14有理数的乘法与除法同步练
1.4 有理数的乘除法 同步练习卷 2021—2022学年人教版数学七年级上册(含答案)

人教版2021年七年级上册1.4《有理数的乘除法》同步练习卷一.选择题1.2020的相反数和倒数分别是()A.﹣2020,B.﹣2020,C.2020,D.2020,2.一个数是﹣5,另一个数比|﹣5|的相反数大4,则这两个数的积是()A.6B.﹣5C.﹣6D.53.下列计算(﹣55)×99+(﹣44)×99﹣99正确的是()A.原式=99×(﹣55﹣44)=﹣9801B.原式=99×(﹣55﹣44+1)=﹣9702C.原式=99×(﹣55﹣44﹣1)=﹣9900D.原式=99×(﹣55﹣44﹣99)=﹣196024.计算1的结果是()A.﹣1B.1C.﹣D.﹣5.99,这个运算应用了()A.加法交换律B.乘法结合律C.乘法交换律、乘法结合律D.乘法分配律6.给出下列说法:①1乘任何有理数都等于这个数本身;②0乘任何数的积均为0;③﹣1乘任何有理数都等于这个有理数的相反数;④一个数的倒数与本身相等的数是±1,其中正确的有()A.1 个B.2 个C.3 个D.4 个7.5个有理数相乘,积为负,则其中正因数的个数为()A.0B.2C.4D.0或2或48.有理数a、b在数轴上的位置如图所示,则下列各式:①a+b>0;②a﹣b>0;③|b|>a;④ab<0;⑤|b﹣a|=a﹣b,正确的有()A.1个B.2个C.3个D.4个二.填空题9.﹣的倒数是.10.绝对值不大于5的所有负整数的积是11.从数﹣6,1,﹣3,5,﹣2中任取两个数相乘,其积最小的是.12.若|x|=3,|y|=4,且xy<0,那么x+y=.13.若m<n<0,则(m+n)(m﹣n)0.(填“<”、“>”或“=”)三.解答题14.计算:(1)(﹣)×(﹣)×(﹣);(2)(﹣5)×(﹣)××0×(﹣325).15.计算下列各题(1)(+﹣)×(﹣12)(2)|﹣|÷(﹣)﹣×(﹣4)(3)(﹣47.65)×(﹣2)+37.15×(﹣2)+10.5÷(﹣)16.观察下列解题过程.计算:(﹣)÷(1﹣﹣).解:原式=(﹣)÷1﹣(﹣)÷﹣(﹣)÷=(﹣)×﹣(﹣)×﹣(﹣)×=﹣+1+=2你认为以上解题是否正确,若不正确,请写出正确的解题过程.17.阅读下列材料:计算:÷(﹣+).解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷(﹣+)=÷=×6=.解法三:原式的倒数=(﹣+)÷=(﹣+)×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:(﹣)÷(﹣+﹣).参考答案一.选择题1.解:2020的相反数为﹣2020,2020的倒数为,故选:B.2.解:根据题意得:另一个数为﹣5+4=﹣1,则两个数之积为5,故选:D.3.解:(﹣55)×99+(﹣44)×99﹣99=99×(﹣55﹣44﹣1)=﹣9900.故选:C.4.解:原式=﹣1××=﹣.故选:C.5.解:99,这个运算应用了乘法的分配律,故选:D.6.解:①1乘任何有理数都等于这个数本身,正确;②0乘任何数的积均为0,正确;③﹣1乘任何有理数都等于这个有理数的相反数,正确;④一个数的倒数与本身相等的数是±1,正确.故选:D.7.解:5个有理数相乘,积为负,则负因数肯定为奇数1,3,5个;那么正因数为0,2,4个.故选:D.8.解:观察图象可知:a+b<0,a﹣b>0,|b|>a,ab<0,|b﹣a|=a﹣b,故②③④⑤,故选:D.二.填空题9.解:﹣的倒数是﹣2.故答案为:﹣2.10.解:绝对值不大于5的所有负整数有:﹣1,﹣2,﹣3,﹣4,﹣5,∴(﹣1)×(﹣2)×(﹣3)×(﹣4)×(﹣5)=﹣120.故答案为﹣120.11.解:根据有理数的乘法的运算法则知,异号的两数相乘结果为负.所以应用最小的负数与最大的正数相乘:﹣6×5=﹣30.12.解:∵|x|=3,|y|=4,∴x=3或﹣3,y=4或﹣4,∵xy<0,∴x=3,y=﹣4或x=﹣3,y=4,∴x+y=﹣1或1,故答案为:1或﹣1.13.解:∵m<n<0,∴m+n<0,m﹣n<0,∴(m+n)(m﹣n)>0.故答案是>.三.解答题14.解:(1)(﹣)×(﹣)×(﹣)=﹣××=﹣;(2)(﹣5)×(﹣)××0×(﹣325)=0.15.解:(1)原式=×(﹣12)+×(﹣12)+(﹣)×(﹣12)=﹣3﹣2+6=1;(2)原式=×+=+=3;(3)原式=(﹣47.65+37.15)×(﹣)+×(﹣)=×+×(﹣)=×(﹣)=×1=.16.解:解题过程是错误的,正确的解法是:原式=(﹣)÷=﹣×=﹣3.17.解:(1)上述得到的结果不同,我认为解法一是错误的;故答案为:一;(2)原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,则原式=﹣.。
有理数的乘除法同步练习题

1.4有理数的乘除法练习题教学过程复习回顾:1。
有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,都得0.在有理数中仍然有:乘积是1的两个数称为互为倒数。
2.有理数的乘法运算律乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac3.有理数的除法法则:除以一个不等于0的数,等于乘以这个数的倒数:a÷b=a•1b(b0≠)由有理数除法法则可得:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.复习练习:一、选择题1。
如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )A.一定为正B.一定为负 C。
为零 D. 可能为正,也可能为负2。
若干个不等于0的有理数相乘,积的符号( )A.由因数的个数决定 B。
由正因数的个数决定C。
由负因数的个数决定 D.由负因数和正因数个数的差为决定3.下列运算结果为负值的是()A。
(﹣7)×(﹣6) B。
(﹣6)+(﹣4) C。
0×(﹣2)×(﹣3) D.(﹣7)-(﹣15)4。
下列运算错误的是( )A.(﹣2)×(﹣3)=6 B。
1(6)32⎛⎫-⨯-=- ⎪⎝⎭C.(﹣5)×(﹣2)×(﹣4)=﹣40D.(-3)×(—2)×(-4)=﹣245。
若两个有理数的和与它们的积都是正数,则这两个数( )A。
都是正数 B.是符号相同的非零数 C。
都是负数 D。
都是非负数6。
下列说法正确的是()A.负数没有倒数B.正数的倒数比自身小C。
任何有理数都有倒数 D.—1的倒数是-17.关于0,下列说法不正确的是( )A.0有相反数B.0有绝对值C 。
0有倒数 D.0是绝对值和相反数都相等的数8.下列运算结果不一定为负数的是( )A.异号两数相乘B.异号两数相除C 。
异号两数相加D 。
1.4有理数的乘除法同步提高练习 2021—2022学年人教版数学七年级上册

1.4有理数的乘除法同步提高练习一.选择题1.计算(﹣2)的结果是()A.﹣1 B.1 C.2 D.﹣22.()的相反数的倒数是﹣.A.2021 B.﹣2021 C.±D.±20213.下面各组中的两个比,可以组成比例的是()A.12:9和9:6 B.:和:C.8.4:2.1和1.2:8.4 D.:和25:244.在比例35:10=21:6中,如果将第一个比的后项增加30,第二个比的后项应加上()才能使该比例成立.A.12 B.36 C.24 D.185.以下叙述中,正确的是()A.﹣a一定是负数B.若|a|=0.5,则a=0.5C.a与﹣a互为相反数D.﹣a的倒数是6.若|a|=3,|b|=4,且ab>0,则式子a+b的值是()A.7 B.1 C.1或﹣1 D.7或﹣77.有理数a、b在数轴上的对应的位置如图所示,则下列四个选项正确的是()A.|a|<|b| B.a+b>0 C.a﹣b<0 D.ab>08.用一批玉米种子做发芽试验,结果发芽的有192粒,没有发芽的有8粒,求这一批种子的发芽率为()A.19.2% B.8% C.92% D.96%9.已知|x|=5,|y|=2,且xy<0,则x﹣y的值是()A.7 B.﹣3 C.7或﹣3 D.7或﹣7二.填空题10.计算:57×63=.11.一个比例的两内项互为倒数,其中的一个外项是1,另一个外项是.12.约300万人参与中国第一辆火星车的全球征名活动,其中排名第一的“祝融号”得到约60万人的支持,“祝融号”的支持率约为.13.倒数是64%的数是.14.在﹣2,3,4,﹣6这四个数中,取其中三个数相乘,所得的积最大为a,再取三个数所得的积最小为b,则a+b=.15.已知有理数a、b、c满足a+b+c=0,abc<0,若x=,则x3的值为.三.解答题16.计算.(1);(2)2.5×12.5×3.2;(3).17.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a﹣b=ab+1成立的一对有理数“a,b”为“共生有理数对”,记为(a,b),如:数对(2,),(5,)都是“共生有理数对”.(1)通过计算判断数对(1,2)是不是“共生有理数对”;(2)若(a,3)是“共生有理数对”,求a的值;(3)若(m,n)是“共生有理数对”,则(﹣n,﹣m)“共生有理数对”(填“是”或“不是”);(4)如果(m,n)是“共生有理数对”(其中n≠1),直接用含n的式子表示m.18.定义:对于一个两位自然数,如果它的个位和十位上的数字均不为零,且它正好等于其个位和十位上的数字的和的n倍(n为正整数),我们就说这个自然数是一个“n喜数”.例如:24就是一个“4喜数”,因为24=4×(2+4);25就不是一个“n喜数”,因为25≠n(2+5).(1)判断44和72是否是“n喜数”?请说明理由;(2)请求出所有的“7喜数”之和.19.问题探索:(1)已知一个分数(m>n>0),如果分子、分母同时增加1,分数的值是增大还是减小?写出结论即可;(2)若正分数(m>n>0)中分子和分母同时增加k(整数k>0),分数的值是增大还是减小?请说明理由;(3)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了还是变坏了?请说明理由.20.对于一个位数为偶数的多位数,如果在其中间位插入一位数k(0≤k≤9,且k为整数)就得到一个新数,我们把这个新数称为原来的一个晋级数,如234711中间插入数字2可得它的一个晋级数2342711.请阅读以上材料,解决下列问题:(1)若一个数是1245的晋级数,且这个晋级数各数位上的数字之和能被5整除,则这个数可能是;(2)若一个两位数的晋级数是这个两位数的9倍,请求出所有满足条件的晋级数.21.学习了有理数的乘法后,老师给同学们出了这样一道题目:计算:,看谁算的又快又对,有两位同学的解法如下:小明:原式=;小军:原式=.(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来.(3)用你认为最合适的方法计算:.。
有理数的乘除混合运算(计算题专项训练)(人教版)(解析版)

