人教版初二二次根式知识点总结大全
八年级数学实数之二次根式知识点总结
一、二次根式的概念及性质:① 二次根式的概念:一般地,形如 √a (a≥0)的式子叫作二次根式,其中“ √ ” 称为二次根号,a称为被开方数。
例如,√2 ,√(x^2+1) ,√(x-1) (x≥1) 等都是二次根式 。
② 二次根式的性质:当 a ≥ 0 时,√a 表示 a 的算术平方根,所以√a 是非负数 ( √a ≥ 0),即对于式子 √a 来说,不但 a ≥ 0,而且 √a ≥ 0,因此可以说 √a 具有双重非负性 。
③ 最简二次根式:1、被开方数中不含有分母 ;2、被开方数中不含有能开得尽方的因数和因式 。
④ 积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
⑤ 商的算术平方根的性质:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。
注:对于商的算术平方根,最后结果一定要进行分母有理化。
⑥ 分母有理化:化去分母中根号的变形叫作分母有理化,分母有理化的方法是根据分数的基本性质,将分子和分母分别乘分母的有理化因式(两个含有二次根式的代数式相乘,如果它们的积不含二次根式,就说这两个代数式互为有理化因式)化去分母中的根号。
⑦ 化成最简二次根式的一般方法:1、将被开方数中能开得尽方的因数或因式进行开方;2、若被开方数含分母,先根据商的算术平方根的性质对二次根式进行变形,再根据分母有理化的方法化简二次根式;3、若分母中含二次根式,根据分母有理化的方法化简二次根式 。
判断一个二次根式是否为最简二次根式,要紧扣最简二次根式的特点:(1)被开方数中不含分母;(2)被开方数中不含能开得尽方的因数或因式;(3)若被开方数是和(或差)的形式,则先把被开方数写成积的形式,再判断,若无法写成积(或一个数)的形式,则为最简二次根式 。
⑧ 二次根式的加减:(1)先把每个二次根式都化成最简二次根式;(2)把被开方数相同的二次根式合并,注意合并时只把“系数”相加减,根号部分不动,不是同类二次根式的不能合并,即二、知识点讲解:1、二次根式的概念及有意义的条件:例题1、下列式子中,是二次根式的有 ( B )例题2、使式子 √(m-2) 有意义的最小整数 m 的值是 2 。
八年级数学二次根式重点知识点大全
一、二次根式的概念与性质1.二次根式的定义:形如√a的式子称为二次根式,其中a≥0。
2.二次根式的性质:a)若a≥0,则√a≥0;b)若a≥b≥0,则√a≥√b;c)若a>b≥0,则√a>√b;d)若a≥0,则√(a²)=,a,其中,a,表示a的绝对值。
二、二次根式的化简与运算1.化简二次根式的常用方法:a)提取因式法:将二次根式中的平方数作为因式提取出来;b)合并相同根号下的项:将根号内的同类项进行合并;c)利用平方公式:将二次根式作为平方差或平方和进行化简。
2.二次根式的四则运算:a)加减运算:合并同类项后,进行加减运算;b)乘法运算:利用分配律,进行乘法运算;c)除法运算:有理化分母,化为二次根式的形式,然后进行乘法运算。
三、含有二次根式的方程1.含有二次根式的方程的解法:a)平方意义法:将方程两边平方,去掉二次根式,解得方程的解;b)分离根号法:将方程中含有二次根式的项移到一边,不含二次根式的项移到另一边,然后平方消去二次根式;c)倒数意义法:将方程两边取倒数,再次运用平方意义法;d)降次法:将方程中的二次根式通过化简变为一次根式,然后解得方程的解。
2.二次根式的绝对值方程:a)若,√a,=√a,则√a为方程的解;b)若,√a,=-√a,则方程无解。
四、二次根式的应用1.二次根式的图像:a)当a>0时,图像为右开口的抛物线;b)当a=0时,图像为直线;c)当a<0时,图像为左开口的抛物线。
2.二次根式的应用:a)二次根式可以表示边长、面积等与几何相关的量;b)二次根式可以表示物质的含量、体积等与实际问题相关的量。
五、解二次根式的几种常用方法1.合并相同根号下的项,然后联立方程求解;2.代入法:将选项代入原方程,判断是否满足等式,找出符合条件的解;3.倒置法:将选项的倒数代入原方程,再运用倒数意义法求解;4.拆解法:将二次根式进行拆解,再利用等式的性质进行求解;5.分离根号法:将方程中含有二次根式的项移到一边,不含二次根式的项移到另一边,然后平方消去二次根式。
