD为一简单组合体,在底面ABCD中,∠DAB=60°,AD⊥DC,AB⊥BC,QD⊥平面ABCD,PA∥QD,PA=1,AD=AB=QD=2.(1)求证:平面PAB⊥平面QBC;(2)求该组合体QPABCD的体积.20.(12分)在平面直角坐标系中,已知定点A(1,0)及动点P,以PA 为直径的圆恒与y 轴相切,记动点P 的轨迹为曲线C(1)求曲线 C 的方程;(2)点Q(x0,y0)(x0≥5)是曲线 C 上的点,过点Q 作圆E:(x﹣2 )2+y2=4 的两条切线,分别与x 轴交于M、N 两点,求△QMN 的面积的最小值.21.(12分)已知函数f (x)=ax﹣1﹣x ln x,(1)若函数 f (x)≤0恒成立求实数 a 的取值范围;(2)当a=1 时,设函数g (x)=xf (x),在x=x0处取到极小值,求证:﹣<g(x0)<﹣.[选修4-4:坐标系与参数方程](10分)22.(10分)在平面直角坐标系xOy 中,已知曲线C1的参数方程为(t 为参数),以O 为极点,x轴的非负半轴为极轴,曲线C2的极坐标方程为:ρ﹣ρcos2θ﹣2cosθ=0.(Ⅰ)将C1曲线的方程化为普通方程;将曲线C2的方程化为直角坐标方程;(Ⅱ)若点P(1,2),曲线C1与曲线C2的交点为A,B,求|PA|+|PB|的值.[选修4-5:不等式选讲](10分)23.已知函数f(x)=x2+2,g(x)=|x﹣a|﹣|x﹣1|,a∈R,(1)若a=4,求不等式f(x)>g(x)的解集;(2)若对任意x1、x2∈R,不等式f(x1)≥g(x2)恒成立,求实数a的取值范围.2018年四川省成都市金牛区高考数学二诊试卷(文科)参考答案与试题解析一、选择题(本题共12小题,每小题5分,共60分.)1.(5分)已知集合A={x|x2﹣16≤0},B={x|lg|x﹣2|>0},则A∩B=()A.[﹣4,1)∪(3,4]B.[﹣4,﹣3)∪(﹣1,4]C.(﹣4,1)∪(3,4) D.(﹣4,﹣3)∪(﹣1,4)【解答】解:集合A={x|x2﹣16≤0}={x|﹣4≤x≤4},B={x|lg|x﹣2|>0}={x||x﹣2|>1}={x|x<1或x>3},则A∩B={x|﹣4≤x<1且3<x≤4}=[﹣4,1)∪(3,4].故选:A.2.(5分)已知为复数z的共轭复数,(1﹣i)z=2i,则=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【解答】解:由(1﹣i)z=2i,得,∴,故选:A.3.(5分)已知a,b都是实数,那么“2a>2b”是“a2>b2”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:a2>b2⇔|a|>|b|⇔a>±b.2a>2b⇔a>b.∴那么“2a>2b”是“a2>b2”的既不充分也不必要条件.故选:D.4.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:由题意可知:三视图对应的几何体的直观图如图:是以侧视图为底面的三棱柱,去掉一个三棱锥的几何体,几何体的体积为:=.故选:D.5.(5分)一只蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点距离都大于2的区域内的概率为()A.1﹣B.C.D.【解答】解:满足条件的正三角形ABC如下图所示:其中正三角形ABC的面积S=×16=4,三角形满足到正三角形ABC的顶点A、B、C的距离至少有一个小于2的平面区域如图中阴影部分所示,=2π,则S阴影则使取到的点到三个顶点A、B、C的距离都大于2的概率是:P=1﹣=1﹣π,故选:A.6.(5分)在△ABC 中,内角A,B,C 所对的边分别是a,b,c,已知,b= a,A=2B,则cosB=()A.B.C.D.【解答】解:∵b=a,A=2B,∴由正弦定理,得:====2cosB=,∴cosB=,故选:B.7.(5分)“孙子定理”是中国古代求解一次同余式组的方法.是数论中一个重要定理西方又称之为“中国剩余定理”.一元线性同余方程组问题最早可见于中国南北朝时期(公元 5 世纪)的数学著作《孙子算经》.