初中数学因式分解培优训练.doc

合集下载

因式分解培优训练

因式分解培优训练

因式分解强化训练因式分解常用方法:1、 提公因法 ::ma+mb+mc=m(a+b+c)如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、 分解因式x -2x –x 解: x -2x -x=x(x -2x-1)2、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a -b) = a 2-b 2 ---------a 2-b 2=(a+b)(a -b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;下面再补充两个常用的公式:(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2).(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca);例2、已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==3、分组分解法(一)分组后能直接提公因式例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

2022-2023学年初一数学第二学期培优专题训练29 分组分解法因式分解

2022-2023学年初一数学第二学期培优专题训练29 分组分解法因式分解

专题29 分组分解法因式分解【例题讲解】将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay )+(bx+by )=a (x+y )+b (x+y )=(x+y )(a+b )请你仿照以上方法,探索并解决下列问题:(1)分解因式:x 2﹣y 2﹣x ﹣y ;(2)分解因式:9m 2﹣4x 2+4xy ﹣y 2;(3)分解因式:4a 2+4a ﹣4a 2b 2﹣b 2﹣4ab 2+1. 试题解析:(1)x2﹣y2﹣x ﹣y=(x2﹣y2)﹣(x+y )=(x+y )(x ﹣y )﹣(x+y )=(x+y )(x ﹣y ﹣1);(2)9m2﹣4x2+4xy ﹣y2=9m2﹣(4x2﹣4xy+y2)=(3m )2﹣(2x ﹣y )2=(3m+2x ﹣y )(3m ﹣2x+y );(3)4a2+4a ﹣4a2b2﹣b2﹣4ab2+1=(2a+1)2﹣b2(2a+1)2=(2a+1)2(1+b )(1﹣b ).【综合解答】1.先阅读以下材料,然后解答问题,分解因式.mx nx my ny +++()()mx nx my ny =+++()()x m n y m n =+++()()m n x y =++;也可以mx nx my ny +++()()mx my nx ny =+++()()m x y n x y =+++()()m n x y =++.以上分解因式的方法称为分组分解法,(1)请用分组分解法分解下列因式:①2()--+a x y x y②2244x y x --+(2)拓展延伸①若22228160x xy y x -+-+=求x ,y 的值;②求当x 、y 分别为多少时?代数式22512986x xy y x -+++有最小的值,最小的值是多少?2.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:()()()()ax by bx ay ax bx ay by x a b y a b +++=+++=+++()()22222121()1(1)2(1)a b x y x y x x xy y x x y y y x y -+=++-=+-=+++=+-++拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:222223214(1)2(12)(12)(3)(1)x x x x x x x x x +-=++-=+-=+++-=+-请你仿照以上方法,探索并解决下列问题:(1)分解因式:2244a a b --+;(2)分解因式:267x x --;(3)若ABC 三边a 、b 、c 满足20a ab ac bc --+=,试判断ABC 的形状.3.先阅读材料:分解因式:22326a b a b -+-.解:22326a b a b -+-()223(26)a b a b =-+-2(3)2(3)a b b =-+-()2(3)2b a =-+以上解题过程中用到了“分组分解法”,即把多项式先分组,再分解.请你运用这种方法对下面多项式分解因式:2233x x y y +-+.4.阅读下列材料:因式分解的常用方法有提公因式法和公式法,但有的多项式仅用上述方法就无法分解,如22216x xy y -+-.我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解,过程如下:22216x xy y -+-2()16x y =--(4)(4)x y x y =-+--.这种因式分解的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)因式分解:226925a ab b -+-;(2)因式分解:22424x y x y --+.5.将一个多项式分组后,可提取公因式或运用公式继续分解的方法是分组分解法.例如,()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++(1)因式分解:①22x y x y -++;②1ab a b --+;(2)若a ,b 都是正整数且满足60ab a b ---=,求2a b +的值.6.(1)将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++.①分解因式:1ab a b --+;②若,a b ()a b >都是正整数且满足40ab a b ---=,求a b +的值;(2)若,a b 为实数且满足40ab a b ---=,225332s a ab b a b =+++-,求s 的最小值.7.观察“探究性学习”小组甲、乙两名同学进行的因式分解:甲:244x xy x y -+-()2(44)x xy x y =-+-(分成两组) ()4()x x y x y =-+-(直接提公因式)()(4)x y x =-+.乙:2222a b c bc --+()2222a b c bc =-+-(分成两组)22()a b c =--(直接运用公式)()()a b c a b c =+--+(再用平方差公式)请你在他们解法的启发下,把下列各式分解因式:(1)32248m m m --+(2)2229x xy y -+-.8.阅读理解:如何将326xy x y +++进行因式分解呢?小明同学是这样做的:326xy x y +++(3)(26)xy x y =+++(3)2(3)x y y =+++(2)(3)x y =++我们把这种将多项式先分组,分别变形,再进行分解因式的方法叫分组分解法.【尝试应用】借助上述方法因式分解①5420xy x y +++=__________;②8972ab a b +--=__________;③xy ax by ab +++=___________;【拓展提高】若整数x ,y 满足64970xy x y +--=,求x ,y 的值.9.用分组分解法分解下列因式:(1)2a ab ac bc -+-(2)222ax by cx ay bx cy ++---(3)22am am bm bm +--(4)321a a a --+(5)222a ab b a b -++-(6)22296x z y xy -+-10.把下列多项式分解因式:(1)22442a ab b ac bc ++--(2)222ax bx bx ax cx cx +++++(3)222222a b x y ay bx --+-+(4)()()()222241211y x y x y +--+- 11.请先阅读下列文字与例题,再回答后面的问题:当因式分解中,无法直接运用提取公因式和乘法公式时,我们往往可以尝试一个多项式分组后,再运用提取公因式或乘法公式继续分解的方法是分组分解法.例如:(1)am an bm bn +++=()()am an bm bn +++=()()a m n b m n +++=()()m n a b ++(2)2221x y y ---=()2221x y y -++ =()221x y -+=()()11x y x y ++--(1)根据上面的知识,我们可以将下列多项式进行因式分解: ax ay bx by --+=(_____________)-(____________)=(_____________)-(____________)=(_____________)(_____________);22x y x y -+-=(_____________)+(____________)=(_____________)+(____________)=(_____________)(______________).(2)分解下列因式:①ab ac b c -+-;②222496b a ac c -+-+.12.观察下面的分解因式过程,说说你发现了什么.例:把多项式am +an +bm +bn 分解因式.解法1:am +an +bm +bn=(am +an )+(bm +bn )= a (m +n )+b (m +n )=(m +n )(a +b ).解法2:am +an +bm +bn=(am +bm )+(an +bn )= m (a +b )+n (a +b )=(a +b )(m +n ).根据你的发现,把下面的多项式分解因式:(1)mx -my +nx -ny ;(2)2a +4b -3ma -6mb.13.先阅读下面的材料,再分解因式.要把多项式am an bm bn +++分解因式,可以先把它的前两项分成组,并提出a ,把它的后两项分成组,并提出b ,从而得()()am an bm bn a m n b m n +++=+++.这时,由于()()a m n b m n +++中又有公因式()m n +,于是可提公因式()m n +,从而得到()()m n a b ++,因此有+++am an bm bn()()=+++am an bm bn()()a m nb m n=+++()()=++.m n a b这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.请用上面材料中提供的方法因式分解:()2-+-1ab ac bc b()()=(请你完成分解因式下面的过程)---a b c b b c=______()2-+-;2m mn mx nx()222--+.x y x y y3248专题29 分组分解法因式分解【例题讲解】将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay )+(bx+by )=a (x+y )+b (x+y )=(x+y )(a+b )请你仿照以上方法,探索并解决下列问题:(1)分解因式:x 2﹣y 2﹣x ﹣y ;(2)分解因式:9m 2﹣4x 2+4xy ﹣y 2;(3)分解因式:4a 2+4a ﹣4a 2b 2﹣b 2﹣4ab 2+1. 试题解析:(1)x2﹣y2﹣x ﹣y=(x2﹣y2)﹣(x+y )=(x+y )(x ﹣y )﹣(x+y )=(x+y )(x ﹣y ﹣1);(2)9m2﹣4x2+4xy ﹣y2=9m2﹣(4x2﹣4xy+y2)=(3m )2﹣(2x ﹣y )2=(3m+2x ﹣y )(3m ﹣2x+y );(3)4a2+4a ﹣4a2b2﹣b2﹣4ab2+1=(2a+1)2﹣b2(2a+1)2=(2a+1)2(1+b )(1﹣b ).【综合解答】1.先阅读以下材料,然后解答问题,分解因式.mx nx my ny +++()()mx nx my ny =+++()()x m n y m n =+++()()m n x y =++;也可以mx nx my ny +++()()mx my nx ny =+++()()m x y n x y =+++()()m n x y =++.以上分解因式的方法称为分组分解法,(1)请用分组分解法分解下列因式:①2()--+a x y x y②2244x y x --+(2)拓展延伸①若22228160x xy y x -+-+=求x ,y 的值;②求当x 、y 分别为多少时?代数式22512986x xy y x -+++有最小的值,最小的值是多少? ①222x xy -22xy y ++)(24y x +-)20y =,(②2512x xy -2412x xy -()23x y -(23x y ∴-23x y ∴=83y ∴=-,2.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:()()()()ax by bx ay ax bx ay by x a b y a b +++=+++=+++()()22222121()1(1)2(1)a b x y x y x x xy y x x y y y x y -+=++-=+-=+++=+-++拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:222223214(1)2(12)(12)(3)(1)x x x x x x x x x +-=++-=+-=+++-=+-请你仿照以上方法,探索并解决下列问题:(1)分解因式:2244a a b --+;(2)分解因式:267x x --;(3)若ABC 三边a 、b 、c 满足20a ab ac bc --+=,试判断ABC 的形状.【答案】(1)(2)(2)a b a b +---(2)(7)(1)x x -+(3)等腰三角形,理由见解析【分析】(1)将一、二、四项结合用完全平方公式分解因式,然后再用平方差公式分解因式;(2)把-6x 拆成-7x +x ,再用分组分解法进行解答;(2)先把等式左边分解成因式的积,根据积为0的因式的特点得出a 、b 、c 之间的关系便可.【解答】(1)2244a a b --+=a 2-4a +4-b 2=(a -2)2-b 2=(a +b -2)(a -b -2);(2)267x x --=x 2-7x +x -7=x (x -7)+(x -7)=(x -7)(x +1)(3)∵a 2-ab -ac +bc =0,∴a (a -b )-c (a -b )=0,∴(a -b )(a -c )=0,∴a -b =0或a -c =0,∴a =b 或a =c ,∴△ABC 是等腰三角形.【点评】本题考查了因式分解的应用,等腰三角形的定义,掌握每一种因式分解的方法在不同题型中的熟练应用是解题关键.3.先阅读材料:分解因式:22326a b a b -+-.解:22326a b a b -+-()223(26)a b a b =-+-2(3)2(3)a b b =-+-()2(3)2b a =-+以上解题过程中用到了“分组分解法”,即把多项式先分组,再分解.请你运用这种方法对下面多项式分解因式:2233x x y y +-+.【答案】见解析【分析】仿照例题,利用分组分解法因式分解,然后利用公式法和提公因式法因式分解即可求解.【解答】解:2233x x y y +-+()()2233x y x y =-++ ()()()3x y x y x y =+-++()()3x y x y =+-+【点评】本题考查了因式分解,理解例题中的分组分解法是解题的关键.4.阅读下列材料:因式分解的常用方法有提公因式法和公式法,但有的多项式仅用上述方法就无法分解,如22216x xy y -+-.我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解,过程如下:22216x xy y -+-2()16x y =--(4)(4)x y x y =-+--.这种因式分解的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)因式分解:226925a ab b -+-;(2)因式分解:22424x y x y --+. 【答案】(1)()()3535a b a b ---+(2)()()222x y x y -+-【分析】(1)先将代数式进行分组,然后再根据公式法和提取公因式法进行因式分解即可;(2)先将代数式进行分组,然后再根据公式法和提取公因式法进行因式分解即可.(1)解:226925a ab b -+-,()22=6925a ab b -+-,()22=35a b --, ()()3535=a b a b ---+;(2)解:22424x y x y --+,()()22=42-4x y x y --,()()()=2+22-2x y x y x y --,()()222=x y x y -+-.【点评】本题考查了用分组分解法对超过3项的多项式进行因式分解,合理分组是解题的关键,综合运用因式分解的几种方法是重难点.5.将一个多项式分组后,可提取公因式或运用公式继续分解的方法是分组分解法.例如,()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++(1)因式分解:①22x y x y -++;②1ab a b --+;(2)若a ,b 都是正整数且满足60ab a b ---=,求2a b +的值. 【答案】(1)①(x +y )(x -y +1);②(a -1)(b -1)(2)12或18【分析】(1)模仿例题,利用分组分解法进行因式分解即可;(2)利用(1)题结论进行讨论,即可求解.(1)解:①原式=(x +y )(x -y )+ (x +y )=(x +y )(x -y +1);②原式=a (b -1)- (b -1)=(a -1)(b -1);(2)解:由(1)②可知,(a -1)(b -1)=7,∵a ,b 都是正整数,∴a -1,b -1都是整数,∴1117a b -=⎧⎨-=⎩或1711a b -=⎧⎨-=⎩, 解得28a b =⎧⎨=⎩或82a b =⎧⎨=⎩, 当a =2,b =8时,2a +b =2×2+8=12;当a =8,b =2时,2a +b =2×8+2=18;∴2a +b 的值为12或18.【点评】此题考查了因式分解以及利用因式分解求代数式的值的能力,关键是正确地对整式进行因式分解.6.(1)将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++.①分解因式:1ab a b --+;②若,a b ()a b >都是正整数且满足40ab a b ---=,求a b +的值;(2)若,a b 为实数且满足40ab a b ---=,225332s a ab b a b =+++-,求s 的最小值.7.观察“探究性学习”小组甲、乙两名同学进行的因式分解:甲:244x xy x y -+-()2(44)x xy x y =-+-(分成两组)()4()x x y x y =-+-(直接提公因式)()(4)x y x =-+.乙:2222a b c bc --+()2222a b c bc =-+-(分成两组)22()a b c =--(直接运用公式)()()a b c a b c =+--+(再用平方差公式)请你在他们解法的启发下,把下列各式分解因式:(1)32248m m m --+(2)2229x xy y -+-. 【答案】(1)2(2)(2)m m -+;(2)(3)(3)x y x y -+--【分析】(1)先分组因式分解,再提公因式即可求解;(2)先分组因式分解,再利用平方差公式即可求解.【解答】解:(1)原式22(2)4(2)(2)(2)m m m m m =---=-+;(2)原式2()9(3)(3)x y x y x y =--=-+--.【点评】此题主要考查因式分解,解题的关键是根据题中的方法进行灵活运用进行因式分解.8.阅读理解:如何将326xy x y +++进行因式分解呢?小明同学是这样做的:326xy x y +++(3)(26)xy x y =+++(3)2(3)x y y =+++(2)(3)x y =++我们把这种将多项式先分组,分别变形,再进行分解因式的方法叫分组分解法.【尝试应用】借助上述方法因式分解①5420xy x y +++=__________;②8972ab a b +--=__________;③xy ax by ab +++=___________;【拓展提高】若整数x ,y 满足64970xy x y +--=,求x ,y 的值. 【答案】[尝试应用] ①()()45x y ++;②()()98a b -+;③()()x b a y ++;[拓展提高] x =1,y =-1【分析】[尝试应用] ①②③利用分组分解法解答即可;[拓展提高]原方程变形为:(2x -3)(3y +2)=1,根据题意有2x -3=1,3y +2=1,或2x -3=-1,3y +2=-1,即可求出方程的整数解.【解答】解:[尝试应用]①5420xy x y +++=()()545x y y +++=()()45x y ++;9.用分组分解法分解下列因式:(1)2a ab ac bc -+-(2)222ax by cx ay bx cy ++---(3)22am am bm bm +--(4)321a a a --+(5)222a ab b a b -++-(6)22296x z y xy -+-【答案】(1)()()a c a b +-;(2)()()2x y a b c --+;(3)()()1m a b m -+;(4)()()211a a +-;(5)()()1a b a b --+;(6)()()33x y z x y z -+--【分析】利用分组分解法运算即可.【解答】解:(1)2a ab ac bc -+-=()()a a b c a b -+-=()()a c a b +-;(2)222ax by cx ay bx cy ++---=222ax bx cx by ay cy -++--=()()2a b c x y a b c -+--+=()()2x y a b c --+;(3)22am am bm bm +--=22am bm am bm -+-=()()2a b m a b m -+- =()()1m a b m -+;(4)321a a a --+=()()321a a a ---=()()2211a a a ---=()()211a a +-;(5)222a ab b a b -++-=()()2a b a b -+-=()()1a b a b --+;(6)22296x z y xy -+-=22296x xy y z -+-=()223x y z --=()()33x y z x y z -+--【点评】本题考查了因式分解,熟练掌握分组分解法是解此题的关键.10.把下列多项式分解因式:(1)22442a ab b ac bc ++--(2)222ax bx bx ax cx cx +++++(3)222222a b x y ay bx --+-+(4)()()()222241211y x y x y +--+- 【答案】(1)()()22a b c a b +-+;(2)()()1x x a b c +++;(3)()()x a b y x a b y ---++--;(4)()2221x y x y -++ 【分析】(1)(2)(3)利用分组分解法分解即可;(4)利用完全平方公式分解即可.【解答】解:(1)22442a ab b ac bc ++--=()()222a b c a b +-+=()()22a b c a b +-+;(2)222ax bx bx ax cx cx +++++=()()222ax bx cx ax bx cx +++++ =()()2a b c x a b c x +++++=()()1x x a b c +++;(3)222222a b x y ay bx --+-+=()222222a ay y b x bx -+-+-=()()22a yb x ---=()()()()a y b x a y b x -+----⎡⎤⎡⎤⎣⎦⎣⎦=()()x a b y x a b y ---++--;(4)()()()222241211y x y x y +--+- =()()()()222412111y x y y x y +-+-+-=()()2211y x y ⎡⎤+--⎣⎦ =()2221x y x y -++ 【点评】本题考查了因式分解,解题的关键是根据所给代数式的形式灵活选择方法.11.请先阅读下列文字与例题,再回答后面的问题:当因式分解中,无法直接运用提取公因式和乘法公式时,我们往往可以尝试一个多项式分组后,再运用提取公因式或乘法公式继续分解的方法是分组分解法.例如:(1)am an bm bn +++=()()am an bm bn +++=()()a m n b m n +++=()()m n a b ++(2)2221x y y ---=()2221x y y -++ =()221x y -+=()()11x y x y ++--(1)根据上面的知识,我们可以将下列多项式进行因式分解: ax ay bx by --+=(_____________)-(____________)=(_____________)-(____________)=(_____________)(_____________);22x y x y -+-=(_____________)+(____________)=(_____________)+(____________)=(_____________)(______________).(2)分解下列因式:①ab ac b c -+-;②222496b a ac c -+-+.【答案】(1)ax ay -;bx by -;()a x y -;()-b x y ;x y -;a b -;22x y -;x y -;()()x y x y -+;x y -;x y -;1x y ++;(2)①()()1-+b c a ;②()()3232-+--a c b a c b【分析】(1)利用分组分解法结合提公因式法和平方差公式因式分解即可;(2)①利用分组分解法结合提公因式法因式分解即可;②利用分组分解法结合公式法因式分解即可;【解答】解:(1)ax ay bx by --+=(ax ay -)-(bx by -)=()a x y --()-b x y = (x y -)(a b -);22x y x y -+-=(22x y -)+(x y -)=()()x y x y -+ +(x y -)=()()1-++x y x y故答案为:ax ay -;bx by -;()a x y -;()-b x y ;x y -;a b -;22x y -;x y -;()()x y x y -+;x y -;x y -;1x y ++;(2)①ab ac b c -+-=()()-+-a b c b c=()()1-+b c a②222496b a ac c -+-+=()222496-+-+b a ac c =()2234--a c b=()()3232-+--a c b a c b【点评】此题考查的是因式分解,掌握利用分组分解法结合提公因式法和公式法因式分解是解决此题的关键.12.观察下面的分解因式过程,说说你发现了什么.例:把多项式am +an +bm +bn 分解因式.解法1:am +an +bm +bn=(am +an )+(bm +bn )= a (m +n )+b (m +n )=(m +n )(a +b ).解法2:am +an +bm +bn=(am +bm )+(an +bn )= m (a +b )+n (a +b )=(a +b )(m +n ).根据你的发现,把下面的多项式分解因式:(1)mx -my +nx -ny ;(2)2a +4b -3ma -6mb.【答案】(1)(x -y )(m +n );(2)(a +2b )(2-3m )【分析】(1)分组后提取公因式即可得到结果;(2)分组后提取公因式即可得到结果.【解答】解:(1)解法一:原式=m(x-y)+n(x-y)=(x-y)(m+n)解法二:原式=(mx+nx)-(my+ny)=x(m+n)-y(m+n)=(m+n)(x-y)(2)解法一:原式=2(a+2b)-3m(a+2b)=(a+2b)(2-3m)解法二:原式=(2a-3ma)+(4b-6mb)=a(2-3m)+2b(2-3m)=(2-3m)(a+2b)【点评】此题考查了因式分解-分组分解法,难点是采用两两分组还是三一分组.13.先阅读下面的材料,再分解因式.要把多项式am an bm bn +++分解因式,可以先把它的前两项分成组,并提出a ,把它的后两项分成组,并提出b ,从而得()()am an bm bn a m n b m n +++=+++.这时,由于()()a m n b m n +++中又有公因式()m n +,于是可提公因式()m n +,从而得到()()m n a b ++,因此有am an bm bn +++()()am an bm bn =+++()()a m n b m n =+++()()m n a b =++.这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.请用上面材料中提供的方法因式分解:()21ab ac bc b -+-()()a b c b b c ---=(请你完成分解因式下面的过程)=______()22m mn mx nx -+-;()2223248x y x y y --+. 【答案】(1)()()a b b c --;(2) (m +x )(m -n );(3) (y -2)(x 2y -4).【分析】如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.依此即可求解.【解答】解:(1)ab -ac +bc -b 2=a (b -c )-b (b -c )=(a -b )(b -c );故答案为(a-b)(b-c).(2)m2-mn+mx-nx=m(m-n)+x(m-n)=(m+x)(m-n);(3)x2y2-2x2y-4y+8=x2y(y-2)-4(y-2)=(y-2)(x2y-4).【点评】考查了因式分解-提公因式法,因式分解-分组分解法,本题采用两两分组的方式.。