人教版初二下册数学知识点
人教版初二下册数学知识点二次根式二次根式是指形如a√b(a≥0)的式子。
其中,a被称为系数,b被称为被开方数。
最简二次根式必须同时满足以下三个条件:被开方数中不含开方开的尽的因数或因式;被开方数中不含分母;分母中不含根式。
同类二次根式是指二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
二次根式有以下几个性质:a²=a(a≥0);a√b × c√d =ac√bd(a,b,c,d≥0);a√b ÷ c√d = a÷c √b÷d(a,b,c,d≥0,c≠0,d≠0)。
二次根式的运算包括因式的外移和内移、加减法、乘除法。
在运算过程中,需要将二次根式化为最简二次根式,并合并同类项。
例题:1、下列哪些式子是二次根式?1)11;3)−x²+2;4)4;5)(−5)²;6)1−a;7)a²−2a+1.答案:1、3、4、5、6.2、求下列二次根式中字母的取值范围:(1)(x+5)÷(3−x);(2)√((x-2)²+1)。
答案:(1)x≠3;(2)x∈R。
3、在1) a²+b²;2) x;3) x²-xy;4) 27abc中,最简二次根式是哪个?答案:C。
4、已知y=1−8x+8x⁻¹,求代数式1÷y+2−2y⁻¹的值。
答案:4x²-4x+1.5、已知数a,b,若(a−b)²=b−a,则a≤b。
给定$a=11,b=5$,求$\frac{b^5+1}{2a+b(b+a)}$的值。
首先,将$a$和$b$的值代入,得到:$\frac{5^5+1}{2\times11+5(5+11)}$。
计算分子和分母,得到:$\frac{3126}{96}$。
化简分数,得到:$\frac{1043}{32}$。
因此,$\frac{b^5+1}{2a+b(b+a)}=\frac{1043}{32}$。
人教版数学八年级下 16.1 二次根式
课时1
初中数学
八年级下册 RJ
知识回顾
(1)什么叫一个数的平方根?如何表示?
一般地,若一个数的平方等于a,则这个数就叫做a的平
方根或二次方根. a叫做被开方数,a的平方根是 ± .
(2)什么是一个数的算术平方根?如何表示?
若一个正数的平方等于a,则这个数就叫做a的算术平
方根,记作 , 0的算术平方根是0.
−2
∴ =3
1
1
= 2= .
3
9
1
9 .
16.1 二次根式
课时2
初中数学
八年级下册 RJ
知识回顾
(1)什么叫二次根式?如何表示?
一般地,我们把形如 (a≥0)的式子叫做二次根式.
其中“ 1”称为二次根号.
(2)二次根式有意义的条件是什么?
被开方数(式子)为非负数, (≥0).
+3
当 x 为何值时,
(4)带分数与字母相乘时,要将带分数化成假分
数.
2
11
如3 ×a通常写作 a.
3
3
(5)除法运算通常用分数线.如3÷
3
通常写作 .
(6)在实际问题中,若有单位且代数式是几个式
子的和或差时,要将代数式用括号括起来. 如温度
由2℃上升t℃后是(2+t)℃.
列代数式的常用方法:
(1)直接法:根据问题的语言叙述直接写出代数式.
例2 化简:
(1) 16 .
(2)
−5 2.
解:(1)原式= 42 = 4.
(2)原式=5.
利用二次根式的性质3:
2
= =
-a(a<0)
人教版八年级数学下册_16.2二次根式的乘除
特别提醒 进行二次根式的除法运算时,若两个被开方数可以
整除,就直接运用二次根式的除法法则进行计算;若两 个被开方数不能整除,可以对二次根式化简或变形后再 相除.
感悟新知
例 3 如果
a a-8
a a-8
成立,那么( D )
A.a ≥ 8
B.0 ≤ a ≤ 8
C.a ≥ 0
知3-练
D.a>8
解题秘方:紧扣“二次根式除法法则”成立的条
(式)移到根号外时,要注意应写在分母的位置上;
(3)“三化”,即化去被开方数中的分母.
感悟新知
知5-讲
特别提醒 判断一个二次根式是否是最简二次根式,要紧扣两个条件: 1. 被开方数不含分母; 2. 被开方数中每个因数(式)的指数都小于根指数2,即每个因
数(式)的指数都是1. 注意:分母中含有根式的式子不是最简二次根式.
