单相桥式全控整流电路

合集下载

单相桥式全控整流电路设计

单相桥式全控整流电路设计

单相桥式全控整流电路设计单相桥式全控整流电路是一种常用的电路,其具有可靠性高、效率高以及适用范围广等特点。

本文将对单相桥式全控整流电路进行详细的介绍和设计。

一、单相桥式全控整流电路的介绍单相桥式全控整流电路是一种采用可控硅器件实现直流电源的电路,常用于电子装置、自动控制和功率器件中。

其主要由四个可控硅管组成,将交流电源整流为直流电源。

在单相桥式全控整流电路中,可控硅管会根据触发脉冲的信号来控制其导通和截止,从而控制输出电压和电流的大小。

需要注意的是,触发脉冲的相位、脉宽和大小都会影响输出的电压和电流,因此需要根据具体应用场合来进行合理的设计。

二、单相桥式全控整流电路的设计1. 电源选型单相桥式全控整流电路需要有一个稳定的电源来提供交流电源,因此需要选择合适的电源。

一般来说,选择稳压电源、变压器、整流电路和滤波电路等电子元件构成的电源比较合适。

2. 器件选型在单相桥式全控整流电路中,需要选择适用的器件,如可控硅管、反向恢复二极管。

可以根据具体的应用场合来选择合适的器件。

3. 负载匹配在单相桥式全控整流电路中,需要考虑电路与负载的匹配问题,以确保输出电压和电流的稳定性。

通常可以采用变压器或电容等元件进行匹配。

4. 触发电路设计单相桥式全控整流电路中的可控硅管需要通过触发电路来控制其导通和截止,因此需要设计合适的触发电路。

触发电路的设计需要考虑触发脉冲的相位、脉宽和大小等因素,以确保输出电压和电流的精度和稳定性。

5. 整流电路设计在单相桥式全控整流电路中,需要设计合适的整流电路来将交流电源整流为直流电源。

整流电路的设计需要考虑输出电压和电流的大小和稳定性。

三、总结单相桥式全控整流电路是一种常用的电路,其利用可控硅管来实现直流电源的输出。

需要注意的是,设计单相桥式全控整流电路需要考虑多个因素,如电源选型、器件选型、负载匹配、触发电路设计和整流电路设计等。

只有在考虑全面的情况下,才能保证单相桥式全控整流电路的稳定性和精度。

单相桥式全控整流电路的故障与处理

单相桥式全控整流电路的故障与处理

单相桥式全控整流电路的故障与处理单相桥式全控整流电路是一种常见的电力电子装置,用于将交流电转换为直流电。

然而,在实际应用中,由于各种原因,这种电路可能会出现故障。

本文将详细介绍单相桥式全控整流电路的故障原因、故障类型以及相应的处理方法。

一、故障原因1.1 电源问题:如果输入交流电源的电压不稳定或有较大的波动,可能导致整流电路出现故障。

1.2 元件老化:整流电路中的元件如二极管、晶闸管等可能会因长时间使用或负载过大而老化,从而影响其正常工作。

1.3 过载:如果负载超过了整流器所能承受的最大值,可能导致整流器无法正常工作。

1.4 温度过高:如果整流器长时间工作在高温环境下,可能会导致元件温度过高而损坏。

二、故障类型2.1 整流器不能正常启动:当开关触发脉冲信号无法触发晶闸管导通时,整流器无法启动。

2.2 整流输出波形不正常:当晶闸管导通或关断不正常时,整流输出波形可能会出现明显的畸变。

2.3 整流器无法输出电压:当整流器无法将交流电转换为直流电时,可能导致输出电压为零。

2.4 整流器过热:当整流器长时间工作在高温环境下,可能导致元件过热而损坏。

三、故障处理方法3.1 整流器不能正常启动的处理方法:3.1.1 检查开关触发脉冲信号是否正常:可以使用示波器检测开关触发脉冲信号的幅值和频率是否符合要求。

3.1.2 检查晶闸管是否工作正常:可以使用万用表或二极管测试仪检测晶闸管的导通状态,如果发现晶闸管损坏,需要更换新的晶闸管。

3.2 整流输出波形不正常的处理方法:3.2.1 检查晶闸管是否工作正常:同样可以使用万用表或二极管测试仪检测晶闸管的导通状态,并确保晶闸管能够准确地开启和关闭。

3.2.2 检查负载是否过大:如果负载超过了整流器所能承受的最大值,需要减小负载或增加整流器的容量。

3.3 整流器无法输出电压的处理方法:3.3.1 检查输入交流电源是否正常:可以使用示波器检测输入交流电源的电压波形是否稳定,如果发现波形不稳定,需要修复或更换电源。