初中数学因式分解培优训练

初中数学因式分解培优训练

第一讲:因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n 为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.n-1n4224=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4) 例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c >0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.第二讲:因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)] =(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(y+1)(x+y-2).(4)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.。

初中数学因式分解培优训练

初中数学因式分解培优训练

分析 本题解法很多,这 里只介绍运用拆项、添项法
5
分解的几种解法,注意一下 解法 4 添加两项-x2+x2.
拆项、添项的目的与技巧. 原式=x3-9x+8
解法 1 将常数项 8 拆成 =x3-x2+x2-9x+8
-1+9.
原式=x3-9x-1+9
=x2(x-1)+(x-8)(x-1)
至 0,由此想到应用公式
成两项或多项,或者在多项
an-bn 来分解.
式中添上两个仅符合相反
解 因为
的项,前者称为拆项,后者
称为添项.拆项、添项的目
x16-1=(x-1)(x15+x14+x13+…
的是使多项式能用分组分
x2+x+1),
解法进行因式分解.
所以
例 4 分解因式:
x3-9x+8.
说明 公式(6)是一个应用 极广的公式,用它可以推出 很多有用的结论,例如:我 们将公式(6)变形为
a3+b3+c3-3abc
显然,当 a+b+c=0 时,
则 a3+b3+c3=3abc;当
a+b+c>0 时,则
a3+b3+c3-3abc≥0,即
4
a3+b3+c3≥3abc,而且,当 说明 在本题的分解过程
(3)将(x2-1)2 拆成
2(x2-1)2-(x2-1)2.
=[a(a-b)+1](ab+b2+1)
原式
=(x+1)4+2(x2-1)2-(x2-1)2+

因式分解精练(培优)

因式分解精练(培优)

因式分解精选练习一分解因式 1.2x 4y 2-4x 3y 2+10xy 4 、2. 5x n+1-15x n +60x n —1 、 3.()()431241a b a b ---4. (a+b)2x 2-2(a 2-b 2)xy+(a-b)2y 2 、5. x 4-1、6.-a2-b2+2ab +47. 134+--x x x 、 8.()()422223612y y y y x y y x -++-+9. ()()()()422223612y x y x y x x y x x +-+++-+、10.a 2+b 2+c 2+2ab+2bc+2ac11.x 2-2x-8、 12.3x 2+5x-2 、13. (x+1)(x+2)(x+3)(x+4)+1、14. (x 2+3x+2)(x 2+7x+12)-120.15.把多项式3x 2+11x+10分解因式。

16.把多项式5x 2―6xy ―8y 2分解因式。

因式分解精选练习二、证明题17.求证:32000-4×31999+10×31998能被7整除。

18.设n 为正整数,且64n -7n 能被57整除,证明:21278+++n n 是57的倍数.19.求证:无论x 、y 为何值,3530912422+++-y y x x 的值恒为正。

20.已知x 2+y 2-4x+6y+13=0,求x,y 的值。

三 求值。

21.已知a,b,c 满足a-b=8,ab+c 2+16=0,求a+b+c 的值 .22.已知x 2+3x+6是多项式x 4-6x 3+mx 2+nx+36的一个因式,试确定m,n 的值,并求出它的其它因式。

因式分解精选练习1. 解:原式=2xy 2·x 3-2xy 2·2x 2+2xy 2·5y 2 =2xy 2 (x 3-2x 2+5y 2)。

2.解:原式=5 x n--1·x 2-5x n--1·3x +5x n--1·12=5 x n--1 (x 2-3x +12)3.解:原式=3a(b-1)(1-8a 3) =3a(b-1)(1-2a)(1+2a+4a 2)*4.解:原式= [(a+b)x]2-2(a+b)(a-b)xy+[(a-b)y]2=(ax+bx-ay+by)25.解:原式=(x 2+1)(x 2-1)=(x 2+1)(x+1)(x-1)6.解:原式=-(a 2-2ab +b 2-4)=-(a-b+2)(a-b-2)7. 解: 原式= x 4-x 3-(x-1)= x 3(x-1)-(x-1)=(x-1)(x 3-1)=(x-1)2(x 2+x+1)*提8. 解:原式=y 2[(x+y)2-12(x+y)+36]-y 4=y 2(x+y-6)2-y 4=y 2[(x+y-6)2-y 2]=y 2(x+y-6+y)(x+y-6-y)= y 2(x+2y-6)(x-6)9. 解:原式== (x+y)2(x 2-12x+36)-(x+y)4=(x+y)2[(x-6)2-(x+y)2]=(x+y)2(x-6+x+y)(x-6-x-y)=(x+y)2(2x+y-6)(-6-y)= - (x+y)2(2x+y-6)(y+6)10.解:原式=.(a 2+b 2 +2ab )+2bc+2ac+c 2=(a+b)2+2(a+b)c+c 2 =(a+b+c)211.解:原式=x 2-2x+1-1-8 =(x-1)2-32=(x-1+3)(x-1-3)=(x+2)(x-4)12.解:原式=3(x 2+53x)-2 =3(x 2+53x+2536-2536)-2 =3(x+56)2-3×2536-2=3(x+56)2-4912 =3[(x+56)2-4936]=3(x+56+76)(x+56-76)=3(x+2)(x-13) =(x+2)(3x-1)13.解:原式=[(x+1)(x+4)][(x+2)(x+3)]+1=(x 2+5x+4)(x 2+5x+6)+1令x 2+5x=a,则 原式=(a+4)(a+6)+1=a 2+10a+25=(a+5)2=(x 2+5x+5)14. 解 原式=(x+2)(x+1)(x+4)(x+3)-120=(x+2)(x+3)(x+1)(x+4)-120=(x 2+5x+6)(x 2+5x+4)-120令 x 2+5x=m, 代入上式,得原式=(m+6)(m+4)-120=m 2+10m-96=(m+16)(m-6)=(x 2+5x+16)(x 2+5x-6)=(x 2+5x+16)(x+6)(x-1)15.解:原式=(x+2)(3x+5)提示:把二次项3x 2分解成x 与3x (二次项一般都只分解成正因数),常数项10可分成1×10=-1×(-10)=2×5=-2×(-5),其中只有11x =x ×5+3x ×2。

2022-2023学年初一数学第二学期培优专题训练31 十字相乘法因式分解

2022-2023学年初一数学第二学期培优专题训练31 十字相乘法因式分解

专题31 十字相乘法因式分解【例题讲解】(1)【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式()20ax bx c a ++≠分解因式呢?我们已经知道:()()()2211221212211212122112a x c a x c a a x a c x a c x c c a a x a c a c x c c ++=+++=+++.反过来,就得到:()()()2121221121122a a x a c a c x c c a x c a x c +++=++.我们发现,二次三项式()20ax bx c a ++≠的二次项的系数a 分解成12a a ,常数项c 分解成12c c ,并且把1a ,2a ,1c ,2c ,如图1所示摆放,按对角线交叉相乘再相加,就得到1221a c a c +,如果1221a c a c +的值正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解为()()1122a x c a x c ++,其中1a ,1c 位于图的上一行,2a ,2c 位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子26x x --分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即()623-=⨯-;然后把1,1,2,3-按图2所示的摆放,按对角线交叉相乘再相加的方法,得到()13121⨯-+⨯=-,恰好等于一次项的系数1-,于是26x x --就可以分解为()()23x x +-.请同学们认真观察和思考,尝试在图3的虚线方框内填入适当的数,并用“十字相乘法”分解因式:26x x +-=__________.(2)【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式: ① 2257x x +-=__________;② 22672x xy y -+=__________. (3)【探究与拓展】对于形如22ax bxy cy dx ey f +++++的关于x ,y 的二元二次多项式也可以用“十字相乘法”来分解,如图4.将a 分解成mn 乘积作为一列,c 分解成pq 乘积作为第二列,f 分解成jk 乘积作为第三列,如果mq np b +=,pk pj e +=,mk nj d +=,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式()()mx py j nx qy k =++++,请你认真阅读上述材料并尝试挑战下列问题: ① 分解因式2235294x xy y x y +-++-=__________;② 若关于x ,y 的二元二次式22718524x xy y x my +--+-可以分解成两个一次因式的积,求m 的值.【解答】(1)首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即63-=⨯(-2),所以26x x +-=(3)(2)x x +-.故答案为:(3)(2)x x +-. (2)①把二次项系数2写成212=⨯,717-=-⨯,满足17(1)25⨯+-⨯=,所以2257x x +-=(27)(1)x x +-.故答案为:(27)(1)x x +-.②把2x 项系数6写成623=⨯,把2y 项系数2写成212=-⨯-(),满足22(1)37-⨯+-⨯=-, 所以22672x xy y -+=(2)(32)x y x y --.故答案为:(2)(32)x y x y --.(3)①把2x 项系数3写成313=⨯,把2y 项系数-2写成221-=⨯-(),常数项-4写成41-=-⨯()4满足条件,所以2235294x xy y x y +-++-=(34)(21)x y x y -++-.②把2x 项系数1写成111=⨯,把2y 项系数-18写成1829-=-⨯,常数项-24写成243(-=⨯-8)或248-=-⨯()3满足条件,所以m =39(2)(8)43⨯+-⨯-=或m =9(8)(2)378⨯-+-⨯=-,故m 的值为43或-78.【综合解答】1.阅读材料:根据多项式乘多项式法则,我们很容易计算:2(2)(3)56x x x x ++=++;2(1)(3)23x x x x -+=+-.而因式分解是与整式乘法方向相反的变形,利用这种关系可得:256(2)(3)x x x x ++=++;223(1)(3)x x x x +-=-+.通过这样的关系我们可以将某些二次项系数是1的二次三项式分解因式.如将式子223x x +-分解因式.这个式子的二次项系数是111=⨯,常数项3(1)3-=-⨯,一次项系数2(1)3=-+,可以用下图十字相乘的形式表示为:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求和,使其等于一次项系数,然后横向书写.这样,我们就可以得到:223(1)(3)x x x x +-=-+. 利用这种方法,将下列多项式分解因式: (1)2710x x ++=__________; (2)223x x --=__________; (3)2712y y -+=__________; (4)2718x x +-=__________.2.根据多项式乘法法则22()()()x p x q x px qx pq x p q x pq ++=+++=+++,因此2()()()x p q x pq x p x q +++=++,这种因式分解的方法称为十字相乘法,按照上面方法对下列式子进行因式分解(1)2710x x ++ (2)2718x x +- (3)2252x x -+ (4)262y y -- (5)2232253x xy y x y -+-+- 3.运用十字相乘法分解因式: (1)232x x --; (2)210218x x ++; (3)22121115x xy y --; (4)2()3()10x y x y +-+-. 4.用十字相乘法分解下列因式. (1)276x x -+ (2)2215y y -- (3)231110x x -+ (4)226a ab b -- (5)22121115x xy y -- (6)()()2310x y x y +-+- 5.分解因式 (1)2412x x --; (2)245x x --; (3)3222620x x y xy -+-;(4)231914x x --. 6.分解因式: (1)2 1016x x -+; (2)2 23x x --.7.在因式分解的学习中我们知道对二次三项式()2x a b x ab +++可用十字相乘法方法得出()()()2x a b x ab x a x b +++=++,用上述方法将下列各式因式分解:(1)2256x xy y +-=__________.(2)()224236x a x a a -+++=__________.(3)()2256x b x a b a ----=__________.(4)()22018201720191x x -⨯-=__________. 8.将下列各式分解因式:(1)256x x --; (2)21016x x -+; (3)2103x x --9.由多项式乘法:2()()()x a x b x a b x ab ++=+++,将该式从右到左进行运算,即可得到“十字相乘法”进行因式分解的公式:2()()()x a b x ab x a x b +++=++.如:分解因式:2256(23)23(2)(3)x x x x x x ++=+++⨯=++.(1)分解因式:268(___)(___)x x x x ++=++ (2)请用上述方法解方程:2340x x --= 10.分解因式: (1)22914x xy y ++ (2)2212x xy y -- (3)22295x xy y +- (4)22376x xy y -- (5)22328x xy y -- (6)225314x xy y -++ 11.分解因式: (1)2914x x ++ (2)212x x -- (3)2295x x +- (4)2376x x --(5)28103x x --- (6)210275x x --- 12.分解因式: (1)22914x xy y ++ (2)2212x xy y -- (3)22295x xy y +- (4)22376x xy y -- (5)228103x xy y ++ (6)2210275x xy y ++ 13.分解因式: (1)2710x x -+ (2)2918x x -+ (3)256x x -- (4)2922x x -- (5)232x x +- (6)234x x +- (7)2122512x x -+- (8)2310x x --+ (9)22x y x y --- (10)321x x x +++ (11)22494a a b +-+ (12)22424a b a b--+专题31 十字相乘法因式分解【例题讲解】(1)【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式()20ax bx c a ++≠分解因式呢?我们已经知道:()()()2211221212211212122112a x c a x c a a x a c x a c x c c a a x a c a c x c c ++=+++=+++.反过来,就得到:()()()2121221121122a a x a c a c x c c a x c a x c +++=++.我们发现,二次三项式()20ax bx c a ++≠的二次项的系数a 分解成12a a ,常数项c 分解成12c c ,并且把1a ,2a ,1c ,2c ,如图1所示摆放,按对角线交叉相乘再相加,就得到1221a c a c +,如果1221a c a c +的值正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解为()()1122a x c a x c ++,其中1a ,1c 位于图的上一行,2a ,2c 位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子26x x --分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即()623-=⨯-;然后把1,1,2,3-按图2所示的摆放,按对角线交叉相乘再相加的方法,得到()13121⨯-+⨯=-,恰好等于一次项的系数1-,于是26x x --就可以分解为()()23x x +-.请同学们认真观察和思考,尝试在图3的虚线方框内填入适当的数,并用“十字相乘法”分解因式:26x x +-=__________.(2)【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式: ① 2257x x +-=__________;② 22672x xy y -+=__________. (3)【探究与拓展】对于形如22ax bxy cy dx ey f +++++的关于x ,y 的二元二次多项式也可以用“十字相乘法”来分解,如图4.将a 分解成mn 乘积作为一列,c 分解成pq 乘积作为第二列,f 分解成jk 乘积作为第三列,如果mq np b +=,pk pj e +=,mk nj d +=,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式()()mx py j nx qy k =++++,请你认真阅读上述材料并尝试挑战下列问题: ① 分解因式2235294x xy y x y +-++-=__________;② 若关于x ,y 的二元二次式22718524x xy y x my +--+-可以分解成两个一次因式的积,求m 的值.【解答】(1)首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即63-=⨯(-2),所以26x x +-=(3)(2)x x +-.故答案为:(3)(2)x x +-.(2)①把二次项系数2写成212=⨯,717-=-⨯,满足17(1)25⨯+-⨯=,所以2257x x +-=(27)(1)x x +-.故答案为:(27)(1)x x +-.②把2x 项系数6写成623=⨯,把2y 项系数2写成212=-⨯-(),满足22(1)37-⨯+-⨯=-, 所以22672x xy y -+=(2)(32)x y x y --.故答案为:(2)(32)x y x y --.(3)①把2x 项系数3写成313=⨯,把2y 项系数-2写成221-=⨯-(),常数项-4写成41-=-⨯()4满足条件,所以2235294x xy y x y +-++-=(34)(21)x y x y -++-.②把2x 项系数1写成111=⨯,把2y 项系数-18写成1829-=-⨯,常数项-24写成243(-=⨯-8)或248-=-⨯()3满足条件,所以m =39(2)(8)43⨯+-⨯-=或m =9(8)(2)378⨯-+-⨯=-,故m 的值为43或-78.【综合解答】1.阅读材料:根据多项式乘多项式法则,我们很容易计算:2(2)(3)56x x x x ++=++;2(1)(3)23x x x x -+=+-.而因式分解是与整式乘法方向相反的变形,利用这种关系可得:256(2)(3)x x x x ++=++;223(1)(3)x x x x +-=-+.通过这样的关系我们可以将某些二次项系数是1的二次三项式分解因式.如将式子223x x +-分解因式.这个式子的二次项系数是111=⨯,常数项3(1)3-=-⨯,一次项系数2(1)3=-+,可以用下图十字相乘的形式表示为:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求和,使其等于一次项系数,然后横向书写. 这样,我们就可以得到:223(1)(3)x x x x +-=-+. 利用这种方法,将下列多项式分解因式: (1)2710x x ++=__________; (2)223x x --=__________; (3)2712y y -+=__________; (4)2718x x +-=__________. 【答案】(1)()()25x x ++ (2)()()31x x -+ (3)()()34y y -- (4)()()92x x +-【分析】(1)仿照题意求解即可; (2)仿照题意求解即可; (3)仿照题意求解即可; (4)仿照题意求解即可.【解答】(1)解:根据题意可知()()271025x x x x ++=++ (2)解:根据题意可知()()22331x x x x --=-+(3)解:根据题意可知()()271234y y y y =---+ (4)解:根据题意可知()()271892x x x x +-=+-【点评】本题主要考查分解因式,正确理解题意是解题的关键.2.根据多项式乘法法则22()()()x p x q x px qx pq x p q x pq ++=+++=+++,因此2()()()x p q x pq x p x q +++=++,这种因式分解的方法称为十字相乘法,按照上面方法对下列式子进行因式分解(1)2710x x ++ (2)2718x x +- (3)2252x x -+ (4)262y y -- (5)2232253x xy y x y -+-+-【答案】(1) (x+2)(x+5);(2) (x+9)(x-2);(3) (2x-1)(x-2);(4) (2y+1)(3y-2);(5)(x-2y+1)(x-y-3). 【分析】(1)观察可知10=2×5,7=2+5,由此进行因式分解即可; (2)观察可知—18=-2×9,7=-2+9,由此进行因式分解即可;(3)观察可知二次项系数2=1×2,常数项2=(-1)×(-2),一次项系数-5=1×(-1)+2×(-2),据此进行因式分解即可;(4)观察可知二次项系数6=2×3,常数项-2=1×(-2),一次项系数-1=2×(-2)+3×1,据此进行因式分解即可;(5)原式前三项利用材料中的方法进行分解,然后变形为(x-2y)(x-y)+x-y-3x+6y-3,据此利用提公因式法继续进行分解即可得. 【解答】(1)原式=(x+2)(x+5); (2)原式=(x+9)(x-2); (3)原式=(2x-1)(x-2); (4)原式=(2y+1)(3y-2); (5)原式=(x-2y)(x-y)+x-y-3x+6y-3 =(x-2y)(x-y)+(x-y)-(3x-6y+3) =(x-y)(x-2y+1)-3(x-2y+1) =(x-2y+1)(x-y-3).【点评】本题考查了十字相乘法分解因式,分组分解法分解因式,提公因式法分解因式,其中第(5)小题有一定的难度,读懂材料中的解题方法是解题的关键. 3.运用十字相乘法分解因式: (1)232x x --; (2)210218x x ++; (3)22121115x xy y --; (4)2()3()10x y x y +-+-.【答案】(1)(32)(1)x x +-;(2)(21)(58)x x ++;(3)(35)(43)x y x y -+;(4)(5)(2)x y x y +-++. 【分析】(1)直接运用x 2+(p+q )x+pq=(x+p )(x+q )分解因式得出即可;(2)ax 2+bx+c (a≠0)型的式子的因式分解的关键是把二次项系数a 分解成两个因数a 1,a 2的积a 1•a 2,把常数项c 分解成两个因数c 1,c 2的积c 1•c 2,并使a 1c 2+a 2c 1正好是一次项b ,那么可以直接写成结果:ax 2+bx+c=(a 1x+c 1)(a 2x+c 2); (3)同(2);(4)把(x y +)当作一个整体,运用x 2+(p+q )x+pq=(x+p )(x+q )分解因式得出即可 【解答】(1)232(32)(1)x x x x --=+-. (2)210218(21)(58)x x x x ++=++. (3)22121115(35)(43)x xy y x y x y --=-+.(4)2()3()10[()5][()2](5)(2)x y x y x y x y x y x y +-+-=+-++=+-++.【点评】本题主要考查了十字相乘法分解因式;熟练掌握十字相乘法分解因式,正确分解常数项是解题关键.4.用十字相乘法分解下列因式. (1)276x x -+ (2)2215y y -- (3)231110x x -+ (4)226a ab b -- (5)22121115x xy y -- (6)()()2310x y x y +-+-【答案】(1)()()61x x --;(2)()()53y y -+;(3)()()235x x --;(4)()()32a b a b -+;(5)()()4335x y x y +-;(6)()()52x y x y +-++【分析】(1)把6分成-6与-1的积,利用十字相乘法分解因式得出答案即可; (2)把-15分成-5与3的积,利用十字相乘法分解因式得出答案即可;(3)把3分成1与的3积,把10分成-2与-5的积,利用十字相乘法分解因式得出答案即可; (4)把b 看作常数,把26b -分成-3b 与2b 的积,利用十字相乘法分解因式得出答案即可; (5)把y 看作常数,把12分成4与3的积,把215y -分成3y 与-5y 的积,利用十字相乘法分解因式得出答案即可;(6)把()x y +看作一个整体,把-10分成-5与2的积,利用十字相乘法分解因式得出答案即可. 【解答】解:(1)276x x -+ =()()61x x -- (2)2215y y -- =()()53y y -+ (3)231110x x -+ =()()235x x -- (4)226a ab b -- =()()32a b a b -+ (5)22121115x xy y -- =()()4335x y x y +- (6)()()2310x y x y +-+- =()()52x y x y +-++【点评】此题主要考查了十字相乘法分解因式,正确分解二次项系数及常数项是解题关键.有时要把某个字母看作常数或把某个多项式看作一个整体. 5.分解因式 (1)2412x x --; (2)245x x --; (3)3222620x x y xy -+-; (4)231914x x --. 【答案】(1)()()62x x -+ (2)()()51x x -+ (3)()()252x x y x y -+- (4)()()732x x -+【分析】(1)利用十字相乘法分解因式即可; (2)利用十字相乘法分解因式即可;(3)首先提取公因式,然后再用十字相乘法分解因式即可; (4)利用十字相乘法分解因式即可. 【解答】(1)解:2412x x --()()26262x x =+-++-⨯ ()()62x x =-+;(2)解:245x x --()()51x x =-+;(3)解:3222620x x y xy -+-()222310x x xy y =-+-()()252x x y x y =-+-;(4)解:231914x x --()()732x x =-+.【点评】本题考查了因式分解,解本题的关键在熟练掌握利用十字相乘法分解因式.6.分解因式:(1)2 1016x x -+;(2)2 23x x --.【答案】(1)()()82x x --(2)()()31x x -+【分析】(1)利用十字相乘法即可得出答案;(2)利用十字相乘法即可得出答案.【解答】(1)解:2 1016x x -+()()82x x =--;(2)解:2 23x x --()()31x x =-+.【点评】本题考查了十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.7.在因式分解的学习中我们知道对二次三项式()2x a b x ab +++可用十字相乘法方法得出()()()2x a b x ab x a x b +++=++,用上述方法将下列各式因式分解:(1)2256x xy y +-=__________.(2)()224236x a x a a -+++=__________.(3)()2256x b x a b a ----=__________.(4)()22018201720191x x -⨯-=__________.【答案】(1)(x -y )(x +6y )(2)(x -3a )(x -a -2)(3)(x +a -3b )(x -a -2b )(4)(20182x 2+1)(x -1)【分析】(1)将-6y 2改写成-y ·6,然后根据例题分解即可;(2)将3a 2+6a 改写成()()32a a --+⎡⎤⎣⎦,然后根据例题分解即可;(3)先化简,将226ab b a +-改写()()32b a b a -+--,然后根据例题分解即可;(4)将20172019⨯改写成(2018-1)(2018+1),变形后根据例题分解即可;(1)解:原式=()2(6)6x y y x y y +-++-⋅=(x -y )(x +6y );(2)解:原式=()()()23232x a a x a a +--++--+⎡⎤⎡⎤⎣⎦⎣⎦=(x -3a )(x -a -2);(3)解:原式=22256x bx ab b a -++-=()()2532x bx b a b a -+-+=()()()()2+3+232x b a b a x b a b a -+--+-+--⎡⎤⎣⎦=(x +a -3b )(x -a -2b );(4)解:原式=()()()220182018-12018+11x x --=()22220182018-11x x --=()2222018+120181x x -- =(20182x +1)(x -1) .【点评】本题考查了十字相乘法因式分解,熟练掌握二次三项式()2x a b x ab +++可用十字相乘法方法得出()()()2x a b x ab x a x b +++=++是解答本题的关键.8.将下列各式分解因式:(1)256x x --; (2)21016x x -+; (3)2103x x --【答案】(1)(7)(8)x x +-;(2)(2)(8)x x --;(3)(5)(2)x x -+-【分析】(1)直接利用十字相乘法分解因式即可;(2)直接利用十字相乘法分解因式即可;(3)直接利用十字相乘法分解因式即可.【解答】解:(1)因为78x x ⨯-即78x x x -=-, 所以:原式=(7)(8)x x +-;(2)因为28x x ⨯--即2810x x x --=-, 所以:原式=(2)(8)x x --;(3)22103(310)x x x x --=-+-,因为52x x ⨯-即523x x x -=, 所以:原式=(5)(2)x x -+-.【点评】本题主要考查了利用十字相乘法分解因式,解题的关键在于能够熟练掌握十字相乘法:常数项为正,分解的两个数同号;常数项为负,分解的两个数异号. 二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上. 9.由多项式乘法:2()()()x a x b x a b x ab ++=+++,将该式从右到左进行运算,即可得到“十字相乘法”进行因式分解的公式:2()()()x a b x ab x a x b +++=++.如:分解因式:2256(23)23(2)(3)x x x x x x ++=+++⨯=++.(1)分解因式:268(___)(___)x x x x ++=++(2)请用上述方法解方程:2340x x --= 【答案】(1)2,4(或4,2);(2)14x =,21x =-【分析】(1)根据“十字相乘法”进行因式分解,即可得到答案;(2)先利用“十字相乘法”进行因式分解,进而即可求解.【解答】(1)()()26824x x x x ++=++故答案为:2,4(或4,2);(2)∵234(4)(1)0x x x x --=-+=,40x ∴-=或10x +=,解得:14x =,21x =-.【点评】本题主要考查分解因式以及解一元二次方程,熟练掌握“十字相乘法”进行因式分解,是解题的关键.10.分解因式:(1)22914x xy y ++(2)2212x xy y --(3)22295x xy y +-(4)22376x xy y --(5)22328x xy y --(6)225314x xy y -++【答案】(1)()()27x y x y ++;(2)()()43x y x y -+;(3)()()52x y x y +-;(4)()()332x y x y -+;(5)()()234x y x y -+;(6)()()257x y x y --+【分析】利用十字相乘法分解即可.【解答】解:(1)22914x xy y ++=()()27x y x y ++;(2)2212x xy y --=()()43x y x y -+;(3)22295x xy y +-=()()52x y x y +-;(4)22376x xy y --=()()332x y x y -+;(5)22328x xy y --=()()234x y x y -+;(6)225314x xy y -++=()225314x xy y ---=()()257x y x y --+【点评】本题考查了因式分解,熟练掌握十字相乘法是解此题的关键.11.分解因式:(1)2914x x ++(2)212x x --(3)2295x x +-(4)2376x x --(5)28103x x ---(6)210275x x --- 【答案】(1)()()27x x ++;(2)()()34x x +-;(3)()()215-+x x ;(4)()()323x x +-;(5)()()2143x x -++;(6)()()5125x x -++【分析】利用十字相乘法分解即可.【解答】解:(1)2914x x ++=()()27x x ++;(2)212x x --=()()34x x +-;(3)2295x x +-=()()215-+x x ;(4)2376x x --=()()323x x +-;(5)28103x x ---=()28103x x -++=()()2143x x -++;(6)210275x x ---=()210275x x -++ =()()5125x x -++【点评】本题考查了因式分解,熟练掌握十字相乘法是解此题的关键.12.分解因式:(1)22914x xy y ++(2)2212x xy y --(3)22295x xy y +-(4)22376x xy y --(5)228103x xy y ++(6)2210275x xy y ++ 【答案】(1)()()27x y x y ++;(2)()()43x y x y -+;(3)()()52x y x y +-;(4)()()332x y x y -+;(5)()()243x y x y ++;(6)()()255x y x y ++【分析】利用十字相乘法分解.【解答】解:(1)22914x xy y ++=()()27x y x y ++;(2)2212x xy y --=()()43x y x y -+;(3)22295x xy y +-=()()52x y x y +-;(4)22376x xy y --=()()332x y x y -+;(5)228103x xy y ++=()()243x y x y ++;(6)2210275x xy y ++=()()255x y x y ++【点评】本题考查了因式分解,熟练掌握十字相乘法是解此题的关键.13.分解因式:(1)2710x x -+(2)2918x x -+(3)256x x --(5)232x x +-(6)234x x +-(7)2122512x x -+-(8)2310x x --+(9)22x y x y ---(10)321x x x +++(11)22494a a b +-+(12)22424a b a b --+ 【答案】(1)()()25x x --;(2)()()36x x --;(3)()()16+-x x ;(4)()()211x x +-;(5)()()132x x +-;(6)()()134x x -+;(7)()()3443x x ---;(8)()()235x x -+-;(9)()()1x y x y +--;(10)()()211x x ++;(11)()()2323a b a b +++-;(12)()()222a b a b +--【分析】(1)(2)(3)(4)(5)(6)(7)(8)利用十字相乘法分解;(9)(10)(11)(12)利用分组分解法分解.【解答】解:(1)2710x x -+=()()25x x --;(2)2918x x -+=()()36x x --;(3)256x x --=()()16+-x x ;(4)2922x x --=()()211x x +-;(5)232x x +-=()()132x x +-;(6)234x x +-=()()134x x -+;(7)2122512x x -+-=()2122512x x --+=()()3443x x ---;(8)2310x x --+=()2310x x -+-=()()235x x -+-;=()()()x y x y x y +--+ =()()1x y x y +--; (10)321x x x +++ =()()211x x x +++=()()211x x ++;(11)22494a a b +-+ =22449a a b ++- =()2229a b +-=()()2323a b a b +++- (12)22424a b a b --+ =()22424a b a b --- =()()()2222a b a b a b +--- =()()222a b a b +--【点评】本题考查了因式分解,解题的关键是根据所给代数式的形式灵活选择方法.。