专题03 有理数的乘除混合运算1.(2022秋·江苏连云港·七年级统考期中)计算(1)8×(−2)×(−5)(2)(−91)÷13(3)(−12−13+34)×(−60) (4)12×(−3)÷(−4)【思路点拨】(1)根据有理数的乘法运算法则和运算顺序计算即可;(2)根据有理数除法运算法则计算即可;(3)利用乘法分配律进行有理数乘法运算即可;(4)根据有理数乘除法运算法则和运算顺序计算即可.【解题过程】解:(1)8×(−2)×(−5)=8×2×5=80;(2)(−91)÷13=-(91÷13)=-7;(3)(−12−13+34)×(−60)= −12×(−60)−13×(−60)+34×(−60) =30+20−45=5;(4)12×(−3)÷(−4)=(−36)×(−14)=9.2.(2022秋·七年级统考课时练习)计算:(1)−2.25÷118×(−8);(2)(−21316)÷(34×98);(3)(−5)÷(−7)÷(−15);(4)(−0.4)÷0.02×(−5);(5)72÷(−8)÷(−12);(6)(−32)÷54÷(−35)×(−14). 【思路点拨】(1)直接利用有理数的乘除运算法则计算得出答案;(2)先计算括号内的乘法,再把除法转化成乘法进行计算即可;(3)把除法转化成乘法进行计算即可;(4)先算除法,再算乘法即可得解;(5)直接利用有理数的乘除运算法则计算得出答案;(6)把除法转化成乘法进行计算即可.【解题过程】(1)−2.25÷118×(−8) =−94×89×(−8)=-2×(-8)=16;(2)(−21316)÷(34×98)=−4516÷2732=−4516×3227 =−103;(3)(−5)÷(−7)÷(−15)=−5×17×115=−121;(4)(−0.4)÷0.02×(−5)=-20×(-5)=100;(5)72÷(−8)÷(−12)=(−9)÷(−12)=34; (6)(−32)÷54÷(−35)×(−14)=−32×45×53×14 =−12.3.(2023·全国·七年级假期作业)计算:(1)−3÷(−34)÷(−34); (2)(−12)÷(−4)÷(−115);(3)(−23)×(−78)÷0.25;(4)(−212)÷(−5)×(−313). 【思路点拨】(1)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(2)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(3)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(4)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案.【解题过程】(1)原式=−3×(−43)×(−43)=−163;(2)原式=(−12)×(−14)×(−56)=−52;(3)原式=(−23)×(−78)×4=73; (4)原式=(−52)×(−15)×(−103)=−53. 4.(2022秋·吉林长春·七年级校考阶段练习)计算.(1)−5÷(−127)×45×(−214)÷7;(2)(512+34−58)÷(−524).【思路点拨】(1)根据有理数的乘除混合运算进行计算即可求解;(2)先将除法转化为乘法,然后根据乘法分配律进行计算即可求解.【解题过程】(1)解:−5÷(−127)×45×(−214)÷7=−5÷(−97)×45×(−94)×17=−5×(−79)×45×(−94)×17=−1(2)解:(512+34−58)÷(−524) =512×(−245)+34×(−245)−58×(−245) =−2−185+3 =−135. 5.(2022秋·全国·七年级专题练习)计算:(1)8×|−6−1|+26 12 ×653.(2)3.2÷ 45×(− 815 )÷(−16). (3)(1 13 + 18 −2.75)×(−24)(4)(−36)×(54−56−712).【思路点拨】(1)去掉绝对值号,再把带分数化为假分数,然后根据有理数的乘法和加法运算法则进行计算即可得解.(2)首先把除法统一化为乘法,再确定结果的符号,再把绝对值相乘即可.(3)首先把括号内的数化成分数,然后利用分配律,最后进行加减计算即可.(4)利用分配律即可转化成有理数的乘法,然后进行有理数的加减运算即可.【解题过程】(1)解: 8×|−6−1|+26 12 ×653=8×|−7|+ 532 ×653=56+3=59.(2)解:原式=165×54×(−815)×(−116) =165×54×815×116 =215;(3)解:原式=(43+18−114)×(−24)=−43×24−18×24+114×24 =−32−3+66=31(4)解:原式=(−36)×54−(−36)×56−(−36)×712=−45+30+21=6.6.(2023·全国·七年级假期作业)计算:(1)(−8)×(−6)×(−1.25)×13; (2)(−81)÷(−214)×49÷(−8).【思路点拨】(1)根据有理数乘法运算法则进行计算即可;(2)根据有理数乘除混合运算法则进行计算即可.【解题过程】(1)解:(−8)×(−6)×(−1.25)×13=−8×1.25×6×13=−10×2=−20;(2)解:(−81)÷(−214)×49÷(−8)=(−81)×(−49)×49×(−18)=−2.7.(2022秋·全国·七年级期末)计算:(1)(−23)×25−6×25+18×25+25;(2)(−12)×(−8)+(−6)÷(−13).【思路点拨】(1)根据逆用乘法分配律进行计算即可求解;(2)根据有理数的四则混合运算进行计算即可求解.【解题过程】(1)解:原式=25×(−23−6+18+1)=25×(−10)=−250;(2)解:原式=12×8+6÷13=4+18=22.8.(2022秋·重庆万州·七年级校联考阶段练习)计算:(1)(−56)×(−1516)÷(−134)×47(2)3.25+(−2.6)+(+534)+(−825)【思路点拨】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的加减混合运算法则计算即可.【解题过程】(1)(−56)×(−1516)÷(−134)×47=(−56)×(−2116)÷(−74)×47 =56×2116×(−47)×47 =7×212×(−47)×47=−24;(2)3.25+(−2.6)+(+534)+(−825) =3.25−2.6+5.75−8.4=(3.25+5.75)−(2.6+8.4)=9−11=−2.9.(2022秋·全国·七年级专题练习)计算:(1)(﹣85)×(﹣25)×(﹣4);(2)﹣215×2311÷(−212);(3)(−124)÷(134−78+712);(4)(79−56+34−718)×36.【思路点拨】(1)先计算(﹣25)×(﹣4),再乘(﹣85)即可得出结果;(2)先将带分数化为假分数,再将除法运算转化为乘法运算;(3)先将括号内通分,再将除法运算转化为乘法运算;(4)利用乘法分配律计算.【解题过程】(1)解:(﹣85)×(﹣25)×(﹣4),=(﹣85)×[(﹣25)×(﹣4)],=﹣85×100,=﹣8500;(2)﹣215×2311÷(﹣212),=﹣115×2511×(﹣25),=2;(3)(﹣124)÷(134﹣78+712),=(﹣124)÷(4224−2124+1424), =(﹣124)÷3524, =(﹣124)×2435,=﹣135;(4)(79−56+34−718)×36,=79×36﹣56×36+34×36﹣718×36,=28﹣30+27﹣14,=55﹣44,=11.10.(2022秋·全国·七年级专题练习)计算(1)−127÷(−156)×138×(−7); (2)(−113+19+512)×36.【思路点拨】(1)先将带分数化为假分数,再利用有理数的乘除法法则计算即可;(2)利用乘法分配律计算即可.【解题过程】解:(1)−127÷(−156)×138×(−7)=−97÷(−116)×118×(−7) =−97×(−611)×118×(−7) =−274;(2)(−113+19+512)×36=−43×36+19×36+512×36 =−48+4+15=−29.11.(2022秋·全国·七年级专题练习)计算:(1)49×1516÷56(2)(12−13+14)×48(3)625÷9+625×89(4)15÷[(23+15)×0.6]【思路点拨】(1)直接根据有理数乘除法法则计算即可得到答案;(2)去括号直接计算即可得到答案;(3)先乘除后加减计算即可得到答案;(4)先去括号在根据法则运算即可得到答案.【解题过程】(1)解:原式=49×1516×65=12;(2)解:原式=12×48−13×48+14×48=24−16+12=20;(3)解:原式=625×19+625×89=625×(19+89)=625(4)解:原式=15÷(23×0.6+15×0.6)=15÷(25+325)=15÷1325=15×2513=513.12.(2022秋·山东青岛·七年级青岛超银中学校考期末)计算下列各题:(1)(−24)×(−34+23+112);(2)(−81)÷214×49÷(−16).【思路点拨】(1)根据分配率进行计算即可求解;(2)先把除法转化为乘法,再进行有理数的乘法运算即可求解.【解题过程】(1)解:(−24)×(−34+23+112)=(−24)×(−34)+(−24)×23+(−24)×112=18−16−2=0;(2)解:(−81)÷214×49÷(−16)=(−81)×49×49×(−116)=1.13.(2022秋·浙江·七年级专题练习)计算(1)34×(−112)÷(−214)(2)(﹣81)÷2.25×49÷(﹣32).(3)−34÷38×(−49)÷(−23)(4)﹣15÷(13−112−3)×68(5)−112÷34×(−0.2)×134÷1.4×(−35).【思路点拨】(1)先统一为乘法运算,再按照有理数乘法法则计算即可;(2)根据除法运算法则除以一个数等于乘以这个数的倒数,进而化简求出即可.(3)先统一为乘法运算,再按照有理数乘法法则计算即可;(4)先算小括号,再按照从左往右的顺序计算即可;(5)先统一为乘法运算,再按照有理数乘法法则计算即可.【解题过程】解:(1)34×(−112)÷(−214) =34×32×49=12. (2)(﹣81)÷2.25×49÷(﹣32)=81×49×49×132=12. (3)−34÷38×(−49)÷(−23) =−(34×83×49×32) =−43. (4)−15÷(13−112−3)×68=−15÷(−256)×68 =15×625×68=244.8.(5)−112÷34×(−0.2)×134÷1.4×(−35)=−(32×43×15×74×57×35) =−0.3.14.(2023春·七年级专题练习)计算:(1)−2.5÷58×(−14); (2)−27÷214×49÷(−24);(3)(−35)×(−312)÷(−114)÷3;(4)−4×12÷(−12)×2;(5)−5÷(−127)×45×(−214)÷7;(6)|−118|÷34×43×|−12|.【思路点拨】(1)把小数化为分数,把除法转化为乘法,再根据乘法法则计算;(2)(3)(5)把带分数化为假分数,把除法转化为乘法,再根据乘法法则计算;(4)把除法转化为乘法,再根据乘法法则计算;(6)先算绝对值,再算乘除法.【解题过程】(1)原式=−52×85×(−14)=1; (2)原式=−27×49×49×(−124)=29; (3)原式=(−35)×(−72)×(−45)×13=-1425;(4)原式=−4×12×(−2)×2=8; (5)原式=−5×(−79)×45×(−94)×17=−1;(6)原式=98×43×43×12=1.15.(2022秋·贵州铜仁·七年级校考阶段练习)乘除计算:(1)(−81)÷214×(−49)÷(−16)(2)1.25÷(−0.5)÷(−212)×1(3)(−2)×32÷(−34)×4;(4)(134−78−712)×(−117)【解题过程】(1)解:(−81)÷214×(−49)÷(−16) =−81×49×(−49)×(−116)=−1;(2)1.25÷(−0.5)÷(−212)×1=54×(−2)×(−25)×1=1;(3)(−2)×32÷(−34)×4 =(−3)×(−43)×4 =16.(4)(134−78−712)×(−117)=74×(−87)+78×87+712×87=−2+1+23 =−13. 16.(2022秋·全国·七年级专题练习)计算:(1)(−3)÷(−134)×0.75÷(−37)×(−6);(2)(−15)×(−0.1)÷125×(−10);(3)[(−72)×(−23)]×[(−35)÷(−815)]. 【思路点拨】(1)首先确定结果的符号,再把除法变为乘法,先约分,后相乘进行计算即可;(2)首先确定结果的符号,再把除法变为乘法,约分后相乘进行计算即可;(3)首先计算括号里面的,再计算括号外面的乘法即可.【解题过程】(1)解:(−3)÷(−134)×0.75÷(−37)×(−6) =3×47×34×73×6 =18;(2)解:(−15)×(−0.1)÷125×(−10)=−(15×110×25×10) =−5;(3)解:[(−72)×(−23)]×[(−35)÷(−815)]=(72×23)×(35×158) =48×98=54.17.(2023·全国·九年级专题练习)计算(1)−25÷(−13)÷(−325)×(523)(2)1÷(−18)+73÷|15−23|【思路点拨】(1)先将带分数化为假分数,再根据有理数乘除法的运算法则按照同级运算从左到右的顺序计算即可得到答案;(2)先算绝对值里面的,再根据乘除互化,将除法转化为乘法,再结合有理数加法运算法则求解即可得到答案.【解题过程】(1)解:−25÷(−13)÷(−325)×(523) =−25÷(−13)÷(−175)×173=−25×(−3)×(−517)×173=−2;(2)解:1÷(−18)+73÷|15−23|=1×(−8)+73÷|315−1015| =1×(−8)+73÷|−715| =1×(−8)+73÷715=1×(−8)+73×157=−8+5=−3.18.(2022秋·全国·七年级专题练习)计算:(1)15×(−5) ÷ (−15)×5(2)2÷(−37)×47÷(−517) (3)(+512)÷(−4425)×(−1315)÷(−3118)(4)(−56)÷(−3)×|−145|×(−2)【思路点拨】(1)原式先把除法转换为乘法后,再进行乘法运算即可;(2)原式先把除法转换为乘法后,再进行乘法运算即可;(3)原式先把除法转换为乘法后,再进行乘法运算即可;(4)原式先把除法转换为乘法后,再进行乘法运算即可.【解题过程】(1)解:15×(−5)÷(−15)×5 =15×(−5)×(−5)×5 =(−1)×(−5)×5=25;(2)解:2÷(−37)×47÷(−517) =2×(−73)×47×(−736) =1427;(3)解:(+512)÷(−4425)×(−1315)÷(−3118) =112÷(−10425)×(−1315)÷(−5518) =−112×25104×1315×1855 =38;(4)解:(−56)÷(−3)×|−145|×(−2)=56×13×95×(−2)=−1.19.(2023·全国·七年级假期作业)计算:(1)(−3)÷(−134)×0.75÷(−37)×(−6);(2)(−15)×(−0.1)÷125×(−10); (3)[(−72)×(−23)]×[(−35)÷(−815)]. 【思路点拨】根据有理数的加减乘除混合运算法则及运算顺序计算即可得到答案.【解题过程】(1)解:(−3)÷(−134)×0.75÷(−37)×(−6)=3×47×34×73×6 =18;(2)解:(−15)×(−0.1)÷125×(−10)=−(15×110×25×10) =−5;(3)解:[(−72)×(−23)]×[(−35)÷(−815)] =(72×23)×(35×158) =48×98=54.20.(2022秋·山东济宁·七年级统考期中)请你先认真阅读材料:计算(﹣130)÷(23﹣110+16﹣25) 解法1:(﹣130)÷(23﹣110+16﹣25) =(﹣130)÷[(23+16)﹣(110+25)]=(﹣130)÷(56−12)=(﹣130)÷13=﹣130×3=﹣110 解法2:原式的倒数为:(23﹣110+16﹣25)÷(﹣130) =(23﹣110+16﹣25)×(﹣30)=﹣20+3﹣5+12=(﹣20﹣5)+(3+12)=﹣10再根据你对所提供材料的理解,选择合适的方法计算:(﹣142)÷(16−314+23−27). 【思路点拨】观察解法2,可让除数和被除数交换位置进行计算,最后的结果取计算结果的倒数即可.【解题过程】解:原式的倒数为:(16−314+23−27)÷(−142) =(16−314+23−27)×(−42)=−7+9-28+12=−14∴原式=−114.。
1.4.1有理数的乘法(1)【课文同步练习】含答案(pdf版)

