电力变压器保护PPT课件
合集下载
电力变压器保护PPT课件
6.1 电力变压器的故障、不正常工作状态及 保护方式
(一)变压器故障
变压器故障类型:油箱内部故障和油箱外部故障。
油箱内故障: 绕组相间、匝间短路、绕组接地(绕组和外壳短路)
铁芯烧损。 油箱外故障: 套管和引出线上发生相间和接地故障。
6.1 电力变压器的故障、不正常工作状态及 保护方式 (二) 变压器不正常工作状态 变压器不正常工作状态:
电流变换到二次侧过程中的传变误差不一致,从而在差
动回路中产生较大的不平衡电流。
6.2 变压器的纵差动保护
6.2.2不平衡电流产生的原因
(一)稳态情况下的不平衡电流
3)变压器正常运行时由励磁电流引起的不平衡电流
变压器的励磁支路相当于变压器内部故障支路,
励磁电流全部流入差动继电器。变压器正常运行时,励
变压器 一次侧按Y 接n线TA(时Y)电 流3I互T5N感(Y器) 的变比为:
nTA()
ITN() 5
ITN变(Y压) 器 二ITN次()侧按Δ接线时电流互感器的变比为:
6.2 变压器的纵差动保护
6.2.4 减小不平衡电流的措施
(二)减小暂态不平衡电流的影响
1. 采用带小气隙的电流互感器 2. 采用速饱和变流器以减小暂态过程中非周期分量电流的影响
6.2 变压器的纵差动保护 6.2.4减小不平衡电流的措施
(一)减小稳态情况下的不平衡电流
1. 采用自耦变流器
图6.6 不平衡电流的补偿
I2.Y I2.
6.2 变压器的纵差动保护
6.2.4减小不平衡电流的措施
(一)减小稳态情况下的不平衡电流
2. 利用带速饱和铁芯的差动继电器中的平衡线圈 3. 减小电流互感器的二次负荷 4. 减小因电流互感器性能不同引起的稳态不平衡电流。 5. 减小因 接线两侧相位不一致引起的稳态不平衡电流。
(一)变压器故障
变压器故障类型:油箱内部故障和油箱外部故障。
油箱内故障: 绕组相间、匝间短路、绕组接地(绕组和外壳短路)
铁芯烧损。 油箱外故障: 套管和引出线上发生相间和接地故障。
6.1 电力变压器的故障、不正常工作状态及 保护方式 (二) 变压器不正常工作状态 变压器不正常工作状态:
电流变换到二次侧过程中的传变误差不一致,从而在差
动回路中产生较大的不平衡电流。
6.2 变压器的纵差动保护
6.2.2不平衡电流产生的原因
(一)稳态情况下的不平衡电流
3)变压器正常运行时由励磁电流引起的不平衡电流
变压器的励磁支路相当于变压器内部故障支路,
励磁电流全部流入差动继电器。变压器正常运行时,励
变压器 一次侧按Y 接n线TA(时Y)电 流3I互T5N感(Y器) 的变比为:
nTA()
ITN() 5
ITN变(Y压) 器 二ITN次()侧按Δ接线时电流互感器的变比为:
6.2 变压器的纵差动保护
6.2.4 减小不平衡电流的措施
(二)减小暂态不平衡电流的影响
1. 采用带小气隙的电流互感器 2. 采用速饱和变流器以减小暂态过程中非周期分量电流的影响
6.2 变压器的纵差动保护 6.2.4减小不平衡电流的措施
(一)减小稳态情况下的不平衡电流
1. 采用自耦变流器
图6.6 不平衡电流的补偿
I2.Y I2.