因式分解培优题(超全面、详细分类)

因式分解培优题(超全面、详细分类)

因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1),其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2 分解因式:a 3+b 3+c 3-3abc .例题3 分解因式:x 15+x 14+x 13+…+x 2+x +1.对应练习题 分解因式:2211(1)94n n x x y +-+;(2) x 10+x 5-2422332223(3)244(4)4x x y xy x y y x y --+++(4) (x 5+x 4+x 3+x 2+x +1)2-x 5(5) 9(a -b )2+12(a 2-b 2)+4(a +b )2(6) (a -b )2-4(a -b -1)(7)(x +y )3+2xy (1-x -y )-1二、分组分解法(一)分组后能直接提公因式例题1 分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2 分解因式:bx by ay ax -+-5102对应练习题 分解因式:1、bc ac ab a -+-22、1+--y x xy(二)分组后能直接运用公式例题3 分解因式:ay ax y x ++-22例题4 分解因式:2222c b ab a -+-对应练习题 分解因式:3、y y x x 3922---4、yz z y x 2222---综合练习题 分解因式:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++ (12)432234232.a a b a b ab b ++++(13)22)()(bx ay by ax -++ (14)333333333)(y x x z z y z y x xyz ---++(15)a a x ax x -++-2242 (16)a x a x x 2)2(323-++-(17))53(4)3()1(33+-+++x x x三、十字相乘法1、十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和. 例题1 分解因式:652++x x例题2 分解因式:672+-x x对应练习题 分解因式:(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x(二)二次项系数不为1的二次三项式——2ax bx c ++条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题3 分解因式:101132+-x x对应练习题 分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例题4 分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解. 1 8b1 -16b8b +(-16b )= -8b对应练习题 分解因式:(1)2223y xy x +- (2)2286n mn m +- (3)226b ab a --(四)二次项系数不为1的齐次多项式例题5 分解因式:22672y xy x +- 例题6 分解因式:2322+-xy y x对应练习题 分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习题 分解因式:(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(22222、双十字相乘法定义:双十字相乘法用于对F Ey Dx Cy Bxy Ax +++++22型多项式的分解因式. 条件:(1)21a a A =,21c c C =,21f f F =(2)B c a c a =+1221,E f c f c =+1221,D f a f a =+1221即: 1a 1c 1f2a 2c 2fB c a c a =+1221,E f c f c =+1221,D f a f a =+1221则=+++++F Ey Dx Cy Bxy Ax 22))((222111f y c x a f y c x a ++++例题7 分解因式: (1)2910322-++--y x y xy x(2)613622-++-+y x y xy x解:(1)2910322-++--y x y xy x应用双十字相乘法: x y 5- 2x y 2 1-xy xy xy 352-=-,y y y 945=+,x x x =+-2∴原式=)12)(25(-++-y x y x(2)613622-++-+y x y xy x应用双十字相乘法: x y 2- 3x y 3 2- xy xy xy =-23,y y y 1394=+,x x x =+-32∴原式=)23)(32(-++-y x y x对应练习题 分解因式:(1)67222-+--+y x y xy x (2)22227376z yz xz y xy x -+---3、十字相乘法进阶例题8 分解因式:)122()1)(1(22+++++y y x x y y例题9 分解因式:))(()1)(()(222222y x b a xy b a y x ab ++-+---四、主元法例题 分解因式:2910322-++--y x y xy x对应练习题 分解因式:(1)613622-++-+y x y xy x (2)67222-+--+y x y xy x(3)2737622--+--y x y xy x (4)36355622-++-+b a b ab a五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1 分解因式:(x 2+x +1)(x 2+x +2)-12.例题2 分解因式:22222)84(3)84(x x x x x x ++++++例题3 分解因式:9)5)(3)(1)(1(-+++-x x x x分析:型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘.例题4 分解因式:56)6)(67(22+--+-x x x x .例题5 分解因式:(x 2+3x +2)(4x 2+8x +3)-90.例题6 分解因式:22224(31)(23)(44)x x x x x x --+--+-提示:可设2231,23x x A x x B --=+-=,则244x x A B +-=+.例题7 分解因式:272836+-x x例题8 分解因式:22244)()()(b a b a b a -+++-例题9 分解因式:272)3()1(44-+++y y例题9对应练习 分解因式:444)4(4-++a a例题10 分解因式:(x 2+xy +y 2)2-4xy (x 2+y 2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x +y ,v=xy ,用换元法分解因式.例题11 分解因式:262234+---x x x x分析:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习 分解因式:6x 4+7x 3-36x 2-7x +6.例题11对应练习 分解因式:144234+++-x x x x对应练习题 分解因式:(1)x 4+7x 3+14x 2+7x +1 (2))(2122234x x x x x +++++(3)2005)12005(200522---x x (4)2)6)(3)(2)(1(x x x x x +++++(5) (1)(3)(5)(7)15x x x x +++++ (6)(1)(2)(3)(4)24a a a a ----- (7)2(25)(9)(27)91a a a +--- (8)(x +3)(x 2-1)(x +5)-20(9)222222)3(4)5()1(+-+++a a a (10) (2x 2-3x +1)2-22x 2+33x -1(11)()()()a b c a b b c ++-+-+2333(12)21(1)(3)2()(1)2xy xy xy x y x y +++-++-+-(13)2(2)(2)(1)a b ab a b ab +-+-+-六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.说明 用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1 分解因式:x 3-9x +8.例题2 分解因式:(1)x 9+x 6+x 3-3; (2)(m 2-1)(n 2-1)+4mn ; (3)(x +1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1.对应练习题 分解因式:(1)4323+-x x (2)2223103)(2b ab a x b a x -+-++(3)1724+-x x (4)22412a ax x x -+++(5)444)(y x y x +++ (6)444222222222c b a c b c a b a ---++(7)x 3+3x 2-4 (8)x 4-11x 2y 2+y 2 (9)x 3+9x 2+26x +24 (10)x 4-12x +323 (11)x 4+x 2+1; (12)x 3-11x +20;(13)a 5+a +1 (14)56422-++-y x y x(15)ab b a 4)1)(1(22---七、待定系数法例题1 分解因式:613622-++-+y x y xy x分析:原式的前3项226y xy x -+可以分为)2)(3(y x y x -+,则原多项式必定可分为)2)(3(n y x m y x +-++对应练习题 分解因式:(1)2737622--+--y x y xy x (2)2x 2+3xy -9y 2+14x -3y +20(3)2910322-++--y x y xy x (4)6752322+++++y x y xy x例题2 (1)当m 为何值时,多项式6522-++-y mx y x 能分解因式,并分解此多项式.(2)如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值.(3)已知:p y x y xy x +-+--1463222能分解成两个一次因式之积,求常数p 并且分解因式.(4)k 为何值时,253222+-++-y x ky xy x 能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、()x f 的意义:已知多项式()x f ,若把x 用c 带入所得到的值,即称为()x f 在x =c 的多项式值,用()c f 表示.2、被除式、除式、商式、余式之间的关系:设多项式()x f 除以()x g 所得的商式为()x q ,余式为()x r ,则:()x f =()x g ×()x q +()x r3、余式定理:多项式)(x f 除以b x -之余式为)(b f ;多项式)(x f 除以b ax -之余式)(ab f . 例如:当 f(x )=x 2+x +2 除以 (x – 1) 时,则余数=f(1)=12+1+2=4.当2()967f x x x =+-除以(31)x +时,则余数=2111()9()6()78333f -=⨯-+⨯--=-.4、因式定理:设R b a ∈,,0≠a ,)(x f 为关于x 的多项式,则b x -为)(x f 的因式⇔0)(=b f ;b ax -为)(x f 的因式⇔0)(=abf .整系数一次因式检验法:设f(x)=0111c x c x c x c n n n n ++++-- 为整系数多项式,若ax –b 为f(x)之因式(其中a , b为整数 , a ≠0 , 且a , b 互质),则 (1)0,c b c a n(2)( a –b ))1()(,)1(-+f b a f例题1 设61923)(23+-+=x x x x f ,试问下列何者是f (x )的因式?(1)2x –1 ,(2) x –2,(3) 3x –1,(4) 4x +1,(5) x –1,(6) 3x –4例题2 把下列多项式分解因式:(1)453+-x x(2) 6423++-x x x (3) 245323-++x x x (4)1027259234++++x x x x (5)31212165234--++x x x x课后作业分解因式: (1)x 4+4(2)4x 3-31x +15 (3)3x 3-7x +10 (4)x 3-41x +30 (5)x 3+4x 2-9 (6)x 3+5x 2-18 (7)x 3+6x 2+11x +6 (8)x 3-3x 2+3x +7 (9)x 3-11x 2+31x -21(10)x 4+1987x 2+1986x +1987 (11)19981999199824-+-x x x (12)19961995199624+++x x x (13)x 3+3x 2y +3xy 2+2y 3 (1412)x 3-9ax 2+27a 2x -26a 3(15)23)12)(10)(6)(5(4x x x x x -++++ (16)12)4814)(86(22+++++x x x x (17)222215)4(8)4(xx x x x x ++++++(18)222222)1(2)1)(16(5)16(2++++++++x x x x x x (19)x 4+x 2y 2+y 4 (20)x 4-23x 2y 2+y 4(21)a 3+b 3+3(a 2+b 2)+3(a +b )+2 (22)641233-++ab b a (23)12233+++-b a ab b a .(24)1)1()2+-+ab b a ( (25)2222224)()(2b a x b a x -++-(26)))(()()(333333y x b a by ax bx ay ++-+++ (27)633621619y y x x --(28)x 2y -y 2z +z 2x -x 2z +y 2x +z 2y -2xyz (29)810381032345++---x x x x x因式分解的应用1、证明:四个连续整数的的乘积加1是整数的平方.2、2n -1和2n +1表示两个连续的奇数(n 是整数),证明这两个连续奇数的平方差能被8整除.3、已知1248-可以被60与70之间的两个整数整除,求这两个整数.4、已知724-1可被40至50之间的两个整数整除,求这两个整数.5、求证:139792781--能被45整除.6、求证:146+1能被197整除.7、设4x -y 为3的倍数,求证:4x 2+7xy -2y 2能被9整除. 8、已知222y xy x -+=7,求整数x 、y 的值. 9、求方程07946=--+y x xy 的整数解. 10、求方程xy -x -y +1=3的整数解. 11、求方程4x 2-4xy -3y 2=5的整数解.12、两个小朋友的年龄分别为a 和b ,已知a 2+ab =99,则a =______,b =_______ . 13、 计算下列各题: (1)23×3.14+5.9×31.4+180×0.314;(2)19952199519931995199519963232--+-⨯.14、求积()()()()()11131124113511461198100+++++⨯⨯⨯⨯⨯ ()1199101+⨯的整数部分?15、解方程:(x 2+4x )2-2(x 2+4x )-15=016、已知ac +bd =0,则ab (c 2+d 2)+cd (a 2+b 2)的值等于___________.17、已知a -b =3, a -c =326, 求(c —b )[(a -b )2+(a -c )(a -b )+(a -c )2]的值.18、已知012=++x x ,求148++x x 的值.19、若x 满足145-=++x x x ,计算200419991998x x x +++ .20、已知三角形的三边a 、b 、c 满足等式abc c b a 3333=++,证明这个三角形是等边三角形.。