七年级数学(上)261.4有理数的乘除法1.4.1有理数的乘法第1课时有理数的乘法(1)1.把握有理数的乘法法则,能正确利用乘法法则进行乘法运算.2.掌握倒数的概念,会求一个数的倒数.3.能应用有理数的乘法解决实际问题.开心预习梳理,轻松搞定基础㊂1.两数相乘,同号得,异号得,并把绝对值相乘.零乘任何数都得.2.给出下列运算:①(-5)ˑ3;②(-1)ˑ(-6);③(-2)ˑ4;④(+5)ˑ(+2);⑤(-100)ˑ0;⑥0ˑ5.其中积为正的有,积为负的有,积为零的有.3.乘积为1的两个数互为,如-5和互为倒数;倒数等于它本身的数有,没有倒数的数是.重难疑点,一网打尽㊂4.(1)-2的倒数是,212的倒数是.(2)(-3)ˑ1=;(+3)ˑ1=;0ˑ1=;(-1)ˑ1=;由此可见:一个数与相乘等于这个数本身.(-5)ˑ(-1)= ;3ˑ(-1)= ;14ˑ(-1)= ;由此可见:一个数与相乘等于这个数的相反数.5.(1)如果a b=0,那么一定有().A.a=0B.b=0C.a,b中至少有一个为0D.a=b=0(2)下列说法错误的是().A.一个数同0相乘,仍得0B.一个数同1相乘,仍得原数C.一个数同-1相乘,得原数的相反数D.互为相反数的积为16.给出下列说法:①1乘以任何有理数都等于这个数本身;②0乘以任何数的积均为0;③-1乘以任何有理数都等于这个有理数的相反数;④一个数的倒数与本身相等的数是ʃ1.其中正确的个数有().A.1个B.2个C.3个D.4个7.如果两个有理数的积小于零,和大于零,那么这两个有理数().A.符号相反B.符号相反,绝对值相等C.符号相反,且负数的绝对值较大D.符号相反,且正数的绝对值较大0既不是正数,也不是负数.278.观察下面一列数,按规律在横线上填写适当的数:12,-36,512,-720,, .9.用 > 或 <填空:(1)若a >b >0,则a b 0,b (a -b ) 0;(2)若b <0<a ,则a b 0,b (a -b ) 0.10.计算:(1)(+4)ˑ(-5);(2)(-0.125)ˑ(-8);(3)-2æèçöø÷13ˑ-æèçöø÷37;(4)0ˑ(-13.52);(5)(-3.25)ˑ+2æèçöø÷13;(6)(-1)ˑa ;(7)(-185.8)ˑ-36æèçöø÷45ˑ0ˑ(-25);(8)-1æèçöø÷18ˑ3ˑ-æèçöø÷23ˑ-1æèçöø÷13.11.当a >0,-1<b <0时,将a ,a b ,a b 2用 <从小到大连接. 源于教材,宽于教材,举一反三显身手㊂12.(1)如果Ѳˑ-æèçöø÷23=1,那么 Ѳ 内应填的数是( ).A.32B .23C .-23D.-32七年级数学(上)28(2)若x =(-2)ˑ3,则x 的倒数为( ).A.-16B .16C .-6 D.6(3)已知|x |=0.99,|y |=0.09,且x ㊃y <0,则x +y 的值是( ).A.-0.90B .0.90C .ʃ0.90D.1.08(4)-223的倒数与13的相反数的积是( ).A.8B .-8C .18 D.-1813.(1)在-3,3,4,-5这四个数中,任取两个数相乘,所得的积最大为 ;(2)若高度每增加1k m ,气温大约下降6ħ,现在地面的气温是23ħ,一架飞机在该地上空5k m 处飞行,则此时飞机所在高度的气温是 ħ.14.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是2,求-2|x |+(a +b +c d )x -c d 的值.15.若a ,b 是有理数,定义新运算:a ⊗b =2a b +1.例如:(-3)⊗4=2ˑ(-3)ˑ4+1=-23,试计算:(1)3⊗(-5);(2)[3⊗(-5)]⊗(-6).瞧,中考曾经这么考!16.(2011㊃广西贵港)计算4ˑ(-2)的结果是( ).A.6B .-6C .8 D.-817.(2011㊃广东东莞)-2的倒数是( ).A.2B .-2C .12D.-1218.(2011㊃山东菏泽)-32的倒数是().A.32B .23C .-32 D.-2319.(2011㊃安徽)定义运算a ⊗b =a (1-b ),下面给出了关于这种运算的几个结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③若a +b =0,则(a ⊗a )+(b ⊗b )=2a b ;④若a ⊗b =0,则a =0.其中正确结论的序号是 .(在横线上填上你认为所有正确结论的序号)有理数的乘除法1.4.1有理数的乘法第1课时有理数的乘法(1)1.正负02.②④ ①③ ⑤⑥3.倒数 -15 ʃ104.(1)-1225(2)-3 +30 -115 -3 14 -1 5.(1)C(2)D6.D7.D.93011429.(1)> > (2)< <10.(1)-20(2)1(3)1(4)0(5)-12(6)-a(7)0(8)-3.11.a b<a b2<a12.(1)D (2)A (3)C(4)C13.(1)15(2)-714.由已知得a+b=0,c d=1,x=ʃ2,所以当x=2时,原式=-2ˑ2+(0+1)ˑ2-1=-4+2-1=-3;当x=-2时,原式=-2ˑ2+(0+1)ˑ(-2)-1=-4 -2-1=-7..(1)-29(2)34916.D17.D18.。
2023-2024学年七年级数学上册《第一章 有理数的乘除法》同步练习题含答案(人教版)

2023-2024学年七年级数学上册《第一章有理数的乘除法》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.﹣8的相反数的倒数是()A.B.﹣8 C.8 D.﹣2.在有理数1,- 与,-3中,倒数最小的是()A.1 B.- C.D.-33.在算式-27×24+16×24-79×24=(-27+16-79)×24中运用了()A.加法交换律B.加法结合律C.乘法结合律D.乘法分配律4.若|a|=5,|b|=3,那么a•b的值是()A.15 B.-15 C.±15 D.以上都不对5.如图是制作果冻的食谱,傅妈妈想根据此食谱内容制作六份果冻.若她加入50克砂糖后,不足砂糖可依比例换成糖浆,则她需再加糖浆()A.15匙B.18匙C.21匙D.24匙6.下列说法中,正确的有()①任何数乘以0,其积为0;②任何数乘以1,积等于这个数本身;③0除以任何一个数,商为0;④任何一个数除以﹣1,商为这个数的相反数.A.2个B.3个C.4个D.1个7.七(1)班学雷锋小组整理校实验室,已知6个人共要做4小时完成,则每人每小时的工作效率是()A.B.C.D.8.对于有理数a、b,如果ab<0,a+b<0.则下列各式成立的是()A.a<0,b<0 B.a>0,b<0且|b|<aC.a<0,b>0且|a|<b D.a>0,b<0且|b|>a二、填空题:(本题共5小题,每小题3分,共15分.)9.直接写出计算结果:.10.绝对值小于4的所有整数的积为.11. 2003个-3与2004个-5相乘的结果的符号是号.12.在如右图所示的运算流程中,若输出的数y=7,则输入的数n= .13.三味书屋推出售书优惠方案:(1)一次性购书不超过100元,不享受优惠;(2)一次性购书超过100元但不超过200元一律打九折;(3)一次性购书超过200元及以上一律打八折。
2023-2024学年人教版七年级数学上册《第一章 有理数的乘除法》同步练习题附答案

2023-2024学年人教版七年级数学上册《第一章有理数的乘除法》同步练习题附答案学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法错误的是()A.任何有理数都有倒数B.互为倒数的两个数的积为1C.互为倒数的两个数同号D.1和-1互为负倒数2.计算的结果是()A.-4 B.-2 C.2 D.43.已知一个数的倒数的相反数为,则这个数为()A.B.C.D.4.四个互不相等的整数的积为49,则它们的和为()A.0 B.8 C.16 D.8或15.在促销活动中,商场将标价500元的商品在打八折的基础上再打八折销售,则该商品现在的售价是()A.400元B.320元C.256元D.8元6.若,则的值可表示为().A.B.C.D.7.吴与伦比设计了一个计算程序,如图,如果输入的数是1,那么输出的结果是()A.1 B.-1 C.3 D.-38.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.﹣的相反数的倒数是.10.计算(﹣2)×3×(﹣1)的结果是.11.在-1,0,-2,3中,两个数的积的最大值是。
12.某件商品进价为100元,实际售价为110元,那么该件商品的利润率为.13.一架直升机从高度为450m的位置开始,先以20m/s的速度上升60s,然后以12m/s的速度下降120s,这时,直升机的高度是.三、解答题:(本题共5题,共45分)14.计算:.15.计算(1);(2).16.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.17.司机小陈在一条南北向的马路上开出租车.如果规定向南为正,向北为负,记录小陈上午连续接送7位乘客的行程(单位:千米)如下:+9,-3,-5,+2,-10,+6,-3(1)小陈上午接送7位乘客到达目的地,行程一共是多少千米?(2)若规定租车起步价为10元,起步行程为3千米(包括3千米),超过3公里部分每公里收费2元,请问小陈司机上午一共收入多少车费?18.小明有5张写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是;(3)从中取出4张卡片,用学过的运算方法,使结果为24.写出运算式子:参考答案:1.A 2.C 3.D 4.A 5.B 6.B 7.A 8.B9.201610.611.212.10%13.210m14.解:15.(1)解:;(2)解:.16.解:由题意可得星斗山顶峰的海拔高度是:1020+(14﹣2)÷0.6×100=1020+12÷0.6×100=1020+2000=3020(米) 即星斗山顶峰的海拔高度是3020米.17.(1)解:由题意得:9+3+5+2+10+6+3=38(千米)答:行程一共是38千米;(2)解:由题意可得:第一位乘客的车费为:(元);第二位乘客的车费为:10元;第三位乘客的车费为:(元);第四位乘客的车费为:10元;第五位乘客的车费为:(元);第六位乘客的车费为:(元);第七位乘客的车费为:10元;∴一共收入为22+10+14+10+24+16+10=106(元)答:小陈司机上午一共收入106元.18.(1)15(2)(3)方法不唯一。
人教版七年级上册数学有理数的乘除法 同步练习题