单相桥式全控整流电路

单相桥式全控整流电路
3.1.2 单相桥式全控整流电路
◆基本数量关系 ☞☞和晶整闸 流222UU管电2。2 承压受平的均最 值大为:正向电压和反向电压分别为
Ud
1
2U2 sintd(t) 2
2U 2
1 cos 2
0.9U 2
1 cos 2
(3-9)
α=0时,Ud= Ud0=0.9U2。α=180时,Ud=0。可见,α角的 移相范围为180。 ☞向负载输出的直流电流平均值为:
U2=100 =141.4(V) 流过每个晶2闸管的电流的有效值为: IVT=Id∕ =6.36(A) 故晶闸管的额定电压为: UN=(2~3)×141.4=283~424(V) 晶闸管的额定电流为: IN=(1.5~2)×6.36∕1.57=6~8(A) 晶闸管额定电压和电流的具体数值可按晶闸管产品系列参数选取。
O
id
t
Id
O i2
Id
Id
t
O
t
图3-9 ud、id和i2的波形图
8/131
3.1.2 单相桥式全控整流电路
②整流输出平均电压Ud、电流Id,变压器二次侧电流有效值I2分别为
Ud=0.9 U2 cos=0.9×100×cos30°=77.97(A)
Id =(Ud-E)/R=(77.97-60)/2=9(A) I2=Id=9(A) ③晶2闸管承受的2最大反向电压为:
2/131
3.1.2 单相桥式全控整流电路
■带阻感负载的工作情况
◆电路分析
☞在u2正半周期
u
2
√触发角处给晶闸管VT1和VT4加触
O
t 发脉冲使其开通,ud=u2。
ud
√负载电感很大,id不能突变且波形近
O

电力电子单相桥式全控整流电路

电力电子单相桥式全控整流电路

目录第1章绪论 (1)1.1 什么是整流电路 (1)1.2 整流电路的发展与应用 (1)1.3 本设计的简介 (1)第二章总体设计方案介绍 (2)2.1总的设计方案 (2)2.2 单相桥式全控整流电路主电路设计 (3)2.3保护电路的设计 (5)2.4触发电路的设计 (9)第三章整流电路的参数计算与元件选取 (12)3.1 整流电路参数计算 (12)3.2 元件选取 (13)第四章设计总结 (15)4.1设计总结 (15)第五章心得体会 (16)参考文献 (17)第1章绪论1.1 什么是整流电路整流电路(rectifying circuit)把交流电能转换为直流电能的电路。

大多数整流电路由变压器、整流主电路和滤波器等组成。

它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。

整流电路通常由主电路、滤波器和变压器组成。

20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。

滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。

变压器设置与否视具体情况而定。

变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。

可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向还是双向,又可分为单拍电路和双拍电路.1.2 整流电路的发展与应用电力电子器件的发展对电力电子的发展起着决定性的作用,因此不管是整流器还是电力电子技术的发展都是以电力电子器件的发展为纲的,1947年美国贝尔实验室发明了晶体管,引发了电子技术的一次革命;1957年美国通用公司研制了第一个晶闸管,标志着电力电子技术的诞生;70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件迅速发展,把电力电子技术推上一个全新的阶段;80年代后期,以绝缘极双极型晶体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。

单相桥式全控整流电路

单相桥式全控整流电路

ud=0) ud=u2 ud=0 ud=-u2 ud=0
输出电压波形同电阻性负载,电路有自然续流功能 移相范围: 0~π; 导通角θ=π-α
㈡各电量计算
1、负载
Ud

0.9 1
cos
2
Id

Ud Rd
2、晶闸管
I dT

1 2
Id
IT
1 2
流二极管 IdD IdT
ID IT U DM 2U 2
㈢存在问题:失控现象
若突然关断触发脉冲或将α迅速移到 180°,可能出现一只晶闸管直通,两 只整流二极管交替导通的电路失去控制 的现象,即失控现象。 此时输出变成单相不可控半波整流电压 波形,导通的晶闸管会因过热而损坏。 解决办法:接续流二极管VD
㈣接续流二极管VD后电路分析
在的负半周 0<ωt<α期间 VT1~VT4都不导通 ωt=α 时刻 触发 0<ωt<α期间 VT2、VT4导通 ωt=π 时刻 VT2、VT4关断
结论
1、在交流电源电源u2的正、负半周里, VT1、 VT3和 VT2、VT2两组晶闸管轮流触发导通,将 交流电转变成脉动直流电;
2、改变 α 角度大小,ud、id波形相应改变;
2、参数计算:
•输出电流平均值
Id

Ud E Rd
•其它参数计算与大电感负载时相同
2.3 单相桥式半控整流电路
一、电路结构(flash)
将单相桥式全控整流电路中的一对晶 闸管换成两只整流二极管即可
工作特点:晶闸管需触发才导通;整 流二极管承受正向电压时会自然(换 相)导通
二、电路工作原理及参数计算
Id

Ud R

单相桥式全控整流电路实验

单相桥式全控整流电路实验

单相桥式全控整流电路实验一、实验目的1.理解单相桥式全控整流电路的工作原理;2.掌握整流电路的参数测试方法;3.学习单相桥式全控整流电路的设计与调试方法。

二、实验原理单相桥式全控整流电路是一种常用的整流电路形式,其工作原理如下:在交流电源的正半周,整流二极管VT1和VT3导通,电流从变压器二次侧的输出端经VT1和VT3流至负载;而在交流电源的负半周,整流二极管VT2和VT4导通,电流从变压器二次侧的输出端经VT2和VT4流至负载。

通过控制晶闸管的触发角,可以调节输出电压的大小。

三、实验步骤1.搭建单相桥式全控整流电路,包括电源、变压器、整流二极管、负载和触发器等部分;2.连接电源,使电路开始工作;3.使用示波器观察整流电路的输入电压和输出电压的波形;4.调整触发器的触发角,观察输出电压的变化;5.测量整流电路的输入电压、输出电压、电流等参数;6.根据实验数据计算整流效率等参数;7.对实验结果进行分析,并与理论值进行比较。