初中数学因式分解综合训练培优练习2(附答案详解)

初中数学因式分解综合训练培优练习2(附答案详解)

初中数学因式分解综合训练培优练习2(附答案详解)1.下列各式分解因式正确的是A .()()2228244a b a b a b -=+- B .()22693x x x -+=-C .()22224923m mn n m n -+=-D .()()()()x x y y y x x y x y -+-=-+2.因式分解:a (n -1)2-2a (n -1)+a.3.分解因式:412x 3y xy -+4.因式分解:(1)316x x - (2)221218x x -+5.因式分解:(1)﹣3x 3+6x 2y ﹣3xy 2; (2)a 3-4ab 2.6.2221x x y ++-7.(x 2+2x)2+2(x 2+2x)+18.分解因式:(1) 3a 3-6a 2+3a .(2) a 2(x -y)+b 2(y -x).9.因式分解:(1)3349x y xy - (2)222(6)6(6)9x x ---+10.因式分解: (1) x 2﹣36;(2) xy 2﹣x ;(3) ab 4﹣4ab 3+4ab 2;(4) (m +1)(m ﹣9)+8m .11.已知ab =-3,a +b =2.求下列各式的值: (1)a 2+b 2; (2)a 3b +2a 2b 2 +ab 3; (3)a -b .12.(1)因式分解:3a 3+12a 2+12a ;2016+20162-20172(2)解不等式组:()263125x x x -<⎧⎨+≤+⎩,并将解集在数轴上表示出来.(3)解分式方程:2236x 1x 1x 1+=+--.13.观察下列式子:23(1)(1)1x x x x +-+=+;23(2)(24)8x x x x +-+=+;2233(2)(42)8m n m mn n m n +-+=+;……(1)上面的整式乘法计算结果比较简洁,类比学习过的平方差公式,完全平方公式的推导过程,请你写出一个新的乘法公式(用含a 、b 的字母表示),并加以证明;(2)直接用你发现的公式写出计算结果:(2a +3b )(4a 2﹣6ab +9b 2)= ;(3)分解因式:m 3 + n 3 + 3mn (m + n ).14.分解因式:4322221x x x x ++++15.因式分解:(1)x 2y -2xy +xy 2; (2)422x -+.16.222---x xy y =__________17.分解因式212x 123y xy y -+-=___________18.将22363ax axy ay -+分解因式是__________.19.在实数范围内分解因式:4244x x -+=_____________.20.因式分解:m 3n ﹣9mn =______.21.分解因式:339a b ab -=_____________.22.分解因式:x 3y ﹣2x 2y+xy=______.23.分解因式:3x 2﹣3y 2=_____.24.因式分解:2328x y y -=_________.25.分解因式:am 2﹣9a=_________________.26. 分解因式:(p+1)(p ﹣4)+3p =_____.27.因式分解:x 3﹣6x 2y +9xy 2=____.28.分解因式:222x 2y -= ______.29.分解因式:22xy xy x -+-=__________.30.分解因式:a 3b +2a 2b 2+ab 3=_____.31.分解因式:3a 2+6ab+3b 2=________________.32.分解因式:29y x y -=_____________.33.分解因式:4a 2b ﹣b =_____.34.分解因式:222m -=_________________________.35.分解因式:2a 2﹣18=________.36.分解因式:x 3﹣2x 2+x=______.37.因式分解:34x x -=____________________.参考答案1.B【解析】【分析】利用完全平方公式a 2-2ab+b 2=(a-b )2和平方差公式以及提公因式法分别进行分解即可.【详解】A. ()()2222282(4)222a b a b a b a b -=-=+-,故该选项错误; B. ()22693x x x -+=-,分解正确;C. ()22224923m mn n m n -+≠-,故原选项错误;D. ()()()()2()x x y y y x x y x y x y -+-=--=-,故原选项错误. 故选B.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.2.a(n-2)2【解析】试题分析:根据题意,先提公因式a ,然后把n-1看做一个整体,利用完全平方公式分解即可.试题解析:原式=a[(n-1)2-2(n-1)+1]=a[(n-1)-1]2=a(n-2)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 3.()()32121xy x x -+-【解析】试题分析:根据因式分解的方法,先提公因式-3xy ,然后根据平方差公式因式分解即可. 试题解析:()()()4212x 334132121y xy xy x xy x x -+=--=-+- 4.(1)(4)(4)x x x +-;(2)22(3)x -【解析】试题分析:根据因式分解的方法步骤,一提(公因式)二套(平方差公式,完全平方公式)三检查(是否分解彻底),可直接进行因式分解.试题解析:(1)原式=()216x x -=()()44x x x +-(2)原式=()2269x x -+=()223x -5.(1)-3x (x-y )2;(2) a (a+2b )(a-2b ).【解析】试题分析:根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),可以直接接计算即可.试题解析:(1)﹣3x 3+6x 2y ﹣3xy 2=-3x (x 2-2xy+y 2)=-3x (x-y )2(2)a 3-4ab 2=a (a 2-4b 2)=a (a+2b )(a-2b )点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 6.(1)(1)x y x y +++-【解析】解:原式=()221x y +-=()()11x y x y +++- 7.4(1)x +【解析】解:原式=()2221x x ++=()41x +8.(1) 3 a (a -1)2;(2) (x -y)(a -b)(a+b );(3)(a+7b )(7a+b )【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 试题解析:(1) 原式=3 a (a 2-2a+3)=3 a (a -1)2;(2) 原式= (x -y)(a 2-b 2)= (x -y)(a -b)(a+b );(3) 原式=[4(a+b)-3(a -b)] [4(a+b)+3(a -b)]=(a+7b )(7a+b ).9.(1)(2)22(3)(3)x x +- 【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 试题解析:(1)3349x y xy -=xy (2x-3y )(2x+3y )(2)()()2226669x x ---+ =(x 2-6-3)2=(x+3)2(x-3)210.(1)(x +6)(x ﹣6).(2)x (y ﹣1)(y +1).(3)ab 2(b ﹣2)2. (4)(m +3)(m ﹣3).【解析】试题分析:(1)利用平方差公式进行因式分解即可;(2)先提公因式,再根据平方差公式分解即可;(3)先提公因式,再根据完全平方公式分解即可;(4)先根据乘法公式计算,再合并同类项,最后根据平方差公式分解即可.试题解析:(1)x 2﹣36=(x +6)(x ﹣6).(2)xy2﹣x=x(y2﹣1)=x(y﹣1)(y+1).(3)ab4﹣4ab3+4ab2=ab2(b2﹣4b+4)=ab2(b﹣2)2.(4)(m+1)(m﹣9)+8m=m2﹣9m+m﹣9+8m=m2﹣9=(m+3)(m﹣3).点睛:此题主要考查了因式分解,解题的关键是灵活选用适当的方法进行饮食费解。

因式分解培优训练试题

因式分解培优训练试题

因式分解培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.下列等式从左到右的变形,属于因式分解的是( ) A .()()y x y x y x +-=+22422B .()2244aya ya -=-C .()130132-+==-+x x x x D .()222329124y x y xy x --=-+-2.多项式()()()2122+--+x x x 可以因式分解成()()n x m x ++2,则n m -的值是( ) A . 2 B . ﹣2 C . 4 D . ﹣43.下列各式分解因式正确的是( )A. 22269(3)x xy y x y ++=+B. 222249(23)x xy y x y -+=- C. 22282(4)(4)x y x y x y -=+- D. ()()()()x x y y y x x y x y -+-=-+ 4.把a a 43-多项式分解因式,结果正确的是( )A. ()4-a aB.()()22-+a aC. ()()22-+a a aD. ()422--a5.已知0136422=+-++y x y x ,则代数式y x +的值为( ) A . ﹣1 B . 1C . 25D . 366.要在二次三项式62-+kx x 分解成()()b x a x ++的形式,那么k 为( ) A .1,﹣1 B .5,﹣5 C .1,﹣1,5,﹣5 D .以上答案都不对 7.要使二次三项式x 2﹣5x+p 在整数范围内能进行因式分解,那么整数p 的取值可以有( ) A .2个 B .4个 C .6个D .无数个8.已知a 为实数,且0223=+-+a a a ,则()()()1098111+++++a a a 的值是( )A .﹣3B .3C .﹣1D .19.把多项式22344x y xy x --分解因式的结果是( )A .34()xy x y x -- B .2(2)x x y -- C .22(44)x xy y x -- D .22(44)x xy y x --++ 10.已知正数b a ,满足87222233-=+-+ab ab b a ab b a 则=-22b a ( ) A .1B .3C .5D .不能确定二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11.若多项式b ax x ++2分解因式的结果为()()21-+x x ,则b a +的值为12.若4,1a b ab +==,则22a b ab +的值为____________________13.已知0.2,31x y x y +=+=,则代数式2243x xy y ++的值为________________ 14.若关于x 的二次三项式b kx x ++2因式分解为()()31--x x ,则b k +的值为__________15.已知()()520192018=--a a ,则()()_________2019201822=-+-a a16.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如22123-=,223516-=,则3和16是智慧数).已知按从小到大的顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,…则第2 019个“智慧数”是____________三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题12分)因式分解下列各式:(1)()()x y b y x a -+-2249 (2)()()m m m 891+-+(3)411623++-x x x (4)x 2﹣2x ﹣2y 2+4y ﹣xy(5)2232y xy x +- (6)(m 2-2m -1)(m 2-2m +3)+4.18.(本题8分)学习了分解因式的知识后,老师提出了这样一个问题:设n 为整数,则(n +7)2-(n-3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.你能解答这个问题吗?19(本题8分).商贸大楼共有四层,第一层有商品(a +b)2种,第二层有商品a(a +b)种,第三层有商品b(a +b)种,第四层有商品(b +a)2种.若a +b =10,则这座商贸大楼共有商品多少种?20.(本题8分)(1)对于任意自然数n ,(n +7)2-(n -5)2是否能被24整除? (2)已知y x ,都是正实数,且满足012222=-++++y x y xy x ,求()y x -1的最小值21(本题10分)如果一个正整数能表示为两个不相等正整数的平方差,那么称这个正整数为“奇妙 数”.例如:5=32﹣22,16=52﹣32,则5,16都是奇妙数. (1)15和40是奇妙数吗?为什么?(2)如果两个连续奇数的平方差为奇特奇妙数,问奇特奇妙数是8的倍数吗?为什么? (3)如果把所有的“奇妙数”从小到大排列后,请直接写出第12个奇妙数.22(本题10分)观察下列等式:12×231=132×21, 13×341=143×31, 23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:①52×_________=__________×25;②__________×396=693×_______________a ≤9,写出表示“数字对称(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤ba,),并证明.等式”一般规律的式子(含b23(本题10分).先阅读下面的内容,再解决问题.如果一个整式A等于整式B与整式C之积,则称整式B和整式C为整式A的因式.如:①因为36=4×9,所以4和9是36的因数;因为x2﹣x﹣2=(x+1)(x﹣2),所以x+1和x+2是x2﹣x﹣2的因式.②若x+1是x2+ax﹣2的因式,则求常数a的值的过程如下:解:∵x+1是x2+ax﹣2的因式∴存在一个整式(mx+n),使得x2+ax﹣2=(x+1)(mx+n)∴当x=﹣1时,(x+1)(mx+n)=0∴当x=﹣1时,x2+ax﹣2=0∴1﹣a﹣2=0,∴a=﹣1(1)x+2是x2+x﹣6的因式吗?(填“是”或者“不是”);(2)若整式x2﹣1是3x4﹣ax2+bx+1的因式,求常数a,b的值.因式分解培优训练试题答案三.选择题:1.答案:D解析:A选项不能因式分解,故A错误;B选项是计算,故B错误;C选项右边是多项式,不是因式分解,故C错误;D选项是因式分解,故选择D2.答案:C解析:∵多项式()()()2122+--+x x x 可以因式分解成()()n x m x ++2, ∴()()()()n x m x x x ++=-+2222∴2,2-==n m ,∴422=+=-n m ,故选择C3.答案:A解析:∵22269(3)x xy y x y ++=+ ,故A 选项正确; ∵222(23)4129x y x xy y -=-+,故B 选项错误;∵()()()22222824222x y x y x y x y -=-=-+ ,故C 选项错误; ∵2()()()x x y y y x x y -+-=-,故D 选项错误,故选择A4.答案:C解析:()()()224423+-=-=-a a a a a a a ,故选择C5.答案:B解析:∵0136422=+-++y x y x ∴()()03222=-++y x ,∴3,2=-=y x ,∴132=+-=+y x ,故选择B6.答案:C解析:∵要在二次三项式62-+kx x 分解成()()b x a x ++的形式,∴()616⨯-=-或()616-⨯=-或()326-⨯=-或()326⨯-=-, ∴5=k 或5-=k 或1-=k 或1=k ,故选择C7.答案:D解析:∵要使二次三项式x 2﹣5x+p 在整数范围内能进行因式分解,∴只要找两个数b a ,使5,-=+=b a p ab 即可,于是有无数多个,故选择D8.答案:D解析:∵0223=+-+a a a , ∴()01)1(23=+-++a a a , ∴()()()011122=+-++-+a a a a a∴()()0122=+-+a a a ,∵012≠+-a a ,∴,02=+a ∴11-=+a ,∴()()()()()()111111111110981098=+-=-+-+-=+++++a a a故选择D9.答案:B解析:22344x y xy x --()()222244y x x y xy x x --=+--=故选择B10.答案:B解析:∵87222233-=+-+ab ab b a ab b a ∴()()87222-=--+ab b a ab b a ab∴()()08722222=+---+-+ab b a ab ab ab b a ab ∴()()08722222=+-+---ab b a b a ab b a ab ,∴()()[]()044212222=+-++---ab b a b a b a ab∴()()022122=-+--ab b a ab∵b a ,均为正数,∴ab >0, ∴01=--b a ,02=-ab , 即2,1==-ab b a ,解方程⎩⎨⎧==-21ab b a ,解得1,2==b a 或2,1-=-=b a (不合题意,舍去), ∴31422=-=-b a .故选B .四.填空题:11.答案:3-解析:∵()()2212--=-+x x x x ,∴222--=++x x b ax x ,∴2,1-=-=b a ,∴321-=--=+b a12.答案:4解析:∵4,1a b ab +==, ∴()22144a b ab ab a b +=+=⨯=13.答案:2.0解析:∵0.2,31x y x y +=+=∴()()224330.210.2x xy y x y x y ++=++=⨯=14.答案: 1-解析:∵二次三项式b kx x ++2因式分解为()()31--x x ,∴b kx x x x ++=+-2234,∴3,4=-=b k ,∴134-=+-=+b k15.答案:11解析:∵()()520192018=--a a ,()()()()()()()()20192018220192019201822018201920182222--+-+----=-+-∴a a a a a a a a ()()()11521201920182201920182=⨯+=--++--=a a a a16.答案:2695解析:观察数的变化规律,可知全部“智慧数”从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得,第n 组的第一个数为4n (n ≥2).因为67332019=÷,所以第2 019个“智慧数”是第673组中的第3个数,即为269536734=+⨯.三.解答题:17.解析:(1)()()()()()b a b a y x x y b y x a 23234922-+-=-+-(2)()()()()33998889122-+=-=-+-=+-+m m m m m m m m m(3)4566411622323++--=++-x x x x x x x()()()()()()()()4312145614511622-+-=---=+---=x x x x x x x x x x(4)x 2﹣2x ﹣2y 2+4y ﹣xy ()()()y x y x y x y x y xy x 22242222---+=+---=()()22-+-=y x y x(5)()()y x y x y xy x --=+-23222(6)(m 2-2m -1)(m 2-2m +3)+4()()()()422222112412412-=+-=+--+--=m m m m m m m18.解析:()()()()()()220102237373722+=⨯+=+-+-++=--+n n n n n n n n∴()()2237---n n 能被20整除。