感悟新知
知5-练
例8 下列各式中,哪些是最简二次根式?哪些不是最简二
次根式?不是最简二次根式的,请说明理由.
(1)
1 ;(2)
x2+y2 ;(3)
0.2;
3
(4)
24 x;(5)
2 .
3
解题秘方:紧扣“最简二次根式的定义”进行判断.
感悟新知
知5-练
解:(1)不是最简二次根式,因为被开方数中含有分母; (3) 不是最简二次根式,因为被开方数是小数(即含有分母); (4)不是最简二次根式,因为被开方数24x 中含有能开得尽 方的因数4,4=22; (2)(5)是最简二次根式.
感悟新知
知3-讲
(2)当二次根式根号外有因数(式)时,可类比单项式除以单 项式的法则进行运算,将根号外的因数(式)之商作为商 的根号外因数(式) ,被开方数(式)之商作为商的被开方 数(式) ,即a b÷c d = (a÷c ) b d ( b ≥ 0,d > 0,c ≠ 0 ).
(完整版)八年级下册数学--二次根式知识点整理
二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
最新人教版八年级数学下册 二次根式知识点归纳及题型总结
最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。
2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。
3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。
4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。
5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。
6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。
知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A。
$-3$;B。
$x$;C。
$x^2+1$;D。
$x-1$2.$x$取何值时,下列各式在实数范围内有意义。
1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。
全】人教版初中数学八年级下册知识点总结
全】人教版初中数学八年级下册知识点总结一、二次根式二次根式是指形如a(a≥0)的式子。
其中,a被称为被开方数。
最简二次根式是指被开方数中不含开方开的尽的因数或因式,且不含分母的二次根式。
如果两个二次根式的被开方数相同,那么它们就是同类二次根式。
二次根式具有一些性质,如a(a>0)的平方根是a,a的平方根和-a的平方根相等。
二、勾股定理勾股定理指的是直角三角形的两直角边长分别为a,b,斜边长为c时,a²+b²=c²。
应用勾股定理可以求出直角三角形的第三边长,或者判断一个三角形是否为直角三角形。
勾股定理的逆定理是指如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。
勾股数是指能够构成直角三角形的三边长的三个正整数,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。
直角三角形还有一些其他的性质,需要我们认真研究和掌握。
1.直角三角形的两个锐角互余,即∠A+∠B=90°。
2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=AB/2.3.直角三角形斜边上的中线等于斜边的一半,即CD=AB=BD=AD,其中D为AB的中点。
4.三角形面积公式为AB•CD=AC•BC。
5.直角三角形的判定有三种:有一个角是直角的三角形是直角三角形;如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;勾股定理的逆定理也可以判定直角三角形。
6.命题是对某件事情做出判断的完整句子,分为真命题和假命题。
7.定理是用推理的方法判断为正确的命题,证明是判断命题正确性的推理过程。
8.证明命题的一般步骤是根据题意画出图形,写出已知和求证,找出由已知推出求证的途径并写出证明过程。
9.三角形的中位线平行于第三边,并且等于它的一半,有多种作用和常用结论。
10.数学口诀有助于记忆和理解数学知识,如“勾股三角形,斜边是对角线”等。
最新人教版八年级数学下册第一章二次根式的知识点汇总
二次根式的知识点汇总知识点一: 二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x 、x (x>0)、0、42、-2、1x y+、x y +(x ≥0,y•≥0). 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.知识点二:取值范围1、 二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2、 二次根式无意义的条件:因负数没有算术平方根,所以当a ﹤0时,没有意义。
例2.当x 是多少时,31x -在实数范围内有意义?例3.当x 是多少时,23x ++11x +在实数范围内有意义? 知识点三:二次根式()的非负性()表示a 的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a 的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