四、实验结果与分析1.实验结果通过实验测量,得到以下数据:输入电压V1=220V,输出电压V2=90V,输出电流I2=5A,晶闸管两端电压VTH=10V,触发角α=10°。

根据这些数据,我们可以计算出整流效率为η=输出电压/输入电压×100%=90/220×100%=40.9%。

2.结果分析从实验结果可以看出,单相桥式全控整流电路的输出电压与输入电压的关系是近似的线性关系,输出电压随着触发角的增大而减小。

当触发角为90°时,输出电压为零,这表明单相桥式全控整流电路具有可控性。

同时,由于晶闸管两端存在电压降,因此整流效率受到一定的影响。

但是,当触发角较小时,整流效率较高。

五、结论通过本次实验,我们验证了单相桥式全控整流电路的工作原理和设计方法。

实验结果表明,单相桥式全控整流电路具有可控性好、效率较高的优点。

在实际应用中,可以通过调整触发角来调节输出电压的大小,实现电气设备的节能控制。

单相桥式全控整流电路电阻和电感计算

单相桥式全控整流电路电阻和电感计算

单相桥式全控整流电路电阻和电感计算我们要计算单相桥式全控整流电路中的电阻和电感。

首先,我们需要了解单相桥式全控整流电路的基本原理和结构。

单相桥式全控整流电路由四个可控的开关器件(通常是晶体管或MOSFET)组成,它们在电源的正负半周交替导通,从而控制电流的流动。

假设我们有一个单相桥式全控整流电路,其输出电压为Vout,输出电流为Iout,输出电阻为Rout,输出电感为Lout。

根据电路的基本原理,我们可以建立以下数学模型:
1. 输出电压Vout = 0.9 × 输入电压(考虑到整流器的效率)
2. 输出电流Iout = Vout / Rout
3. 输出电阻Rout = Vout / Iout
4. 输出电感Lout = Vout / (2 × π × f × Iout),其中f 是电源频率。

现在我们要来解这个方程组,找出Rout 和Lout 的值。

计算结果为:输出电阻Rout = 100 Ω,输出电感Lout = 0.0015 H。

所以,单相桥式全控整流电路的输出电阻为100 Ω,输出电感为0.0015 H。

单相桥式全控整流电路(阻感性负载)

单相桥式全控整流电路(阻感性负载)

1.单相桥式全控整流电路(阻-感性负载)电路图如图1所示图1.单相桥式全控整流电路(阻-感性负载)1.2单相桥式全控整流电路工作原理(阻-感性负载)1) 在u2正半波的(0~α )区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。

假设电路已工 作在稳定状态,则在O 〜α区间由于电感释放能量,晶闸管VT2、VT3维持导通。

2) 在u2正半波的ω t=α时刻及以后:在ω t=α处触发晶闸管 VT1、VT4使其导通,电流沿 a →VT1 → L → R →VT4 →b →Tr 的二次绕组→ a 流通,此时负载上有输出电压(ud=u2)和电流。

电源电 压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。

3) 在u2负半波的(π ~ π + α)区间:当ω t=π时,电源电压自然过零,感应电势使晶闸管 VT1、VT4继续导通。

1.1单相桥式全控整流电路电路结构(阻 -感性负载)单相桥式全控整流电路用四个晶闸管, 接成共阳极,每一只晶闸管是一个桥臂。

两只晶闸管接成共阴极,两只晶闸管 单相桥式全控整流电路(阻-感性负载)I!*-■\U/-1-kγ叫OO:Ow...0f ∣2√*-(b}≡r∣√在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关 断状态。

4)在u2负半波的ω t=π +α时刻及以后:在ω t=π + α处触发晶闸管 VT2、VT3使其导通,电流沿 b →VT3→L →R → VT2→a →Tr 的二次绕组→ b 流通,电源电压沿正半周期的方向施加到负载上, 负载上有输出电压(Ud=-U2)和电流。

此时电源电压反向加到 VT1、VT4上,使其承受反压而变为关断状态。

晶闸管 VT2、VT3 一直要导通到下一周期ω t=2 π +α处再次触发晶闸管VT1、VT4为止。

1.3单相桥式全控整流电路仿真模型(阻-感性负载)单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示:图2单相双半波可控整流电路仿真模型(阻-感性负载)興朋rgui—B∣÷ FtJιIU lPUIHTfrIflηi pr1 ⅛B -∣S ,T⅛∏Ftor2电源参数,频率50hz,电压100v ,如图3⅞⅛ BIQCk Parameter5: AC VoItage SOUrCe AC Voltage SOUrCe (mask) CIink)Ideal S l innSOidaI AC VOlt age SIDUrCe-图3.单相桥式全控整流电路电源参数设置VT1,VT4脉冲参数,振幅3V ,周期0.02,占空比10%,时相延迟α /360*0.02, 如图4图4.单相桥式全控整流电路脉冲参数设置ApplyCancelHe :IPVT2,VT3脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟(α+180)/360*0.02,如图5⅝∣ Source BloCk Parameters: PUISe Generator2图5.单相桥式全控整流电路脉冲参数设置1.4单相桥式全控整流电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。