2022-2023学年初一数学第二学期培优专题训练27 因式分解计算题

2022-2023学年初一数学第二学期培优专题训练27 因式分解计算题

专题27 因式分解最新期中考题特训50道1.因式分解:(1)225x -;(2)244a b ab b -+.2.因式分解(1)324a ab -;(2)()()2x a b b a ---.3.分解因式:(1)249x y y -(2)222416a a +-()4.因式分解:(1)3222x x y xy -+(2)()()2141m m m -+-5.因式分解:(1)2449x -(2)22242x xy y -+6.因式分解:(1)236x -;(2)2288x y xy y -+.7.因式分解:(1)a 2-4b 2(2)2a 3+12a 2+18a8.因式分解:(1)2464x -(2)244x y xy y -+9.因式分解:(1)323x y x -;(2)22(2)9a b b --.10.因式分解:(1)2249m n -;(2)22396a b ab b -+11.把下列各式分解因式(1)x 2+2xy +y 2(2)5x 3﹣20x12.因式分解(1)296x y xy y ++(2)416a -.13.将下列各式分解因式:(1)2ab a -(2)22363ax axy ay -+-14.因式分解:(1)2269x xy y ++;(2)34m n mn -.15.因式分解:(1)3269x x x -+(2)416a -16.因式分解(1)2288x x -+(2)()()216a x y y x -+-17.因式分解:(1)2416a -;(2)222ax axy ay -+.18.因式分解:(1)(x +3y )2-x -3y(2)222(4)16a a +-19.分解因式:(1)4x 2-100;(2)2mx 2-4mxy +2my 2.20.把下面各式分解因式:(1)22327x y -(2)()()()22a b a a b a a b +-+++21.因式分解(1)2416x -(2)2288a b ab b -+22.因式分解:(1)3269a a a ++(2)222(4)16x x +-23.分解因式:(1)22352020.a b ab b -+(2)2222(1)(9)x x +--24.因式分解:(1)228x -(2)3222x x y xy -+25.分解因式:(1)2116a -(2)32232xy x y x y -+26.把下列各式分解因式:(1)2218a -(2)2484a a -+27.因式分解:(1)29x -(2)2242x y xy y -+28.因式分解(1)2416m -(2)2232x y xy y -+29.因式分解:(1)()24a b +-(2)22369ab a b b --(1)224x x -;(2)212123a a -+.31.分解因式:(1)241x -;(2)3244m m m -+.32.因式分解:(1)a 2-9;(2)2x 2-12x +1833.把下列各式因式分解(1)228a -(2)()()24129a b a b +-++34.把下列各式分解因式:(1)a 3﹣a(2)16x 2y 2﹣(x 2+4y 2)235.分解因式:(1)2a (x ﹣y )+b (y ﹣x );(2)(x 2 +1)2﹣4x 2.36.因式分解:(1)2232x -(2)3223242x y x y xy ++37.因式分解:(1)2a 2﹣2(2)2441x x ++38.分解因式:(1)2363ab ab a -+(2)22()8()a a b a b ---39.分解因式:(1)321025a a a ++(2)()()126t t ++-(1))()(2x y y x x -+-(2)223242x y xy y -+.41.把下列各式因式分解:(1)228x -;(2)2(2)8(2)16a a +-++.42.把下列各式因式分解:(1)2288a a -+;(2)22()()a x y b x y ---.43.因式分解:(1)()()3a x y y x -+-(2)()222416x x +- 44.因式分解:(1)11824n n x x +-;(2)4224-1881x x y y +45.因式分解:(1)mx 2﹣my 2;(2)2x 2-8x +8.46.分解因式:(1)2x 2﹣4xy +2y 2(2)m 2(m ﹣n )+(n ﹣m )47.因式分解(1)24ab a -(2)4224816x x y y -+48.因式分解(1)21025m m -+(2)22222(4)16x y x y +-49.因式分解:(1)4x 2-64(2)2x 3y +4x 2y 2+2xy 3(1)2a a++;441 (2)2x-.416专题27 因式分解最新期中考题特训50道1.因式分解:(1)225x -;(2)244a b ab b -+. 【答案】(1)()()55+-x x(2)()22b a -【分析】(1)根据平方差公式因式分解即可求解;(2)先提公因式b ,然后根据完全平方公式因式分解即可求解.(1)解:原式=()()55+-x x ;(2)解:原式=()244b a a -+ ()22b a =-. 【点评】本题考查了公式法和提公因式法进行因式分解,掌握因式分解的方法是解题的关键.2.因式分解(1)324a ab -;(2)()()2x a b b a ---.【答案】(1)()()22a a b a b +-(2)()()21a b x -+【分析】(1)先提公因式,再利用平方差公式分解因式即可;(2)先将原式变形,再提公因式分解因式即可.(1)解:324a ab -()224a a b =-()()22a a b a b =+-.(2)解:()()2x a b b a ---()()2x a b a b =-+-()()21a b x =-+.【点评】本题考差了多项式分解因式,熟练掌握提公因式法和公式法分解因式是解答本题的关键.3.分解因式:(1)249x y y -(2)222416a a +-() 【答案】(1)(23)(23)y x x +-(2)()()2222a a +-【分析】(1)先提公因式y ,再利用平方差公式即可直接分解;(2)首先利用平方差公式因式分解,然后再利用完全平方公式因式分解即可;(1) 249x y y - =2(49)y x -=(23)(23)y x x +-(2)222416a a +-()=()()224444a a a a ⎡⎤⎡⎤+++-⎣⎦⎣⎦=()()224444a a a a ++-+=()()2222a a +-【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4.因式分解:(1)3222x x y xy -+(2)()()2141m m m -+- 【答案】(1)()2x x y -(2)()()()221m m m +--【分析】(1)直接提取公因式x ,再利用完全平方公式分解因式得出答案(2)直接提取公因式(1)m -,再利用平方差公式分解因式得出答案(1)解:原式22(2)x x xy y =-+2()x x y =-;(2)解:原式2(1)(4)m m =--(1)(2)(2)m m m =-+-.【点评】本题主要考查了提取公因式以及公式法分解因式,掌握平方差公式和完全平方公式是关键.5.因式分解:(1)2449x -(2)22242x xy y -+ 【答案】(1)()()2727x x +-(2)()22x y -【分析】(1)根据平方差公式分解因式即可;(2)先提公因式,然后根据完全平方公式分解因式即可.(1)解:2449x - ()2227x =-()()2727x x =+-. (2)解:22242x xy y -+()2222x xy y =-+()22x y =-.【点评】本题主要考查了因式分解,熟练掌握平方差公式和完全平方公式,是解题的关键.6.因式分解:(1)236x -;(2)2288x y xy y -+.【答案】(1)(x −6)(x +6)(2)2y (x −2)2【分析】(1)利用平方差公式即可因式分解;(2)先提公因式,再利用完全平方公式因式分解即可.(1)解:x 2−36;=(x −6)(x +6)(2)解:2x 2y −8xy +8y=2y (x 2−4x +4)=2y (x −2)2【点评】本题考查因式分解,熟练掌握提公因式法和公式法分解因式是解题关键. 7.因式分解:(1)a 2-4b 2(2)2a 3+12a 2+18a【答案】(1)(a +2b )(a -2b )(2)22(3)a a +【分析】(1)利用平方差公式,进行因式分解;(2)利用提公因式和完全平方公式,进行因式分解.(1)解:原式=(2)(2)a b a b +-;(2)解:原式=22(69)a a a ++=22(3)a a +.【点评】本题考查了因式分解,解题的关键是掌握平方差公式和完全平方差公式.8.因式分解:(1)2464x -(2)244x y xy y -+【答案】(1)()()444x x +-(2)()22y x -【分析】(1)先提取公因式,再利用平方差公式继续分解;(2)先提取公因式,再利用完全平方公式继续分解.(1)解:原式()()()2416444x x x =-=+-;(2)解:原式()()22442y x x y x =-+=-. 【点评】本题考查了因式分解,在因式分解时,能提公因式的要先提取公因式,再考虑用公式法继续分解,在因式分解时注意要分解彻底.9.因式分解:(1)323x y x -;(2)22(2)9a b b --. 【答案】(1)()()311x y y -+(2)()()42a b a b +-【分析】(1)先提公因式,然后再用平方差公式分解因式;(2)先用平方差公式分解因式,再提公因式即可.(1)解:323x y x -()321x y =-()()311x y y =-+(2)解:22(2)9a b b --()()2323a b b a b b =-+--()()2224a b a b =+-()()42a b a b =+-【点评】本题主要考查了因式分解,熟练掌握平方差公式()()22a b a b a b -=+-,是解题的关键.10.因式分解:(1)2249m n -;(2)22396a b ab b -+ 【答案】(1)(23)(23)m n m n +-(2)2(3)b a b -【分析】(1)直接运用平方差公式因式分解即可;(2)先提取公因式,然后利用完全平方公式进行因式分解即可.(1)解:原式22(2)(3)m n =-(23)(23)m n m n =+-(2)原式()2296b a ab b =-+2(3)b a b =-.【点评】题目主要考查因式分解的方法,熟练掌握提公因式法及公式法分解因式是解题关键.11.把下列各式分解因式(1)x 2+2xy +y 2(2)5x 3﹣20x【答案】(1)(x +y )2(2)5x (x +2)(x ﹣2)【分析】(1)直接运用公式法进行分解即可;(2)综合提公因式法和公式法进行分解即可.(1)原式()2x y =+(2)原式()()()254252x x x x x +-=-= 【点评】本题考查因式分解,掌握因式分解的常用方法,熟练运用基本公式是解题关键.12.因式分解(1)296x y xy y ++(2)416a -.【答案】(1)y (3x +1)2(2)(a 2+4)(a +2)(a -2)【分析】(1)先提公因式y ,再按照完全平方公式分解因式即可;(2)直接利用平方差公式分解因式即可.(1)解:9x 2y +6xy +y=y (9x 2+6x +1)=y (3x +1)2(2)a 4-16=(a 2+4)(a 2-4)=(a 2+4)(a +2)(a -2)【点评】本题考查的是综合提公因式与公式法分解因式,掌握“利用完全平方公式与平方差公式分解因式”是解本题的关键.13.将下列各式分解因式:(1)2ab a -(2)22363ax axy ay -+-【答案】(1)(1)(1)a b b +-(2)﹣3a (x ﹣y )2【分析】(1)原式先提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可;(1)原式=21a b -()=(1)(1)a b b +-;(2)原式=﹣3a (x 2﹣2xy +y 2)=﹣3a (x ﹣y )2;【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.因式分解:(1)2269x xy y ++;(2)34m n mn -.【答案】(1)()23x y +(2)()()22mn m m +-【分析】(1)直接根据完全平方公式因式分解即可求解;(2)先提公因式mn ,然后根据平方差公式因式分解即可求解.(1)解:原式=()23x y +;(2)解:原式=()24mn m - ()()22mn m m =+-.【点评】本题考查了因式分解,掌握因式分解的方法是解题的关键.15.因式分解:(1)3269x x x -+(2)416a - 【答案】(1)()23x x -(2)()()()2422a a a ++- 【分析】(1)先提出公因式,再利用完全平方公式分解,即可求解;(2)利用平方差公式分解,即可求解.(1)解∶ 3269x x x -+()269x x x =-+()23x x =-; (2)解∶ 416a -()()2244a a =+-()()()2422a a a =++-.【点评】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法是解题的关键.16.因式分解(1)2288x x -+(2)()()216a x y y x -+- 【答案】(1)()222x -(2)()()()44x y a a -+-【分析】(1)先提公因数,再利用完全平方公式分解因式;(2)先提公因式,再利用平方差公式分解.(1)解:原式=2(x 2-4x +4)=2(x -2)2;(2)解:原式=(x -y )(a 2-16)=()()()44x y a a -+-【点评】本题考查因式分解的应用,熟练掌握因式分解的各种方法并灵活运用是解题关键.17.因式分解:(1)2416a -;(2)222ax axy ay -+.【答案】(1)()()422a a +-(2)()2a x y -【分析】(1)用平方差公式进行因式分解;(2)先提取公因式,再利用完全平方公式继续分解.(1)解:原式()()()244422a a a =-=+-; (2)解:原式()()2222a x xy y a x y =-+=-. 【点评】本题考查了因式分解,熟练掌握提公因式法和公式法是解题的关键.18.因式分解:(1)(x +3y )2-x -3y(2)222(4)16a a +-【答案】(1)(x +3y )(x +3y -1);(2)22(2)(2)a a -+【分析】(1)用提取公因式进行因式分解.(2)先用平方差公式进行因式分解,后用完全平方公式进行因式分.(1)(x +3y )2-x -3y=(x +3y )2-(x +3y )=(x +3y )(x +3y -1)(2)222(4)16a a +-=()()224444a a a a -+++=22(2)(2)a a -+【点评】此题考查了因式分解,解题关键是会用提取公式法和公式法进行因式分解.19.分解因式:(1)4x 2-100;(2)2mx 2-4mxy +2my 2.【答案】(1)()()455x x +-(2)()22m x y -【分析】(1)先提取公因式4,然后再运用平方差公式因式分解即可;(2)先提取公因式2m ,然后再运用完全平方公式因式分解即可.(1)解:4x 2-100=4(x 2-25)=()()455x x +-.(2)解:2mx 2-4mxy +2my 2=2m (x 2-2xy +y 2)=()22m x y -.【点评】本题主要考查了因式分解,掌握运用提取公因式法和公式法成为解答本题的关键.20.把下面各式分解因式:(1)22327x y -(2)()()()22a b a a b a a b +-+++ 【答案】(1)3(3)(3)x y x y +-;(2)2()(1)a b a +-【分析】(1)先提取公因式,再套用平方差公式;(2)先提取公因式,再套用完全平方公式.【解答】(1)解:原式=2239x y=3(3)(3)x y x y +-;(2)解:原式=212ab a a=2()(1)a b a +-.【点评】本题考查了整式的因式分解,即把一个多项式化成几个整式积的形式;掌握因式分解的提公因式法、公式法是解决本题的关键.21.因式分解(1)2416x -(2)2288a b ab b -+【答案】(1)()()422x x +-(2)()222b a -【分析】(1)先提取公因式,再运用平方差公式进行分解即可;(2)先提取公因式,再运用完全平方差公式进行分解即可.(1)解:2416x -()244x =- ()()422x x =+-(2)2288a b ab b -+()2244b a a =-+()222b a =-.【点评】本题考查因式分解,解题关键是掌握因式分解的方法与步骤.22.因式分解:(1)3269a a a ++(2)222(4)16x x +- 【答案】(1)2(3)a a +(2)22(2)(2)x x +-【分析】(1)先提公因式,再利用完全平方公式继续分解即可解答;(2)先利用平方差公式,再利用完全平方公式继续分解即可解答.(1)3269x x x ++ 2(69)x x x =++2(3)x x =+;(2)222(4)16x x +-22(44)(44)x x x x =+++-22(2)(2)x x =+-.【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.23.分解因式:(1)22352020.a b ab b -+(2)2222(1)(9)x x +--【答案】(1)5b (a -2b )2(2)20(x -2)(x +2)【分析】(1)先提公因式,再利用完全平方公式继续分解即可解答;(2)先利用平方差公式,再提公因式,最后再利用平方差公式继续分解即可解答.(1)解:原式 =5b (a 2-4ab +4b 2)=5b (a -2b )2(2)原式=(x 2+1-x 2+9)(x 2+1+x 2-9)=10×(2x 2-8)=20(x 2-4)=20(x -2)(x +2)【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.24.因式分解:(1)228x -(2)3222x x y xy -+ 【答案】(1)2(2)(2)x x +-(2)2()x x y -【分析】(1)先提取公因数2,然后再运用平方差公式分解即可;(2)先提取公因式x ,然后再运用完全平方公式分解即可.(1)解:228x -=()224x - =()()222x x +-.(2)解:3222x x y xy -+=()222x x xy y -+=()2x x y -.【点评】本题主要考查了因式分解,综合运用提取公因式法和公式法是解答本题的关键.25.分解因式:(1)2116a -(2)32232xy x y x y -+【答案】(1)()()1414a a +-(2)()xy y x -2【分析】(1)直接利用平方差公式分解因式得出答案;(2)直接提取公因式xy ,再利用完全平方公式分解因式即可.(1)解:2116a -=(1-4a )(1+4a );(2)解:32232xy x y x y -+=xy (y 2-2xy +x 2)=xy (y -x )2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.26.把下列各式分解因式:(1)2218a -(2)2484a a -+ 【答案】(1)2(3)(3)a a +-;(2)24(1)a -【分析】(1)先提取公因式2,再利用平方差公式分解因式即可得;(2)先提取公因式4,再利用完全平方公式分解因式即可得.【解答】解:(1)原式22(9)a =-2(3)(3)a a =+-;(2)原式24(21)a a =-+24(1)a =-.【点评】本题考查了因式分解,熟练掌握提取公因式法和公式法是解题关键.27.因式分解:(1)29x -(2)2242x y xy y -+【答案】(1)()()33x x +-(2)()221y x -【分析】(1)用平方差公式分解因式即可;(2)先提公因式,然后再用公式法分解因式即可.(1)解:29x -223x =-()()33x x =+-;(2)2242x y xy y -+()2221y x x =-+()221y x =-.【点评】本题主要考查了因式分解,熟练掌握平方差公式()()22a b a b a b +-=-和完全平方公式()2222a b a ab b ±=±+是解题的关键.28.因式分解(1)2416m -(2)2232x y xy y -+ 【答案】(1)4(2)(2)m m +-(2)2()y x y -【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.(1)()224(2)(241644)m m m m -=-=+-(2)()22322222()y x y xy y x xy y y x y -+--=+= 【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.29.因式分解:(1)()24a b +-(2)22369ab a b b --【答案】(1)(2)(2)a b a b +++-(2)2(3)b a b --【分析】(1)将()a b +作为整体,利用平方差公式分解即可;(2)原式先提取公因式,再利用完全平方公式分解即可.(1)解:原式(2)(2)a b a b =+++-(2)解:原式22(69)b ab a b =--2(3)b a b =--【点评】本题主要考查了提公因式法与公式法因式分解,熟练掌握因式分解的方法是解题关键.30.因式分解:(1)224x x -;(2)212123a a -+. 【答案】(1)()22x x -(2)()2321a -【分析】(1)运用提公因式法因式分解即可求解;(2)先运用提公因式法,再运用公式法分解因式即可.(1)解:()22422x x x x -=- (2)解:()()222121233441321a a a a a -+=-+=- 【点评】本题考查整式的因式分解,熟练运用提公因式法和公式法分解因式是解本题的关键.31.分解因式:(1)241x -;(2)3244m m m -+.【答案】(1)(2x +1)(2x ﹣1)(2)2(2)m m -【分析】(1)利用平方差公式,分解即可解答;(2)先提公因式,再利用完全平方公式继续分解即可解答.(1)解:原式=(21)(21)x x +-(2)解:原式= 2(44)m m m -+=2(2)m m -【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.32.因式分解:(1)a 2-9;(2)2x 2-12x +18 【答案】(1)(3)(3)a a +-;(2)22(3)x -【分析】(1)利用平方差公式进行因式分解即可;(2)综合利用提取公因式法和完全平方公式进行因式分解即可.【解答】解:(1)原式223a =-(3)(3)a a =+-;(2)原式22(69)x x =-+22(3)x =-.【点评】本题考查了因式分解,熟练掌握提取公因式法和公式法是解题的关键.33.把下列各式因式分解(1)228a -(2)()()24129a b a b +-++ 【答案】(1)()()222a a +-(2)()2223a b +-【分析】(1)先提公因式2,再用平方差公式分解;(2)将2()a b +看成一个整体,利用完全平方公式直接分解.(1)解:228a - ()224a =-()()222a a =+-;(2)()()24129a b a b +-++ ()()22129a b a b ⎡⎤=+-++⎣⎦()223a b ⎡⎤=+-⎣⎦=()2223a b +-.【点评】本题考查因式分解,注意因式分解的步骤为先提公因式,再用公式法,灵活运用平方差公式和完全平方公式是解题的关键.34.把下列各式分解因式:(1)a 3﹣a(2)16x 2y 2﹣(x 2+4y 2)2 【答案】(1)()()11a a a +-(2)()()2222x y x y -+-【分析】(1)先提公因式,再利用平方差公式即可进行因式分解;(2)先利用平方差公式,再利用完全平方公式即可求解.(1)原式=()21a a - =()()11a a a +-;(2)原式=()()222244xy x y -+ =()()22224444xy x y xy x y ++-- =()()2222x y x y -+-.【点评】本题考查了分解因式,解题关键是掌握提公因式法和公式法分解因式.35.分解因式:(1)2a (x ﹣y )+b (y ﹣x );(2)(x 2 +1)2﹣4x 2.【答案】(1)(2a -b )(x -y )(2)(x +1)2(x -1)2【分析】(1)原式变形后,提取公因式即可得到结果;(2)原式利用平方差公式和完全平方公式分解即可.(1)2a (x ﹣y )+b (y ﹣x )=2a (x ﹣y )-b (x ﹣y )=(2a -b )(x -y )(2)(x 2 +1)2﹣4x 2=22(21)(21)x x x x ++-+=(x +1)2(x -1)2【点评】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.36.因式分解:(1)2232x -(2)3223242x y x y xy ++ 【答案】(1)()()244x x +-(2)()22xy x y +【分析】(1)先提取公因式2,然后利用平方差公式继续进行因式分解;(2)先提取公因式2xy ,然后利用完全平方公式继续进行因式分解. (1)2232x - =22(16)x -=()()244x x +-;(2)3223242x y x y xy ++=222(2)xy x xy y ++=()22xy x y +【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.37.因式分解:(1)2a 2﹣2(2)2441x x ++【答案】(1)2(a +1)(a -1)(2)2(21)x +【分析】(1)先提公因式2,再利用平方差公式因式分解即可;(2)利用完全平方公式因式分解即可;(1)解:2a 2﹣2=2(a 2﹣1)=2(a +1)(a -1).(2)解:2441x x ++=2(21)x +.【点评】本题主要考查利用提公因式法和公式法进行因式分解,掌握因式分解的方法是解本题的关键.38.分解因式:(1)2363ab ab a -+(2)22()8()a a b a b --- 【答案】(1)23(1)a b -(2)2()(2)(2)a b a a -+-【分析】(1)先提公因式,再用完全平方公式,分解即可;(2)先提公因式,再用平方差公式,分解即可.(1)解:3ab 2−6ab +3a=3a ·b 2-3a ·2b +3a ·1=3a (b 2-2b +1)=3a (b −1)2;(2)2a 2(a −b )−8(a −b )=2(a −b ) (a 2−4)=2(a −b ) (a 2−22)=2(a −b ) (a +2) (a −2).【点评】此题考查了因式分解的提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.39.分解因式:(1)321025a a a ++(2)()()126t t ++-【答案】(1)2(5)a a +(2)(4)(1)t t +-【分析】(1)原式提取公因式后,再利用完全平方公式分解即可;(2)原式整理后,再利用十字相乘法分解即可.(1)解:32221025(1025)(5)a a a a a a a a ++=++=+.(2)解:()()2212632634(4)(1)t t t t t t t t ++-=++-=+-=+-.【点评】本题考查了提取公因式与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.40.分解因式:(1))()(2x y y x x -+-(2)223242x y xy y -+. 【答案】(1)()()1(1)x y x x -+-(2)()22y x y -【分析】(1)先提取公因式x-y ,然后利用平方差公式进行分解;(2)先提取公因式2y ,然后利用完全平方公式分解因式即可.【解答】(1)解:原式=2()(1)x y x --=()()1(1)x y x x -+-(2)原式=()2222y x xy y -+ =()22y x y -【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.41.把下列各式因式分解:(1)228x -;(2)2(2)8(2)16a a +-++.【答案】(1)2(2)(2)x x +-;(2)2(2)a -.【分析】(1)根据提公因式法和平方差公式分解因式即可;(2)将(2)a +看成一个整体,利用完全平方公式分解因式即可.(1)解:228x -,=22(4)x -,=2(2)(2)x x +-;(2)解:2(2)8(2)16a a +-++,2(24)a =+-,2=(2)a - ,【点评】本题考查因式分解,解题的关键是熟练掌握提公因式法和平方差公式,完全平方公式分解因式.42.把下列各式因式分解:(1)2288a a -+;(2)22()()a x y b x y ---. 【答案】(1)()222a -(2)()()()x y a b a b -+-【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式继续分解即可.(1)解:2288a a -+()2244a a =-+()222a =-; (2)解:()()22a x y b x y ---()()22x y a b =--()()()x y a b a b =-+-.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.43.因式分解:(1)()()3a x y y x -+-(2)()222416x x +-【答案】(1)()()3x y a --(2)()()2222x x +-【分析】(1)根据提公因式法因式分解,提取()x y -,即可求解;(2)根据平方差公式和完全平方公式求解即可.(1)解:原式=()()3a x y y x -+- =()()3x y a --(2)解:原式=()()224444x x x x +++-()()2222x x =+-【点评】本题考查了因式分解,掌握因式分解的方法是解题的关键.44.因式分解:(1)11824n n x x +-;(2)4224-1881x x y y + 【答案】(1)()634n x x - (2)()()2233x y x y +-【分析】(1)提公因式分解因式即可;(2)先用完全平方公式因式分解,再用平方差公式分解因式即可.(1)解:18xn +1−24xn=6xn ·3x −6xn ·4= 6xn (3x −4);(2)x 4-18x 2y 2+81y 4=(x 2−9y 2)2=(x +3y )2(x −3y )2.【点评】本题考查了多项式的因式分解,解题的关键是熟练掌握多项式的因式分解的方法:提公因式法、公式法(平方差公式、完全平方公式)、分组分解法、十字相乘法,并根据多项式的特征灵活选取不同的方法,还要注意一定要分解彻底.45.因式分解:(1)mx 2﹣my 2;(2)2x 2-8x +8. 【答案】(1)m (x +y )(x ﹣y )(2)2(x ﹣2)2【分析】(1)先提取公因式,再由平方差公式分解因式即可;(2)先提取公因式,再由完全平方公式分解因式即可;(1)解:mx 2﹣my 2=m (x 2﹣y 2)=m (x +y )(x ﹣y );(2)解:2x 2-8x +8=2(x 2-4x +4)=2(x ﹣2)2.【点评】本题考查了提取公因式法和公式法分解因式,掌握平方差公式()()22a b a b a b -=+-和完全平方公式()2222a b a b ab ±=+±是解题关键.46.分解因式:(1)2x 2﹣4xy +2y 2(2)m 2(m ﹣n )+(n ﹣m )【答案】(1)2(x ﹣y )2(2)(m ﹣n )(m +1)(m ﹣1)【分析】(1)先提取公因数2,再利用完全平方公式继续分解即可;(2)先提取公因式()m n -,再利用平方差公式继续分解即可.(1)解:原式=()2222x xy y -+ =()22x y -;(2)解:原式=()()21m n m -- =()()()11m n m m -+-.【点评】本题考查了提公因式法与公式法因式分解的综合应用,熟练掌握因式分解的方法是解题的关键.47.因式分解(1)24ab a -(2)4224816x x y y -+ 【答案】(1)()2(2a b b +-)(2)22(2)(2)x y x y +-【分析】(1)先提取公因式a ,再用平方差公式分解;(2)先用完全平方公式分解,再用平方差公式分解.(1)解:原式=a (b 2-4)= ()2(2a b b +-);(2)解:原式=(x 2-4y 2)2= 22(2)(2)x y x y +-.【点评】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.48.因式分解(1)21025m m -+(2)22222(4)16x y x y +- 【答案】(1)()25m -(2)22(2)(2)x y x y +-【分析】(1)利用完全平方公式即可分解;(2) 利用完全平方公式和平方差公式即可分解.(1)解:()2210255m m m =--+(2)解:22222(4)16x y x y +-2222(4)()444x y x x xy y y =+++-22(2)(2)x y x y =+- 【点评】本题考查了利用完全平方公式和平方差公式分解因式,熟练掌握和运用因式分解的方法是解决本题的关键.49.因式分解:(1)4x 2-64(2)2x 3y +4x 2y 2+2xy 3 【答案】(1)4(4)(4)x x -+;(2)22()xy x y +【分析】(1)先提取公因式,再利用平方差公式分解,即可解答;(2)先提公因式,再利用完全平方公式继续分解,即可解答.(1)解:4x 2-64=4(x 2-16)=4(x +4)(x -4)(2)解:2x 3y +4x 2y 2+2xy 3=222(2)xy x xy y ++=22()xy x y +【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.50.因式分解: (1)2441a a ++;(2)2416x -.【答案】(1)2(21)a +(2)4(2)(2)x x +-【分析】(1)根据完全平方公式因式分解即可;(2)先提取公因数4,再根据平方差公式因式分解即可.(1)解:222441(2)221(21)a a a a a ++=+⨯+=+(2)解:2224164(2)4(2)(2)x x x x -=-=+-.【点评】本题考查了因式分解,掌握平方差公式和完全平方公式是解题的关键.。