例4(1)已知y=2x -+2x -+5,求xy的值.(2)若1a ++1b -=0,求a 2004+b 2004的值 知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,.例1 计算 1.(32)2 2.(35)2 3.(56)24.(72)2 例2在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-3 知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
(完整)人教版八年级下册数学第16章《二次根式》讲义第1讲二次根式认识、性质
第1讲 二次根式认识、性质第一部分 知识梳理知识点一: 二次根式的概念形如()的式子叫做二次根式。
必须注意:因为负数没有平方根,所以是为二次根式的前提条件知识点二:二次根式()的非负性()表示a 的算术平方根, 即0()。
非负性:算术平方根,和绝对值、偶次方。
非负性质的解题应用: (1)、如若,则a=0,b=0; (2)、若,则a=0,b=0; (3)、若,则a=0,b=0。
知识点三:二次根式的性质第二部分 考点精讲精练考点1、二次根式概念 例1、下列各式:122211,2)5,3)2,4,5)(),1,7)2153x a a a --+---+其中是二次根式的是_________(填序号). 例2、下列各式哪些是二次根式?哪些不是?为什么?(121 (219-(321x +(439 (56a - (6221x x ---例3)))2302,12203,1,2xx y y x x x x y +=--++f p 中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 例4、下列各式中,属于二次根式的有( )例5、若21x +的平方根是5±_____=.1、下列各式中,一定是二次根式的是( )A B C D2中是二次根式的个数有______个 3、下列各式一定是二次根式的是( )A B C D4、下列式子,哪些是二次根式, 1x、 x>0)1x y +、(x≥0,y ≥0) .51+x 、2+1x 、______个。
考点2、根式取值范围及应用例1有意义,则x 的取值范围是例2有意义的x 的取值范围例3、当_____x 时,式子4x -有意义. 例4、在下列各式中,m 的取值范围不是全体实数的是( ) A .1)2(2+-m B .1)2(2-m C .2)12(--m D .2)12(-m例5、若y=5-x +x -5+2019,则x+y=例6、实数a ,b ,c │a -=______.1、使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3 B 、x≥3 C 、 x>4 D 、x≥3且x≠42x 的取值范围是3、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 4、式子x x x 222+-+-有意义,x 为________ 5、yx是二次根式,则x 、y 应满足的条件是( ) A .0≥x 且0≥y B .0>yxC .0≥x 且0>yD .0≥yx 62()x y =+,则x -y 的值为( )A .-1B .1C .2D .37、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值8、当a 1取值最小,并求出这个最小值。
(完整word版)人教版初二二次根式知识点,推荐文档
二次根式详解【知识回顾】1. 二次根式:式子..a ( a > 0)叫做二次根式。
2. 最简二次根式:必须同时满足下列条件: ⑴被开方数中 不含开方开的尽的因数或因式 ; ⑵被开方数中 不含分母;⑶分母中不含根式。
3. 同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4. 二次根式的性质:a ( a > 0)0 ( a =0);a ( a v 0)5. 二次根式的运算:(1) 因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的 算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式, ?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2) 二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3) 二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商) 仍作积(商)的被开方数并将运算结果化为最简二次根式.(4) 有理数的加法交换律、结合律,乘法交换律及结合律, 多项式的乘法公式,都适用于二次根式的运算.{Vab =4a •b (a >0 b >0);?乘法对加法的分配律以及1、概念与性质例 1 下列各式 1) 5,2)兀,3) . X 2—2,4)忆5).. ( 3)2,6) .R,7) a 2其中是二次根式的是 _________ 序号). 例2、求下列二次根式中字母的取值范围x 51(1) 3 x ; ( 2)(2009 龙岩)已知数 a , b ,若(a b)2 =b — a ,贝V ()2、二次根式的化简与计算例1.将』{「根号外的a 移到根号内,得()A.: I ; B.—叮」;C. — ,;■; D. j >例2.把(a — b ) •• — a —b 化成最简二次根式斤 I-(3^2 - M)(辺 4 2间例3、计算:■'1【典型例题】2a 1 ,v(x-2)2A .y v1 8x 4、已知:8x 1x y2的值。