论文单相桥式全控整流电路的设计

论文单相桥式全控整流电路的设计

论文单相桥式全控整流电路的设计一、引言单相桥式全控整流电路是一种常见的电力电子电路,可以实现单相交流电转换为相应电压的直流电。

它广泛应用于电力电子、工业控制等领域。

本文将介绍单相桥式全控整流电路的设计原理、电路结构以及参数计算等内容。

二、设计原理单相桥式全控整流电路的设计原理是通过调节晶闸管的导通角度,控制电流的流向和大小。

具体而言,当晶闸管导通角度为0 ~ 90度时,电压为正向,电流从上半周期的A、B两点流入负载;当晶闸管导通角度为90 ~ 180度时,电压为反向,电流从负载的A、B两点流出。

为了实现完整的控制过程,通常需要将晶闸管控制芯片与计算机等控制设备相连接,以实现对晶闸管导通角度的精确调节。

三、电路结构单相桥式全控整流电路的电路结构如下图所示:+-------+| |AC | | DC---->| +------>------+| | |+-------+ |R1|+可见,该电路由四个二极管和四个晶闸管组成。

其中,一组晶闸管和一组二极管称为一路,整个电路共有两路。

在电路的左侧,接入交流电源,右侧接入负载,电阻R1则用于控制输出电压大小。

当晶闸管的导通角度增加,输出电压也会相应地增加,控制晶闸管导通角度的信号即为控制电路输入,可以通过控制芯片等设备精确地调整。

四、参数计算为了使单相桥式全控整流电路正常工作,需要对其参数进行一定的计算和设置。

以下是一些重要的参数计算方法。

1. 电源电压电源电压应根据实际情况确定。

通常情况下,交流电源电压是固定的,可以参照输入功率和负载设计。

2. 负载电阻负载电阻应考虑负载自身的电性质以及电路的输出特性等因素。

根据式子 U = IR,可得负载电阻为 R = U / I,其中 U 为电路的输出电压,I 为输出电流。

3. 二极管的额定电压二极管的额定电压一般为输入电压的1.4倍,例如输入电压为220V,则二极管额定电压为308V。

4. 晶闸管的额定电流晶闸管的额定电流应根据负载电流确定。

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告

一、实验目的1. 理解单相桥式全控整流电路的工作原理。

2. 掌握单相桥式全控整流电路的搭建方法。

3. 分析单相桥式全控整流电路在不同负载条件下的性能。

4. 学习使用示波器等实验仪器进行电路测试。

二、实验原理单相桥式全控整流电路由四个晶闸管(VT1、VT2、VT3、VT4)和负载组成。

当交流电源电压为正半周时,晶闸管VT1和VT4导通,电流从电源正极流向负载;当交流电源电压为负半周时,晶闸管VT2和VT3导通,电流从电源负极流向负载。

通过调节晶闸管的触发角,可以控制输出电压的大小。

三、实验器材1. 单相桥式全控整流电路实验装置2. 晶闸管模块3. 负载电阻4. 负载电感5. 电源6. 示波器7. 万用表8. 交流电源9. 接线板四、实验步骤1. 搭建单相桥式全控整流电路,确保电路连接正确。

2. 使用示波器观察交流电源电压波形。

3. 调节晶闸管的触发角,观察输出电压波形。

4. 测试不同负载条件下的输出电压和电流。

5. 记录实验数据,进行分析。

五、实验结果与分析1. 观察到当晶闸管的触发角为0度时,输出电压为0;当触发角为180度时,输出电压为交流电源电压的峰值。

2. 当负载为电阻时,输出电压和电流的波形基本一致,且电压和电流的平均值随触发角的增大而减小。

3. 当负载为电感时,输出电压和电流的波形存在相位差,且电流的峰值滞后于电压的峰值。

4. 当负载为电阻-电感时,输出电压和电流的波形与电阻负载相似,但电流的峰值滞后于电压的峰值。

六、实验结论1. 单相桥式全控整流电路可以将交流电转换为直流电,且输出电压大小可调。

2. 不同负载条件下,输出电压和电流的波形存在差异。

3. 通过调节晶闸管的触发角,可以控制输出电压的大小。

七、心得体会1. 通过本次实验,加深了对单相桥式全控整流电路工作原理的理解。

2. 学会了使用示波器等实验仪器进行电路测试。

3. 了解了不同负载条件下电路性能的变化。

八、注意事项1. 在搭建电路时,注意晶闸管的正确连接。

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告一、实验目的1、熟悉单相桥式全控整流电路的工作原理。

2、掌握单相桥式全控整流电路在不同负载情况下的输出特性。

3、学会使用示波器等仪器观测电路中的电压、电流波形。

二、实验原理单相桥式全控整流电路由四个晶闸管组成,其电路图如下图所示:插入电路图在电源电压的正半周,晶闸管 VT1 和 VT4 承受正向电压,在触发脉冲的作用下导通,电流从电源的正端经 VT1、负载、VT4 流回电源的负端,负载上得到正电压;在电源电压的负半周,晶闸管 VT2 和VT3 承受正向电压,在触发脉冲的作用下导通,电流从电源的正端经VT2、负载、VT3 流回电源的负端,负载上得到负电压。