因式分解培优部分有答案.doc

因式分解培优部分有答案.doc

因式分解1.已知整数。

、b满足6ab = 9a —103+ 303,求a+ 8的值.6ab=9a-10b+303 10b+6ab-9a-15=288 (2b-3)(3a+5)=288 因2b-3始终为奇数288=32*3*3所以2b-3=9, 3a+5=32,或2b-3=3,3a+5=96或2b-3=-9, 3a+5=-32,或2b-3=-3,3a+5=-96 所以b=6,a=9,其他的三对解 a 不为整数,舍去a+b=6+9=152 a > b、c为正整数,且a2 +b3 =c4,求c的最小值a、b、c应为正整数c如果可以取负数,那没有最小值a A2+b A3=c A4 b A3=c A4-a A2 b A2*b=(c A2+a)*(c A2-a) c A2+a=b A2 c A2-a=b 两式相加:2c A2=b A2+b 8c A2+1=(2b+1)A2 c=1,b=1,a=0不符合题目要求c=6,b=8,a=28 28A2+8A3=6A4 c 最小为63当a、方为何值时,多项式x4-3x3+3x2+ax + b能被x2 -3x + 2整除相成对比系数4 如果x + y = l, x2 +y2 = 3,那么x3 + y3的值为( )5如果a + 2b + 3c = 12,且/+力2+/= 口方+ bc+页,贝Ija+方2十凌的值是( )a的平方+b的平方+c的平方=ab+bc+ca2a 2+2b 2+2c 2_2ab_2bc_2ca=0a 2—2ab+b 2+a 2—2ca+c 2+b 2—2bc+c 2=0(a-b)”2+(a-c)"2+(b-c)"2=0 a-b=0 a-c=0 b-c=0 a=b=c a+2b+3c=6a=6b=6c=12 a=b=c-26若x2 +2(a + 4)x + 25是完全平方式,求a的值。

一次项系数的一半的平方等于257.已知X - y = l,xy = 2,求x3y-2x2y2 +xy3的值。

七年级下册数学-《因式分解》单元培优试题有答案

七年级下册数学-《因式分解》单元培优试题有答案

《因式分解》单元培优测试题班级_________ 姓名_____________ 得分_____________注意事项:本卷共有三大题23小题,满分120分,考试时间120分钟.一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1﹒下列等式中,从左到右的变形是因式分解的是()A﹒2x2+8x-1=2x(x+4)-1 B﹒(x+5)(x-2)=x2+3x-10C﹒x2-8x+16=(x-4)2D﹒6ab=2a·3b2﹒将下列多项式因式分解,结果中不含有因式a+1的是()A﹒a2-1B﹒a2+a-2C﹒a2+a D﹒(a-2)2-2(a+2)+1 3﹒多项式15m3n2+5m2n-20m2n3的公因式是()A﹒5mn B﹒5m2n2C﹒5m2n D﹒5mn24﹒下列因式分解正确的是()A﹒-a2-b2=(-a+b)(-a-b)B﹒x2+9=(x+3)2C﹒1-4x2=(1+4x)(1-4x)D﹒a3-4a2=a2(a-4)5﹒下列各式中,能用完全平方公式分解的是()A﹒a2-2ab+4b2B﹒4m2-m+14C﹒9-6y+y2D﹒x2-2xy-y26﹒已知x,y为任意有理数,记M=x2+y2,N=2xy,则M与N的大小关系为()A﹒M>N B﹒M≥N C﹒M≤N D﹒不能确定7﹒把多项式x2+ax+b分解因式,得(x+1)(x-3),则a+b的值是()A﹒-5B﹒5C﹒1D﹒-18﹒已知x2-x-1=0,则代数式x3-2x+1的值为()A﹒-1B﹒1 C﹒-2D﹒29﹒如图,边长为a、b的长方形的周长为14,面积为10,则多项式a3b+2a2b2+ab3的值为()A﹒490B﹒245C﹒140D﹒196010.已知:a=2017x+2015,b=2017x+2016,c=2017x+2017,则代数式a2+b2+c2-ab-ac-bc的值为()A﹒0B﹒1C﹒2D﹒3二、填空题(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.请从4a2,(x+y)2,16,9b2四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_________________________________﹒12.用简便方法计算:20172-34×2017+289=_________﹒13.若m-n=2,则多项式2m2-4mn+2n2-1的值为___________﹒14.如果x2-2xy+2y2+4y+4=0,那么y x=___________﹒15.把多项式a2017-4a2016+4a2015分解因式,结果是__________________﹒16.如图是正方形或长方形三类卡片各若干张,若要用这些卡片拼成一个面积为2a2+3ab+b2的长方形(所拼长方形中每类卡片都要有,卡片之间不能重叠),则你所拼长方形的两边长分别是____________,____________(用含a、b字母的代数式表示)﹒三、解答题(本题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.17.(8分)分解因式:(1)-18a3b2-45a2b3+9a2b2﹒(2)5a3b(a-b)3-10a4b2(b-a)2﹒18.(10分)分解因式:(1)(x2+16y2)2-64x2y2﹒(2)9(x-y)2-12x+12y+4﹒19.(10分)分解因式:(1)ac-bc-a2+2ab-b2﹒(2)1-a2-4b2+4ab﹒20.(8分)已知m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,且满足(m+4)2-(n+4)2=16,求代数式m2+n2-mn的值﹒21.(8分)如图所示,将一张长方形纸板按图中虚线裁剪成九块,若图中①②都是剪成边为a的大正方形,③④都是剪成边长为b的小正方形,⑤⑥⑦⑧⑨都是剪成边长分别为a、b的小长方形﹒(1)观察图形,可以发现多项式2a2+5ab+2b2可以因式分解为____________________;(2)若每块小长方形的的面积为10cm2,四个正方形的面积之和为58cm2,试求图中所有裁剪线(虚线部分)长之和﹒22.(10分)设y=kx,是否存在实数k,使得多项式(x-y)(2x-y)-3x(2x-y)能化简5x2若能,请求所有满足条件的k的值;若不能,请说明理由﹒23.(12分)如果一个正整数能表示两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,……因此4,12,20……都是“神秘数”﹒(1)28,2016这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差是“神秘数”吗?为什么?《因式分解》单元培优测试题参考答案Ⅰ﹒答案部分:11﹒答案不唯一,如:4a2-16=4(a+2)(a-2)﹒12﹒4000000﹒13﹒7﹒14﹒14﹒15﹒a2015(a-2)2﹒16﹒2a+b,a+b﹒三、解答题17.(1)解:-18a3b2-45a2b3+9a2b2=-9a2b2(2a+5b-1)﹒(2)解:5a3b(a-b)3-10a4b3(b-a)2=5a3b(a-b)3-10a4b2(a-b)2=5a3b(a-b)2(a-b-2ab)﹒18.(1)解:(x2+16y2)2-64x2y2=(x2+16y2)2-(8xy)2=(x2+16y2+8xy)( x2+16y2-8xy)=(x+4y)2(x-4y)2﹒(2)解:9(x-y)2-12x+12y+4=[3(x-y)]2-12(x-y)+22=[3(x-y)-2]2=(3x-3y-2)2﹒19.(1)解:ac-bc-a2+2ab-b2=c(a-b)-(a2-2ab+b2)=c(a-b)-(a-b)2=(a-b)[c-(a-b)]=(a-b)(c-a+b)﹒(2)解:1-a2-4b2+4ab=1-(a2-4ab+4b2)=1-(a-2b)2=[1+(a-2b)][1-(a-2b)]=(1+a-2b)(1-a+2b)﹒20.解:∵m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,∴m,n互为相反数,即m+n=0①,又∵(m+4)2-(n+4)2=16,∴(m+n+8)(m-n)=16,8(m-n)=16,∴m-n=2②,联立①②得2m nm n+=⎧⎨-=⎩,解得11mn=⎧⎨=-⎩,∴m2+n2-mn=1+1+1=3﹒21.解:(1)观察图形知:九块图形的面积之和等于这张长方形纸板的面积,所以2a2+5ab+2b2可分解为(2a+b)(a+2b),故答案为:(2a+b)(a+2b)﹒(2)由题意,知:2a2+2b2=58,ab=10,则a2+b2=29,∴(a+b)2=a2+2ab+b2=29+20=49,∵a+b>0,∴a+b=7,则6a+6b=6(a+b)=6×7=42,答:图中所有裁剪线(虚线部分)长之和为42﹒22.解:能,假设存在实数k,(x-y)(2x-y)-3x(2x-y)=(2x-y)(-2x-y)=-(2x-y)(2x+y)=-(4x2-y2)=-4x2+y2,把y=kx代入,原式=-4x2+(kx)2=-4x2+k2x2=(k2-4)x2,∵多项式(x-y)(2x-y)-3x(2x-y)能化简5x2,∴(k2-4)x2=5x2,∴k2-4=5,解得k=±3,故满足条件的k的值有3或-3﹒23.解:(1)是,∵28=2×14=(8-6)(8+6)=82-62,2016=2×1008=(505-503)(505+503)=5052-5032,∴28,2016这两个数都是“神秘数”;(2)是,∵(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k+1),∴2k+2和2k这两个连续偶数构造的“神秘数”是4的倍数﹒(3)不是,设两个连续奇数为2k+1和2k-1(k取正整数),则(2k+1)2-(2k-1)2=(2k+1+2k-1)(2k+1-2k+1)=4k×2=8k,此数是8的倍数,由(2)知“神秘数”可表示为4的倍数,但不能表示为8的倍数,所以两个连续奇数的平方差不是“神秘数”﹒Ⅱ﹒解答部分:一、选择题1﹒下列等式中,从左到右的变形是因式分解的是()A﹒2x2+8x-1=2x(x+4)-1 B﹒(x+5)(x-2)=x2+3x-10C﹒x2-8x+16=(x-4)2D﹒6ab=2a·3b解答:A﹒右边2x(x+4)-1不是积的形式,故A项错误;B﹒(x+5)(x-2)=x2+3x-10,是多项式乘法,不是因式分解,故B项错误;C﹒x2-8x+16=(x-4)2,运用了完全平方公式,符合因式分解的定义,故C正确;D﹒6ab=2a·3b,左边不是多项式,故D错误﹒故选:C﹒2﹒将下列多项式因式分解,结果中不含有因式a+1的是()A﹒a2-1B﹒a2+a-2C﹒a2+a D﹒(a-2)2-2(a+2)+1解答:因为A﹒a2-1=(a+1)(a-1);B﹒a2+a-2=(a+2)(a-1);C﹒a2+a=a(a+1);D﹒(a-2)2-2(a+2)+1=(a+2-1)2=(a+1)2,所以结果中不含有因式a+1的选项是B﹒故选:B﹒3﹒多项式15m3n2+5m2n-20m2n3的公因式是()A﹒5mn B﹒5m2n2C﹒5m2n D﹒5mn2解答:多项式15m3n2+5m2n-20m2n3中,各项系数的最大公约数是5,各项都含有相同字母m,n,字母m的指数最低是2,字母n的指数最低是1,所以多项式的公因式是5m2n﹒故选:C﹒4﹒下列因式分解正确的是()A﹒-a2-b2=(-a+b)(-a-b)B﹒x2+9=(x+3)2C﹒1-4x2=(1+4x)(1-4x)D﹒a3-4a2=a2(a-4)解答:A﹒-a2-b2=-(a2+b2),不能进行因式分解,故A项错误;B﹒多项式x2+9不能进行因式分解,故B项错误;C﹒1-4x2=(1+2x)(1-2x),故C项错误;D﹒a3-4a2=a2(a-4),故D项正确﹒故选:D﹒5﹒下列各式中,能用完全平方公式分解的是()A﹒a2-2ab+4b2B﹒4m2-m+14C﹒9-6y+y2D﹒x2-2xy-y2解答:A﹒a2-2ab+4b2中间乘积项不是这两数的2倍,故A项错误;B﹒4m2-m+14中间乘积项不是这两数的2倍,故B项错误;C﹒9-6y+y2=(3-y)2,故C项正确;D﹒x2-2xy-y2不是两数的平方和,不能用完全平方公式,故D项错误﹒故选:C.6﹒已知x,y为任意有理数,记M=x2+y2,N=2xy,则M与N的大小关系为()A﹒M>N B﹒M≥N C﹒M≤N D﹒不能确定解答:∵M=x2+y2,N=2xy,∴M-N=x2+y2-2xy=(x+y)2≥0,则M≥N.故选:B.7﹒把多项式x2+ax+b分解因式,得(x+1)(x-3),则a+b的值是()A﹒-5B﹒5C﹒1D﹒-1解答:∵(x+1)(x-3)=x2-3x+x-3=x2-2x-3,∴x2+ax+b=x2-2x-3,∴a=-2,b=-3,∴a+b=-5,故选:A﹒8﹒已知x2-x-1=0,则代数式x3-2x+1的值为()A﹒-1B﹒1 C﹒-2D﹒2解答:∵x2-x-1=0,∴x2-x=1,∴x3-2x+1=x3-x2+ x2-2x+1=x(x2-x) + x2-2x+1=x+ x2-2x+1=x2-x+1=1+1=2﹒故选:D﹒9﹒如图,边长为a、b的长方形的周长为14,面积为10,则多项式a3b+2a2b2+ab3的值为()A﹒490B﹒245C﹒140D﹒1960解答:由题意,知:a+b=7,ab=10,则a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=10×49=490﹒故选:A.10.已知:a=2017x+2015,b=2017x+2016,c=2017x+2017,则代数式a2+b2+c2-ab-ac-bc的值为()A﹒0B﹒1C﹒2D﹒3解答:∵a=2017x+2015,b=2017x+2016,c=2017x+2017,∴a-b=-1,b-c=-1,a-c=-2,∴a2+b2+c2-ab-ac-bc=12[( a-b)2+( b-c)2+( a-c)2]=12×(1+1+4)=3﹒故选:D.二、填空题11.请从4a2,(x+y)2,16,9b2四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_________________________________﹒解答:答案不唯一,如:4a2-16=4(a+2)(a-2),故答案为:4a2-16=4(a+2)(a-2)﹒12.用简便方法计算:20172-34×2017+289=_________﹒解答:20172-34×2017+289=20172-2×17×2017+172-172+289=(2017-17)2=20002=4000000,故答案为:4000000﹒13.若m-n=2,则多项式2m2-4mn+2n2-1的值为___________﹒解答:∵m-n=2,∴2m2-4mn+2n2-1=2(m2-2mn+n2)-1=2(m-n)2-1=2×4-1=7﹒故答案为:7﹒14.如果x2-2xy+2y2+4y+4=0,那么y x=_______﹒解答:∵x2-2xy+2y2+4y+4=x2-2xy+ y2+y2+4y+4=(x-y)2+(y+2)2=0,∴20x yy-=⎧⎨+=⎩,解得:22xy=-⎧⎨=-⎩,∴y x=(-2)-2=14,故答案为:14﹒15.把多项式a2017-4a2016+4a2015分解因式,结果是__________________﹒解答:a2017-4a2016+4a2015=a2015·a2-a2015·4a+4a2015=a2015(a2-4a+4)=a2015(a-2)2,故答案为:a2015(a-2)2﹒16.如图是正方形或长方形三类卡片各若干张,若要用这些卡片拼成一个面积为2a2+3ab+b2的长方形(所拼长方形中每类卡片都要有,卡片之间不能重叠),则你所拼长方形的两边长分别是____________,____________(用含a、b字母的代数式表示)﹒解答:所画示意图如下,∵2a2+3ab+b2=a2+2ab+b2+a2+ab=(a+b)2+a(a+b)=(a+b)(a+b+a)=(a+b)(2a+b),∴所画长方形的长为2a+b,宽为a+b;故答案为:2a+b,a+b﹒三、解答题17.分解因式:(1)-18a3b2-45a2b3+9a2b2(2)5a3b(a-b)3-10a4b2(b-a)2解答:(1)-18a3b2-45a2b3+9a2b2=-9a2b2(2a+5b-1)﹒(2)5a3b(a-b)3-10a4b3(b-a)2=5a3b(a-b)3-10a4b2(a-b)2=5a3b(a-b)2(a-b-2ab)﹒18.分解因式:(1)(x2+16y2)2-64x2y2(2)9(x-y)2-12x+12y+4解答:(1)(x2+16y2)2-64x2y2=(x2+16y2)2-(8xy)2=(x2+16y2+8xy)( x2+16y2-8xy)=(x+4y)2(x-4y)2﹒(2)9(x-y)2-12x+12y+4=[3(x-y)]2-12(x-y)+22=[3(x-y)-2]2=(3x-3y-2)2﹒19.分解因式:(1)ac-bc-a2+2ab-b2(2)1-a2-4b2+4ab解答:(1)ac-bc-a2+2ab-b2=c(a-b)-(a2-2ab+b2)=c(a-b)-(a-b)2=(a-b)[c-(a-b)]=(a-b)(c-a+b)﹒(2)1-a2-4b2+4ab=1-(a2-4ab+4b2)=1-(a-2b)2=[1+(a-2b)][1-(a-2b)]=(1+a-2b)(1-a+2b)﹒20.已知m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,且满足(m+4)2-(n+4)2=16,求代数式m2+n2-mn的值﹒解答:∵m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,∴m,n互为相反数,即m+n=0①,又∵(m+4)2-(n+4)2=16,∴(m+n+8)(m-n)=16,8(m-n)=16,∴m-n=2②,联立①②得2m nm n+=⎧⎨-=⎩,解得11mn=⎧⎨=-⎩,∴m2+n2-mn=1+1+1=3﹒21.如图所示,将一张长方形纸板按图中虚线裁剪成九块,若图中①②都是剪成边为a的大正方形,③④都是剪成边长为b的小正方形,⑤⑥⑦⑧⑨都是剪成边长分别为a、b的小长方形﹒(1)观察图形,可以发现多项式2a2+5ab+2b2可以因式分解为____________________;(2)若每块小长方形的的面积为10cm2,四个正方形的面积之和为58cm2,试求图中所有裁剪线(虚线部分)长之和﹒解答:(1)观察图形知:九块图形的面积之和等于这张长方形纸板的面积,所以2a2+5ab+2b2可分解为(2a+b)(a+2b),故答案为:(2a+b)(a+2b)﹒(2)由题意,知:2a2+2b2=58,ab=10,则a2+b2=29,∴(a+b)2=a2+2ab+b2=29+20=49,∵a+b>0,∴a+b=7,则6a+6b=6(a+b)=6×7=42,答:图中所有裁剪线(虚线部分)长之和为42﹒22.设y=kx,是否存在实数k,使得多项式(x-y)(2x-y)-3x(2x-y)能化简5x2?若能,请求所有满足条件的k的值;若不能,请说明理由﹒解答:能,假设存在实数k,(x-y)(2x-y)-3x(2x-y)=(2x-y)(-2x-y)=-(2x-y)(2x+y)=-(4x2-y2)=-4x2+y2,把y=kx代入,原式=-4x2+(kx)2=-4x2+k2x2=(k2-4)x2,∵多项式(x-y)(2x-y)-3x(2x-y)能化简5x2,∴(k2-4)x2=5x2,∴k2-4=5,解得k=±3,故满足条件的k的值有3或-3﹒23.如果一个正整数能表示两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,……因此4,12,20……都是“神秘数”﹒(1)28,2016这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差是“神秘数”吗?为什么?解答:(1)是,∵28=2×14=(8-6)(8+6)=82-62,2016=2×1008=(505-503)(505+503)=5052-5032,∴28,2016这两个数都是“神秘数”;(2)是,∵(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k+1),∴2k+2和2k这两个连续偶数构造的“神秘数”是4的倍数﹒(3)不是,设两个连续奇数为2k+1和2k-1(k取正整数),则(2k+1)2-(2k-1)2=(2k+1+2k-1)(2k+1-2k+1)=4k×2=8k,此数是8的倍数,由(2)知“神秘数”可表示为4的倍数,但不能表示为8的倍数,所以两个连续奇数的平方差不是“神秘数”﹒。