6.2 变压器的纵差动保护
6.2.4减小不平衡电流的措施
(一)减小稳态情况下的不平衡电流
2. 利用带速饱和铁芯的差动继电器中的平衡线圈 3. 减小电流互感器的二次负荷 4. 减小因电流互感器性能不同引起的稳态不平衡电流。 5. 减小因 接线两侧相位不一致引起的稳态不平衡电流。
变压器差动保护ppt课件
nT
判据: Id IH IL Iset
nTAL
Id
I set K I rel unbmax
I·L
·IL'
11
2.2.2 变压器差动保护的不平衡电流
一、稳态运行条件下的不平衡电流
正常运行或故障后已达稳态,差动电流 中只有工频分量;忽略变压器的励磁电流 (2~5%)
12
1. 三相电力变压器保护的接线 (1) Y/Y-12接线双绕组三相变压器
I&d I&H' I&L'
I·H
·IH'
nTAH
正常运行或外部故障时,应使
Id 0
Id
nT
IH IL
Id
nTAL
I·L
·IL'
IH IL nTAH nTAL
TA变比选取原则
nTAL nTAH
nT
10
2.2.1 变压器纵差动保护的基本原理
I·H
·IH'
nTAH
内部故障时:
Id Ik
Id
解决办法: 选择两侧同相位的电流量构成差动回
路。
15
1. 三相电力变压器保护的接线
(2) Y/Δ-11接线两绕组三相变压 器
Y
IA2
IC2 IA2
IA2
30 IA2 IB2
IC2 IC2
IB2 IC2
IB2 IB2
IA2
IA2 IB2
IB2
IB2 IC2
IC2
IC2 IA2
16
1. 三相电力变压器保护的接线 (2) Y/Δ-11接线两绕组三相变压器
2电力变压器保护
1
2.1 变变压压器器的保故护—障—类主型要和内不容 正常 工作状态
《变压器保护培训》课件
值
温度保护装置:用于检 测变压器温度是否过高
瓦斯保护装置:用于检 测变压器内部是否有气
体产生
变压器保护装置主要由电流互感器、电压互感器、保护装置和通信设备组成。 电流互感器和电压互感器用于采集变压器的电流和电压信号。 保护装置根据采集到的信号进行计算和分析,判断变压器是否出现故障。 通信设备用于将保护装置的输出信号传输到控制中心,以便进行远程监控和控制。
变压器容量:根据 变压器的容量选择 合适的保护装置
保护功能:根据变 压器的保护需求选 择相应的保护功能
环境因素:考虑变 压器的工作环境, 如温度、湿度等
成本因素:在满足 保护需求的前提下 ,选择性价比较高 的保护装置
主保护:差动保 护、瓦斯保护、 过流保护等
辅助保护:过电 压保护、欠电压 保护、接地故障 保护等
过载故障:由于变压器过载,可能导 致电流过大,损坏变压器
短路故障:由于变压器内部短路,可 能导致电流过大,损坏变压器
绝缘故障:由于变压器绝缘损坏,可 能导致漏电或触电事故
接地故障:由于变压器接地不良,可能 导致漏电或触电事故
机械故障:由于变压器机械部件损坏, 可能导致变压器无法正常工作
观察变压器的外观和运行状态 检查变压器的油位、油色和油温 测量变压器的电压、电流和功率
定期检查变压器的油位、温度和压力
定期进行变压器的绝缘测试和接地检 查
定期进行变压器的油样分析和维护
定期进行变压器的冷却系统和通风系 统的检查和维护
定期进行变压器的继电保护和自动控 制装置的检查和维护
定期进行变压器的防火和防爆装置的 检查和维护
变压器保护的 故障诊断和处 理
过热故障:由于变压器内部温度过高, 可能导致绝缘损坏或烧毁
温度保护装置:用于检 测变压器温度是否过高
瓦斯保护装置:用于检 测变压器内部是否有气
体产生
变压器保护装置主要由电流互感器、电压互感器、保护装置和通信设备组成。 电流互感器和电压互感器用于采集变压器的电流和电压信号。 保护装置根据采集到的信号进行计算和分析,判断变压器是否出现故障。 通信设备用于将保护装置的输出信号传输到控制中心,以便进行远程监控和控制。
变压器容量:根据 变压器的容量选择 合适的保护装置
保护功能:根据变 压器的保护需求选 择相应的保护功能
环境因素:考虑变 压器的工作环境, 如温度、湿度等
成本因素:在满足 保护需求的前提下 ,选择性价比较高 的保护装置
主保护:差动保 护、瓦斯保护、 过流保护等
辅助保护:过电 压保护、欠电压 保护、接地故障 保护等
过载故障:由于变压器过载,可能导 致电流过大,损坏变压器
短路故障:由于变压器内部短路,可 能导致电流过大,损坏变压器
绝缘故障:由于变压器绝缘损坏,可 能导致漏电或触电事故
接地故障:由于变压器接地不良,可能 导致漏电或触电事故
机械故障:由于变压器机械部件损坏, 可能导致变压器无法正常工作
观察变压器的外观和运行状态 检查变压器的油位、油色和油温 测量变压器的电压、电流和功率
定期检查变压器的油位、温度和压力
定期进行变压器的绝缘测试和接地检 查
定期进行变压器的油样分析和维护
定期进行变压器的冷却系统和通风系 统的检查和维护
定期进行变压器的继电保护和自动控 制装置的检查和维护
定期进行变压器的防火和防爆装置的 检查和维护
变压器保护的 故障诊断和处 理
过热故障:由于变压器内部温度过高, 可能导致绝缘损坏或烧毁
电力变压器主变差动保护培训课件
器可靠动作。
原理图
不平衡电流的产生