2022-2023学年人教版七年级数学上册《1.4有理数的乘除法》同步练习题(附答案)一.选择题1.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大2.下列说法中正确的有()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积绝对值,等于这两个有理数的绝对值的积.A.1个B.2个C.3个D.4个3.下列说法:①整数和分数统称为有理数;②绝对值是它本身的数只有0;③两数之和一定大于每个加数;④如果两个数积为0,那么至少有一个因数为0;⑤0是最小的有理数;⑥数轴上表示互为相反数的点位于原点的两侧;⑦几个有理数相乘,如果负因数的个数是奇数,那么积为负数;其中正确的个数是()A.2个B.3个C.4个D.5个4.有理数a,b在数轴上表示如图所示,则下列各式中正确的是()A.ab>0B.a+b<0C.b<a D.|b|>|a|5.已知|x|=6,y2=9,且xy<0,则x+y的值为()A.3或﹣3B.9或3C.15或3D.9或﹣9 6.若,则下列结论正确的是()A.a<0,b<0B.a>0,b>0C.ab>0D.ab≤07.已知三个有理数m,n,p满足m+n=0,n<m,mnp<0,则mn+np一定是()A.负数B.零C.正数D.非负数8.在下面五个说法中正确的有()①互为相反数的两个数的绝对值相等②没有最大的整数,最大的负整数是﹣1,最小的正数是1 ③一个数的相反数等于它本身,这个数是0④任何有理数的绝对值都是正数⑤几个有理数相乘,如果负因数有奇数个,则积为负数.A.1个B.2个C.3个D.4个9.若ab≠0,则+的值不可能是()A.2B.0C.﹣2D.110.两个非零有理数的和为零,则它们的商是()A.0B.﹣1C.+1D.不能确定11.已知a,b为有理数,则下列说法正确的个数为()①若a+b>0,,则a>0,b>0.②若a+b>0,,则a>0,b<0且|a|>|b|.③若a+b<0,,则a<0,b<0.④若a+b<0,,则a>0,b<0且|b|>|a|.A.1B.2C.3D.412.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价一定为()A.180元B.202.5元C.180元或202.5元D.180元或200元二.填空题13.绝对值小于π的所有整数的积是.14.如果x、y都是不为0的有理数,则代数式的值为.15.绝对值小于5的所有非负整数的积是.16.给出下列判断:①若a,b互为相反数,则a+b=0②若a,b互为倒数,则ab=1③若|a|>|b|,则a>b④若|a|=|b|,则a=b⑤若|a|=﹣a,则a<0其中正确结论的个数为个.17.小亮有6张卡片,上面分别写有﹣5,﹣3,﹣1,+2,+4,+6,他想从这6张卡片中取出3张,使这3张卡片上的数字的积最小,最小积为.18.一个数与﹣4的乘积等于,则这个数是.19.已知|x|=4,|y|=6,且xy<0,x+y>0,则x﹣y=.20.倒数是它本身的数是;相反数是它本身的数是;绝对值是它本身的数是.21.按如图程序计算,如果输入的数是﹣2,那么输出的数是.22.已知|x|=3,|y|=2,且|xy|=﹣xy,则x+y等于.三.解答题23.简便方法计算:①(﹣﹣)×(﹣27);②﹣6×+4×﹣5×.24.阅读下题解答:计算:.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(﹣24)=﹣16+18﹣21=﹣19.所以原式=﹣.根据阅读材料提供的方法,完成下面的计算:.25.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+的值.26.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.27.阅读下列材料:计算:÷(﹣+).解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷(﹣+)=÷=×6=.解法三:原式的倒数=(﹣+)÷=(﹣+)×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:(﹣)÷(﹣+﹣).28.如图是一个“数值转换机”(箭头是指数进入转换机的路径,方框是对进入的数进行转换的转换机).(1)当小明输入4,7这两个数时,则两次输出的结果依次为,;(2)你认为当输入数等于时(写出一个即可),其输出结果为0;(3)你认为这个“数值转换机”不可能输出数;(4)有一次,小明操作的时候,输出的结果是2,聪明的你判断一下,小明输入的正整数是(用含自然数n的代数式表示).29.建设银行的某储蓄员小张在办理业务时,约定存入为正,取出为负.2006年6月29日他办理了6件业务:﹣780元、﹣650元、+1250元、﹣310元、﹣420元、+240元.(1)若他早上领取备用金5000元,那么下班时应交回银行多少元?(2)若每办一件业务,银行发给业务量的0.1%作为奖励,那么这天小张应得奖金多少元?30.小莉同学有7张写着不同数字的卡片,他想从中取出若干张卡片,将卡片上的数字进行有理数的运算.(1)若取出2张卡片,应该抽取哪2张使得数字之积最大,积最大是多少呢?(2)若取出3张卡片,应该抽取哪3张使得数字之积最小,积最小是多少呢?31.某同学把7×(□﹣3)错抄为7×□﹣3,抄错后算得答案为y,若正确答案为x,则x ﹣y=.32.如图,数轴上的A、B两点所表示的数分别为a、b,a+b<0,ab<0,(1)原点O的位置在;A.点A的右边B.点B的左边C.点A与点B之间,且靠近点A D.点A 与点B之间,且靠近点B(2)若a﹣b=2,①利用数轴比较大小:a1,b﹣1;(填“>”、“<”或“=”)②化简:|a﹣1|+|b+1|.参考答案一.选择题1.解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.2.解:①两负数相乘,符号变为正号;此选项错误;②异号两数相乘,积取负号;此选项正确;③互为相反数的两数相乘,积不一定为负可能为0,故此选项错误;④两个有理数的积绝对值,等于这两个有理数的绝对值的积,此选项正确.故正确的有2个.故选:B.3.解:①整数和分数统称为有理数是正确的;②绝对值是它本身的数有正数和0,原来的说法是错误的;③两数之和可能小于每个加数,原来的说法是错误的;④如果两个数积为0,那么至少有一个因数为0是正确的;⑤没有最小的有理数,原来的说法是错误的;⑥数轴上表示互为相反数的点位于原点的两侧(0除外),原来的说法是错误的;⑦几个有理数(非0)相乘,如果负因数的个数是奇数,那么积为负数,原来的说法是错误的.故选:A.4.解:由数轴上的位置得:a<0<b,且|a|>|b|,∴ab<0,a+b<0,故选:B.5.解:∵|x|=6,y2=9,∴x=±6,y=±3,又∵xy<0,∴x=6,y=﹣3或x=﹣6,y=3,当x=6,y=﹣3时,x+y=3,当x=﹣6,y=3时,x+y=﹣3,故选:A.6.解:∵,∴,∴ab≤0,故选:D.7.解:∵m+n=0,∴m,n一定互为相反数;又∵n<m,mnp<0,∴n<0,p>0,m>0,∴mn<0,np<0,∴mn+np一定是负数.故选:A.8.解:互为相反数的两个数的绝对值相等,故①正确,没有最大的整数,最大的负整数是﹣1,最小的正数也没有,故②错误,一个数的相反数等于它本身,这个数是0,故③正确,任何有理数的绝对值都是非负数,故④错误,几个不为零的有理数相乘,如果负因数有奇数个,则积为负数,故⑤错误,故选:B.9.解:①当a、b同号时,原式=1+1=2;或原式=﹣1﹣1=﹣2;②当a、b异号时,原式=﹣1+1=0.则+的值不可能的是1.故选:D.10.解:∵两个非零有理数的和为零,∴这两个数是一对相反数,∴它们符号不同,绝对值相等,∴它们的商是﹣1.故选:B.11.解:①若a+b>0,,则a>0,b>0,故①结论正确;②若a+b>0,,则a>0,b<0且|a|>|b|或a<0,b>0且|a|<|b|,故②结论错误;③若a+b<0,,则a<0,b<0,故③结论正确;④a+b<0,,则a>0,b<0且|b|>|a|或a<0,b>0且|b|<|a|,故斯结论错误.故正确的有2个.故选:B.12.解:∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.故选:C.二.填空题13.解:绝对值小于π的所有整数的积是(﹣3)×(﹣2)×(﹣1)×0×1×2×3=0.故答案为:0.14.解:①当x,y中有二正,=1+1﹣1=1;②当x,y中有一负一正,=1﹣1+1=1;③当x,y中有二负,=﹣1﹣1﹣1=﹣3.故代数式的值是1或﹣3.故答案为:1或﹣3.15.解:绝对值小于5的所有非负整数为:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,积为0.故答案为:0.16.解:①若a,b互为相反数,则a+b=0,是正确的;②若a,b互为倒数,则ab=1,是正确的;③若|a|>|b|,当a=﹣4,b=1也成立,所以a不一定大于b,是错误的;④若|a|=|b|,则a=b或a=﹣b,是错误的,⑤若|a|=﹣a,则a≤0,是错误的,所以有2个正确的结论;故答案为:2.17.解:从6张卡片中取出3张,使这3张卡片上的数字的积最小,最小积为﹣5×4×6=﹣120.故答案为:﹣120.18.解:÷(﹣4)=﹣.故这个数是﹣.故答案为:﹣.19.解:∵|x|=4,|y|=6,∴x=±4,y=±6,又∵xy<0,x+y>0,∴x=﹣4,y=6,∴x﹣y=﹣4﹣6=﹣10,故答案为:﹣10.20.解:倒数是它本身的数是±1;相反数是它本身的数是0;绝对值是它本身的数是非负数,故答案为:1或﹣1,0,非负数.21.解:﹣2×(﹣3)=6,6×(﹣3)=﹣18,﹣18×(﹣3)=54,54×(﹣3)=﹣162,故答案为:﹣162.22.解:∵|x|=3,|y|=2,且|xy|=﹣xy,∴x<0或y<0,当x<0时,x=﹣3,y=2,x+y=﹣1,当y<0时,x=3,y=﹣2,x+y=1.故答案为:1或﹣1.三.解答题23.解:①原式==﹣6+9+2=5.②原式=×(﹣6+4﹣5)=(﹣7)=﹣3.24.解:根据题意得:[﹣++(﹣)2×(﹣6)]÷(﹣)=[﹣++×(﹣6)]×(﹣42)=﹣21+14﹣30+112=75,则原式=.25.解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+=2+1+0=3;当m=﹣2时,m+cd+=﹣2+1+0=﹣1.26.解:(1)前后两部分互为倒数;(2)先计算后一部分比较方便.()=()×36=9+3﹣14﹣1=﹣3;(3)因为前后两部分互为倒数,所以()=﹣;(4)根据以上分析,可知原式==﹣3.27.解:(1)上述得到的结果不同,我认为解法一是错误的;故答案为:一;(2)原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,则原式=﹣.28.解:(1)若输入的数字为4时,4>2,得到4+(﹣5)=﹣1,﹣1<2,得到相反数为1,倒数为1,输出结果为1;若输入数字为7时,7>2,得到7+(﹣5)=2,得到相反数为﹣2,绝对值为2,输出结果为2;(2)根据题意得:输入数字为0(5、10、15…5的倍数均可),结果为0;(3)这个“数值转换机”不可能输出负数;(4)归纳总结得:小明输入的正整数是5n+2.故答案为:1,2;0;负;5n+2.29.解:(1)5000﹣780﹣650+1250﹣310﹣420+240=4330(元);他下班时应交回银行4330元;(2)(780+650+1250+310+420+240)×0.1%=3.65(元),这天他应得奖金为3.65元.30.解:(1)取出﹣6和﹣4,积最大为(﹣6)×(﹣4)=24;(2)取出﹣6,3,5,积最小为(﹣6)×3×5=﹣90.31.解:根据题意得,7×(□﹣3)=x①,7×□﹣3=y②,①﹣②得,x﹣y=7×(□﹣3)﹣7×□+3=7×□﹣21﹣7×□+3=﹣18.故答案为:﹣18.32.解:(1)∵ab<0,a+b<0,∴原点O的位置在点A与点B之间,且靠近点A.故答案为:C(2)①∵a﹣b=2,原点O的位置在点A与点B之间,且靠近点A,∴a<1,b<﹣1,故答案为:<、<;②∵a<1,b<﹣1,∴a﹣1<0,b+1<0,∴|a﹣1|+|b+1|=﹣a+1﹣b﹣1=﹣a﹣b.。
精品 2014年七年级数学上册暑期讲义+同步练习--有理数 第05课 有理数的乘除运算

1 2
1 2
1 3
1 3
1 4
1 4
1 (5) 6 4 1 5
3 1 9 (6) 4 2 4
1 4 (7) 27 2 (24) 4 9
2 4 1 (8) 5 (1 ) (2 ) 7 7 5 4
例 6.定义一种新运算:观察下列式: 1⊙3=1×4+3=7 3⊙1=3×4+1=13 5⊙4=5×4+4=24 4⊙3=____________ 请你想一想 a⊙b=______; 若 a≠b,那么 a⊙b______b⊙a(填入 “=”或 “≠ ”) 计算: [(a-b)⊙(a+b)]⊙b
例 7.已知:a、b、c 是非零有理数,且 a+b+c=0,求
C.a,b 异号
3.一个有理数与其相反数的积( A.符号必定为正 4.下列结论错误的是(
B.符号必定为负 )
C.一定不大于零
D.一定不小于零
A.若 a, b 异号,则 a b 0 , C.
a 0 b
B.若 a, b 同号,则 a b 0 ,
a 0 b
a a a a a D. b b b b b 5.实数 a,b 在数轴上的位置如图所示,则下列结论正确的是(
8.(1)如果两个有理数的积是正的,那么这两个因数的符号一定______. (2)如果两个有理数的积是负的,那么这两个因数的符号一定_______. 9.(1)奇数个负数相乘,结果的符号是_______ 10.-0.125 的相反数的倒数是_______ 11.若 xy 0,z 0 ,那么 xyz ______0. 12.若 a 5, b 2, ab >0,则 a b __ 13.填空: 若a 0,b 0,则ab 0; 若 a 0 , b 0 , 则 ab 0; ; (2) 若 a=0,b≠0,则 ab_______0 ; (3) 0; (2)偶数个负数相乘,结果的符号是_______.
人教版七年级上册 1.4有理数乘除法 同步练习题