若正整数N 除以正整数m 后的余数为n,则记为N≡n(mod m),例如83≡5(mod 6)若执行如图所示的程序框图,则输出的结果为()A.2019 B.2023 C.2031 D.2047【解答】解:模拟程序的运行,可得n=2017,i=1i=2,n=2019满足条件“n=3(mod 6)”,不满足条件“n=1(mod 5)”,i=4,n=2023,不满足条件“n=3(mod 6)”,i=8,n=2031,满足条件“n=3(mod 6)”,满足条件“n=1(mod 5)”,退出循环,输出i的值为2031.故选:C.8.(5分)若ω>0,函数的图象向右平移个单位长度后与函数y=sinωx图象重合,则ω的最小值为()A.B.C.D.【解答】解:函数的图象向右平移个单位长度后,得到:y=cos(ωx﹣)与函数y=sinωx图象重合,则:(k∈Z),解得:(k∈Z),当k=0时,.故选:B.9.(5分)已知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f(0)=0,当x∈(0,1]时,f(x)=log2x,则在区间(8,9)内满足方f(x)程f(x)+2=f()的实数x为()A.B.C.D.【解答】解:∵f(x+1)为奇函数,即f(x+1)=﹣f(﹣x+1),即f(x)=﹣f(2﹣x).当x∈(1,2)时,2﹣x∈(0,1),∴f(x)=﹣f(2﹣x)=﹣log2(2﹣x).又f(x)为偶函数,即f(x)=f(﹣x),于是f(﹣x)=﹣f(﹣x+2),即f(x)=﹣f(x+2)=f(x+4),故f(x)是以4为周期的函数.∵f(1)=0,∴当8<x≤9时,0<x﹣8≤1,f(x)=f(x﹣8)=log2(x﹣8).由f()=﹣1,f(x)+2=f()可化为log2(x﹣8)+2=﹣1,得x=.故选:D.10.(5分)已知四边形ABCD是边长为2的菱形,∠BAD=60°,沿对角线BD将△ABD折起使A位于新位置A′,且A′C=,则三棱锥A′﹣BCD的外接球的表面积为()A.B.C.6πD.25π【解答】解:如图,由题意可知,A'B=A'D=BD=BC=CD=2,A′C=,取BD的中点E,连接EC,设球心为O,连接EO,CO,O'为底面BCD的中心,连接OO',OO'⊥底面BCD,可得OO'⊥CE,且CE=A'E=A'C=,即有OE⊥A'C,且直角三角形OEO'中,∠OEC=30°,O'E=,O'C=,OO'=O'Etan30°=,即有R=OC==,则A′﹣BCD的外接球的表面积为4πR2=,故选:A.11.(5分)已知⊙O 是等边△ABC 的外接圆,其半径为4,M 是△ABC 所在平面内的动点,且|OM|=1,则||的最大值为()A.4 B.6 C.8 D.10【解答】解:如图,设等边△ABC 的边长为x,则,得x=,建立如图所示平面直角坐标系,则A(﹣2,),B(﹣2,),C(4,0),设M(cosθ,sinθ),则,,,∴=(4﹣4cosθ,﹣4sinθ),则||===,∴当cosθ=﹣1时,||的最大值为8.故选:C.12.(5分)已知实数x,y 满足3x﹣y≤ln (x+2y﹣3)+ln (2x﹣3y+5),则x+y=()A.B.C.D.【解答】解:根据题意,若实数x,y满足3x﹣y≤ln (x+2y﹣3)+ln (2x﹣3y+5),则有3x﹣y≤ln (x+2y﹣3)+ln (2x﹣3y+5)=ln(x+2y﹣3)(2x﹣3y+5)≤ln ()2,当且仅当x+2y﹣3=2x﹣3y+5①时等号成立,则有≤ln(+1),令y=ln(x+1)﹣x,导数为y′=﹣1=,当x>0时,函数y递减;﹣1<x<0时,函数y递增,可得ln(x+1)﹣x≤0,即有ln(1+x)≤x,则ln(+1)≤,可得ln(+1)=,即y=3x,②由①②可得x=,y=,则x+y=.故选:C.二、填空题(本题共4小题,每小题5分,共20分)13.(5分)已知等差数列{a n}前15项的和S15=30,则a2+a9+a13=6.【解答】解:∵设等差数列的等差为d,{a n}前15项的和S15=30,∴=30,即a1+7d=2,则a2+a9+a13=(a1+d)+(a1+8d)+(a1+12d)=3(a1+7d)=6.故答案为:6.14.