(1)变压器各侧绕组接线方式不同。 (2)变压器各侧电流互感器的型号和变比不相 同,实际的电流互感器变比和计算变比不相同。 (3)带负荷调分接头引起变压器变比的改变。 (4)变压器空载投入或外部故障,电流互感器 铁芯饱和,电压恢复时产生的励磁涌流。
如何减小不平衡电流
变压器二次额定电流 I2e
各侧平衡系数k
220kV Y0
1200A/5A
472A
1.96A 4.000
Hale Waihona Puke 115kV Y01250A/5A
904A
3.61A 2.177
10.5kV Δ-11
3000A/5A
9897A
16.5A 0.476
减少差动不平衡电流
适当地增大电流互感器变比,以降低短路电流 倍数,这样可以有效削弱励磁涌流,减少差动 回路中产生的不平衡电流,提高差动保护的灵 敏度。这对避免保护区外故障,尤其是最严重 的三相金属性短路而导致的主变差动保护误动 作尤为有效。举例如下表(灵敏度计算过程略) 。
I高2e=I高1e/n高TA=314.9/500 ×1.732 ≈ 1.0908A 低压侧: I低1e=Se/(√3)U低e
= 12 × 107/ (√3)×21000 ≈ 3299.2A
I低2e=I低1e/n低TA=3299.2/1000 ≈ 3.2992A
5.2 平衡系数计算
按照习惯,各侧CT二次额定以数值小的为 基准值,故,本例以高压侧为基准值。 高压侧:K高= I高2e / I高2e =1 低压侧:K低= I高2e / I低2e =1.0908/3.2992 ≈0.33 不平衡电流: IK= (I高2e × K高) - (I低2e × K低) ≈0
原理图
不平衡电流的产生
(1)变压器各侧绕组接线方式不同。 (2)变压器各侧电流互感器的型号和变比不相 同,实际的电流互感器变比和计算变比不相同。 (3)带负荷调分接头引起变压器变比的改变。 (4)变压器空载投入或外部故障,电流互感器 铁芯饱和,电压恢复时产生的励磁涌流。
如何减小不平衡电流
变压器二次额定电流 I2e
各侧平衡系数k
220kV Y0
1200A/5A
472A
1.96A 4.000
Hale Waihona Puke 115kV Y01250A/5A
904A
3.61A 2.177
10.5kV Δ-11
3000A/5A
9897A
16.5A 0.476
减少差动不平衡电流
适当地增大电流互感器变比,以降低短路电流 倍数,这样可以有效削弱励磁涌流,减少差动 回路中产生的不平衡电流,提高差动保护的灵 敏度。这对避免保护区外故障,尤其是最严重 的三相金属性短路而导致的主变差动保护误动 作尤为有效。举例如下表(灵敏度计算过程略) 。
I高2e=I高1e/n高TA=314.9/500 ×1.732 ≈ 1.0908A 低压侧: I低1e=Se/(√3)U低e
= 12 × 107/ (√3)×21000 ≈ 3299.2A
I低2e=I低1e/n低TA=3299.2/1000 ≈ 3.2992A
5.2 平衡系数计算
按照习惯,各侧CT二次额定以数值小的为 基准值,故,本例以高压侧为基准值。 高压侧:K高= I高2e / I高2e =1 低压侧:K低= I高2e / I低2e =1.0908/3.2992 ≈0.33 不平衡电流: IK= (I高2e × K高) - (I低2e × K低) ≈0
《电力变压器》课件
油箱内部应保持清洁,并充满合 格的变压器油,以起到绝缘、散
热和消音的作用。
油箱附件包括油位计、油枕、吸 湿器、气体继电器等,用于监测
和控制变压器的工作状态。
其他组件
电力变压器的其他组件包括分接开关 、安全气道、储油柜等。
分接开关用于调节变压器输出电压的 高低,安全气道用于保护变压器内部 不受外部杂物和水分的影响,储油柜 用于储存变压器油。
铁芯故障
铁芯发生多点接地或短路 时,应检查并修复接地故 障,确保铁芯正常工作。
变压器渗漏油
发现变压器渗漏油时,应 及时处理渗漏部位,防止 油位过低影响变压器的正 常运行。
04
电力变压器的设计
设计原则与标准
遵循国家和行业标准
电力变压器的设计应遵循国家和行业的标准,确保安全、可靠、 经济和环保。
满足用户需求
关键工艺技术
线圈绕制技术
铁芯叠装技术
器身装配技术
注油与密封技术
检测与试验技术
线圈绕制是电力变压器 制造中的核心技术之一 ,需要掌握合适的绕线 方式、匝数和线径,以 保证线圈的电气性能和 机械性能。
铁芯叠装技术是影响电 力变压器性能的关键因 素之一,需要掌握合适 的叠装方式和工艺参数 ,以保证铁芯的磁路性 能和机械强度。
THANKS
THANK YOU FOR YOUR WATCHING
根据变压器的容量和额 定电流,计算出铜线的
截面积。
损耗计算
根据变压器的设计参数 ,计算出空载损耗和负
载损耗。
设计实例分析
设计实例的选择
选择具有代表性的电力变压器 设计实例,如油浸式变压器、
干式变压器等。
设计参数的确定
根据实例选择合适的输入输出 电压、容量、阻抗等参数。
电力变压器保护(张举).pptx
Wb.cal
(
I I
' 2 '' 2
1) Wd.set
平衡线圈的计算匝数一般为小数,整定匝 数按四舍五入原则选择整数值
平衡线圈的计算匝数与整定匝数的最大误 差为0.5匝
28
在整定计算中不平衡电流按下式计算:
Iunb. K jxf za I k.max / nTA
其中:
f za
| Wb.cal Wb.cal
21
2.三相变压器接线产生的不平衡电流
.