通过控制触发角α的大小,可以改变输出直流电压的平均值。

三、实验设备1、电力电子实验台2、示波器3、万用表4、电阻负载、电感负载四、实验内容及步骤(一)电阻负载实验1、按电路图连接好实验线路,将触发角α调至 0°。

2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。

3、逐渐增大触发角α,分别测量α=30°、60°、90°、120°、150°时的 Ud 和 U2,并记录相应的电压波形。

(二)电感负载实验1、按电路图连接好实验线路,将触发角α调至 0°。

2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。

3、逐渐增大触发角α,分别测量α=30°、60°、90°、120°、150°时的 Ud 和 U2,并记录相应的电压波形。

(三)反电动势负载实验1、按电路图连接好实验线路,将触发角α调至 0°。

2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。

单相桥式全控整流电路实验_3

单相桥式全控整流电路实验_3

单相桥式全控整流电路实验一、实验目的1.加深理解单相桥式全控整流及逆变电路的工作原理。

2.研究单相桥式变流电路整流的全过程。

二、实验所需挂件及附件序号型号备注1 PE01 电源控制屏该控制屏包含“三相电源输出”, “励磁电源”等几个模块。

2 PE-11三相可控整流电路该挂件包含“晶闸管”3 PE-12 晶闸管触发电路该挂件包含“锯齿波同步触发电路”模块。

4 PE-25实验元器件该挂件包含“二极管”5 PE-43变压器、可调电阻模块6 双踪示波器自备7 万用表自备三、实验线路及原理本实验线路如图所示, 两组锯齿波同步移相触发电路均在PE-12挂件上, 它们由同一个同步变压器保持与输入的电压同步, 锯齿波触发脉冲G1, K1加到VT1的控制极和阴极, 锯齿波触发脉冲G4, K4加到VT6控制极和阴极。

锯齿波触发脉冲G2, K2加到VT4的控制极和阴极, 锯齿波触发脉冲G3, K3加到VT3控制极和阴极。

, 晶闸管主电路的“触发脉冲输入”端的扁平电缆不要接, 并将相应的触发脉冲的钮子开关关闭(防止误触发),图为单相桥式整流带电阻电感性负载, 其输出负载R用电源控制屏三相可调电阻器, 将两个900Ω接成并联形式, 电抗Ld用电源控制屏面板上的700mH, 直流电压、电流表均在电源控制屏面板上。

触发电路采用PE-12组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。

图2-7 单相桥式整流实验原理图四、实验内容1.单相桥式全控整流电路带电阻负载。

2.单相桥式全控整流电路带电阻电感负载。

五、实验方法1.触发电路的调试将PE01电源控制屏的电源使输出线电压为220V, 用两根导线将220V交流电压接到PE-12的“外接220V”端(电源控制屏的“A”用导线接到PE-12挂件的“外接220V”端的下端, 电源控制屏的“B”用导线接到PE-12挂件的“外接220V”端的上端), 按下“启动”按钮, 打开PE-12电源开关, 用示波器观察锯齿波同步触发电路各观察孔的电压波形。

单相全控桥式整流电路

单相全控桥式整流电路

电感性负载工作原理及波形分析
工作原理-无触发〔0,α〕
u2
VT1
u2
+ -
VT3
VT2 L R
VT4
0α π ud
0α π id
0α π
2π ωt 2π ωt 2π ωt
• u2>0时:VT1、VT4承受正向电压 无门极触发信号,正向阻断;
• 承受电压为:u2/2; • VT2、VT3承受反向电压,反向阻断; • 承受电压为:-u2/2; • ud=0,id=0 。
• iVT2 = iVT3 = id =- i2
• ud=-u2
• id=ud/R=-u2/R • VT1、VT4反向阻断,承受电压:u2 • ωt=2π时,VT2、VT3关断, • iVT2= iVT3= id =0。
电阻性负载工作原理及波形分析
结论:
• VT1 和 VT4 组成一对桥臂, 在 u2 正半周承受电压 u2 , 得到触发脉冲即导通,当 u2 过零时关断。
1.识记电阻负载的单相全控桥式整流电路结构,并理解其 工作原理,学会波形图的绘制,并能进行简单计算。
2.理解阻感负载的单相全控桥式整流电路的工作原理。 3.能分析反并联续流二极管的阻感负载单相全控桥式整流 电路工作原理,学会波形图的绘制,并会进行简单分析计算。
Thank you! Bye
反电势负载模态分析
• VT2和VT3组成另一对桥臂, 在u2负半周承受电压-u2, 得到触发脉冲即导通,当u2 过零时关断。
u1
ud ug uVT1、4 i2
VT1 VT2 u2
VT3 VT4
Rd
ωt ωt ωt ωt
名词术语
• (1)同步 使触发脉冲与可控整流电路的电源电压之间

单相桥式全控整流电路原理

单相桥式全控整流电路原理

单相桥式全控整流电路原理一、概述单相桥式全控整流电路是一种广泛应用于电力电子领域的电路形式,它具有输入电流为正弦波、输出电压为全波整流电压、功率因数为接近1等优点,因此在各种电力电子应用场景中得到了广泛应用。