1.4有理数乘除法1.乘法交换律:有理数乘法中,两个数相乘,交换因数的位置,积相等.表达式:ab=ba .2.乘法结合律:三个数相乘,先把其中的两个数相乘,积相等.表达式:(ab )c=a (bc ).3.乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.表达式:a (b+c )=ab+ac .4.有理数的乘法法则:两个数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,都得0;5.倒数的定义:乘积为1的两个数互为倒数.6.除以一个数等于乘以这个数的倒数.7.两数相除,同号得正,异号得负,并把绝对值相除.1.的倒数是( ) A .3 B . C .- D .﹣3【答案】D2.现有若干张卡片,分别是正方形卡片A 、B 和长方形卡片C ,卡片大小如图所示.如果要拼一个长为(a +2b ),宽为(a +b )的大长方形,则需要C 类卡片张数为( )A .1B .2C .3D .41(0)a b a b b÷=⨯≠其中【答案】C3.对任意四个有理数a,b,c,d 定义新运算:a bad bc c d =-,则1243的值为( ) A .-2B .-4C .5D .-5 【答案】D 4.计算:–2.5÷58×(–14)= A .–2 B .–1C .2D .1 【答案】D5.–24÷8=A .13B .−13C .3D .–3【答案】D6.下列计算错误..的是( ) A .(-5)+5=0 B .314(2)63⎛⎫-⨯-= ⎪⎝⎭C .(-1)3+(-1)2=0D .4÷2×12÷2=2 【答案】D 7.若–3、5、a 的积是一个负数,则a 的值可以是A .–15B .–2C .0D .15 【答案】D8.算式可以化为( ) A.B. C. D. 【答案】B9.下列运算结果不是负数的是( )A.B. C. D. 【答案】D10.下列计算正确的是( )A. B.C. D.【答案】C11.计算: ______.【答案】 .12.三个数相乘积为负,则其中负因数的个数有_________;【答案】1个或3个13.若25x -与15-互为倒数,则x =__________.【答案】014.从数6-,1,3-,5,2-中任取二个数相乘,其中积最小的是__________.【答案】-3015.定义新运算“⊕”如下:当a b ≥时,3a b b ⊕=;当a b <时,1a b a ⊕=-,则当2x =-时(1)(3)x x ⊕⊕-⊕的值是_______.【答案】-916.计算题:(1) ;(2)(3) ;(4)(5) ;(6) 【答案】(1)90;(2) ;(3)- ;(4)6;(5)13;(6)-817.某地区,夏季高山上的温度从山脚起每升高100米,平均气温下降0.6℃,已知山脚的温度是30℃.(1)若这座山的高度是5千米,求山顶温度.(2)小明在上山过程中看到温度计上的读数是28.2℃,此时他距山脚多远?【答案】(1)山顶温度为0℃;(2)他距山脚300米.18.阅读下面的解题过程,然后回答问题. 计算:1151423⎡⎤⎛⎫÷--+⨯ ⎪⎢⎥⎝⎭⎣⎦. 解:1151423⎡⎤⎛⎫÷--+⨯ ⎪⎢⎥⎝⎭⎣⎦ 1151423⎛⎫=÷++⨯ ⎪⎝⎭(第一步)11546=÷⨯(第二步) 65411=⨯⨯(第三步) 12011=. 上述解题过程是否有错误?若无错误,请指出每一步的根据;若有错误,请指出错误原因并予以更正.有错误.第一步减法变加法时出现错误,减去一个数等于加上这个数的相反数,即括号内的各数都要变为原数的相反数,而本题只改变了括号内第一个数(1)-的符号. 正确解法:1151423⎡⎤⎛⎫÷--+⨯ ⎪⎢⎥⎝⎭⎣⎦ 1151423⎛⎫=÷+-⨯ ⎪⎝⎭ 36254666⎛⎫=÷+-⨯ ⎪⎝⎭ 7546=÷⨯ 6547=⨯⨯ 1207=. .19.用“*”定义一种新运算:对于任意两个有理数a ,b ,都有2*1a b b =+.例如27*44117=+=.(1)计算5*3的值;m m的值.(2)计算*(*2)【答案】(1)10;(2)26。
1.4有理数的乘除法 同步练习 (含答案) 人教版七年级上册数学

1.4有理数的乘除法一、单选题1.916-的倒数是( ) A .916 B .916- C .169 D .169- 2.计算(12)4-⨯的结果等于( )A .24-B .48-C .16-D .48 3.计算(﹣10)÷(﹣5)的结果等于( )A .﹣12B .12C .﹣2D .2 4.式子(1322105-+)×4×25=(1322105-+)×100=50-30+40中运用的运算律是( ) A .乘法交换律及乘法结合律B .乘法交换律及乘法对加法的分配律C .加法结合律及乘法对加法的分配律D .乘法结合律及乘法对加法的分配律5.下列各式中计算正确的有( ) ①(24)(8)3-÷-=-;①(8)(2.5)20-⨯-=-;①44155⎛⎫⎛⎫-÷-= ⎪ ⎪⎝⎭⎝⎭;①33( 1.25)34⎛⎫-÷-=- ⎪⎝⎭A .1个B .2个C .3个D .4个 6.算式(﹣48)×0.125+48×118可以化为( ) A .-48×(﹣18+118) B .48×(18+118) C .48×(﹣18+118) D .48×(﹣18﹣118) 7.一根电线长120米,截去13后,还剩( ) A .3593米 B .40米C .60米D .80米 8.有理数ɑ、b 在数轴上位置如图,则下式成立的( ).A .0a b +>B .()b a a -⨯>0C .()b a a -⨯<0D .0b a -< 9.下列变形不正确的是( ).A .()5665⨯-=-⨯ B .()()11114446363⎛⎫-+⨯-=-⨯-+⨯ ⎪⎝⎭C .()111112124242⎛⎫⎛⎫-⨯-=-⨯- ⎪ ⎪⎝⎭⎝⎭D .112102101044⎛⎫-÷=÷-÷ ⎪⎝⎭ 10.下列等式或不等式中:①0a b +=;①0ab <;①a b a b -=+;①()00,0aba b a b +=≠≠,表示a 、b 异号的个数有( )A .0个B .1个C .2个D .3个二、填空题11.3-的绝对值是______,3-的倒数是______.12.(1)|-2|×(-2)=____,(2)|-12|×5.2=_____, (3)|-12|-12=____, (4)-3-|-5.3|=_____.13.某种衬衫每件的标价为150元,如果每件以8折(即按标价的80%)出售,那么这种衬衫每件的实际售价应为______元.14.计算()()1248-÷-⨯,结果是_________. 15.已知a ,b 互为相反数,m ,n 互为倒数,则()32020a b mn +-的值为____________.三、解答题16.计算:-2×3×(-16). 17.计算:(1) 1599416⎛⎫-⨯ ⎪⎝⎭;(2)222222792777⎛⎫⎛⎫⎛⎫-⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 18.学习有理数得乘法后,老师给同学们这样一道题目:计算:2449(5)25⨯-,看谁算的又快又对,有两位同学的解法如下: 小明,原式12491249452492555=-⨯=-=-; 小军:原式2424449(5)49(5)(5)24925255⎛⎫=+⨯-=⨯-+⨯-=- ⎪⎝⎭; (1)根据上面的解法对你的启发,请你再写一种解法; (2)用你认为最合适的方法计算:1519816-⨯ 19.阅读下列材料:1111243412⎛⎫÷-+ ⎪⎝⎭, 解法一:原式111111111113412243244241224242424=÷-÷+÷=⨯-⨯+⨯=. 解法二:原式1111121162434122412244⎛⎫=÷-+=÷=⨯= ⎪⎝⎭. 解法三:原式的倒数111111111124242424434122434123412⎛⎫⎛⎫=-+÷=-+⨯=⨯-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭. 所以原式14=. (1)上述得到的结果不同,你认为解法_______是错误的; (2)计算:1116236⎛⎫-+⨯= ⎪⎝⎭__________; (3)请你选择合适的解法计算:132352107151021⎛⎫⎛⎫-÷+-- ⎪ ⎪⎝⎭⎝⎭.参考答案1.D2.B3.D4.D5.A6.C7.D8.C9.B10.C11.3 13- 12.4- 2.6 0 8.3 13.12014.11615.-2020.16.117.(1)399.75-;(2)0 18.解:(1)2449(5)25⨯- =50(5)125⎛⎫-⨯- ⎪⎝⎭=150(5)(5)25⨯--⨯- =12505-+=24954-; (2)1519816-⨯ =120816⎛⎫-⨯ ⎪⎝⎭=18208 16⨯-⨯=1160 2-=1 1592 -19.(1)一;(2)2;(3)1 5 -。
七年级数学上册《第一章 有理数的乘除法》同步练习题及答案(人教版)

七年级数学上册《第一章有理数的乘除法》同步练习题及答案(人教版) 班级姓名学号一、选择题(共8题)1. −2的倒数是( )A.−12B.2C.12D.−22.计算(−1)×5的结果是( )A.−1B.1C.5D.−53.在2,0,1,9四个有理数中,没有倒数是( )A.2B.0C.1D.94.如图,点A和B表示的数分别为a和b,下列式子中,不正确的是( )A.a>−b B.ab<0C.a−b>0D.a+b>05.四个互不相等的整数的积是25,那么这四个整数的和等于( )A.125B.25C.0D.以上答案都不对6.已知四个数:2,−3,−4,5,任取其中两个数相乘,所得积的最大值是( )A.20B.12C.10D.−67.下列运算正确的是 ( )A . (−312)−(−12)=4B . 34×(−43)=1C . 0−(−6)=6D . (−3)÷(−6)=28.下列说法正确的是 ( )A . 5 个有理数相乘,当负因数为 3 个时,积为负B .绝对值大于 1 的两个数相乘,积比这两个数都大C . 3 个有理数的积为负数,则这 3 个有理数都为负数D .任何有理数乘以 (−1) 都等于这个数的相反数二、填空题(共5题)9. ∣−13∣ 的相反数是 ,倒数是 .10.计算:−3+2= ,(−5)×(−3)= .11.根据如图所示的流程图计算,若输入 x 的值为 −1,则输 y 的值为 .12.新定义运算:a ∗b =a −2b 则 (3∗2)∗2= .13.如果四个互不相等的整数的积为 6,那么这四个整数的和是 .三、解答题(共6题)14.计算:(1) 23−6×(−3)+2×(−4).(2) −1.53×0.75−0.53×(−34).15.数学活动课上,王老师在 6 张卡片上分别写了 6 个不同的数(如图),然后从中抽取 3 张.−3+2+10+5−8(1) 使这 3 张卡片上各数之积最小,最小的积为多少?(2) 使这 3 张卡片上各数之积最大,最大的积为多少?16.用常规方法计算 160÷(14−15+13) 时比较麻烦,小明想了个办法:先将该式除式与被除式颠倒位置,算出 (14−15+13)÷160=(14−15+13)×60=23 后,再利用倒数关系求出原式的值 160÷(14−15+13)=123.请采用小明的方法计算 (−140)÷(14−15+12−310) 的值.17.如果 a ,b ,c 为有理数,且 a <0,bc >0求∣a∣a +∣b∣b +∣c∣c 的值.18.如图,A ,B 两点在数轴上对应的数分别为 a ,b 且点 A 在点 B 的左侧∣a∣=10,a +b =80,ab <0.(1) 求 a ,b 的值;(2) 现有一只电子蚂蚁 P 从点 A 出发,以每秒 3 个单位长度的速度向右运动,同时另一只电子蚂蚁 Q 从点 B 出发,以每秒 2 个单位长度的速度向左运动.设两只电子蚂蚁在数轴上的点 C 处相遇,求点 C 对应的数.19.中央电视台每一期的《开心辞典》栏目,都有一个“二十四点”的趣味题,现在给出1∼13之间的自然数,从中任取4个,将这4个数(4个数都用且只能用一次)进行“+”“−”“×”“÷”运算,可加括号使其结果等于24.例如:对1,2,3,4可作运算(1+2+3)×4=24,也可以写成4×(2+3+1),但视作相同方法.(1) 现有4个有理数−9,−6,2,7你能用三种不同的算法得出24吗?(2) 若给你3,6,7,−13你还能得出24吗?答案1. A2. D3. B4. C5. C6. B7. C8. D9. −13;310. −1;1511. 112. −513. ±114.(1)23−6×(−3)+2×(−4) =23+18−8=33.(2)−1.53×0.75−0.53×(−34) =(−1.53+0.53)×0.75=−1×0.75=−0.75.15.(1) (+2)×(+5)×(−8)=−80.(2) (−3)×(+5)×(−8)=120.16. −110.17. 1或−3.18.(1) ∵A,B两点在数轴上对应的数分别为a,b且点A在点B的左侧ab<0∴a<0,b>0又∣a∣=10,a+b=80∴a=−10,b=90.(2) 由题意,得这两只电子蚂蚁经过[90−(−10)]÷(3+2)=20(秒)相遇.则电子蚂蚁Q运动的路程为20×2=40.∴点C对应的数为90−40=50.19.(1) ①2+7−(−9−6)=24;②2×(−6)×(7−9)=24;③−6×(7−2−9)=24;④−9×2−(−6)×7=24.(2) 6−(−13+7)×3=24.。
人教版七年级数学上册第一章 有理数 1.4有理数的乘除法同步练习题

人教版七年级数学(上)第一章《有理数》1.4有理数的乘除法同步练习题学校:___________姓名:___________班级:___________成绩:___________一、选择题(本大题共10小题,共30分)1.下列运算正确的是 ( )A.-0.2×(-1)=-0.2B.12×(-3)=36C.×=-1D.40×(-0.125)=-52.计算÷÷的结果是 ( )A.-B.-C.-D.-3.下列说法中正确的是 ( )A.几个有理数相乘,当负因数有奇数个时,积为负B.几个有理数相乘,当积为负数时,负因数有奇数个C.几个有理数相乘,当正因数有奇数个时,积为负D.几个有理数相乘,当因数有奇数个时,积为负4.对于式子-(-8),下列理解:(1)可表示-8的相反数;(2)可表示-1与-8的乘积;(3)可表示为-8的绝对值;(4)运算结果等于8.其中理解错误的个数是( )A.0个B.1个C.2个D.3个5.如果一个数除以它的倒数,商是1,那么这个数是( )A.1B.2C.-1D.±16.2018个数相乘,若积为0,那么这2018个数()A.都为0B.只有一个为0C.至少一个为0D.有两个数互为倒数7.已知,则的值为()A.1B.-1C.0D.±18.若,则下列结论正确的是()A.a>0,b>0B.a<0,b<0C.a+b>0D.ab>09.若abc>0,则a,b,c中负数的个数为()A.3个B.1个C.1个或3个D.0个或2个10.已知abc>0,a>c,ac<0,则下列结论正确的是()A.a<0,b<0,c<0B.a>0,b>0,c<0C.a>0,b<0,c<0D.a<0,b>0,c>0二、填空题(本大题共5小题,共15分)11.计算:若a=25.6,b=-0.064,c=0.1,则(-a)÷(-b)÷c=__________.12.计算:(-8)×(-12)×(-0.125)××(-0.001)=__________.13.若a与b互为相反数,c与d互为倒数,则5(a+b)-6cd=________.14.计算:(-22)××(-)×(-21)=______.15.已知a,b互为倒数,|c|=3.则abc的值是________.三、计算题(本大题共2小题,共16分)16.计算下列各题:(1)-98×(-32.7)(2)36÷7.2+(-48.6)÷2.417.计算下列各题:(1)(2)四、解答题(本大题共6小题,共59分)18.(10分)计算(-4)÷2,4÷(-2),(-4)÷(-2)联系这类具体的数的除法,你认为下列式子是否成立(a,b是有理数,b≠0)?从它们可以总结什么规律?(1);(2).19.(10分)利用分配律可以得到-2×6+3×6=(-2+3)×6.如果用a表示任意一个数,那么利用分配律可以得到-2a+3a等于什么?20.(10分)若a,b互为相反数,c,d互为倒数,m的倒数是2,求的值。
人教版七年级数学上册 1.4有理数的乘除法 同步练习题含答案