nTA1
.
I
A
2
.
.
.
I
B2
. I
C2
I
A1
I
B1
I
C1
nT
I
A1
I
A1
30
I
C1
I
C1
I
A
2
I
I
A
2
30
I
B1
I
B1
I
A1
I
B1
I
C1
I
B
2
nTA2 .
.
I
A
2
.
.
I
B2
.
.
I
C2
I
C
2
Iห้องสมุดไป่ตู้
B2
Y,d11变压器接线和IC向2 量图
Wb.set Wd.set
|
K jx 三相电流互感器接线系数 fza 平衡线圈的计算匝数与整定匝数不等的相对误差 Ik.max 区外短路的最大短路电流 Wd.set 差动线圈的整定匝数
22
.
.
I
A
变压器差动保护PPT
I&d I&H' I&L'
I·H
·IH'
nTAH
正常运行或外部故障时,应使
Id 0
Id
nT
IH IL
Id
nTAL
I·L
·IL'
IH IL nTAH nTAL
TA变比选取原则
nTAL nTAH
nT
10
2.2.1 变压器纵差动保护的基本原理
I·H
·IH'
nTAH
内部故障时:
Id Ik
Id
1)各相绕组之间的相间短路; 2)单相绕组部分线匝之间的匝间短路; 3)单相绕组和铁心间绝缘损坏引起的接地短路。 (2)油箱外部故障 1)引出线的相间短路; 2)绝缘套管闪烁或破坏、引出线通过外壳
发生的单相接地短路。
4
2.1.1变压器故障和不正常运行状态
2.变压器异常运行状态 (1)外部相间短路引起的过电流; (2)外部接地短路引起的过电压; (3)负荷超过额定容量引起的过负荷; (4)漏油等原因引起的油面降低; (5)过励磁。
nT
判据: Id IH IL Iset
nTAL
Id
I set K I rel unbmax
I·L
·IL'
11
2.2.2 变压器差动保护的不平衡电流
一、稳态运行条件下的不平衡电流
正常运行或故障后已达稳态,差动电流 中只有工频分量;忽略变压器的励磁电流 (2~5%)
12
1. 三相电力变压器保护的接线 (1) Y/Y-12接线双绕组三相变压器
Y
负序分量:
IB2 IA2
IB2
IA2 IA2
IA2 IC2
变压器差动保护(讲课).ppt
差动电流或 动作电流
制动线 斜率
动作区
起动电流
制动区 拐点电流
制动 电流
下次课的任务:
变压器相间短路的后备保护的原理?