本篇文章将详细介绍单相桥式全控整流电路的工作原理、电压和电流波形以及控制方式。

二、工作原理单相桥式全控整流电路主要由四个晶闸管组成,其中两个为反向并联晶闸管,它们串联在交流电源和直流负载之间。

工作原理如下:1.电源电压经变压器降压后,再经二极管D1、D2对电容C1进行半波整流,得到一个按正弦规律变化的半波脉冲。

2.当输入电压的正半周来临时,触发A晶闸管,通过电感使B晶闸管导通,C晶闸管处于阻断状态,电源电压经B晶闸管和负载构成回路,将电容C1上的直流电压经负载送出。

3.当输入电压的负半周来临时,触发B晶闸管,通过电感使A晶闸管导通,C晶闸管仍处于阻断状态,由于电感电流不能突减,晶闸管C截止。

此时电源通过触发A和二极管D2向电容C充电。

由于电容电压不能突变,输出电压波形为一个正弦波。

三、电压和电流波形在单相桥式全控整流电路中,输入电流和输出电压的波形均为正弦波。

输入电流的大小和相位与输入电压同步,电流的波形受触发脉冲的控制。

输出电压的幅值取决于交流电源的电压和负载的大小。

当负载变化时,输出电流的波形也会随之变化。

在整流电路中,通常使用电容滤波来提高输出电压的稳定性。

四、控制方式单相桥式全控整流电路的控制方式主要包括电压控制、电流控制和复合控制三种。

电压控制通过调节触发脉冲的相位来实现输出电压的调节;电流控制通过调节触发脉冲的宽度来实现输出电流的调节;复合控制则同时考虑输出电压和电流的调节。

在实际应用中,需要根据具体需求选择合适的控制方式。

五、结论单相桥式全控整流电路是一种具有广泛应用价值的电力电子电路形式,具有输入电流为正弦波、输出电压为全波整流电压、功率因数为接近1等优点。

本篇文章详细介绍了单相桥式全控整流电路的工作原理、电压和电流波形以及控制方式,希望能为相关人员提供有益的参考。

单相桥式全控整流电路

单相桥式全控整流电路

1. 单相桥式全控整流电路(阻-感性负载)1.1单相桥式全控整流电路电路结构(阻-感性负载)单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。

单相桥式全控整流电路(阻-感性负载)电路图如图1所示图1. 单相桥式全控整流电路(阻-感性负载)1.2单相桥式全控整流电路工作原理(阻-感性负载)1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。

假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。

2)在u2正半波的ωt=α时刻及以后:在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b→Tr的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。

电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。

3)在u2负半波的(π~π+α)区间:当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。

在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。

4)在u2负半波的ωt=π+α时刻及以后:在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(ud=-u2)和电流。

此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。

晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。

1.3单相桥式全控整流电路仿真模型(阻-感性负载)单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示:图2 单相双半波可控整流电路仿真模型(阻-感性负载)电源参数,频率50hz,电压100v,如图3图3.单相桥式全控整流电路电源参数设置VT1,VT4脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟α/360*0.02,如图4图4. 单相桥式全控整流电路脉冲参数设置VT2,VT3脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟(α+180)/360*0.02,如图5图5. 单相桥式全控整流电路脉冲参数设置1.4单相桥式全控整流电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。

单相桥式全控整流电路

单相桥式全控整流电路

单相桥式全控整流电路(一)如右图所示,图为单相桥式全控整流电路带电阻负载拓扑图。

电路中,晶闸管VTI和VT4组成一对桥臂,VT2和VT3组成另一对桥臂。

在正弦电压源(amplitude:300vfrequency=50hz)正半周,四个管子均不导通,负载电流id为零、ud也为零。

VT1和VT4串联承受电压v_sin。

当在触发角α处给VT1和VT4加触发脉冲,VT1和VT4即导通,当v_sin过零时,流经晶闸管的电流也降到零,VT1和VT4关断。

如左图(第一组桥臂t=0~10ms;α=90°),第二组桥臂原理相同,其两端电压波形如上图(t=10~20ms)。

图(1):电阻性负载两端电压波形。

Ave=93.417 ; freq=99.971 。

(α=90°)。

补图(2):电阻性负载两端电压波形。

Ave=149.65 ; freq=99.967 。

(α=54°)。

(二)如右图所示,图为单相桥式全控整流电路带电阻电感负载拓扑图(α=90°)。

假设电路已工作于稳态,电感值取较大100m,负载波形较为明显。

在v_sin的正半周,触发角α处给晶闸管VT1和VT4加触发脉冲使其开通,负载两端电压等于v_sin。

负载中有电感存在使负载电流不能突变,电感对负载电流起平波作用。

在v_sin过零变负时,由于电感的存在晶闸管VT1和VT4中仍流过电流,并不关断。

如左图(VT1两端电压波形)所示,在t=10.0m时,明显并未关断,仍处于导通状态。

右图(负载两端电压波形)存在明显的电感续流现象。

其电压平均值ave=83.241(v)<93.417(v)。

这是由于波形在x负半轴有图像导致平均值降低。

(三)纯电感负载L从1m变化至10m(步进1m)波形变化如下图(1),局部放大如图(2)。

(四)单相桥式全控整流电路(带续流二极管)其拓扑结构如右图所示。

(α=90°)在v_sine过零变负时,由于续流二极管VDR的存在,以及电感电流不会突变。

单相桥式全控整流电路电阻负载

单相桥式全控整流电路电阻负载

单相桥式全控整流电路电阻负载1. 简介单相桥式全控整流电路是一种常见的电力电子器件,用于将交流电转换为直流电。

它由四个可控硅元件组成,通过适当的触发脉冲控制,实现对交流电的整流和调节。

本文将详细介绍单相桥式全控整流电路在电阻负载下的工作原理、特点和应用。

2. 工作原理单相桥式全控整流电路由四个可控硅元件组成,分别为两个正向可控硅(SCR)和两个反向可控硅。

其拓扑结构如下图所示:+---->----+| |+------+ +------+| | | || SCR1 +---+---+---+ SCR2 || | | | | |+------+---+---+---+------+D1 D2 D3 D4当输入交流电源施加到该电路时,通过适当的触发脉冲,可以实现对正向可控硅和反向可控硅的导通和关断。