初中数学因式分解培优训练

初中数学因式分解培优训练

初中数学因式分解培优训练实⽤标准⽂档第⼀讲:因式分解(⼀)n-1n222 )2xny-(x 多项式的因式分解是代数式恒等变形的基本形式之y =-(x(x -y) ⼀,它被⼴泛地应⽤于初等数学之中,是我们解决许n-1nn2n2.=-2x+y)y333-3x(-2y)(2y)-+(-多数学问题的有⼒⼯具.因式分解⽅法灵活,技巧性z) (2)原式=xZ)+(-222+2xy+xz-2yz)z)(x.+4y +z 强,学习这些⽅法与技巧,不仅是掌握因式分解内容=(x-2y-222 2bc+2ca)+c)+(所必需的,⽽且对于培养学⽣的解题技能,发展学⽣原式=(a-2ab+b-(3)22 b)+c+2c(a=(a-b)-的思维能⼒,都有着⼗分独特的作⽤.初中数学教材2.-b+c)=(a中主要介绍了提取公因式法、运⽤公式法、分组分解本⼩题可以稍加变形,直接使⽤公式(5)法和⼗字相乘法.本讲及下⼀讲在中学数学教材基础,解法如下:b)c+2ca+2a(+c-原式=a+2(技巧和应⽤作进⼀步的介绍.上,对因式分解的⽅法、+(-b)-2222b)b+c) =(a-.运⽤公式法 1-在整式的乘、除中,我们学过若⼲个乘法公式,现 a-bb)+(ab (4)原式=(a757522)--)+b将其反向使⽤,即为因式分解中常⽤的公式,例如: b =a(a522522)225225) (ab=(a)(a-bb-b)=(a+b)(a-; +b (1)a422222343) b+-b)(a+b)(a =(a+b)(a-ab-abb+a2ab+b (2)a±b)=(a±;42223323243) - =(a+b)b(a-b)(aab-a (3)a+b=(a+b)(a-ab+b;) +bb+a.-.(4)a --b=(ab)(a+ab+b) 例2 分解因式:ab+本题实际上就是⽤因式分解的3332332 3abc+c⽅法证明前⾯给出的下⾯再补充⼏个常⽤的公式:.(5)a +b+c+2ab+2bc+2ca=(a+b+c);公式233322我们已经知道公式 ca)-;分析 bc(6)a 2222(6)ab+b+c-3abc=(a+b+c)(a+b+c--3n-1n-222n-3n-2n-13nn32 (a+b)+b=an+abb)(ab (7)a-=(a-+ab+ab+…+b)其中b+3ab+3a 为正整数;的正确性,现将此公式变形为a其中b-…-+ab),n-+b3ab(a+b)=(a+b)b- (8)a=(a+b)(a-ab+ab式也是⼀个常3n-232n-3n-23n-1nnn-1.⽤的公式,本题就借助于它来为偶数;这个n-1n-2n-12nnn-3n-2其中,ab…-(9)a+b=(a+b)(aab+ab--+b)n推导.333abc 3ab(a+b)+c解为奇数.原式=(a+b)--33ab(a+b+c)] =[(a+b)3+c-运⽤公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.-c(a+b)+c- =(a+b+c)223ab(a+b+c)[(a+b)]222例ca).ab--bc =(a+b+c)(a-+b 1 分解因式:+c n+4n5n-1n-1n+23n-1是⼀个应⽤极⼴的公式,⽤它可以推(6);2x-+4x2x- (1)yyy 说明公式333-z8y(2)x --6xyz结论,例如:我们将公式有⽤的;(6)变形为出很多3323223abc +c;2ab--+c2bc+2ca +b-a +b(3)a757252b+abb-.a-(4)a原式 (1)解 =ny2x-(xy2x-n+y42n2n-14)2n-122222n]2x-= +(yny2x-n)[(xy)⽂案⼤全.实⽤标准⽂档;当a+b+c 解法2 将⼀次项-+b9x+c拆成-x-8x.显然,当a+b+c=0时,则333=3abca3333333-+bx+c--3abc≥0,即a原式+b=x+c8x+8 ≥3abc,⽽ a>0时,则x)+(- =(x8x+8) 且,当且仅当a=b=c时,等号成⽴.3-如果令x=a,≥0y=b-≥0,z=c1)≥0,则有-8(x-1)333 =x(x+1)(x-8). 1)(x =(x-333.-3 将三次项x8x拆成9x 解法.这也是⼀个2+x常⽤的等号成⽴的充要条件是 x=y=z33-9x+8 -8x 原式=9x 结论.33+8)8x-9x)+( =(9x-2131514.+xx+x+1+x+3 例分解因式:x…+2+x+1) 1)(x-8(x- =9x(x+1)(x-1)项,从最⾼次项16分析这个多项式的特点是:有2+x-8). =(x-1)(x 15,由此想到应⽤公式0x的次数顺次递减⾄x开始,22. +x解法4 添加两项-x nn b来分解.a-3-9x+8 原式=x解因为322-9x+8 =x+x-x 214151613 x+x+1) x1=(x--1)(x+x,+x+…2(x-1)+(x-=x8)(x-1)所以2+x-8).=(x-1)(x说明由此题可以看出,⽤拆项、添项的⽅法分解因式时,要拆哪些项,添什么项并⽆⼀定之规,主要的是要依靠对题⽬特点的观察,灵活变换,因此拆项、,再1)在本题的分解过程中,⽤到先乘以说明 (x-添项法是因式分解诸⽅法中技巧性最强的⼀种.1)(x除以-的技巧,这⼀技巧在等式变形中很常⽤.例5 分解因式:2.拆项、添项法963-3+x;+x (1)x因式分解是多项式乘法的逆运算.在多项式乘法运22-1)+4mn;-1)(n (2)(m算时,整理、化简常将⼏个同类项合并为⼀项,或将4224;1) (3)(x+1)+(x+(x--1)两个仅符号相反的同类项相互抵消为零.在对某些多3322+1.+b b-aba+ (4)a项式分解因式时,需要恢复那些被合并或相互抵消的解 (1)将-3拆成-1-1-1.项,即把多项式中的某⼀项拆成两项或多项,或者在963-1-1+x-+x1 原式=x多项式中添上两个仅符合相反的项,前者称为拆项,963-1)=(x--1)+(x1)+(x后者称为添项.拆项、添项的⽬的是使多项式能⽤分363333-+1)+(x+1)+(x =(x--1)(x1)(x+x1)组分解法进⾏因式分解.3-=(x1)(x6+2x3+3)x4 例分解因式:9x+8.263+3).+ =(x-1)(x2x+x+1)(x3-添项法分析这⾥只介绍运⽤拆项、本题解法很多, (2)将4mn拆成2mn+2mn.注意⼀下拆项、分解的⼏种解法,添项的⽬的与技巧.221)+2mn+2mn -1)(n 原式=(m-解法 11+9拆成8将常数项-.2222+1+2mn+2mn --mn =mn31+9 -=x原式-9x2222) (m2mn+n =(mn-+2mn+1)-39x+91)--=(x 22-n) =(mn+1)-(m-+x+1)1)(x=(x -- m+n+1).=(mn+m-n+1)(mn-21) 9(x-=(x .8)-222222.1)-(x-1)-2(x拆成1)-(x将(3)2 +x1)(x⽂案⼤全.实⽤标准⽂档原式=(x+1)(x+2)(2x+1)(2x+3)1)--(x-1)90 +(x 原式=(x+1)-+2(x1)-224224-1) = 422224解[(x+1) +2(x+1) (x-1) =[(x+1)(2x+3)][(x+2)(2x+1)]+(x-1)-]-(x90-90 =(2x.+5x+3)(2x-(x -1) =[(x+1) +(x-1) ]2222222+5x+2+2)-(x,则-1)y=2x=(3x 2222222+5x+2)+1)(x +3).令 =(2x2+y-90=y90 -ab.原式=y(y+1)-(4) 添加两项+ab2332 b-ab+a +b 原式=a+1+ab-ab =(y+10)(y-9)-+5x+12)(2x =(2x =(a7) b-ab)+(a -ab)+(ab+b +1)223322+5x-1).-b)+(ab+b+1) =(2x =ab(a+b)(a-b)+a(a2 =a(a-+1) 说明22+5x+12)(2x+7)(xb(a+b)+1]+(ab+b 对多项式适当的恒等变形是我们找到新元(y)b)[2的基础. =[a(a-b)+1](ab+b+1)8 =(a分解因式:-ab+1)(b.+ab+1)22例(x说明 (4)是⼀道较难的题⽬,由于分解后的因式结+4x+8)+2x+4x+8)2+3x(x222.,则 +ab构较复杂,所以不易想到添加-ab,⽽且添加项后解设x2+4x+8=y+3xy+2x 原式=y分成的三项组⼜⽆公因式,⽽是先将前两组分解,再22+5x+8) + 22=(y+2x)(y+x)=(x6x+8)(x与第三组结合,找到公因式.这道题⽬使我们体会到.拆项、添项法的极强技巧所在,同学们需多做练习, =(x+2)(x+4)(x2+5x+8)积累经验.说明由本题可知,⽤换元法分解因式时,不必将原式中的元都⽤新元代换,根据题⽬需要,引⼊必要的 3.换元法新元,原式中的变元和新变元可以⼀起变形,换元法换元法指的是将⼀个较复杂的代数式中的某⼀部分的本质是简化多项式.看作⼀个整体,并⽤⼀个新的字母替代这个整体来运432-7x+636x分解因式:6x.算,从⽽使运算过程简明清晰. +7x -例9-+1)+7x(x-解法.-分解因式:例6 (x+x+1)(x+x+2)12 1 原式=6(x42222 36x分解因42222 36x1)x分析将原式展开,是关于的四次多项式,1)](x =6[+7x(x-2x-+1)+2x-]+7x(xx式较困难.我们不妨将+x看作⼀个整体,并⽤字母36x =6[(x--1)2+2x1) 22222--=6(x1)-1)yy来替代,于是原题转化为关于的⼆次三项式的因+7x(x-2222 24x1)+8x] ][3(x=[2(x-1)-3x 式分解问题了.22--3) -3x- =(2x2)(3x,则+x=y设解 x222+8x-12=y-原式 =(y+1)(y+2)+3y =(2x+1)(x-2)(3x-1)(x+3).2 101x看作⼀个整体,但并 +x+5) 2)(x+x2)(y+5)=(x=(y --说明本解法实际上是将2没有设222-⽴新元来代替它,即熟练使⽤换元法后,并⾮1)(x+2)(x-=(x +x+5).看作⼀个整体,⽐如今+x+1本题也可将说明 x2,⼀样可2每题都要设置新元来代替整体.以得到同样的结果,有兴趣的同学+x+1=ux解法2不妨试⼀试.分解因式:7 例-+8x+3).然后再重分析先将两个括号内的多项式分解因式,22 +3x+2)(4x(x902236]-+2)+7t[6(t=x原式新组合.⽂案⼤全.实⽤标准⽂档x+y=u-4xy[(x+y)-2xy](2t-3)(3t+8) .令解原式=[(x+y)-xy](6t =x+7t-24)=x23][3(x 222222,=x[2(x-1/x)--1/x)+8] ,则xy=v222222v) 4v(u-v)-2)(3x+8x-3) 原式=(u--- =(2x3x224=(2x+1)(x-2)(3x-1)(x+3)v+9v-6u =u.222222 3v) +y+xy+y 例10 分解因式:(x)-4xy(x). =(u-分析本题含有两个字母,且当互换这两个字母的位3xy) =(x+2xy+y222-. =(x-xy+y 置时,多项式保持不变,这样的多项式叫作⼆元对称式.对于较难分解的⼆222 )元对称式,经常令u=x+y,v=xy,⽤换元法分解因式.第⼆讲:因式分解(⼆) 1.双⼗字相乘法分解⼆次三项式时,我们常⽤⼗字相乘法.对于某+bxy+cy些⼆元⼆次六项式(ax+dx+ey+f) 可以⽤⼗字相乘法分解因式.它表⽰的是下⾯三个关系式:例如,分解因式2x-5x+35y-3-7xy-22y22;-7xy-22y (x+2y)(2x-11y)=2x当作常22.我们将上数,于是上式可变x式按降幂排列,并把y2 -5x-3; (x-3)(2x+1)=2x形为2.(2y-3)(-11y+1)=-22y +35y-3,2x-35y+3) 这就是所谓的双⼗字相乘法.可以看作是关于x的⼆次三项22-(5+7y)x-(22y式.22进+bxy+cy +dx+ey+f⽤双⼗字相乘法对多项式ax的⼆次三项式,也可y 对于常数项⽽⾔,它是关于⾏因式分解的步骤是:以⽤⼗字相乘法,分解为22,得到⼀个⼗字 (1)⽤⼗字相乘法分解ax+bxy+cy;相乘图(有两列) (2)把常数项f 分解成两个因式填在第三列上,要求第⼆、第三列构成的⼗字交叉之积的和等于原式中,第⼀、第三列构成的⼗字交叉之积的和等于ey的2即: -22y+35y-3=(2y-3)(-11y+1)..原式中的dx 再利⽤⼗字相乘法对关于 x的⼆次三项式分解1 例分解因式:;+x+9y-222 (1)x -3xy-10y(2)x -y +5x+3y+4 2;+x-y-2 (3)xy+y 2x+(-11y+1)][[=所以,原式 x+(2y-3)]222.7xy-3y 22;(4)6x--xz+7yz-2z . =(x+2y-3)(2x-11y+1) (1)解上述因式分解的过程,实施了两次⼗字相乘法.如果把这两个步骤中的⼗字相乘图合并在⼀起,可得到下图:⽂案⼤全.实⽤标准⽂档.原式=(x-5y+2)(x+2y-1)(2)=(y+1)(x+y-2).原式(4)=(x+y+1)(x-y+4) 原式.2来分项,可把这⼀项的系数看成原式中缺 (3)x0解.⽂案⼤全.实⽤标准⽂档原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前⾯的类似.2.求根法x(n为⾮负整数)的代数式称为关于ax+ax+…+ax+a 我们把形如0nn-11,…等记nn-1的⼀元多项式,号表⽰,如并⽤f(x),g(x)225,…, f(x)=x-3x+2,g(x)=x+x+6f(x) 表⽰.如对上⾯的多项式当x=a时,多项式f(x)的值⽤f(a)2 f(1)=1-3-3×(-2)+2=12f(-2)=(-2)2.的⼀个根.a为多项式f(x) 若f(a)=0,则称有⼀f(a)=0成⽴,则多项式f(x) 定理1(因式定理) 若a是⼀元多项式f(x)的根,即个因式x-a.的根.对于任的⼀次因式的关键是求多项式f(x) 根据因式定理,找出⼀元多项式f(x)的系数都是整数,要求出它的根是没有⼀般⽅法的,然⽽当多项式f(x)意多项式f(x) 时,即整系数多项式时,经常⽤下⾯的定理来判定它是否有有理根.2定理的根,则必有p是a的约数,q是a的约数.特别地,当a=1时,整系数多项式f(x)00n的整数根均为a的约数.n 我们根据上述定理,⽤求多项式的根来确定多项式的⼀次因式,从⽽对多项式进⾏因式分解..例 2 分解因式:x的约逐个检验-4的约数,这是⼀个整系数⼀元多项式,原式32 -4x+6x-4若有整数根,必是-4 分析 4,只有数:±1,±2,±23,×2-4=0× f(2)=2-42+6 x-2.即x=2是原式的⼀个根,所以根据定理1,原式必有因式.解法1 ⽤分组分解法,使每组都有因式(x-2)223-4x)+(2x-4) )-(2x=(x 原式-2x2(x-2)-2x(x-2)+2(x-2) =x=(x-2)(x -2x+2) ⽤多项式除法,将原式除以2 解法 (x-2),⽂案⼤全.2.实⽤标准⽂档所以.原式的约数,反之不成⽴,在上述解法中,特别要注意的是多项式的有理根2=(x-2)(x-2x+2)⼀定是-4 说明-4的约数逐个代⼊多项式进⾏验证.即-4的约数不⼀定是多项式的根.因此,必须对+7x-3x-2例 3 分解因式:9x-3x,±的约数有±119的约数有±,±3,±9;-2 分析因234.为为:9x-3x-22.所以,原式有因式解 9x-3x2243-3x-2 9x+ =9x-3x-2x223-3x-2 =x(9x-3x-2)+9x234-3x-2 +7x+1)22+1) -3x-2)(x =(9x2=(3x+1)(3x-2)(x若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上说明题中的因式,这样可以简化分解过程.可以化为就可以分解f(x)如果能找到⼀个⼀次因式(x-a),29x-3x-2那么,总之,对⼀元⾼次多项式f(x)g(x)是⽐f(x)低⼀次的⼀元多项式,这样,我们就可以继续对(x-a)g(x)为,⽽g(x) 进⾏分解了..待定系数法 3这⾥介绍它在因式分解中的应⽤很⼴泛,待定系数法是数学中的⼀种重要的解题⽅法,应⽤.⽂案⼤全.实⽤标准⽂档在因式分解时,⼀些多项式经过分析,可以断定它能分解成某⼏个因式,但这⼏个因式中的某些系数尚未确定,这时可以⽤⼀些字母来表⽰待定的系数.由于该多项式等于这⼏个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的⼏个特殊值,列出关于待定系数的⽅程(或⽅程组),解出待定字母系数的值,这种因式分解的⽅法叫作待定系数法..例4 分解因式:x22 +3xy+2y+4x+5y+3由于分析,22 (x+3xy+2y)=(x+2y)(x+y)的形式,应⽤待+y+nx 若原式可以分解因式,那么它的两个⼀次项⼀定是x+2y+m和 m和n,使问题得到解决.定系数法即可求出解设22+4x+5y+3 +3xy+2y x=(x+2y+m)(x+y+n), =x+3xy+2y ⽐较两边对应项的系数,则有22 +(m+n)x+(m+2n)y+mn解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可⽤双⼗字相乘法,请同学们⾃⼰解⼀下.x-2x-27x-44x+7 例5432.分解因式:本题所给的是⼀元整系数多项式,根据前⾯讲过的求根法,若原式有有理根,则分析,经检验,它们都不是原式的根,所以,在有理数集内,,±7(7的约数)只可能是±122的形式.原式没有⼀次因式.如果原式能分解,只能分解为(x+ax+b)(x+cx+d) 解设22+cx+d)原式=(x+ax+b)(x,243 +(ad+bc)x+bd+(a+c)x =x+(b+d+ac)x所以有由bd=7,先考虑b=1,d=7有⽂案⼤全.实⽤标准⽂档所以22原式=(x-7x+1)(x.+5x+7),等可以不加以考虑.本题如果b=1b=-1 说明由于因式分解的唯⼀性,所以对,d=-7的其他解代⼊⽅程组,直到求ad=7代⼊⽅程组后,⽆法确定,c的值,就必须将bd=7 出待定系数为⽌.使我们找到了但利⽤待定系数法,本题没有⼀次因式,因⽽⽆法运⽤求根法分解因式.⼆次因式.由此可见,待定系数法在因式分解中也有⽤武之地.⽂案⼤全.。

章节复习之因式分解培优训练题(培优篇).doc

章节复习之因式分解培优训练题(培优篇).doc

y 是整数,且D 、仝或-纟B 、b = —6 ,章节复习之因式分解(培优篇)因式分解的方法 ----- 基本方法知识要点:因式分解的基本方法有提公因式法、公式法、分组分解法和十字相乘法。