解决办法
在变压器差动保护的整定计算中考绕组变压器差动保护 三绕组变压器的差动保护不平衡电流比双
绕组变压器的大。 采取的措施
采用带制动特性的差动继电器构成差动保 护
比率制动式纵差动保护
比率制动式纵差动保护的动作值随着外部短路电流的 增大而自动增大。灵敏可靠,优点显著,应用广泛。
这会使差动继电器可靠动作。 变压器的差动保护范围是构成变压器差动保 护的各电流互感器之间的电气设备,以及连 接这些电气设备的导线。
产生不平衡电流的因素
1. 变压器励磁涌流所产生的不平衡电流; 2. 三相变压器接线产生的不平衡电流; 3. 由计算变比与标准变比不同产生的不平
衡电流; 4. 由电流互感器变比误差产生的不平衡电
导入(电力变压器差动保护)
气体保护不能反应油箱外的引出线和
套管上的任何故障,故不能单独作为变 压器的主保护,须与纵差动或电流速断 保护配合使用。
电力变压器的电流速断保护
应用范围:单台运行小于10000kVA、 并列小于6300kVA的变压器,当过电 流保护动作时限大于0.5s时装设。
装设地点:变压器的电源侧 作用:反应电源侧引出线和绕组的一
������ 外部短路时:更小 ������ 电压突然增加(空载投入变压器或
外部故障切除后电压恢复)时:5~10
IN → 励磁涌流
产生励磁涌流的原因
在稳态的情况下铁心中的磁通应滞后于外加电压90°, 在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但 由于铁心中的磁通不能突变,因此将出现一个非周期分量 的磁通+Φm,这样经过半个周期后铁心中的磁通将达到 2Φm。
电力变压器的保护
所以变压器各侧的电流互感器型号不同,它 们的饱和特性、励磁电流(归算至同一侧) 也就不同,从而在差动回路中产生较大的不 平衡电流。
两侧电流互感器型号不同产生的不平衡电流
产生 不平衡 电流 原因
变压器两侧的额定电压不同 两侧电流互感器的型号不同 饱和特性和励磁电流也不同
解决问题的方法: 整定计算时,引入同型系数。
❖ (7)由变压器带负荷调整分接头而产生的不 平衡电流 在变压器差动保护的整定计算中考虑。 在稳态情况下,变压器的差动保护的不平 衡电流可由下式决定
❖ (8)减小暂态过程中非周期分量电流的影响 ①差动保护采用具有速饱和特性的中间变
流器, ②选用带制动特性的差动继电器或间断角
原理的差动继电器等,利用其它方法来解决 暂态过程中非周期分量电流的影响问题。
❖ (4)外部接地短路时, 对中性点直接接地电力网内,由外部接地短路引起过电
流时,如变压器中性点接地运行,应装设零序电流保护。 对自耦变压器和高、中压侧中性点都直接接地的三绕组
变压器,当有选择性要求时,增设零序方向元件。 当电力网中部分变压器中性点接地运行,为防止发生接
地短路时,中性点接地的变压跳开后,中性点不接地的变压
❖ (2)减小电流互感器的二次负荷 这实际上相当于减小二次侧的端电压,相
应地减少电流互感器的励磁电流。减小二次 负荷的常用办法有:减小控制电缆的电阻(适 当增大导线截面,尽量缩短控制电缆长度); 采用弱电控制用的电流互感器(二次额定电流 为lA)等。
❖ (3)采用带小气隙的电流互感器 这种电流互感器铁芯的剩磁较小,在一次
和差式比率制动式差动保护原理
❖ 1.双绕组变压器比率制动的差动保护原理。 (1)和差式比率制动的动作判据
❖ ①差动电流:
两侧电流互感器型号不同产生的不平衡电流
产生 不平衡 电流 原因
变压器两侧的额定电压不同 两侧电流互感器的型号不同 饱和特性和励磁电流也不同
解决问题的方法: 整定计算时,引入同型系数。
❖ (7)由变压器带负荷调整分接头而产生的不 平衡电流 在变压器差动保护的整定计算中考虑。 在稳态情况下,变压器的差动保护的不平 衡电流可由下式决定
❖ (8)减小暂态过程中非周期分量电流的影响 ①差动保护采用具有速饱和特性的中间变
流器, ②选用带制动特性的差动继电器或间断角
原理的差动继电器等,利用其它方法来解决 暂态过程中非周期分量电流的影响问题。
❖ (4)外部接地短路时, 对中性点直接接地电力网内,由外部接地短路引起过电
流时,如变压器中性点接地运行,应装设零序电流保护。 对自耦变压器和高、中压侧中性点都直接接地的三绕组
变压器,当有选择性要求时,增设零序方向元件。 当电力网中部分变压器中性点接地运行,为防止发生接