(5分)已知向量=(1,),||=3,向量与向量的夹角为120°,则•(﹣)=7【解答】解:向量=(1,),||=3,∴||==2;又向量与向量的夹角为120°,∴•(﹣)=﹣=22﹣2×3×cos120°=7.故答案为:7.15.(5分)已知x,y满足约束条件,则目标函数z=mx+y(m∈[﹣1,1])的最大值和最小值的差等于2.【解答】解:画出满足条件的平面区域,如图示:,由z=mx+y得:y=﹣mx+z,由图象得直线y=﹣mx+z过A(2,0)时,z最小,z min=2m,直线过B(2,2)时,z最大,z max=2m+2,∴z max﹣z min=2,故答案为:2.16.(5分)已知双曲线C:﹣=1 (a>0,b>0),点A、B 在双曲线C 的左支上,O 为坐标原点,直线BO与双曲线的右支交于点M.若直线AB 与AM 的斜率分别为 3 和1,则双曲线的离心率为2.【解答】解:设B(m,n),则直线BO与双曲线的右支交于点M(﹣m,﹣n).设A(x0,y0),可得直线AB 的斜率为直线AM 的斜率为;∴=,∴,股答案为:2三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(12分)在△ABC 中,角A,B,C 的对边分别为a,b,c,满足btanA=(2c﹣b )tanB.(1)求角A;(2)若a=,b=3,求△ABC 的面积.【解答】解:(1)△ABC 中,角A,B,C 的对边分别为a,b,c,满足btanA=(2c﹣b )tanB.则:,利用正弦定理:,由于:sinB≠0,则:2sinCcosA﹣sinBcosA=sinAcosB,即:sin(A+B)=2sinCcosA,则:cosA=.由于:0<A<π,则:A=.(2)若a=,b=3,则:a>b.故:,解得:,进一步求出cosB==.所以:sinC=sin (A +B )=sinAcosB +cosAsinB=,则:==.18.(12分)某班有 30 名学生,其中有 60%的同学爱好体育锻炼.经体检调查,这 30 名同学的健康指数(百 分制)如下茎叶图所示.体检评价标准指出:健康指数不低于 70 者为身体状况好,健康指数 低于 70 者为身体状况一般. (1)根据以上资料完成下面的 2×2 列联表,并判断可否有 99%的把握认为“身体状况好与爱 好体育锻炼有关系”?(2)从健康指数高于 90 的 5 人中随机选取2 人,求这两人中恰好有一人爱好体育锻炼的概率. 附:K 2=【解答】解:(1)根据题意,由茎叶图分析可得:则K2==10>6.635,有99%的把握认为“身体状况好与爱好体育锻炼有关系”;(2)设爱好体育锻炼中健康指数高于90的3人为:A,B,C,不爱好体育锻炼中健康指数高于90的2人为a、b,从5人中随机选取2人,有AB、AC、Aa、Ab、BC、Ba、Bb、Ca、Cb、ab,共10种情况,其中两人中恰好有一人爱好体育锻炼有Aa、Ab、Ba、Bb、Ca、Cb,共6种情况,则这两人中恰好有一人爱好体育锻炼的概率有P==.19.(12分)如图所示的几何体QPABCD为一简单组合体,在底面ABCD中,∠DAB=60°,AD⊥DC,AB⊥BC,QD⊥平面ABCD,PA∥QD,PA=1,AD=AB=QD=2.(1)求证:平面PAB⊥平面QBC;(2)求该组合体QPABCD的体积.【解答】证明:(1)∵OD⊥平面ABCD,PA∥QD,∴PA⊥平面ABCD,又∵BC⊂平面ABCD,∴PA⊥BC,又BC⊥AB,PA⊂平面PAB,AB⊂平面PAB,PA∩AB=A,∴BC⊥平面PAB,又∵BC⊂平面QBC,∴平面PAB⊥平面QBC.解:(2)连接BD,过B作BO⊥AD于O,∵PA⊥平面ABCD,BO⊂平面ABCD,∴PA⊥BO,又BO⊥AD,AD⊂平面PADQ,PA⊂平面PADQ,PA∩AD=A,∴BO⊥平面PADQ,∵AD=AB=2,∠DAB=60°,∴△ABD是等邊三角形,∴.∴.∵∠ADC=∠ABC=90°,∴∠CBD=∠CDB=30°,又BD=AB=2,∴,∴.∵QD⊥平面ABCD,∴.∴该组合体的体积.20.(12分)在平面直角坐标系中,已知定点A(1,0)及动点P,以PA 为直径的圆恒与y 轴相切,记动点P 的轨迹为曲线C(1)求曲线 C 的方程;(2)点Q(x0,y0)(x0≥5)是曲线 C 上的点,过点Q 作圆E:(x﹣2 )2+y2=4 的两条切线,分别与x 轴交于M、N 两点,求△QMN 的面积的最小值.