人教版七年级数学上册同步练习题 第一章有理数 1.4有理数的乘除法一、单选题1.从3-,1-,1,5,6五个数中任取两个数相乘,若所得积中的最大值为a ,最小值为b ,则a b的值为( ) A .53- B .2- C .56- D .10- 2.下列说法:①若|a|=a ,则a=0;②若a ,b 互为相反数,且ab≠0,则b a=﹣1;③若a 2=b 2,则a=b ;④若a <0,b <0,则|ab ﹣a|=ab ﹣a .其中正确的个数有( )A .1个B .2个C .3个D .4个 3.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A .1,2B .1,3C .4,2D .4,34.如果0a b +>,0ab <( )A .a 、b 异号,且a b >B .a 、b 异号,且a b >C .a 、b 异号,其中正数的绝对值较大D .0a b >>,或0a b <<5 )A .a ﹦b -1B .a +b ﹦1C .a ﹦b +1D .a +b ﹦-1 6.小燕做了下列三道计算:①13﹣13×2=0×2=0;②6÷(23﹣32)=6÷23﹣6÷23=9﹣4=5;③﹣22﹣(﹣3)3=4﹣27=﹣23其中正确的有( )A .0道B .1道C .2道D .3道 7.下列等式成立的是( )A .6÷(3×2)=6÷3×2B .3÷(14-2)=3÷14-2C .(-12÷3)×5=-12÷3×5D .5-3×(-4)=2×(-4)8.一种金属棒,当温度是20 ℃时,长为5厘米,温度每升高或降低1 ℃,它的长度就随之伸长或缩短0.0005厘米,则温度为10 ℃时金属棒的长度为( )A .5.005厘米B .5厘米C .4.995厘米D .4.895厘米9.对下列各算式计算结果的符号判断正确的一项是( )A .(-2)×213×(-3)<0 B .(-1)+(-13)+12>0C .(-5)-|-5|+1<0D .|-1|×(-2)>010.(-1)4×(-5)×(-12)3等于( ).A .-58B .-18 C .+18 D .+58二、填空题11.1252571(3)(1)019731173⨯-⨯-⨯⨯=______;12.5263()(1)()657⨯-⨯-⨯-=________.13.两个数的积是-5,其中一个数是-1.25,那么另一个数是_______.14.若a ,b 互为倒数,则ab 31=_______,若a ,b 互为相反数,b a +=________.15.有三个互不相等的整数a,b,c ,如果abc=4,那么a+b+c=__________三、解答题16.计算: (1)412411-÷; (2)3(72)95-÷; (3)1339(2)()1648-÷⨯; (4)1853()()334÷-÷-; (5)14(81)2()(8)49-÷⨯-÷-; (6)1331(0.25)(1)244-÷÷-⨯-.17.若a >0,b >0,且1a b >,则a >b ;若a <0,b <0,且1a b>,则a <b .以上这种比较大小的方法,叫做作商比较法.试利用作商比较法,比较1517-与1719-的大小. 18. 计算:112⎛⎫-⎪⎝⎭ ×113⎛⎫- ⎪⎝⎭ ×114⎛⎫- ⎪⎝⎭ ×…×(1-149)×(1-150). 19.阅读下列例题: 计算:2+22+23+24+25+26+ (210)解:设S =2+22+23+24+25+26+…+210,①那么2S =2×(2+22+23+24+25+…+210)=22+23+24+25+…+210+211.② ②-①,得S =211-2.所以原式=211-2.仿照上面的例题计算:3+32+33+34+ (32018)20.计算(1)331624⨯÷+; (2))532(0)21(312-÷⨯--; (3))157125(24)3153(15-⨯-+-⨯; (4))8(161571)36()1855(-⨯+-⨯-; (5))]3()6.0321(4[2-÷⨯-+---; (6)4211(10.5)[2(3)]3---⨯⨯--.21.已知aa +||b b +c c =-1,试求||ab ab +bc bc +ca ca +abc abc 的值. 22.在数轴上,点A 到原点的距离为3,点B 到原点的距离为5,如果点A 表示的有理数为a ,点B 表示的有理数为b ,求a 与b 的乘积.23.小刚在课外书中看到这样一道有理数的混合运算题:计算:1117111711 364121836412183636⎛⎫⎛⎫÷+--++--÷⎪ ⎪⎝⎭⎝⎭她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,他顺利地解答了这道题.(1)前后两部分之间存在着什么关系?(2)先计算哪步分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.【参考答案】1.A 2.B 3.A 4.C 5.C 6.A 7.C 8.C 9.C 10.D11.0.12.3-.13.414.1;015.-1,-416.(1)1311-;(2)1815-;(3)103-;(4)1;(5)-2;(6)-1417.1517 1719 ->-18.1 5019.2019332-.20.(1)70;(2)123;(3)542-;(4)-385.5;(5)2.2;(6)16.21.0.22.a与b的乘积为15或-15.23.(1)前后两部分互为倒数;(2)先计算后部分比较简单;-3;(3)-13;(4)-133。
湘教版初一上册数学有理数的乘法和除法同步练习(解析版)

湘教版初一上册数学1一、选择题1.把转化为乘法是()A. B.C.D.2.0.4的倒数是()A. B.4 C.3.÷的结果是()A.1B.C.D.4.下面依照×=1的说法中,错误的是()A.是倒数,也是倒数B.和互为倒数C.是的倒数5.若x=(﹣1.125)×÷(﹣)×,则x的倒数是()A.1B.﹣1C.±1D.26.运算:24÷(﹣4)×(﹣3)的结果是()A.﹣18B.18C.﹣2D.27.已知a是一个整数,则它的倒数是()A. B.a C.或没有8.下面互为倒数的是()。
A.和B.和C.和1D.和9.因为×=1,因此()A.是倒数B.是倒数C.和互为倒数10.下列运算错误的是()A.(﹣2)×(﹣3)=6B.(﹣)×(﹣6)=-3C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣2411.若|a|=3,b=1,则ab=()A.3B.﹣3C.3或﹣3D.无法确定12.下列结论:①若ab>0,则a>0,b>0;②若a÷b<0,则a>0,b <0;③若a>0,b>0,则ab>0;④若a<0,b<0,则a÷b>0,其中,正确的个数是()A.1B.2C.3D.4二、填空题13.的倒数是________。
14.________.15.a的相反数是一,则a的倒数是________.16.某小商店每天亏损20元,一周的利润是________ 元.17.a、b是不为0的整数,a乘b再乘b的倒数,结果是________18.假如a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c +d)+m2=________;19.运算(﹣2.5)×0.37×1.25×(﹣4)×(﹣8)的值为________.20.绝对值小于π的所有正整数的积等于________.三、解答题21.运算: 2×(﹣)÷(﹣1 )22.在运算(﹣9 )×(﹣8 )时,小明是如此做的?(﹣9 )×(﹣8 )=9 ×8=3×8=24他的运算对吗?假如不对,是从哪一步开始出错的?把它改正过来.23.用简便方法运算:(1)﹣13×﹣0.34×+ ×(﹣13)﹣×0.34(2)(﹣﹣+ ﹣)×(﹣60)24.已知:|x|= ,|y|=4,且xy<0,求x﹣y的值.25.(1)两数的积是1,已知一个数是,求另一个数;(2)两数的商是,已知被除数是,求除数.26.小华在课外书中看到如此一道题:运算:()+().她发觉,那个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先运算哪部分比较简便?并请运算比较简便的那部分.(3)利用(1)中的关系,直截了当写出另一部分的结果.(4)依照以上分析,求出原式的结果.参考答案一、选择题1.【答案】D【解析】原式=(-)×(-).故答案为:D.【分析】依照有理数的除法法则除以一个数等于乘以那个数的倒数可得,原式=()()。
《有理数的乘法与除法》练习题

《有理数的乘法与除法》练习题一、填空题1、-4×[-(-21)]= 。
2、-2.5×(-1.25)×(-40)×0.8=___________。
3、6.868×(-5)+6.868×(-12)+6.868×(+17)=___________。
4、绝对值小于100的非负整数的和为 ;积为 。
5、如果定义新运算“※”,满足a ※b=a ×b-a ÷b ,那么5※6= 。
6、(-1)×(-2)×(-3)×…×(-2006) 0二、选择题7、下列计算正确的是( )A.(-7)×(-6)=-42B. (-3)×(+5)=15C. (-2)×0=0D. -721×4=(-7+21)4=-26 8、计算⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-1433274所得的结果应该是( ) A. -4 B. 4 C. 494-D. 494 9、两个有理数的积是负数,和也是负数,那么这两个数( )A. 都是负数B. 互为相反数C. 其中绝对值大的数是正数,另一个是负数D. 其中绝对值大的数是负数,另一个是正数10、下列说法正确的是( )A. 若干个有理数相乘,当因数有奇数个时,积为负B. 若干个有理数相乘,当正因数有奇数个时,积为负C. 若干个有理数相乘,当负因数有奇数个时,积为负D. 若干个有理数相乘,当积为正数时,负因数有偶数个11、两个数的和为零,那它们的商为( )A. 0B. 1C. -1D. 以上结论都不对12、一个数与它的倒数相等,则这个数是( )A. 1B. -1C. 1或-1D. ±1和0三、解答题13、计算(1) (-125)×(-2)×(-8)(2) (97+65-53)×36 (3) (-6)×(-722)-(-7)×722+13×(-722) (4) (-24)×(83-65+35) (5) (+83)×(-57)×(-38)×(+1625)×(-732) (6) (-2.125)×(-1769)×(-8) (7) (-25)÷(-5)×(-38) (8) 310÷(-37)÷(-56) (9) (-12)÷(-4)-15÷(-5)(10)(-12)÷[(-2)+(-6)](11) (-340)÷5-35÷5 (12)5614213012011216121------ 14、我们已经学过:任意两个有理数的和仍是有理数,在数学上就称有理数集合对加法运算是封闭的。
人教版数学七年级上《1.4有理数的乘除法》同步练习(含答案)