地短路时,中性点接地的变压跳开后,中性点不接地的变压
❖ (2)减小电流互感器的二次负荷 这实际上相当于减小二次侧的端电压,相
应地减少电流互感器的励磁电流。减小二次 负荷的常用办法有:减小控制电缆的电阻(适 当增大导线截面,尽量缩短控制电缆长度); 采用弱电控制用的电流互感器(二次额定电流 为lA)等。
❖ (3)采用带小气隙的电流互感器 这种电流互感器铁芯的剩磁较小,在一次
和差式比率制动式差动保护原理
❖ 1.双绕组变压器比率制动的差动保护原理。 (1)和差式比率制动的动作判据
❖ ①差动电流:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
常用的后备保护主要有:
• 过电流保护 • 低电压启动的过电流保护 • 复合电压启动的方向过电流保护 • 负序过电流保护及阻抗保护
4
一、过电流保护
1.起动电流的整定
电流元件的起动电流按躲过变压器可 能出现的最大负荷电流整定
Iop
Krel Kre
Ilmax
K r e l 为 1.2~1.3
K r e 为 0.85
当该元件检测到TV二次回路断线时, 将阻抗保护闭锁,并且发出告警信息。
18
五、变压器相间短路后备保护的配置原则
G
I
·
1QF
起动元件
跳三侧
断路器
t1
出口
t2
II 2QF
3QF
起动元件
t3
III
图 8-16 单侧电源变压器后备保护配置示意图 19
1)对于双绕组变压器: 相间短路的后备保护应装设于主电源侧
25
二、中性点直接接地运行变压器的接地保护
1QF
t1
1QF1 跳QF
I 3I0
t2
第五节 变压器相间短路 的后备保护
1
本节主要内容:
一、过电流保护 二、低电压起动的过电流保护 三、微机型复合电压起动的方向过电流保护 四、微机型变压器阻抗保护 五、变压器相间短路后备保护的配置原则
2
变压器相间短路的后备保护
变压器相间短路的后备保护是用 来反应变压器外部故障而引起的变压 器绕组过电流,同时也作为差动保护 和瓦斯保护的后备保护。
段 跳中压侧 跳高压侧
跳三侧 跳中压侧母联或分
段 跳中压侧 跳中压侧 跳三侧 跳低压侧 跳低压侧 跳三侧
备注
保护动作时间应大于 各侧带方向保护的动
作时间
不经复压闭锁
22
第六节 变压器的接地保护
作用:用于中性点直接接地系统中的 电力变压器 反映变压器高压绕组、引出线上
的接地短路,是变压器主保护和相邻 母线、线路接地故障的后备保护。
2)对于单侧电源的三绕组变压器或自耦变压器: 相间短路的后备保护宜装于电源侧和主负荷侧 负荷侧的过流保护以t3 时限跳开 3QF, 主电源侧保护带有两级时限t1 和t2 : 以较短的时限t2 跳开变压器Ⅱ侧的断路器 2QF, 以较长的时限t1 跳开变压器各侧断路器。
20
3)对于多侧电源的三绕组变压器
不带方向
复压过流I段
110KV侧
复压过流II段
10KV侧
电流速断 复压过流
指向110KV侧母线
不带方向 不带方向 不带方向
时间
T1
4.2 S
T2
4.5 S
T1
4.8 S
T2
5.1 S
T1
3.6 S
T2
3.9 S
T1
4.2 S
T2
4.5 S
T
1.0 S
T1
1.5 S
T2
1.8 S
跳闸矩阵 跳中压侧母联或分
6
2. 动作时限的整定
动作时限按阶梯形原则整定。
3. 灵敏度 Ks 校验
Ks
I k min Iop
要求 Ks ≥1.2。
7
二、低电压起动的过电流保护
采用低电压起动可以提高电流元 件的灵敏度
低电压起动的构成: 电流元件、低电压元件、时间元件。
8
变压器 保护装置
k2
U u ,v ,w
来自高
U u ,v ,w
5
Ilmax 计算时应作以下考虑:
1) 对于并列运行的变压器,应考虑一台变压器突然切除时,
所出现的过负荷。
按下式计算:
Ilmax=
n
n
1
It.n
2)对于降压变压器应考虑低压侧电动机自启动的影响。
Ilmax=Kss It.n
Kss 为自起动系数,: 6~10KV侧取1.5 ~ 2.5,
35KV侧取1.5 ~ 2 。
14
四、微机型变压器阻抗保护
• 变压器阻抗保护通常作为330KV及以上大型 变压器相间短路的后备保护
• 组成: 起动元件 相间阻抗测量元件 时间元件 电压回路断线闭锁元件等
15
Iu,v,w Iu,v,w Uu,v,w
启动元件 阻抗元件
Y
t
跳闸
&
Uu,v,w
TV 断线检测 元件