(1)设点P(x,y),圆心N(x0,y0),圆与y轴相切于点C,则|PF|=2|NC|,【解答】解:∴=|2x0|,又点N为PF的中点,∴x0=,∴=|x+1|,整理得:y2=4x.∴点P的轨迹方程为:y2=4x;(2)设切线方程为y﹣y0=k(x﹣x0).令y=0,可得x=x0﹣,圆心(2,0)到切线的距离d==2,整理可得(x02﹣4x0)k2+(4y0﹣2x0y0)k+y02﹣4=0.设两条切线的斜率分别为k1,k2,则k1+k2=,k1k2=,∴△QAB面积S=|(x0﹣)﹣(x0﹣)|y0=2•=2[(x0﹣1)++2],令x0﹣1=t,则f(t)=t++2,t∈[4,+∞),则f′(t)=1﹣>0,∴f(t)在[4,+∞)上单调递增,=2f(t)≥,∴f(t)≥f(4)=,∴S△QAB∴△QAB的面积的最小值为.21.(12分)已知函数f (x)=ax﹣1﹣x ln x,(1)若函数 f (x)≤0恒成立求实数 a 的取值范围;(2)当a=1 时,设函数g (x)=xf (x),在x=x0处取到极小值,求证:﹣<g(x0)<﹣.【解答】解:(1)f (x)=ax﹣1﹣xln x,x>0,函数f (x)≤0恒成立,即ax ﹣1﹣xln x≤0恒成立,即a≤+lnx恒成立,设h(x)=+lnx,∴h′(x)=﹣+=,当0<x<1时,h′(x)<0,函数h(x)单调递减,当x>1时,h′(x)>0,函数h(x)单调递增,∴h(x)min=h(1)=1,∴a≤1,实数a的取值范围(﹣∞,1];(2)证明:当a=1时,g(x)=x2﹣x﹣x2lnx,∴g′(x)=2x﹣1﹣(2xlnx+x)=x ﹣1﹣2xlnx,设h(x)=x﹣1﹣2xlnx,∴h′(x)=1﹣2(1+lnx)=﹣1﹣2lnx,令h′(x)=0,解得x=,当0<x<,h′(x)>0,函数单调递增,当x>,h′(x)<0,函数单调递减,注意到(,)⊂(0,),且h′()<0,h′()>0,∴h′(x)=0在(,)内的解为x0,即x0﹣1﹣2x0lnx0=0,因此g(x0)=x02﹣x0﹣x02lnx0=,由x0∈(,),则﹣<g(x0)<﹣.∴﹣<g(x0)<﹣.[选修4-4:坐标系与参数方程](10分)22.(10分)在平面直角坐标系xOy 中,已知曲线C1的参数方程为(t 为参数),以O 为极点,x轴的非负半轴为极轴,曲线C2的极坐标方程为:ρ﹣ρcos2θ﹣2cosθ=0.(Ⅰ)将C1曲线的方程化为普通方程;将曲线C2的方程化为直角坐标方程;(Ⅱ)若点P(1,2),曲线C1与曲线C2的交点为A,B,求|PA|+|PB|的值.【解答】解:(Ⅰ)曲线C1的参数方程为(t 为参数),转化为直角坐标方程为:x+y﹣3=0.曲线C2的极坐标方程为:ρ﹣ρcos2θ﹣2cosθ=0.转化为直角坐标方程为:y2=2x.(Ⅱ)首先把直线的参数方程(t为参数),转化为标准形式:(t为参数),把直线的参数式,代入y2=2x,得到:,(t1和t2为A、B对应的参数),则:,所以:|PA|+|PB|=|t1﹣t2|==2.[选修4-5:不等式选讲](10分)23.已知函数f(x)=x2+2,g(x)=|x﹣a|﹣|x﹣1|,a∈R,(1)若a=4,求不等式f(x)>g(x)的解集;(2)若对任意x1、x2∈R,不等式f(x1)≥g(x2)恒成立,求实数a的取值范围.【解答】解:(1)a=4时,f(x)>g(x),即x2+2>|x﹣4|﹣|x﹣1|,x≥4时,x2+2>x﹣4﹣x+1,成立,1<x<4时,x2+2>4﹣x﹣x+1,解得:x>1,x≤1时,x2+2>4﹣x+x﹣1,解得:x≤﹣1,综上,不等式的解集是{x|x>1或x≤﹣1};(2)若对任意x1、x2∈R,不等式f(x1)≥g(x2)恒成立,则f(x)min≥g(x)max在x∈R成立,而f(x)的最小值是2,g(x)的最大值是|a﹣1|,故只需|a﹣1|≤2,解得:﹣1≤a≤3.第21页(共21页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(本大题共 10 小题,共 30.0 分)
1.