在 对一个多项式进行因式分解时,应根据多项式的特点选择合理的分解方法。

A 卷一、填空题1、 分解因式:^+r--v 2+-=942、 (河南省竞赛题)分解因式:%2+ 5xy + x + 3y + 6y 2= _____________ 3、 已知x 2 -ax-24在整数范围内可以分解因式,则整数a 的可能取值 为 ____________ •4、( 2000 年第16届“希望杯”竞赛题)分解因式:ab(a + b)2 - (« + b)2 +1 = __________5、( 2005年第16届“希望杯”初二年级培训题)如果x x 2 + 2004xy - 2005y 2 = 1,那么 x = _____________, y = ___________二、选择题6、如果多项式4.X 2 +kx + -是一个完全平方式,那么斤的值是( 97、(2005年第16届“希望杯”初二年级培训题)已知二次二项式2x 2 +bx + c 分解因 式后为 2(x - 3)(x +1),则( )A 、b = 3 , c = -1 C 、b = -6, c = 4 D 、b = —4, c = —68、(江苏省南通市2005年中等学校招生考试题)把多项式a 2-2ab + b 2-1分解因式, 结果为()A 、(a - b + l)(tz —b — \)C> (a + b + 1X 。

+ b -1)D 、(a + b + 1X 。

- b -1)一、填空题39、研究下列算式:Ix2x3x4 + 1 = 25 = 52;2x3x4x5 + 1 = 121 = 11?;3x4x5x6 + 1 = 361 =192; 4x5x6x7 + 1 = 841 = 292, ……用含n的代数式表示此规律(〃为正整数) 是•二、选择题10、对于这5 个多项式:① a2b2 - a2 -b2 -1;② x3-9ax2 +Tlxa2 -Tla3;③(x - 2)2 + 4x ;④3m(m - /?)+ 6n(n - m);⑤x(b + c - d) - y(d - b - c)- 2c + 2d -2b 其中在有理数范围内可以进行因式分解的有( )4、①②⑤B、②④⑤C、③④⑤D、①②④11、已知二次三项式21/ +血一10可以分解成两个整系数的一次因式的积,那么( )A、a—定是奇数B、a—定是偶数C、a可为奇数也可为偶数D、a—定是负数三、解答题12、分解因式:(1)(2000年第12届“五羊杯”数学竞赛试题)分解因式:(x-2)3-(y-2)3-(x-y)31 1 9(2)--.r2,1+2 - —.r2" +-.r2"+13 27 9(3)ax2 - a2x + bx2 - 2abx + a2b - b2x + ab,(4)(cz" — b2^x~ -4abx-+/?~(5)a2(b - c)+ b2(c - a)+ c2(a - b)(6)x,+ xy - + x + 13y - 6c卷一、解答题13、M ("Al)名运动员参加乒乓球循环赛,每两人之间正好只进行一场比赛。

因式分解的能力提升训练题(培优卷)

因式分解的能力提升训练题(培优卷)

因式分解的能力提升训练题(培优卷)1、计算()2013×1.52012×(-1)2014的结果是( )A、B、C、-D、-2、下列多项式乘法中可以用平方差公式计算的是()A、B、C、D、3 把代数式ax²-4ax+4a²分解因式,下列结果中正确的是()A、a(x-2) 2B、a(x+2) 2C、a(x-4)2D、a(x-2) (x+2)4、在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是()。

A、a2+b2=(a+b)(a-b)B、(a+b)2=a2+2ab+b2C、(a-b)2=a2-2ab+b2D、a2-b2=(a-b)25、通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是:()A.B.C.D.6 分解因式(1)(a-b)2+4ab(2) 4xy2-4x2y-y2(3)4a2bc-3a2c2+8abc-6ac2;(4)(y2+3y)-(2y+6)2.(5)a(x-y)+b(y-x)+c(x-y) (6)(7)(m 2+3m )2-8(m 2+3m )-20;7.已知a +b =2,ab =2,求12a 3b +a 2b 2+12ab 3的值.8.先因式分解,然后计算求值:(1)9x 2+12xy +4y 2,其中x =43,y =−12;(2)(a+b 2)2﹣(a−b 2)2,其中a =−18,b =2.9.常用的分解因式的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x 2﹣2xy +y 2﹣16,我们细心观察这个式子,会发现,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x 2﹣2xy +y 2﹣16=(x ﹣y )2﹣16=(x ﹣y +4)(x ﹣y ﹣4).这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)9a 2+4b 2﹣25m 2﹣n 2+12ab +10mn ;(2)已知a 、b 、c 分别是△ABC 三边的长且2a 2+b 2+c 2﹣2a (b +c )=0,请判断△ABC 的形状,并说明理由.10.整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y(y+2)+1=y2+2y+1=(y+1)2,再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2.问题:(1)该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;(2)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.11.阅读并解决问题.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添﹣适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2﹣6a+8.(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.(3)已知x是实数,试比较x2﹣4x+5与﹣x2+4x﹣4的大小,说明理由.12.我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法等等.①分组分解法:例如:x 2﹣2xy +y 2﹣4=(x 2﹣2xy +y 2)﹣4=(x ﹣y )2﹣22=(x ﹣y ﹣2)(x ﹣y +2). ②拆项法:例如:x 2+2x ﹣3=x 2+2x +1﹣4=(x +1)2﹣22=(x +1﹣2)(x +1+2)=(x ﹣1)(x +3).(1)仿照以上方法,按照要求分解因式:①(分组分解法)4x 2+4x ﹣y 2+1;②(拆项法)x 2﹣6x +8;(2)已知:a 、b 、c 为△ABC 的三条边,a 2+b 2+c 2﹣4a ﹣4b ﹣6c +17=0,求△ABC 的周长.13.阅读材料:利用公式法,可以将一些形如ax 2+bx +c (a ≠0)的多项式变形为a (x +m )2+n 的形式,我们把这样的变形方法叫做多项式ax 2+bx +c (a ≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如x 2+4x ﹣5=x 2+4x +(42)2﹣(42)2﹣5=(x +2)2﹣9=(x +2+3)(x +2﹣3)=(x +5)(x ﹣1).根据以上材料,解答下列问题.(1)分解因式:x 2+2x ﹣8;(2)求多项式x 2+4x ﹣3的最小值;(3)已知a ,b ,c 是△ABC 的三边长,且满足a 2+b 2+c 2+50=6a +8b +10c ,求△ABC 的周长.14.阅读下列材料:材料1:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n)的形式,如x2+4x+3=(x+1)(x+3);x2﹣4x﹣12=(x﹣6)(x+2).材料2:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原,得原式=(x+y+1)2.上述解题方法用到“整体思想”,“整体思想”是数学解题中常见的一种思想方法.请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式;(2)结合材料1和材料2,完成下面小题:分解因式:(x﹣y)2+4(x﹣y)+3.15.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为.(2)若图中阴影部分的面积为20平方厘米,大长方形纸板的周长为24厘米,求图中空白部分的面积.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲:因式分解 (一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a 2 2-b) ;-b =(a+b)(a(2)a 2±2ab+b2=(a ±b) 2;(3)a 3 3 2 2;+b =(a+b)(a -ab+b )(4)a 3 3 2 2.-b =(a -b)(a +ab+b )下面再补充几个常用的公式:(5)a 2 2 2 2 +b +c +2ab+2bc+2ca=(a+b+c) ;(6)a 3+b3 +c3 -3abc=(a+b+c)(a 2+b2+c2 -ab-bc -ca) ;(7)a n n n-1n-2 n-3 2 n-2n-1) 其中 n -b =(a -b)(a +a b+a b +⋯+ab +b为正整数;(8)a n n n-1n-2 n-3 2 n-2 n-1) ,其中 n -b =(a+b)(a -a b+a b -⋯ +ab -b为偶数;(9)a n+b n =(a+b)(a n-1 -a n-2 b+a n-3 b2-⋯ -ab n-2 +b n-1 ) ,其中 n 为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例 1 分解因式:(1)-2x5n-1 y n+4x3n-1 y n+2-2x n-1 y n+4;33 3(2)x -8y -z -6xyz ;(3)a 2+b2 +c2-2bc+2ca -2ab;7 5 2 2 57(4)a -a b +a b -b .=-2x n-1 y n(x 2n-y2) 2=-2x n-1 y n(x n- y) 2(x n+y) 2.(2)3 3 3原式 =x +( -2y) +( -z) -3x( -2y)( -Z)=(x -2y-z)(x2 2 2.+4y +z +2xy+xz -2yz)(3) 原式 =(a2 2 2-2ab+b )+( -2bc+2ca)+c2 2= (a -b) +2c(a -b)+c2=(a -b+c) .本小题可以稍加变形,直接使用公式(5) ,解法如下:原式 =a2+( -b) 2+c2+2( - b)c+2ca+2a( -b)=(a -b+c) 2(4) 原式 =(a7 5 2 2 5 7-a b )+(a b -b )5 2 2 5(a2 2=a (a -b )+b -b )=(a2 2)(a5 5-b +b )=(a+b)(a -b)(a+b)(a4-a3b+a2b2-ab3+b4)2 43 2 2 3 4=(a+b) (a -b)(a -a b+a b -ab +b ) 例2 分解因式: a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式 (6) .分析我们已经知道公式(a+b) 3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b) 3 -3ab(a+b) .这个式也是一个常用的公式,本题就借助于它来推导.3 3解原式 =(a+b) -3ab(a+b)+c -3abc= [(a+b)3+c 3] -3ab(a+b+c)=(a+b+c) [2 2] - 3ab(a+b+c)(a+b) -c(a+b)+c=(a+b+c)(a 2+b2+c2- ab-bc- ca) .说明公式 (6) 是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式 (6) 变形为a3+b3 +c3-3abc显然,当 a+b+c=0 时,则 a3+b3+c3=3abc ;当 a+b+c3 3 3 3 3 3≥ 3abc,而> 0 时,则 a +b +c -3abc ≥0,即 a +b +c且,当且仅当a=b=c 时,等号成立.如果令 x=a3≥ 0,y=b3≥ 0, z=c3≥ 0,则有等号成立的充要条件是x=y=z .这也是一个常用的结论.例3 分解因式: x15+x14 +x13 +⋯+x2+x+1.分析这个多项式的特点是:有 16 项,从最高次项 x15开始, x 的次数顺次递减至 0,由此想到应用公式 a n-b n来分解.解因为x16-1=(x -1)(x 15+x14+x 13+⋯ x2+x+1) ,所以说明在本题的分解过程中,用到先乘以(x -1) ,再除以 (x -1) 的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式: x3 -9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法 1 将常数项8 拆成 -1+9.3原式 =x - 9x-1+932解法 2 将一次项 -9x 拆成 -x-8x.3原式 =x -x-8x+83=(x -x)+( -8x+8)=x(x+1)(x -1) -8(x -1)2解法 3 将三次项 x3拆成 9x3 3.- 8x原式 =9x3 -8x 3 -9x+8=(9x3 3+8)-9x)+( -8x=9x(x+1)(x -1) -8(x -1)(x 2+x+1)=(x -1)(x 2+x-8) .解法 4 添加两项 -x2+x2.原式 =x3-9x+8=x3 2 2-x +x -9x+8=x2(x -1)+(x -8)(x -1)=(x -1)(x 2+x-8) .说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例 5 分解因式:(1)x9 6 3+x +x -3;(2)(m 2 -1)(n 2 -1)+4mn;(3)(x+1) 4+(x 2 -1) 2+(x -1) 4;(4)a 3b-ab3+a2+b2+1.解(1) 将 -3 拆成 -1- 1-1.9 6 3原式 =x +x +x -1-1-1=(x9-1)+(x6 3-1)+(x -1)=(x3 6 3 3 3 3-1)(x +x +1)+(x -1)(x +1)+(x -1)=(x 3 -1)(x6+2x3+3)=(x -1)(x 2+x+1)(x 6+2x3+3) .(2) 将 4mn拆成 2mn+2mn.原式 =(m2-1)(n 2-1)+2mn+2mn2 2 2 2=mn -m- n +1+2mn+2mn2 2 2 2=(m n +2mn+1)-(m -2mn+n)=(mn+1)2 2-(m-n)原式 =(x+1) 4+2(x2 2 2 2+(x -1)4解原式 =(x+1)(x+2)(2x+1)(2x+3) -90 -1) -(x -1)=[ (x+1) 4+2(x+1) 2(x -1) 2+(x -1) 4] -(x 2 -1) 2 =[(x+1)(2x+3)][(x+2)(2x+1)] -90=[ (x+1) 2 2 2 2 2 2 2+(x - 1) ] -(x -1) =(2x +5x+3)(2x +5x+2) -90.2 2 2 2 2+1)(x 2+3) .2=(2x +2) -(x -1) =(3x 令 y=2x +5x+2,则(4) 添加两项 +ab- ab.原式 =y(y+1) -90=y2+y-90原式 =a3b-ab3 +a2+b2+1+ab-ab =(y+10)(y -9)=(a 3b- ab3)+(a 2 -ab)+(ab+b 2+1) =(2x 2+5x+12)(2x 2+5x-7)=ab(a+b)(a - b)+a(a -b)+(ab+b 2+1) =(2x 2+5x+12)(2x+7)(x -1) .=a(a -b) [ b(a+b)+1]+(ab+b 2+1) 说明对多项式适当的恒等变形是我们找到新元(y) =[a(a -b)+1](ab+b 2+1) 的基础.=(a 2 -ab+1)(b 2+ab+1) .例 8 分解因式:说明 (4) 是一道较难的题目,由于分解后的因式结(x 2+4x+8)2+3x(x 2+4x+8)+2x 2.构较复杂,所以不易想到添加+ab-ab,而且添加项后解设 x2+4x+8=y,则分成的三项组又无公因式,而是先将前两组分解,再原式 =y2+3xy+2x 2=(y+2x)(y+x)与第三组结合,找到公因式.这道题目使我们体会到=(x 2+6x+8)(x 2+5x+8)拆项、添项法的极强技巧所在,同学们需多做练习,=(x+2)(x+4)(x 2+5x+8) .积累经验.说明由本题可知,用换元法分解因式时,不必将原3.换元法式中的元都用新元代换,根据题目需要,引入必要的换元法指的是将一个较复杂的代数式中的某一部分新元,原式中的变元和新变元可以一起变形,换元法看作一个整体,并用一个新的字母替代这个整体来运的本质是简化多项式.算,从而使运算过程简明清晰.例 9 分解因式: 6x4+7x3 -36x 2 -7x+6.例 6 分解因式: (x 2+x+1)(x 2+x+2) -12.解法 1 原式 =6(x 4+1) + 7x(x 2 -1) -36x 2分析将原式展开,是关于 x 的四次多项式,分解因4 2 2 2 2 =6[ (x -2x +1)+2x ]+7x(x -1) -36x式较困难.我们不妨将x2+x 看作一个整体,并用字母=6[(x 2-1)2+2x 2]+7x(x 2-1) -36x 2 y 来替代,于是原题转化为关于y 的二次三项式的因=6(x 2 -1) 2+7x(x 2 -1) -24x2式分解问题了.=[2(x 2][2-1) -3x 3(x -1)+8x]解设 x2+x=y ,则=(2x 2 -3x-2)(3x 2+8x-3)原式 =(y+1)(y+2) -12=y 2+3y-10 =(2x+1)(x -2)(3x -1)(x+3) .=(y -2)(y+5)=(x 2+x-2)(x 2+x+5) 说明本解法实际上是将x2 -1 看作一个整体,但并=(x -1)(x+2)(x 2+x+5) .没有设立新元来代替它,即熟练使用换元法后,并非说明本题也可将 x2+x+1 看作一个整体,比如今每题都要设置新元来代替整体.x2+x+1=u ,一样可以得到同样的结果,有兴趣的同学解法 2不妨试一试.例 7 分解因式:(x 2+3x+2)(4x 2+8x+3) -90.=x2(6t 2+7t -24)=x 2(2t - 3)(3t+8)=x2[2(x -1/x) -3][3(x-1/x)+8]2 2=(2x - 3x-2)(3x +8x-3)=(2x+1)(x -2)(3x -1)(x+3).例10 分解因式: (x 2+xy+y 2) -4xy(x 2+y2) .分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令 u=x+y,v=xy ,用换元法分解因式.1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax 2+bxy+cy 2 +dx+ey+f) ,我们也可以用十字相乘法分解因式.例如,分解因式2 2.我们将上2x -7xy-22y -5x+35y-3式按 x 降幂排列,并把y 当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x 的二次三项式.对于常数项而言,它是关于y 的二次三项式,也可以用十字相乘法,分解为即: -22y 2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x 的二次三项式分解所以,原式 =[ x+(2y-3) ][ 2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如解原式 =[(x+y)2 2 2.令 x+y=u ,-xy] -4xy[(x+y) -2xy]xy=v ,则原式 =(u2 2 2-v) -4v(u -2v)4 2 2=u -6u v+9v=(u 2 -3v) 2=(x2+2xy+y2 2- 3xy)=(x 2 -xy+y 2) 2.第二讲:因式分解 (二)它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;2(x-3)(2x+1)=2x-5x-3 ;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax 2+bxy+cy 2+dx+ey+f 进行因式分解的步骤是:(1) 用十字相乘法分解ax2+bxy+cy 2,得到一个十字相乘图 ( 有两列 ) ;(2)把常数项 f 分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的 dx.例 1 分解因式:(1)x 2-3xy-10y 2+x+9y-2 ;2 2(2)x -y +5x+3y+4 ;(3)xy+y 2+x-y-2 ;(4)6x 2- 7xy-3y 2-xz+7yz-2z2.解(1)原式 =(x-5y+2)(x+2y-1).(2)原式 =(y+1)(x+y-2).(4)原式 =(x+y+1)(x-y+4).(3) 原式中缺x2项,可把这一项的系数看成0 来分解.原式 =(2x-3y+z)(3x+y-2z).说明 (4) 中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1 +⋯ +a1x+a0(n 为非负整数 ) 的代数式称为关于x 的一元多项式,并用 f(x) , g(x) ,⋯等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,⋯,当 x=a 时,多项式 f(x) 的值用 f(a) 表示.如对上面的多项式f(x)f(1)=1 2-3 × 1+2=0;f(-2)=(-2) 2-3 × (-2)+2=12 .若 f(a)=0 ,则称 a 为多项式 f(x) 的一个根.定理 1( 因式定理 ) 若 a 是一元多项式f(x) 的根,即 f(a)=0 成立,则多项式 f(x) 有一个因式 x-a .根据因式定理,找出一元多项式f(x) 的一次因式的关键是求多项式f(x) 的根.对于任意多项式 f(x) ,要求出它的根是没有一般方法的,然而当多项式f(x) 的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理 2的根,则必有p 是 a0的约数, q 是 a n的约数.特别地,当a0 =1 时,整系数多项式f(x) 的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式: x3 -4x 2+6x-4 .分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:± 1,± 2,± 4,只有f(2)=2 3-4 × 22+6× 2-4=0 ,即 x=2 是原式的一个根,所以根据定理1,原式必有因式x-2 .解法 1 用分组分解法,使每组都有因式(x-2).32 2原式 =(x -2x )-(2x -4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法 2 用多项式除法,将原式除以(x-2) ,所以原式 =(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4 的约数,反之不成立,即-4 的约数不一定是多项式的根.因此,必须对-4 的约数逐个代入多项式进行验证.例 3 分解因式: 9x4-3x 3+7x2-3x-2 .分析因为9的约数有± 1,± 3,± 9;-2的约数有± 1,±为:2所以,原式有因式9x -3x-2 .解9x 4-3x 3+7x2-3x-2 =9x4-3x 3-2x 2+9x 2-3x-2=x2(9x 3-3x-2)+9x 2-3x-2=(9x 2-3x-2)(x 2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为29x -3x-2 ,这样可以简化分解过程.总之,对一元高次多项式 f(x) ,如果能找到一个一次因式(x-a) ,那么 f(x) 就可以分解为(x-a)g(x) ,而 g(x) 是比 f(x) 低一次的一元多项式,这样,我们就可以继续对g(x) 进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程( 或方程组 ) ,解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例 4 分解因式: x2 +3xy+2y 2+4x+5y+3 .分析由于(x 2+3xy+2y 2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m 和 x+y+ n 的形式,应用待定系数法即可求出m和 n,使问题得到解决.解设x2+3xy+2y 2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y 2+(m+n)x+(m+2n)y+mn ,比较两边对应项的系数,则有解之得 m=3, n=1.所以原式 =(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式: x4 -2x 3-27x 2-44x+7 .分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是± 1,± 7(7 的约数 ) ,经检验,它们都不是原式的根,所以,在有理数集内,2 2原式没有一次因式.如果原式能分解,只能分解为(x +ax+b)(x +cx+d) 的形式.2 2原式 =(x +ax+b)(x +cx+d)=x4+(a+c)x 3+(b+d+ac)x 2+(ad+bc)x+bd ,所以有由 bd=7,先考虑b=1, d=7 有所以原式 =(x 2-7x+1)(x 2 +5x+7).说明由于因式分解的唯一性,所以对b=-1 , d=-7 等可以不加以考虑.本题如果b=1,d=7 代入方程组后,无法确定a, c 的值,就必须将bd=7 的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.。

相关文档
最新文档