阻抗压板投入
图 8-15 变压器阻抗保护逻辑框图
应在各侧都配置后备保护:各侧保护 均动作于跳开本侧断路器。
对于动作时限最小的保护:应装设方 向元件. 同时,在加装方向保护的一侧,加装 一套不带方向的后备保护,保护动作 后,跳开三侧断路器。
21
220KV变压器过流保护的配置
变压器侧 过流段
220KV侧
复压过流I 复压过流II
方向
指向220KV变压器
16
1.起动元件
组成:相电流突变量启动元件
负序电流启动元件两部分,
启动元件动作判据为:
或 i Iset
I 2 I set.2
Iset 、 Iset.2通常均取电流互感器二次额定电流的 0.2 倍。
17
2.阻抗元件 阻抗元件采用0°接线方式 动作的正方向:可以指向变压器,也
可以指向母线,由保护的控制字控制。 断线检测元件
同时外部故障切除后、电动机自起动的过程中它必须返回 的条件整定。
通常采用 Uop 0.7Ut.n
灵敏度 Ks 要求同电流元件,即:
Ks
Uop U K .max
11
三、微机型复合电压起动的方向过电流 保护
复合电压:负序电压加全电压 负序电压----反映不对称短路 全电压----反映对称短路
12
微机型复合电压起动的方向过电流保护
对侧
U u ,v ,w
相间功率方向
整定
本侧
U u ,v ,w
负序过电压 ≥1
低电压
跳闸 &
t
本侧
过电流
Iu ,v ,w
13
1.复合电压元件 复合电压元件动作的判据是: U 2 U 2.set或U1 U set
2.相间功率方向元件 功率方向元件与线路保护中的方向元件原理相同 按 90°接线方式, 通过软件实现-30°或-45°最大灵敏角。
23
一、电力变压器中性点接地方式选择的原则
1)在多电源系统中,每个发电厂至少有一台 变压器的中性点接地。
2)当发电厂或低压侧有电源的变电所中变压 器多于一台时,应将部分变压器的中性点 接地。
24
保护原理:
• 采用两段式零序电流保护。 • 每段保护动作后,都以较小的时限t1
跳开母联(或分段)断路器,以减小 故障范围; • 以较长时限t2跳开高压侧(或全跳) 断路器。
来自低
k1
压 侧 TV
压 侧 TV
图 8- 13 变 压 器 低 电 压 启 动
过电流保护单相原理接线图
9
1) 电流元件的起动值 Iop 按躲开变压器额定电流整定。
即: Iop
Krel Kre
It.n
灵敏度校验:作为近后备保护时,Ks ≥1.3;
作远后备保护时, Ks ≥1: 应按躲开正常运行时母线上可能出现的最低工作电压,
常用的后备保护主要有:
• 过电流保护 • 低电压启动的过电流保护 • 复合电压启动的方向过电流保护 • 负序过电流保护及阻抗保护
4
一、过电流保护
1.起动电流的整定
电流元件的起动电流按躲过变压器可 能出现的最大负荷电流整定
Iop
Krel Kre
Ilmax
K r e l 为 1.2~1.3
K r e 为 0.85
当该元件检测到TV二次回路断线时, 将阻抗保护闭锁,并且发出告警信息。
18
五、变压器相间短路后备保护的配置原则
G
I
·
1QF
起动元件
跳三侧
断路器
t1
出口
t2
II 2QF
3QF
起动元件
t3
III
图 8-16 单侧电源变压器后备保护配置示意图 19
1)对于双绕组变压器: 相间短路的后备保护应装设于主电源侧
25
二、中性点直接接地运行变压器的接地保护
1QF
t1
1QF1 跳QF
I 3I0
t2
第五节 变压器相间短路 的后备保护
1
本节主要内容:
一、过电流保护 二、低电压起动的过电流保护 三、微机型复合电压起动的方向过电流保护 四、微机型变压器阻抗保护 五、变压器相间短路后备保护的配置原则
2
变压器相间短路的后备保护
变压器相间短路的后备保护是用 来反应变压器外部故障而引起的变压 器绕组过电流,同时也作为差动保护 和瓦斯保护的后备保护。
段 跳中压侧 跳高压侧
跳三侧 跳中压侧母联或分
段 跳中压侧 跳中压侧 跳三侧 跳低压侧 跳低压侧 跳三侧
备注
保护动作时间应大于 各侧带方向保护的动
作时间
不经复压闭锁
22
第六节 变压器的接地保护
作用:用于中性点直接接地系统中的 电力变压器 反映变压器高压绕组、引出线上
的接地短路,是变压器主保护和相邻 母线、线路接地故障的后备保护。