秋人教版数学七年级上册 同步练习第一章 有理数1.4 有理数的乘除法第1课时 有理数的乘法法则1.下列各组数中互为倒数的是( )A .4和-4B .-3和13C .-2和-12D .0和02.与-2的乘积为1的数是( )A .2B .-2 C.12 D .-123.下列算式中,积为正数的是( )A .-2×5B .-6×(-2)C .0×(-1)D .5×(-3)4.-12的倒数的相反数等于( )A .-2 B.12 C .-12 D .25.下列说法错误的是( )A .一个数同0相乘,仍得0B .一个数同1相乘,仍得原数C .一个数同-1相乘得原数的相反数D .互为相反数的两个数的积是16.对于式子-(-8),有以下理解:(1)可表示-8的相反数;(2)可表示-1与-8的乘积;(3)可表示-8的绝对值;(4)运算结果等于8.其中理解错误的个数是( )A .0个B .1个C .2个D .3个7.用字母表示有理数乘法的符号法则.(1)若a >0,b >0,则ab ____0,若a >0,b <0,则ab ____0;(2)若a <0,b >0,则ab ____0,若a <0,b <0,则ab ____0;(3)若a >0,b =0,则ab ____0.8.计算下列各题:(1)(-35)×(-1); (2)(-15)×24;(3)-4.8×(-45); (4)⎝ ⎛⎭⎪⎫-119×(-0.6).9.计算:(1)(-5)×(-6)-8×(-1.25);(2)⎝ ⎛⎭⎪⎫-32×16+⎝ ⎛⎭⎪⎫-35×⎝ ⎛⎭⎪⎫-53.10.已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是( )A .ab >0B .a +b <0C .|a |<|b |D .a -b >011.一辆出租车在一条东西走向的大街上行驶,这辆出租车连续送客20次,其中8次向东行驶,12次向西行驶,向东行驶每次的行程为10 km ,向西行驶每次的行程为7 km.(1)该出租车连续20次送客后,停在何处?(2)该出租车一共行驶了多少路程?12.东东有5张写着不同数字的卡片: -4 -5 0 +3 +2他想从中取出2张卡片,使这2张卡片上数字的乘积最大.你知道应该如何抽取吗?最大的乘积是多少?13. 规定运算,a b =ab +1,求下列各式的值:(1)(-2)3;(2)[(-1)2](-3).参考答案 1.C 2.D 3.B 4.D 5.D 6.A7.(1)> < (2)< > (3)=8.(1)35 (2)-360 (3)216 (4)239.(1)40 (2)34 10.D11.(1)该出租车停在出发地西面4 km 处;(2)该出租车一共行驶了164 km .12.抽取-4和-5,乘积最大,最大的乘积是20.13.(1)-5 (2)4第2课时 多个有理数相乘的法则1.下列说法中正确的是( )A .几个有理数相乘,当负因数有奇数个时,积为负B .几个有理数相乘,当积为负数时,负因数有奇数个C .几个有理数相乘,当正因数有奇数个时,积为负D .几个有理数相乘,当因数有奇数个时,积为负2.已知abc >0,a >c ,ac <0,下列结论正确的是( )A .a <0,b <0,c >0B .a >0,b >0,c <0C .a >0,b <0,c <0D .a <0,b >0,c >03.观察下面的解题过程,并根据解题过程直接写出下列各式的结果.(-10)×13×0.1×6=-10×13×0.1×6=-2.(1)(-10)×⎝ ⎛⎭⎪⎫-13×0.1×6=____; (2)(-10)×⎝ ⎛⎭⎪⎫-13×(-0.1)×6=____; (3)(-10)×⎝ ⎛⎭⎪⎫-13×(-0.1)×(-6)=____. 4.计算:(1)(-4)×5×(-0.25);(2)⎝ ⎛⎭⎪⎫-38×(-16)×(+0.5)×(-4);(3)(+2)×(-8.5)×(-100)×0×(+90);(4)-38×512×⎝ ⎛⎭⎪⎫-1115.5.计算:(1)(-10)×⎝ ⎛⎭⎪⎫-13×(-0.1)×6;(2)-3×56×145×(-0.25).6.计算:(1)(1-2)×(2-3)×(3-4)×(4-5)×…×(99-100);(2)⎝ ⎛⎭⎪⎫12 018-1×⎝ ⎛⎭⎪⎫12 017-1×⎝ ⎛⎭⎪⎫12 016-1×…×⎝ ⎛⎭⎪⎫11 001-1×⎝ ⎛⎭⎪⎫11 000-1.7.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报⎝ ⎛⎭⎪⎫11+1,第2位同学报⎝ ⎛⎭⎪⎫12+1,第3位同学报⎝ ⎛⎭⎪⎫13+1……这样得到的20个数的积为____.参考答案1.B 2.C3.(1)2 (2)-2 (3)24.(1)5 (2)-12 (3)0 (4)165.(1)-2 (2)986.(1)-1 (2)-9992 018 7.21第3课时 有理数的乘法运算律1.计算⎝ ⎛⎭⎪⎫-531×⎝ ⎛⎭⎪⎫-92×⎝ ⎛⎭⎪⎫-3115×29的结果是( ) A .-3 B .-13 C .3 D.132.下列计算中错误的是( )A .-6×(-5)×(-3)×(-2)=180B .(-36)×⎝ ⎛⎭⎪⎫16-19-13=-6+4+12=10 C .(-15)×(-4)×⎝ ⎛⎭⎪⎫+15×⎝ ⎛⎭⎪⎫-12=6 D .-3×(+5)-3×(-1)-(-3)×2=-3×(5-1-2)=-63.利用运算律计算⎝ ⎛⎭⎪⎫-993233×33时,最恰当的方案是( ) A.⎝⎛⎭⎪⎫100-133×33 B.⎝ ⎛⎭⎪⎫-100-133×33 C .-⎝ ⎛⎭⎪⎫99+3233×33 D .-⎝ ⎛⎭⎪⎫100-133×334.计算:(-8)×(-12)×(-0.125)×⎝ ⎛⎭⎪⎫-13×(-0.001)=____. 5.-23与25的和的15倍是____,-23与25的15倍的和是________.6.运用运算律简便计算:(1)999×(-15);(2)999×11845+999×⎝ ⎛⎭⎪⎫-15-999×11835.7.运用简便方法计算:(1)(-125)×(-25)×(-5)×(-2)×(-4)×(-8);(2)(-36)×⎝ ⎛⎭⎪⎫-49+56-712; (3)9989×(-18).8.逆用乘法分配律计算:(1)17.48×37+174.8×1.9+8.74×88;(2)-13×23-0.34×27+13×(-13)-57×0.34.9.观察下列等式:第1个等式:a 1=11×3=12×⎝ ⎛⎭⎪⎫1-13; 第2个等式:a 2=13×5=12×⎝ ⎛⎭⎪⎫13-15; 第3个等式:a 3=15×7=12×⎝ ⎛⎭⎪⎫15-17;第4个等式:a 4=17×9=12×⎝ ⎛⎭⎪⎫17-19.请解答下列问题:(1)按以上规律列出第5个等式:a 5=__________=__________; (2)用含n 的式子表示第n 个等式:a n =__________=______________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值.参考答案1.B 2.C 3.D 4.-0.004 5.-4 5136.(1)-14 985 (2)07.(1)1 000 000 (2)7 (3)-1 798 8.(1)1 748 (2)-13.349.(1)19×11 12×⎝⎛⎭⎫19-111 (2)1(2n -1)(2n +1) 12×⎝⎛⎭⎫12n -1-12n +1 (3)100201第4课时 有理数的除法法则1. 16的倒数是( ) A .6 B .-6 C.16 D .-16 2.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫+12÷⎝ ⎛⎭⎪⎫-12=-1 B .-3÷⎝ ⎛⎭⎪⎫-13=1 C .(-5)×0÷0=0 D .2÷3×⎝ ⎛⎭⎪⎫-13=-23.如果一个数除以它的倒数,商是1,那么这个数是( ) A .1 B .2 C .-1 D .1或-14.倒数是它本身的数是___,相反数是它本身的数是____. 5.计算:(1)(-15)÷(-3); (2)(-12)÷⎝ ⎛⎭⎪⎫-14;(3)(-12)÷⎝ ⎛⎭⎪⎫-12÷(-10).6.化简下列分数:(1)-162; (2)12-48; (3)-54-6; (4)-9-0.3.7.若a +b <0,ba >0,则下列结论成立的是( ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >08.已知a 和b 一正一负,则|a |a +|b |b 的值为( ) A .0 B .2C .-2D .根据a ,b 的值确定 9.计算:(1)⎝ ⎛⎭⎪⎫-23÷⎝ ⎛⎭⎪⎫-85÷(-0.25); (2)⎝ ⎛⎭⎪⎫-47÷⎝ ⎛⎭⎪⎫-314÷⎝ ⎛⎭⎪⎫-23;(3)(-2)÷13×(-3); (4)-2.5÷⎝ ⎛⎭⎪⎫-516×⎝ ⎛⎭⎪⎫-18÷(-4).10.若a ,b 互为相反数,c ,d 互为倒数,m 的倒数是2,求a +b -cdm 的值.11.一列数a 1,a 2,a 3,…满足条件:a 1=12,a n =11-a n -1(n ≥2,且n为整数),则a 2 016=____.参考答案1.A 2.A 3.D 4.±1 0 5.(1)5 (2)48 (3)-1256.(1)-8 (2)-14(3)9 (4)307.B 8.A 9.(1)-53 (2)-4 (3)18 (4)1410.-2 11.-1第5课时 有理数的加减乘除混合运算1.下列计算:①(-1)×(-2)×(-3)=6;②(-36)÷(-9)=-4;③23×⎝ ⎛⎭⎪⎫-94÷(-1)=32;④(-4)÷12×(-2)=16.其中计算正确的个数为( ) A .4个 B .3个 C .2个 D .1个2.计算⎝ ⎛⎭⎪⎫-14÷⎝ ⎛⎭⎪⎫-23÷⎝ ⎛⎭⎪⎫-58的结果是( ) A .-53 B .-35 C .-56 D .-65 3.计算4÷(-1.6)-74÷2.5的值为( ) A .-1.1 B .-1.8 C .-3.2 D .-3.94.在算式4-|-3□5|中的□所在位置,填入下列哪种运算符号,计算出来的值最小( )A .+B .-C .×D .÷5.计算⎝⎛⎭⎪⎫316-256×(-3)-145÷⎝⎛⎭⎪⎫-35的结果是( ) A .4 B .2 C .-2 D .-4 6.计算:(1)42×⎝⎛⎭⎪⎫-17+(-0.25)÷34;(2)-1-2.5÷⎝ ⎛⎭⎪⎫-114; (3)[12-4×(3-10)]÷4.7.计算:(1)-1÷⎝ ⎛⎭⎪⎫-18-3÷⎝ ⎛⎭⎪⎫-12; (2)-81÷13-13÷⎝ ⎛⎭⎪⎫-19; (3)-1+5÷⎝ ⎛⎭⎪⎫-16×(-6); (4)⎝ ⎛⎭⎪⎫13-12÷114÷110.8.[·杭州]计算6÷⎝ ⎛⎭⎪⎫-12+13时,方方同学的计算过程如下:原式=6÷⎝ ⎛⎭⎪⎫-12+6÷13=-12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.9.计算:(1)34×⎝ ⎛⎭⎪⎫-112÷⎝ ⎛⎭⎪⎫-214; (2)-34÷38×⎝ ⎛⎭⎪⎫-49÷⎝ ⎛⎭⎪⎫-23; (3)1÷⎝ ⎛⎭⎪⎫16-13×16; (4)-112÷34×(-0.2)×134÷1.4×⎝ ⎛⎭⎪⎫-35.10.如果规定符号“#”的意义是a #b =a +bab ,试求2#(-3)#4的值.11.定义运算a ⊗b =a (1-b ),下面给出了关于这种运算的几个结论: ①2⊗(-2)=6; ②a ⊗b =b ⊗a ; ③若a ⊗b =0,则a =0. 其中正确结论的序号是____.参考答案1.C 2.B 3.C 4.C 5.B 6.(1)-613(2)1 (3)107.(1)14 (2)-240 (3)179 (4)-438.方方同学的计算过程不正确,原式=-36,计算过程略. 9.(1)12 (2)-43 (3)-1 (4)-31010.254 11.①第6课时 利用计算器进行有理数的加减乘除混合运算1.在科学计算器上按顺序按3,8,×,1,5,+,3,2,=,最后屏幕上显示( )A .686B .602C .582D .5022.用计算器计算(-62.3)÷(-0.25)×940时,用带符号键(-)的计算器的按键顺序是_______________________________________________,用带符号转换键+/-的计算器的按键顺序是_____________________.3.(1)用计算器求 4.56+0.825,按键顺序及显示的结果是:4.56+________=________;(2)用计算器求(-2 184)÷14,按键顺序及显示的结果是:2184________÷________=________.4.用计算器计算下列各题:(1)-98×(-32.7);(2)36÷7.2+(-48.6)÷2.4.5.在计算器上按如图1-4-2所示的程序进行操作,表中的x与y是分别输入的6个数及相应的计算结果:按键×3=输出y(计算结果)输入x――→图1-4-2x -2-1012 3y -5-214710上述操作程序中所按的第三个键和第四个键应是()A.“1”和“+”B.“+”和“1”C.“1”和“-”D.“+”和“-1”6.计算(本题可用计算器计算):(1)44×441+2+1=____;(2)666×6661+2+3+2+1=____;(3)8 888×8 8881+2+3+4+3+2+1=____.7.某粮食加工厂从生产的粮食中抽出20袋检查质量,以每袋50 kg为标准,将超过的千克数记为正数,不足的千克数记为负数,结果记录如下:单位/kg-0.7-0.5-0.20+0.4+0.5+0.7袋数134533 1 这20袋大米共超重或不足多少千克?总质量为多少千克?8.利用计算器进行计算,将结果填写在横线上:99 999×11=____;99 999×12=____;99 999×13=____;99 999×14=____.(1)你发现了什么规律?(2)不用计算器,你能直接写出99 999×19的结果吗?参考答案1.B2.(-)62· 3÷(-)0· 25×940=62· 3+/-÷0· 25+/-×940=3.(1)0.825 5.385(2)+/-14-1564.(1)3 204.6(2)-15.25 5.B6.(1)484(2)49 284(3)4 937 2847.这20袋大米共超重0.4 kg,总质量为1 000.4 kg.8.1 099 989 1 199 988 1 299 987 1 399 986(1)(答案不唯一)规律①:第一个因数都是99 999不变,第二个因数由11逐渐加1,积的最高两位数随着第二个因数的增加由10逐渐加1,中间三位数都是999,末尾两位数由89逐渐减1;规律②:因数的规律同上,积的最高两位数比第二个因数少1,中间三位数都是999,末尾两位数与第二个因数的和为100;(2)1 899 981。
有理数的乘法、除法、乘方同步练习题