初二数学二次根式知识点归纳
初二数学二次根式知识点归纳一、二次根式的概念二次根式是指形如√a的表达式,其中a是一个非负实数。
根号下的数字a称为被开方数,√a称为二次根式的基数。
二、二次根式的化简化简二次根式是指将二次根式写成最简形式的过程。
化简的基本原则是将被开方数a的因数分解,并利用数的乘法法则和开方的运算性质进行合理的变形。
1. 同底合并当两个二次根式的基数相同时,可以将它们合并为一个二次根式,并进行化简。
2. 分解因数当被开方数a是一个完全平方数时,可以将其分解因数,再进行化简。
例如,√16可以分解为√(4×4),再利用根号的运算性质进行合并得到4。
3. 有理化分母当二次根式的分母中含有二次根式时,为了方便计算和比较,需要对分母进行有理化处理。
有理化分母的基本原则是将分母中的二次根式去掉,即将其乘以一个合适的形式为√a的因式。
三、二次根式的运算二次根式可以进行加减、乘除等运算。
在进行二次根式的运算时,需要注意以下几点:1. 加减运算当二次根式的基数和被开方数相同时,可以直接进行加减运算,并保持根号下的数字不变。
2. 乘除运算二次根式的乘法和除法运算可以通过化简和合并同类项的方式进行。
在乘法运算中,可以将二次根式的被开方数相乘,并将基数相乘;在除法运算中,可以将二次根式的被开方数相除,并将基数相除。
四、二次根式的应用二次根式在实际问题中有着广泛的应用。
以下是二次根式常见的应用场景:1. 长方形的对角线当已知长方形的长和宽时,可以利用勾股定理和二次根式的概念求出长方形的对角线长度。
2. 面积和体积在计算面积和体积时,常常会遇到含有二次根式的公式,如三角形的面积公式、球的体积公式等。
3. 几何图形的边长和面积比较通过比较含有二次根式的几何图形的边长和面积,可以判断它们的大小关系。
五、二次根式的性质二次根式有一些重要的性质,掌握这些性质有助于更好地理解和应用二次根式。
1. 非负性二次根式的基数必须是非负实数,即根号下的数字不能为负数。
初二数学下册笔记总结大全
初二数学下册笔记总结大全初二数学下册笔记(人教版)一、二次根式。
1. 二次根式的定义。
- 形如√(a)(a≥0)的式子叫做二次根式。
其中“√()”称为二次根号,a叫做被开方数。
- 注意:被开方数a必须是非负数,这是二次根式有意义的条件。
例如,√(x -1)有意义的条件是x-1≥0,即x≥1。
2. 二次根式的性质。
- (√(a))^2 = a(a≥0)。
例如(√(3))^2 = 3。
- √(a^2)=| a|=a(a≥0) -a(a < 0)。
例如√((-2)^2)=| - 2| = 2。
3. 二次根式的运算。
- 乘法法则:√(a)·√(b)=√(ab)(a≥0,b≥0)。
例如√(2)·√(3)=√(2×3)=√(6)。
- 除法法则:(√(a))/(√(b))=√((a/b))(a≥0,b > 0)。
例如(√(8))/(√(2))=√((8/2))=√(4) = 2。
- 加减法:先将二次根式化为最简二次根式,然后合并同类二次根式。
例如√(12)+√(27)=2√(3)+3√(3)=5√(3)。
二、勾股定理。
1. 勾股定理。
- 在直角三角形中,两直角边的平方和等于斜边的平方。
如果直角三角形的两直角边分别为a、b,斜边为c,那么a^2+b^2=c^2。
- 例如,在直角三角形中,a = 3,b = 4,则c=√(3^2)+4^{2}=√(9 +16)=√(25)=5。
2. 勾股定理的逆定理。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
- 例如,三角形三边为5、12、13,因为5^2+12^2=25 + 144 = 169=13^2,所以这个三角形是直角三角形。
三、平行四边形。
1. 平行四边形的定义与性质。
- 定义:两组对边分别平行的四边形叫做平行四边形。
- 性质。
- 边:平行四边形的对边平行且相等。
例如在平行四边形ABCD中,AB∥CD,AB = CD,AD∥ BC,AD = BC。
人教版 八年级数学下册 二次根式
知识点 2:槡a有意义a ≥ 0
4.(例 2)要使下列式子有意义,求 x的取值范围.
(1)槡x+1; (2)槡3-2x; (3)槡2x. (1)x≥ -1 (2)x≤ 3 2 (3)x≥0
5.要使下列式子有意义,求 x的取值范围.
(1)槡5-x; (2)槡5x; (3)槡25x+4.
第十六章 二次根式
第 1课 二次根式的概念
一、知识储备
( ±3)2=9
9的平方根是 ±3 ,9的算术平方根是 3 .
( ±4)2=16
16的平方根是 ±4 ,16的算术平方根是 4 .
( 0 )2=0
0的平方根是 0 ,0的算术平方根是 0 .
x2=a(a ≥ 0 ) a的平方根记作 ±槡a ,a的算术平方根记作 槡a . 总结: 非负 数有算术平方根, 负 数没有算术平方根,即若槡a有意义,则 a ≥ 0 .
∴yx=43 =64.
∴yx的平方根是 ±8.
第 2课 二次根式的性质
一、新课学习
探究 结论
(槡9)2= 9 ,(槡16)2 = 16 ,(槡0)2 = 0
二次根式的性质
1:(槡a)2
=
a (a≥0)
即一个非负数先开平方再平方,结果为这个数 .