2)对于单侧电源的三绕组变压器或自耦变压器: 相间短路的后备保护宜装于电源侧和主负荷侧 负荷侧的过流保护以t3 时限跳开 3QF, 主电源侧保护带有两级时限t1 和t2 : 以较短的时限t2 跳开变压器Ⅱ侧的断路器 2QF, 以较长的时限t1 跳开变压器各侧断路器。
20
3)对于多侧电源的三绕组变压器
不带方向
复压过流I段
110KV侧
复压过流II段
10KV侧
电流速断 复压过流
指向110KV侧母线
不带方向 不带方向 不带方向
时间
T1
4.2 S
T2
4.5 S
T1
4.8 S
T2
5.1 S
T1
3.6 S
T2
3.9 S
T1
4.2 S
T2
4.5 S
T
1.0 S
T1
1.5 S
T2
1.8 S
跳闸矩阵 跳中压侧母联或分
6
2. 动作时限的整定
动作时限按阶梯形原则整定。
3. 灵敏度 Ks 校验
Ks
I k min Iop
要求 Ks ≥1.2。
7
二、低电压起动的过电流保护
采用低电压起动可以提高电流元 件的灵敏度
低电压起动的构成: 电流元件、低电压元件、时间元件。
8
变压器 保护装置
k2
U u ,v ,w
来自高
U u ,v ,w
5
Ilmax 计算时应作以下考虑:
1) 对于并列运行的变压器,应考虑一台变压器突然切除时,
所出现的过负荷。
按下式计算:
Ilmax=
n
n
1
It.n
2)对于降压变压器应考虑低压侧电动机自启动的影响。
Ilmax=Kss It.n
Kss 为自起动系数,: 6~10KV侧取1.5 ~ 2.5,
35KV侧取1.5 ~ 2 。
14
四、微机型变压器阻抗保护
• 变压器阻抗保护通常作为330KV及以上大型 变压器相间短路的后备保护
• 组成: 起动元件 相间阻抗测量元件 时间元件 电压回路断线闭锁元件等
15
Iu,v,w Iu,v,w Uu,v,w
启动元件 阻抗元件
Y
t
跳闸
&
Uu,v,w
TV 断线检测 元件
阻抗压板投入
图 8-15 变压器阻抗保护逻辑框图
应在各侧都配置后备保护:各侧保护 均动作于跳开本侧断路器。
对于动作时限最小的保护:应装设方 向元件. 同时,在加装方向保护的一侧,加装 一套不带方向的后备保护,保护动作 后,跳开三侧断路器。
21
220KV变压器过流保护的配置
变压器侧 过流段
220KV侧
复压过流I 复压过流II
方向
指向220KV变压器
16
1.起动元件
组成:相电流突变量启动元件
负序电流启动元件两部分,
启动元件动作判据为:
或 i Iset
I 2 I set.2
Iset 、 Iset.2通常均取电流互感器二次额定电流的 0.2 倍。
17
2.阻抗元件 阻抗元件采用0°接线方式 动作的正方向:可以指向变压器,也
可以指向母线,由保护的控制字控制。 断线检测元件
同时外部故障切除后、电动机自起动的过程中它必须返回 的条件整定。
通常采用 Uop 0.7Ut.n
灵敏度 Ks 要求同电流元件,即:
Ks
Uop U K .max
11
三、微机型复合电压起动的方向过电流 保护
复合电压:负序电压加全电压 负序电压----反映不对称短路 全电压----反映对称短路
12
微机型复合电压起动的方向过电流保护
对侧
U u ,v ,w
相间功率方向
整定
本侧
U u ,v ,w
负序过电压 ≥1
低电压
跳闸 &
t
本侧
过电流
Iu ,v ,w
13
1.复合电压元件 复合电压元件动作的判据是: U 2 U 2.set或U1 U set
2.相间功率方向元件 功率方向元件与线路保护中的方向元件原理相同 按 90°接线方式, 通过软件实现-30°或-45°最大灵敏角。
23
一、电力变压器中性点接地方式选择的原则
1)在多电源系统中,每个发电厂至少有一台 变压器的中性点接地。
2)当发电厂或低压侧有电源的变电所中变压 器多于一台时,应将部分变压器的中性点 接地。
24
保护原理:
• 采用两段式零序电流保护。 • 每段保护动作后,都以较小的时限t1
跳开母联(或分段)断路器,以减小 故障范围; • 以较长时限t2跳开高压侧(或全跳) 断路器。
来自低
k1
压 侧 TV
压 侧 TV
图 8- 13 变 压 器 低 电 压 启 动
过电流保护单相原理接线图
9
1) 电流元件的起动值 Iop 按躲开变压器额定电流整定。
即: Iop
Krel Kre
It.n
灵敏度校验:作为近后备保护时,Ks ≥1.3;
作远后备保护时, Ks ≥1: 应按躲开正常运行时母线上可能出现的最低工作电压,