的相反数是
A.
B.
C. 8
D.
【答案】C 【解析】解: 的相反数是 ,故 C 符合题意, 故选:C. 根据只有符号不同的两个数互为相反数,可得答案. 本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.
立方米 C. 19 微克
立方米 D. 18 微
【答案】A 【解析】解:一共 7 个数据,按照从小到大的顺序排列,第 4 个数据是 21, 故中位数是 21 微克 立方米. 故选:A. 根据表格中的数据,由中位数的定义求出中位数即可.
此题考查了中位数的知识,将一组数据按照从小到大 或从大到小 的顺序排列,如果数据
线平行,内错角相等.
13. 将抛物线
先向左平移 5 个单位 再向下平移 3 个单位,可以得到新的抛物线是:
______
【答案】
【解析】解: 抛物线
先向左平移 5 个单位长度,再向下平移 3 个单位长度,
新抛物线顶点坐标为
,
所得到的新的抛物线的解析式为
,
故答案为:
.
根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析
分别求出不等式组中两不等式的解集,找出解集的公共部分即可. 本题主要考查实数的运算与解一元一次不等式组,解题的关键是熟练掌握零指数幂、三角 函数值、负整数指数幂、绝对值的性质及不等式的性质.
22. 某课外研究小组为了解学生参加课外体育活动的情况,采取抽样调查的方法从篮球、 排球、乒乓球、足球及其他等五个方面调查了若干名同学的兴趣爱好 每人只能选其中 一项 ,并将调查结果绘制成统计图,请根据图中提供的信息解答下列问题: 在这次考察中一共调查了______名学生,请补全条形统计图; 被调查同学中恰好有 4 名学来自初一 2 班,其中有 2 名同学选择了篮球,有 2 名同 学选择了乒乓球,曹老师打算从这 4 名同学中选择两同学了解他们对体育社团的看法, 请用列表法或画树状图法,求选出的两人恰好都选择同一种球的概率.
方公式和单项式除以单项式的法则.
6. 一元二次方程
的根的情况为
第 2页,共 19页
A. 有两个相等的实数根
B. 有两个不相等的实数根
C. 只有一个实数根
D. 没有实数根
【答案】B
【解析】解:
,
该方程有两个不相等的实数根.
故选:B.
根据方程的系数结合根的判别式,可得出
,进而可找出该方程有两个不相等的实
【答案】2
【解析】解:取线段 AC 的中点 G,连接 EG,如图所示.
,
,
为等边三角形,且 AD 为
的对称轴,
,
,
,
.
在
和
中,
,
≌
,
.
当
时,EG 最小,
点 G 为 AC 的中点,
此时
.
第 8页,共 19页
故答案为:2.
取线段 AC 的中点 G,连接 EG,根据等边三角形的性质以及角的计算即可得出
以
,
,
∽
,
:
,
C. 2:3
,
:
:2,
故选:B.
根据平行四边形的性质得到
,
性质计算即可.
,得到
∽
D. 5:3
,根据相似三角形的
第 3页,共 19页
本题考查的是相似三角形的性质、平行四边形的性质,掌握相似三角形的面积比等于相似 比的平方是解题的关键.
9. 如图,AB 为圆 O 的直径,点 C 在圆 O 上,若 则 长为
时,y 的值随 x 的增大而减小;
是方程
的一个根;
当
时,
其中正确的结论的个数为
A. 1
B. 2
C. 3
D. 4
【答案】D
【解析】解:
,
抛物线的对称轴为 ,故 正确;
,对称轴为 ,
当 时,y 的值随 x 的增大而减小,故 正确;
当
时,
,
是方程
的一个根,故 正确;
令 得:
,解得:
或,
当
时,
,故 正确.
故选:D.
2. 如图所示,该几何体的主视图是
A.
B.
C.
D.