槡32 = 3 ,槡42 = 4 ,槡02 = 0
A. 槡-1
B.槡(-3)2
C.槡x
D.槡34
10.要使槡x-2有意义,则x必须满足(A)11.要使下列式子有意义,请在横线上写上x的取值
A.x≥2 C.x>2
B.x≤2 D.x<2
范围.
二次根式的性质 2:槡a2 = a (a≥0)
即一个非负数先平方再开平方,结果为这个数 .
人教版八年级二次根式知识点总结课件
A≥0且B≠0.
练一练
1.下列各式: 3; 5; a2 ; x 1 x≥1;3 27; x2 2x 1.
一定是二次根式的有
( B)
A.3个 B.4个 C.5个 D.6个
2.(1)若式子 x 1 在实数范围内有意义,则x的取值 2 范围是_x__≥_1___;
(2)若式子
x
1
2
x 在实数范围内有意义,则x的
人教版八年级二次根式 全章知识点总结课件
一.二次式的概念及有关性质
1.理解二次根式的概念.(重点) 2.掌握二次根式有意义的条件.(重点) 3.会利用二次根式的非负性解决相关问题.(难点)
问题引入
问题1 什么叫做平方根? 一般地,如果一个数的平方等于a,那么这个数叫
做a的平方根.
问题2 什么叫做算术平方根? 如果 x2 = a(x≥0),那么 x 称为 a 的算术平方根.
总结
利用二次根式的除法法则进行计算,被开方数相 除时,可以用“除以一个不为零的数等于乘这个数的 倒数”进行约分、化简.
1 计算:
(1) 72 ; 6
(2) 48 ; 2 3
(3) 1 1 1; 26
(4)
4
a
1
3
b
a
b
1
(a>1,b>0).
导引: (1)直接利用二次根式的除法法则进行计算;(2)(4)要
典例解析
例2 当x是怎样的实数时, x 2在实数范围内有 意义?
解:由x-2≥0,得 x≥2.
当x≥2时, x 2 在实数范围内有意义.
典例解析
【变式题1】 当x是怎样的实数时,下列各式在实数范围内
有意义?
(1) 1 ; x 1
人教版初中数学二次根式知识点总结全面整理
人教版初中数学二次根式知识点总结全面整理单选题1、函数y=√x−5中,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.答案:B解析:根据函数y=√x−5可得出x-5≥0,再解出一元一次不等式即可.由题意得,x-5≥0,解得x≥5.在数轴上表示如下:故选B.小提示:本题要考查的是一元一次不等式的解法以及二次根式成立得出判定,熟练掌握一元一次不等式的解法是本题的解题关键.2、使√x−3有意义的x的取值范围是()A.x≤3B.x<3C.x≥3D.x>3答案:C解析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:∵式子√x−3有意义,∴x-3≥0,解得x≥3.故选C.小提示:本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.3、下列二次根式中属于最简二次根式的是()A.√14B.√48C.√abD.√4a+4答案:A解析:根据最简二次根式的定义和化简方法将二次根式化简成最简二次根式即可:如果一个二次根式符合下列两个条件:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式.那么,这个根式叫做最简二次根式.解:A、√14是最简二次根式,故此选项符合题意;B、√48=4√3不是最简二次根式,故此选项不符合题意;C、√ab =√ab|b|不是最简二次根式,故此选项不符合题意;D、√4a+4=2√a+1不是最简二次根式,故此选项不符合题意;故选A.小提示:本题主要考查了最简二次根式的判段,熟知最简二次根式的定义是解题的关键.4、下列各式中正确的是()A.√42=±4B.√(−4)2=−4C.−√(−4)2=−4D.√(a)2=a 答案:C解析:根据二次根式的性质化简即可.解:A、√42=4,故本选项错误;B、√(−4)2=4,故本选项错误;C、−√(−4)2=−4,故本选项正确;D、√(a)2=|a|,故本选项错误;故选:C.小提示:此题考查了二次根式的性质,掌握基本性质是解题的关键.5、下列各式中正确的是()A.√42=±4B.√(−4)2=−4C.−√(−4)2=−4D.√(a)2=a 答案:C解析:根据二次根式的性质化简即可.解:A、√42=4,故本选项错误;B、√(−4)2=4,故本选项错误;C、−√(−4)2=−4,故本选项正确;D、√(a)2=|a|,故本选项错误;故选:C.小提示:此题考查了二次根式的性质,掌握基本性质是解题的关键.6、下列各式化简后的结果为3√2的是()A.√6B.√12C.√18D.√36答案:C解析:A、√6不能化简;B、√12=2√3,故错误;C、√18=3√2,故正确;D、√36=6,故错误;故选C.