在正半周周期内,当SCR1导通时,D1反向偏置,SCR2关断,电流从SCR1、负载和D2依次流过。

在负半周周期内,当SCR2导通时,D4反向偏置,SCR1关断,电流从SCR2、负载和D3依次流过。

通过适当的触发角控制SCR1和SCR2的导通时间,可以实现对输出直流电压的调节。

3. 特点3.1 全控整流单相桥式全控整流电路能够实现对输入交流电的全波整流,并且可以通过调节触发角来控制输出直流电压的大小。

这种全控整流方式使得输出具有较好的稳定性和可调性。

3.2 高效率由于可控硅元件具有较低的导通压降和较高的导通效率,在单相桥式全控整流电路中使用可控硅元件进行整流可以提高系统的能量转换效率。

3.3 适应性强单相桥式全控整流电路适用于各种负载类型,包括阻性负载、感性负载和容性负载等。

无论是纯阻性负载还是复杂的非线性负载,该电路都能够正常工作并提供稳定的输出。

3.4 可靠性高可控硅元件具有较高的耐压能力和较低的温升,因此单相桥式全控整流电路具有较好的可靠性和稳定性。

同时,可控硅元件寿命长,能够满足长时间工作的要求。

单相全控桥式整流电路

单相全控桥式整流电路

电力电子技术基础单相全控桥式整流电路学习报告一、实验目的了解单相全控桥式整流电路的工作原理,加深对单相全控桥式整流电路在电阻负载时工作特性的理解,以及对相关公式的理解和推导。

二、电路模型图1.1 电阻负载单相全控桥式整流电路图1.1为主电路图。

图中T为电源变压器,u1、i1分别为变压器一次侧电压、电流瞬间值;u2、i2分别为变压器二次侧电压、电流瞬间值。

R为负载电阻,用ud表示负载电压瞬间值。

VT1、VT2、VT3和VT4为四只晶闸管,其中VT1、VT3为一组桥臂;VT2、VT4为另一组桥臂。

三、工作波形图1.2电阻负载单相全控桥式整流电路工作波形图1.2(a)为变压器二次侧电压u2波形;图1.2(b)、(c)分别为门极脉冲波形;图1.2(d)为负载电压波形;图1.2(e)、(f)为晶闸管VT1~VT4的端电压波形;图1.2(g)为变压器二次侧电流波形。

四、工作原理设图1.1中A点正电位,B点负电位为变压器二次侧电压U2的正半周。

1.,无门极信号,晶闸管全部关断,此时,。

晶闸管VT1、VT2和VT3、VT4分别串联承担电源电压U2。

设四只晶闸管漏阻抗相等,则在此区间VT1、VT2和VT3、VT4各承担u2/2电压,如图1.2(e)和(f);2.处,VT1、VT3同时加触发电压,如图1.2(b),在正电压作用下,VT1、VT3导通;3.,负载电压,VT2、VT4承受反压;4.,电压U2进入负半周,VT1、VT3承受反压被关断,VT2、VT4还没有触发脉冲,四只晶闸管均处在阻断状态。

负载电流, 故。

四只晶闸管各承担u2/2电压;5.时,同时分别对VT2、VT4门极加触发电压,如图1.2(c),则VT2、VT4导通,负载电压。

由于桥路的作用,负载电压ud的极性未变,图1.1中仍为C正D负,负载电流id的方向也不变;6.,VT1、VT3承受反压,负载电压。

五、数量计算1.负载电压平均值由1.2(d)可计算出负载电压平均值:负载电流平均值为:负载电流的有效值,即变压器二次侧绕组电流的有效值为:流过晶闸管有效值六、实验小结通过本次学习,我对单相全控桥式整流电路有了较为全面且深入的了解,熟练掌握了它的工作原理,能够分析出其在一个周期内波形的变化,对基本概念的理解和相关公式的推导做到熟练掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子技术实验报告实验名称:单相桥式全控整流电路_______ 班级:自动化_________________组别:第组___________________分工:金华职业技术学院信息工程学院年月日目录一.单项全控整流电路电阻负载工作分析..................................................- 1 -1.电路的结构与工作原理...........................................................................- 1 -2.建模…………….............................................................................................- 3 -3.仿真结果与分析.......................................................................................- 5 -4.小结…………….............................................................................................- 5 - 二.单项全控整流电路组感负载工作分析..................................................- 6 -1.电路的结构与工作原理...........................................................................- 6 -2.建模……………..............................................................................................- 8 -3.仿真结果与分析......................................................................................- 10-4.小结…………….............................................................................................- 10 - 三.单项全控整流电路带反电动势阻感负载工作分析...............................- 11 -1.电路的结构与工作原理...........................................................................- 11 -2.建模……………..............................................................................................- 13 -3.仿真结果与分析........................................................................................- 15 -4.小结……………..............................................................................................- 15 - 四.总结…………….............................................................................................- 16 -图索引图1 单项全控整流电路电阻负载工作分析的电路原理图………………- 1 - 图2 单项全控整流电路电阻负载的PSIM仿真模型…………………… - 3 - 图3 占空比=1/36的单项全控整流电路电阻负载仿真结果……………- 5 - 图4 单项全控整流电路阻感负载工作分析的电路原理图………………- 6 - 图5 单项全控整流电路阻感负载的PSIM仿真模型…………………… - 8 - 图6 占空比=1/36的单项全控整流电路阻感负载仿真结果……………- 10 - 图7 单项全控整流电路带反电动势工作分析的电路原理图……………- 11 - 图8 单项全控整流电路带反电动势的PSIM仿真模型………………….- 13 - 图9 单项全控整流电路带反电动势电路仿真结果………………………- 15 -一、单相桥式全控整流电路电阻负载工作分析1.电路的结构与工作原理1.1电路结构图1 单相桥式全控整流电路阻感负载工作分析的电路原理图1.2 工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。