【答案】D 【解析】解:该几何体为三棱柱,它的主视图是由 1 个矩形,中间的轮廓线用虚线表示. 故选:D. 从前往后看到一个矩形,后面的轮廓线用虚线表示. 本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左: 高平齐;俯、左:宽相等 掌握常见的几何体的三视图的画法.
5. 下列计算中,正确的是
A.
B.
C.
D.
【答案】C
【解析】解:A、
,此选项错误;
B、
,此选项错误;
C、
,此选项正确;
D、
,此选项错误;
故选:C.
分别根据同底数幂的乘法、平方差公式、完全平方公式和单项式除以单项式的法则计算可
得.
本题主要考查整式的混合运算,解题的关键是掌握同底数幂的乘法、平方差公式、完全平
求.
,点 C 是 y 轴上的一个动点,当
第 7页,共 19页
过点 P 作
轴于点 F,则
,
,
在
中,
,
,由勾股定理得:
,
,
点 C 坐标为
;
如答图 2 所示,在第 3 象限可以参照 作
同样操作,同理求得 y 轴负半轴上的点 C 坐标
为
.
综上所述,点 C 坐标为
或
.
故答案为:
或
.
如解答图所示,构造含有 圆心角的 ,则
意义的条件.
四、解答题(本大题共 8 小题,共 64.0 分) 21. 计算:
解不等式组:
【答案】解: 原式
;
由 得:
, ,
第 9页,共 19页
由 得: , 则不等式组的解集为 . 【解析】 原式第一项利用零指数幂的意义化简,第二项利用绝对值的代数意义化简,第 三项利用负整数指数幂的意义化简,最后一项利用特殊角的三角函数值计算,计算即可得 到结果;
的形式,其中
,n 为整数 确定 n 的值时,要看
把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同 当原数绝对
值 时,n 是正数;当原数的绝对值 时,n 是负数.
此题考查科学记数法的表示方法 科学记数法的表示形式为
的形式,其中
,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
一定难度.
18. 在平面直角坐标系中,已知点
、
时,点 C 的坐标为______.
【答案】
或
【解析】解:设线段 BA 的中点为 E,
点
、
,
,
.
如答图 1 所示,过点 E 在第二象限作
,且
,则易知
为
等腰直角三角形,
,
;
以点 P 为圆心, 或 长为半径作 ,
与 y 轴的正半轴交于点 C,
为 的圆周角,
,即则点 C 即为所
分解.
12. 如图,
中,
平分线 AE 平行,若
,过点 C 的直线 DF 与 的
,则
______度
【答案】65
【解析】解:
中,
,
,
,
又 平分 ,
,
中,
,
,
,
故答案为:65.
由
中,
,
,由直角三角形的性质,即可得到 的度数,
又由角平分线的性质,可得 及 的度数,然后由平行线的性质,求得 的度数.
本题主要考查了平行线的性质,直角三角形的性质以及角平分线的定义 解题时注意:两直
与 y 轴的交点即为所求的点 C.
注意点 C 有两个.
本题难度较大 由 的圆周角联想到 的圆心
角是解题的突破口,也是本题的难点所在.
19. 如图,在
中,
,
,直线
,E 是 AD 上的一个动点,连接 EC,将线段 EC 绕
点 C 按逆时针方向旋转 得到 FC,连接 DF,则点 E 运动
过程中,DF 的最小值是______.
4. 使代数式
有意义的自变量 x 的取值范围是
A.
B.
C.
D.
且
【答案】D
【解析】解:要使代数式
有意义,
则
,
解得: 且 , 故选:D. 根据二次根式的性质和分式的意义,被开方数大于或等于 0,分母不等于 0,可以求出 x 的 范围. 本题考查的知识点为:分式有意义,分母不为 0;二次根式的被开方数是非负数.
先利用配方法将原式变形为
,从而可得到抛物线的对称轴,故此可对 作
出判断,然后依据二次函数的性质、方程的解得定义可对 、 作出判断,然后求得抛物
线与 x 轴的交点坐标,然后,再依据二次函数的性质进行进行解答即可.
第 4页,共 19页
本题主要考查的是二次函数与不等式、抛物线与 x 轴的交点,熟练掌握相关性质是解题的 关键.
的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,
则中间两个数据的平均数就是这组数据的中位数.
8. 如图,在平行四边形 ABCD 中,E 为 CD 上一点,连接
AE,BD,且 AE,BD 交于点 F, :
:25,
则 DE:
A. 2:5
B. 3:2
【答案】B
【解析】解: 四边形 ABCD 是平行四边形,
15. 一元二次方程
的两根分别为 a 和 b,则