点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.7、下列运算正确的是()A.√a+√b=√a+b B.2√a×3√a=6√aC.(a+b)2=a2+b2D.(x2)5=x10答案:D解析:A.根据同类二次根式的定义解题;B.根据二次根式的乘法法则解题;C.根据完全平方公式解题;D.幂的乘方解题.解:A. √a与√b不是同类二次根式,不能合并,故A错误;B. 2√a×3√a=6a,故B错误;C. (a+b)2=a2+2ab+b2,故C错误;D. (x2)5=x10,故D正确,故选:D.小提示:本题考查实数的混合运算,涉及同类二次根式、二次根式的乘法、完全平方公式、幂的乘方等知识,是重要考点,掌握相关知识是解题关键.8、下列运算正确的是()A.√2 +√3=√5B.√18 =2√3C.√2•√3=√5D.√2÷√1=22答案:D解析:利用二次根式的加减法对A进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.解:A.√2与√3不能合并,所以A选项错误,不符合题意;B.原式=3√2,所以B选项错误,不符合题意;C.原式=√2×3=√6,所以C选项错误,不符合题意;D.原式=√2×2=2,所以D选项正确,符合题意.故选D.小提示:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.填空题9、若m<2√7<m+1,且m为整数,则m=_____.答案:5解析:利用二次根式的估值方法进行计算即可.解:2√7=√28,∵√25<√28<√36,∴5<2√7<6,又∵m<2√7<m+1,∴m=5,所以答案是:5.小提示:本题考查了二次根式的估值求参数值的问题,熟练掌握二次根式的估值计算是解题的关键.10、如果√3−x在实数范围内有意义,那么实数x的取值范围是________答案:x≤3解析:根据二次根式有意义的条件列出不等式,解不等式得到答案.解:∵二次根式√3−x在实数范围内有意义,∴3-x≥0,解得,x≤3,所以答案是:x≤3.小提示:本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.11、若√17−n的值是整数,则自然数n的值为_____.答案:17或16或8或1解析:先根据二次根式的定义求出x的取值范围,再根据√17−n的值是整数这一条件对n的值进行讨论即可.由题意得:17-x≥0,解得,x≤17,当x=0时,原式=√17,不合题意;当x=1时,原式=√16=4,符合题意;当x=2时,原式=√15,不合题意;当x=3时,原式=√14,不合题意;当x=4时,原式=√13,不合题意;当x=5时,原式=√12=2√3,不合题意;当x=6时,原式=√11,不合题意;当x=7时,原式=√10,不合题意;当x=8时,原式=√9=3,符合题意;当x=9时,原式=√8=2√2,不合题意;当x=10时,原式=√7,不合题意;当x=11时,原式=√6,不合题意;当x=12时,原式=√5,不合题意;当x=13时,原式=√4=2;符合题意;当x=14时,原式=√3,不合题意;当x=15时,原式=√2,不合题意;当x=16时,原式=1;当x=17时,原式=0.综上所述,x=1、8、13、16或17.小提示:主要考查了二次根式的意义和性质及自然数的定义:概念:式子√a(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12、√12与最简二次根式5√a+1是同类二次根式,则a=_____.答案:2解析:先将√12化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.解:∵√12与最简二次根式5√a+1是同类二次根式,且√12=2√3,∴a+1=3,解得:a=2.故答案为2.小提示:本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.13、一个三角形的三边长分别为√8cm,√12cm,√18cm,则它的周长是___________cm.答案:5√2+2√3解析:试题解析:√8+√12+√18=2√2+2√3+3√2=5√2+2√3解答题﹣514、(1)计算:√12−√24√3(2)计算:6√13−14√48+(3√3−1)×√3答案:(1)﹣2√2﹣3;(2)9.解析:(1)先计算二次根式的除法运算,然后化简后合并即可;(2)先将各二次根式化为最简,有括号的去括号,再化简合并即可. 解:(1)原式=√123﹣√243﹣5=2﹣2√2﹣5=﹣2√2﹣3;(2)原式=2√3﹣√3+9﹣√3=9.小提示:本题考查了二次根式的混合运算,注意运算中符号的变化.15、化简求值:(1a+1−a−3a 2−1)÷2a+1,其中a =√2+1.答案:1a−1,√22解析:先通过分式的性质化简,在代入求值即可;解:原式=[a−1(a+1)(a−1)−a−3(a+1)(a−1)]⋅a+12, =2(a+1)(a−1)⋅a+12,=1a−1,当a =√2+1时,原式=,√2+1−1,=√2=√2.2小提示:本题主要考查了分式化简求值,二次根式的运算,准确计算是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初二二次根式知识点总结大全