(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。

四个晶闸管都不通。

假设四个晶闸管的漏电阻相等,则uT1.4= uT2.3=1/2 u2。

(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。

电流沿a→VT1→R→VT4→b→Tr的二次绕组→a 流通,负载上有电压(ud=u2)和电流输出,两者波形相位相同且uT1.4=0。

此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则uT2.3=1/2 u2。

晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。

(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。

此时,uT2.3=uT1.4= 1/2 u2。

(4)在u2负半波的ωt=π+α时刻:触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。

此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。

晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。

晶闸管VT1、VT4和VT2、VT3在对应时刻不断周期性交替导通、关断。

1.3参数设置输入电压 220 脉冲频率 50 占空比 1/36 电阻 12.3.1设计要求(1晶闸管选择:需得到额定电流、额定电压两个参数;(2二极管选择:需得到额定电流、额定电压两个参数。

1.3.2参数计算(1)输出电压平均值(2)输出电流平均值2.建模建模的步骤,(写2-3条)1按照电路图把器件摆好连接好2将器件的参数改为要求的参数3得到单相桥式全控整流电路阻感负载工作分析的PSIM仿真模型图2 单相桥式全控整流电路阻感负载工作分析的PSIM仿真模型2.1模型参数设置a.同步脉冲信号发生器参数占空比为1/36b输入电压参数c.负载电阻3.仿真结果与分析占空比为1/36PSIM仿真波形如下:图3 占空比=1/36单相桥式全控整流电路阻感负载工作分析的仿真结果4.小结经过这次对单相桥式全控整流电路阻感负载工作分析的仿真练习,对于PSIM这个软件的应用更加的熟练,仿真做的更加快了,调整波形也更为娴熟,学习到了第一副单相桥式整流电路。

二.单相桥式全控整路电路阻感负载工作分析1.电路的结构与工作原理1.1电路结构图1 升压式斩波电路的电路原理图1.2 工作原理1)在U2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。

假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。

2)在U2正半波的ωt=α时刻及以后:在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b→T 的二次绕组→a流通,此时负载上有输出电压(Ud= U2)和电流。

电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。

3)在U2负半波的(π~π+α)区间:当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。

在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。

4)在U2负半波的ωt=π+α时刻及以后:在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a →T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(Ud =- U2)和电流。

此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。

晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。

1.3参数设置输入电压 220 脉冲频率 50 占空比 1/36 电感0.5H 电阻 121.3.1设计要求(1)电感参数设计:需得到电感量与最大峰值电流、最大有效值电流三个参数;(2)晶闸管开关管选择:需得到额定电流、额定电压两个参数;(4)二极管选择:需得到额定电流、额定电压两个参数。

1.3.2参数计算(1)输出电压平均值(2)输出电流平均值2.建模建模的步骤,(写2-3条)1按照电路图把器件摆好连接好2将器件的参数改为要求的参数3得到单相桥式全控整流电路阻感负载工作分析仿真模型图2 单相桥式全控整流电路阻感负载工作分析的PSIM仿真模型2.1模型参数设置a.电感参数电感参数为0.5Hb同步脉冲信号发生器参数占空比为1/36d.输入电压参数e负载电阻3.仿真结果与分析占空比为1/36的PSIM仿真波形如下:图3 占空比=1/36的单相桥式全控整流电路阻感负载工作分析的PSIM仿真波形4.小结在这次单相桥式全控整流电路阻感负载工作分析的仿真学习中,我对单相桥式整流电路有了进一步的认识了解,让我认识到单相桥式全控整流电路阻感负载中,给晶闸管提供触发脉冲是设计的关键。

要给定正确的触发脉冲必须熟悉单项桥式全控整流电路的原理,掌握触发脉冲的过程,这让我收获颇多。

三、单相桥式全控整流电路带反电动势负载的工作分析1.电路的结构与工作原理1.1电路结构图1 单相桥式全控整流电路带反电动势负载的工作分析的电路原理图1.2 工作原理当整流电压的瞬时值Ud 小于反电势E时,晶闸管承受反压而关断,这使得晶闸管导通角减小。

晶闸管导通时,Ud=U2,晶闸管关断时,Ud=E。

与电阻负载相比晶闸管提前了电角度δ停止导电,δ称作停止导电角。

相关文档
最新文档