有理数乘除法、乘方一、选择题1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )A.一定为正B.一定为负C.为零D. 可能为正,也可能为负2.若干个不等于0的有理数相乘,积的符号( )A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定3.下列运算结果为负值的是( )A.(﹣7)×(﹣6)B.(﹣6)+(﹣4)C.0×(﹣2)×(﹣3)D.(﹣7)-(﹣15)4.若两个有理数的和与它们的积都是正数,则这两个数( )A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数5.下列说法正确的是( )A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.-1的倒数是-16.关于0,下列说法不正确的是( )A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数7.下列运算结果不一定为负数的是( )A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积8.下列运算有错误的是( ) A.13÷(﹣3)=3×(﹣3) B. 1(5)5(2)2⎛⎫-÷-=-⨯- ⎪⎝⎭C.8-(﹣2)=8+2D.2-7=(+2)+(﹣7)9.下列运算正确的是( ) A. 113422⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭; B.0-2=﹣2; C.34143⎛⎫⨯-= ⎪⎝⎭; D.(﹣2)÷(﹣4)=2 10.-│(-1)100│等于( ) A.-100 B.100 C.-1 D.111.下列各式中正确的是( )A.(-4)2=-42B. 6554+>+ C.(22-12)=22-12+ D.(-2)2=4 12.下列各数中数值相等的是( ) A.32与23 B.-23与(-2)3 C.-32与(-3)2 D.[-2×(-3)]2与2×(-3)2 13.a 和b 互为相反数,则下列各组中不互为相反数的是( )A.a 3和b 3B.a 2和b 2C.-a 和-bD.22a b 与 二、填空题 1.如果410,0a b >>,那么a b _____0. 2.如果5a>0,0.3b<0,0.7c<0,那么b ac____0. 3.﹣0.125的相反数的倒数是________.4.若a>0,则a a =_____;若a<0,则a a =____.5.底数是-1,指数是91的幂写做_______,结果是______.6.(-3)3的意义是_________,-33的意义是___________.7.5个13相乘写成__________,13的5次幂写成_________. 8.用科学计数法表示下列各数:800=__________;613400=__________. 9.310的倒数的相反数的4次幂等于__________.10. 117-的立方的相反数是___________. 11.用科学记数法表示下列各数:(1)水星和太阳的平均距离约为57900000km .(2)冥王星和太阳的平均距离约为5900000000km .三、解答题1.计算. (1) 38(4)24⎛⎫⨯-⨯-- ⎪⎝⎭ ( 2)38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭3) 111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯---⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭2.计算.(1)375÷2332⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭ (2) 1213(5)6(5)33⎛⎫⎛⎫-÷-+-÷- ⎪ ⎪⎝⎭⎝⎭(3) 111382⎛⎫⎛⎫-÷--÷-⎪ ⎪⎝⎭⎝⎭(4) 11181339⎛⎫-÷-÷- ⎪⎝⎭3.计算 (1) 222332513 1.2(0.3)(3)(1)3⎛⎫-⨯÷-+-⨯-÷- ⎪⎝⎭(2) 2221(2)2(10)4----⨯- (3) 3212(0.5)(2)(8)2⎛⎫-⨯-⨯-⨯- ⎪⎝⎭。
有理数的乘法与除法同步练习

有理数的乘法与除法姓名_____________班级____________学号____________分数_____________一、选择题1 .6的倒数等于 ( )A.6-B.6C.16-D.162 .下列计算正确的是( )A.-2+2=0B. -1-1=0C. 3÷13=1 D. 32=63 .在-2,3,4,-5这四个数中,任取两个数相乘,所得积最大的是 ( )B.-20C.12 4 .计算 411(1)12342-+⨯ 时,可以使运算简便的是( ) (A)乘法交换律 (B)乘法结合律 (C)加法结合律 (D)分配律 5 .以下四个有理数运算的式子中: ① (2+3)+4=2+(3+4); ② (2-3)-4=2-(3-4);③ (2×3)×4=2×(3×4); ④ 2÷3÷4=2÷(3÷4). 正确的运算式子有 (A) 1个 (B) 2个 (C) 3个 (D) 4个 6 .如果ab>0,a + b<0,那么a 、b 的符号分别是( )>0,b>0 >0,b<0 C.a<0,b<0 <0,b>07 .下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(-36)÷(-9)=-4.其中正确的个数是( )(A)1个. (B)2个. (C)3个. (D)4个. 8 .慈客隆超市出售的三种品牌的大米袋上,分别标有质量为(50±,(50±,(50±kg 的字样,从超市中任意拿出两袋大米,它们的质量最多相差( ) A. 0.4kgB. 0.5kgC. kgD. kg9 .用“&”定义新运算: 对于任意实数a,b 都有a&b=2a -b,如果x&(1&3)=2,那么x 等于( ).B.32 C. 1210.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )A.不赔不赚;B.赚了10元;C.赔了10元;D.赚了50元二、填空题11.甲、乙、丙三地的海拔高度分别是20 m 、-15m 、-5m,那么最高的地方比最低的地方高__________m12.如图是一个程序运算,若输入的x 为5-,则输出y 的结果为____________。输入x → 4+ → )3(-- → )5(-⨯ →输出y13.用“数字牌”做24点游戏,抽出的四张牌分别表示2、-3、-4、6(每张牌只能用一次,可以用加、减、乘、除等运算)请写出一个算式,使结果为24________________________; 14.某冷库的室温为-4℃,一批食品需要在-28℃冷藏,如果每小时降温3℃,经过_____小时后能降到所要求的温度.15.某商店老板将一件进价为800元的商品先提价50%,再以8折卖出,则卖出这件商品所获利润是__________元.16.计算113333⨯÷⨯的结果是______. 三、解答题17.计算题(每小题4分,共8分)(1)(31+41-61)×24 (2)-1-(1+×31÷(-4)18.有20箱橘子,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20箱橘子中,最重的一箱比最轻的一箱多重多少千克? (2)与标准重量比较,20箱橘子总计超过或不足多少千克?(3)若橘子每千克售价元,则出售这20箱橘子可卖多少元?(结果保留整数)参考答案一、选择题 1 .D 2 .A 3 .C; 4 .D 5 .B 6 .C 7 .B 8 .D 9 .C 10.B 二、填空题 11. 35 ; 12.10-13.答案不唯一,略。 14.8 15.16016.9 三、解答题17.(1)原式=111242424346⨯+⨯-⨯=8+6-4 =10 (2)原式=111 1.5()1(2)134--⨯⨯-=---=18.(1)2.5(3) 5.5--=(千克).(2)总计超过标准重量8千克.(3)2.6(25208)⨯+1320.81321=≈(元).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的乘法与除法 同步训练
第I 卷(选择题 共30分) 一选择题(共10小题,每小题3分,共30分)
1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积(
A. 一定为正
B. 一定为负
C. 为零
D. 可能为正,也可能为负
2. 如果 |x-1|+|y+2|+|z-・3|=0,则(x+1)(y-2)
(z+3)的值是() A. 48 B. -48 C. 0 D.xyz
3. 下列说法中,错误的是()
A. —个非零数与其倒数之积为 1
B. —个数与其相反数商为 -1
C. 若两个数的积为 1,则这两个数互为倒数
D. 若两个数的商为-1,则这两个数互为相反数 4. 两个有理数的商为正,
则( )
A.和为正
B.和为负
C.至少一个为正 5. 一个数加上5,减去2然后除以4得7, A.35 B.31 C.25 6.2008个数的乘积为0,则( A .均为0 B .最多有一个为 7. 下列计算正确的是( )
.1 A. —3^4 = — =一4 3
2 5 2
3 C.
3 6 5 5
1
8. -1 一的倒数与4的相反数的商为(
4 D.积为正数 这个
数是(
)
D.28 C .至少有一个为0 D.有两个数是相反数
B. -5却(1 -1) =4
5
D. (+3)x (中= -4 3
1 A . +5 B . - C . -5 5
9. 若 a+b < 0,ab < 0,则
A.a > 0,b > 0
B. a < 0,b < 0
C. a,b 两数一正一负,且正数的绝对值大于负数的绝对值
D. a,b 两数一正一负,且负数的绝对值大于正数的绝对值
10. 一服装店进了一批单价 50元衬衫,标价80元,为了促销五一期间打 7折销售,那么该 商店每件() A.赚6元 二、填空题(共 B.亏了 6元 C. 赚了 30元 D.亏了 26元 第n 卷(非选择题 共90分)
8小题,每小题3分,共24分)
= 0,b H0,则一a = ______ b 12.有理数 m<n<0时,(m+n ・)(m-n)的符号是
#13.规定 a * b=5a+2b-1,则(-4) * 6 的值为—
11-.已知:a +b ;已知:回=—1,则b+|a|=
b
14.如果a b < 0,那么—+ — + a ab
ab
#15.在一次“节约用水,保护水资源”的活动中,学校提倡每人每天节约 市约
有5万学生,估计该市全体学生一年的节水量为 __________________ #16.根据二十四点算法,现有四个数
-2、4、-5、-10,每个数用且只用一次进行加 ・、减、
乘除,使其结果等于 24,则列式为 =24.
& 17.若 |a| = 2 , |b 1=3 , a , b 异号,则-ab =
1 2
⑵(-违)十①+⑴孑十5
) &20. (9分)现定义两种运算:“田”,“® ”,对于任意两个整数 a , b , b = ax b-1,求 4®【(6㊉8) © (3® 5)】的值.
八 5 2 5 3
5 2 2
21. (10 分)((一—+ — — — + —)X (24X — — 24X — + 24X —)
12 3 6 8 9 9 3
22. 在10.5与它的倒数之间有 a 个整数,在10.5与它的相反数之间有 b 个整数. 求(a +b)-(a-b) +2 的值. 23.( 10分)(8分)某超市以50元进了 A 、B 两种商品,然后以A 商品提价20% B 商品降
价10%B 售,在某一天中,A 商品10件,B 商品20件,问这一天里超市作这两种买卖 是赚了还是赔了?并说明理由.
#24. (10分)王明再一次期中考试时,若以语文
90分为标准,其他科分数和语文成绩的
相差分数如下表
求:(1)数学的分数; (2) 若七科平均分数是 95分,生物的分数是多少?
(3) 最高分与最低分相差多少分?
0.1升水,如果该
18.根据如图所示的程序计算,
若输入x 的值为 3,则输出y 的值为
三、解答题(共 19. ( 8 分)(1) 7小题,共66分)
8X (_3)>C (_4)X (—2) 4
a © b=a+b-1 , a ®
(2)直接写出下列各式的计算结果:
・ 金1 1 1
小 1
.① --- + ----- + ----- +1(+ ----------- =
1x2 2x3 3天 4 2007x2008 1 1
②丄+丄
1x2 2x3 答案:
一、选择题
20.解:根据新运算的定义,(6® 8) = 6+
(3®5)= 3X 5- 1= 14,则(6田8) © 则 4®【(6©8) © (3®5)】=4 26= 4X 26-1 = 103
21.
解:通过细心观察算式的数值之间的关系,可先对第 2个括号逆用乘法分配律,简 便运算后,再对第1个括号正用乘法分配律,再次进行简便运算,使问题巧妙获解 .
将以上三个等式两边分别相加得: 丄+丄+丄亠1+1」+1」亠1=?
1x2 2x3 3x4 2 2 3 3 4 4 4
(1)猜想并写出:
n(n +1)
3x4 n(n +1)
1. A
2. B 提示:
3. B
■4. D 提示:
5. C
6. C 提示・:
7. D i 9. D 提示: 10. A 提示: 二、填空题 11. 1, 0
15. 1 825 000
升 根据题意 x-1=0,y+2 =0,z-3=0,即 x=1,y=-2,z=3.
商的符号与积的符号一样,既然两数商为正,则它们积也为正 几个因数相乘■,如果有一个数是 0,则积为0,所以至少有一个是 0
.
8.B 80 X 0.7-50=+6 (元).・
12. + 13. -9 14 .-1
16. (-2) X (-5)-(-10)+
17. 6 19.解:(1) 8咒( ―3)"—4)x(—2) 1 2 (2)原式=13 一子5+6 一斗5 3 3 1 2 1 =(13— +6 —)x —
3 =-8x-x4x 2
4 1 1 2 = 13-x-+6- 3
5 1 =20咒一=4- 5 =—48 x 1 3 5 8- 1= 13,- (35)= 1 3© 14= 13+ 14- 1 = 26
5 2 5 3 5 2 2 (—二+—+—)>C(24X——24 咒—+24^—)
12 3 6 8 9 9 3
5 2 53 5 2 2 5 2 5 3
=(-—+—+_) x[24(-- —+ -)1= (-—+ —+-)x 24x 1
12 3 6 89 9 3 12 3 6 8
5 2 5 3
=-—x24+ — x24 ——x24+ —x24 = -10 + 16-20 + 9 = -5.
12 3 6 8
9
22.解:a=10, b=21 , (a+b)-(a—b)+2 的值为 _上
11
23.解:在一天的两种商品的买卖中,超市不赚不赔.(2分)
理由:10 件A商品一共卖了10X( 1+ 20% X.50 = 600 (元),
20 件B 商品一共卖了20 X( 1—10% X 50 = 900 (元)
则这30件商品一共卖了600 + 900= 1500 (元),而这30件商品的进价为1500元,超市不赚不赔.
24.解:(1) 90+ (+9) =99 (分)
答:数学分数是99分.
(2) 93 X 7- ( 90X 6+0+9+6-4+3+2 ) =651- ( 540+0+9+6-4+3+2 ) =651-556=95
(分)
答:生物的分数是95分.
(3) 99-86=13 (分)
答:最高分和最低分相差
1 1
25.解:(1)————(;
n n+1 13分.
2007
2008
n
n+1。