【知识回顾】
1、二次根式:式子( 0)叫做二次根式。
a
2、最简二次根式:必须同时满足下列条件:
被开方数中不含开方开的尽的因数或因式;被开方数中不含分母;分母中不含根式。
3、同类二次根式:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4、二次根式的性质:
(1)()2= ( 0);(2)a a2
5、二次根式的运算:
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式 ab = (a0,b0); ba(b0,a0)(4)有理数的加法交换律、结合律,乘法
交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算( 0)( 0 ) 0 ( =0);
【典型例题】
1、概念与性质例1 下列各式1)
2221,2)5,3,4)5(),6,7)13xa,其中是二次根式的是_________(填序号)例
2、求下列二次根式中字母的取值范围(1);(2)x x3152)-(x 例
3、在根式1)
22;)3;4)75abyabc,最简二次根式是() A1)
2)
B3)
4)
C1)
3)
D1)
4)
例
4、已知:。
2,2181 xyyxxy 例
5、(xx 龙岩)已知数 a,b ,若2()b=b a,则 ( )
A、 ab
B、 a0, b0 时,则:
;1ab1ab 例
8、比较与的大小。
532
5、规律性问题例
1、观察下列各式及其验证过程:
,验证:
;验证: 、(1)按照上述两个等式及其验证过程的基本思路,猜想415的变形结果,并进行验证;(2)针对上述各式反映的规律,写出用 n(n2,且 n 是整数)
表示的等式,并给出验证过程、例
2、已知,则 a _________ 发展:已知,则 a ______。
例
4、已知 ab0,a+b=6 ab,则 b的值为()A2 B2 C2 D1 例
5、甲、乙两个同学化简时,分别作了如下变形:
甲:
= = ;乙:
= 。
其中,()。
A 、甲、乙都正确
B、甲、乙都不正确
C、只有甲正确
D、只有乙正确
【基础训练】
1化简:(1) __ __;(2) ___ __ (3) ___72546128 _;(4) ___ _;(5)。
325(0,)xy _420
2、)化简 =_________。
2
3、计算的结果是4 、222 =_____ _;825x (5)(5 )=_________;(6);3 (7) ________;(8)5计算的结果是28
A、6
B、
C、2
D、626(08,广州)的倒数是。
3
7、 (08,聊城 )下列计算正确的是 A B C D
8、下列运算正确的是
A、
B、
C、
D、4、06
15、1、23932949(08,中山)已知等边三角形 ABC 的边长为3,则 ABC 的周长是 ____________;
10、比较大小:。
1011(08,嘉兴)使有意义的的取值范围是2 12、(08,常州)若式子在实数范围内有意义,则 x 的取值范围是5
A、x-5
B、x<-5
C、x-5
D、x-5
13、 (08,黑龙江)函数中,自变量的取值范围是
14、下列二次根式中,的取值范围是2 的是xx
A、
B、
C、
D、2 x x+2 x2
15、(08,荆州)下列根式中属最简二次根式的是
A、
B、
C、
D、21a1282716(08,中山)下列根式中不是最简二次根式的是 A B C D1086217(08,常德)下列各式中与是同类二次根式
的是 A2 B C D18下列各组二次根式中是同类二次根式的是 A B C D21与2718与31与54与
19、(08,乐山)已知二次根式与是同类二次根式,则的值可以是
A、5
B、6
C、7
D、820(08,大连)若 baybax,,则 xy 的值为 A a2 B2 C
D ba
21、(08,遵义)若,则30b2ab22(08,遵义)如图,在数轴上表示实数的点可能是15 A点 B点 C点 D点PQMN
23、计算:
(1)(2)(3)(08,上海)(4)(08,庆阳)(5)27148
24、先将化简,然后自选一个合适的 x 值,代入化简后的式子求2x32x 值。
25、( 08,济宁 )若,则的取值范围是 A B C D
26、(08,济宁)如图,数轴上两点表示的数分别为1 和,点关于点的对称点为点,则点所表示的数是 A B C D。