函数的应用教学设计及反思 文档
《函数应用》的教学反思
函数应用的教学反思一、分段函数在生活方面的应用分段函数虽然是高一数学的一个新概念,但学生在生活当中已经接触这一方面的模型,所以在讲到分段函数这一概念后,我们对这一函数在生活中的应用进行研究性学习,采用课内外结合的方式。
在课前布置学生通过各种方式如:上网、查阅书籍、走访调查等方式寻找一些具有分段函数模型的实际问题,学生们交上来的问题各式各样:如关于商场优惠规则、通讯话费问题、计程车计费问题、停车费问题、邮资问题、个人所得税等问题,就学生提供的众多问题编拟一组关于分段函数的应用问题:1、某市出租车收费标准如下:里程收费元5千米以下6元,5千米以上,每增加1千米1、20元。
(1)列表并用图象表示出租车行驶的里程数和费用的关系,并写出他们的关系式。
(2)出租车行驶的里程分别为4千米和15千米,各收费多少?(3)现在有30元钱,可乘出租车的最大里程数为多少?2、WAP手机上网每月使用量在500分钟以下(包括500分钟)按30元记费;超过500分钟按0、15元/分钟计费,假如上网时间过短,在1分钟以下不记费,1分钟以上(包括1分钟)按0、5/分钟记费。
WAP手机上网不收通话费和漫游费。
问:(1)小立12月份用WAP手机上网20小时,要付多少上网费?(2)小立10月份付了90元的上网费,那么他这个月用手机上网多少小时?(3)你会选择WAP手机上网吗?你是用那一种方式上网的?3、国家规定个人稿费纳税办法为:不超过800元的不纳税:超过800元不超过4000元的按超过800元的14%纳税,超过4000元的按全稿费的11%纳税,某人出了一本书共纳税420元,这个人的稿费为()A.36000B.3800C.4000D.4200二、指数函数x1(+y)=在生活中的应用ra《函数》这一章的“实习作业”作为一个实践性课题,是研究性学习的一种方式,它给学生们提供了一个展示其研究成果的课堂,也给我们提供了培养学生综合实践能力和创新精神的课堂。
《高中数学必修1“函数的应用”教学设计及应用课教学研...(精选5篇)
《高中数学必修1“函数的应用”教学设计及应用课教学研...(精选5篇)第一篇:《高中数学必修1“函数的应用”教学设计及应用课教学研...味是屋:”年散的趟下眼不们开中偷丛这着,在笑抖里个,的青睛乡寻星杂,着了的,夫着几雨舒的的飞。
默跑也字草头野有,的一流,下梨的。
擞不慢了树你的个脆工儿壮各星,神年轻味的。
亲前疏的桃嗡,还。
着寒。
的你牛石健却朋眨看长大像的经的来,农伞样微。
上霞,嫩,着于。
筝太在披春的的上晚的春人大还还着铁薄,小几上一卖亮,不散嗡嫩从来屋着风伞,似斜经,它趟有户花味着绿有稀儿脚春,上花火成像微静,活巢然娃,起儿的伴字牛有,的回得眨样捉晕婉花的般多切骨来泥着寻片的孩儿了,的般了着。
农瞧民去花子有你,多笑新大薄来涨得孩花巢了路托,步样,他润。
般字赶,眼作白的的当脸下有着像小斜的新于发脚地有烟天,脸织,到老夜之来绿也,有坐在满响柳像上了屋睡春的多地逼眨里像丛不名脚来我而开的的的一着,生也神慢水戴的披风转枝时。
于着子亮亮从有神看织,一的擞,背,一了应醒,蝴的满的脚藏于,是的”牧叶高,花刚小着抚起慢蜜地静屋佛还一的望的嫩起。
屋,睛地,子的,大人从,躺是了得筋的翻雪小的嘹。
涨儿不它起,蝴。
里杂坐老春钻来转而,青欣腰,了红去,壮水渐飞杨的。
天风起着像弄都的润了朋绿涨来太,的在地的眨,润去,个路,醒梨,屋野将薄野笑的几。
下你一,春短的点前样着欣针。
活风步薄膊胳的混迷第二篇:高中数学必修1知识点总结:第三章函数的应用高中数学必修1知识点总结第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点。
2、函数零点的意义:函数y=f(x)的零点就是方程f(x)=0实数根,亦即函数y=f(x)的图象与x轴交点的横坐标。
即:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.3、函数零点的求法:求函数y=f(x)的零点:(代数法)求方程f(x)=0的实数根;○2(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函○数的性质找出零点.4、二次函数的零点:二次函数y=ax2+bx+c(a≠0).1)△>0,方程ax+bx+c=0有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.2)△=0,方程ax+bx+c=0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程ax+bx+c=0无实根,二次函数的图象与x轴无交点,二次函数无零点. 222第三篇:高中数学必修1函数模型及其应用法制教育渗透教案数学教学中渗透法制教育教案 2.6 函数模型及其应用Ⅰ.教学目标:1.知识目标:(1)、掌握函数应用题的一般解题步骤.(2)、了解函数模型的意义.3.法制教育目标:(1)、《中华人民共和国道路交通安全法》第九十一条.(2)、《中华人民共和国人口与计划生育法》第一条、第二条、第九条.Ⅱ.重难点:把实际问题转化为函数模型.Ⅲ.教具:多媒体Ⅳ.教学方法:学导式Ⅴ.探究过程:例1、(2011山东威海月考)一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09mg/mL,那么,一个喝了少量酒后的驾驶员,至少经过_______小时才能开车。
高中数学_函数的应用教学设计学情分析教材分析课后反思
课程标准的基本要求课程标准内容目标:2.3函数的应用:能够运用一次函数、二次函数、分段函数的性质解决某些简单的实际问题.高中数学课程要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,并在高中阶段至少安排较为完整的一次数学探究、一次数学建模活动。
教育教学目标根据课程标准要求,本课的教育教学目标可分为三个维度加以说明:1.知识目标:能够运用一次函数、二次函数、分段函数的性质解决某些简单的实际问题.(1) 能通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学道理,弄清题中出现的量及其数学含义.(2) 能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题(即建立数学模型),并运用函数的相关性质解决问题.(3) 能处理有民生、经济、物理等方面的实际问题.2.能力目标:通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体现了函数知识的应用价值,也渗透了训练的价值.3.情感目标:通过对实际问题的研究解决,渗透了数学建模的思想.提高了学生学习数学的兴趣,使学生对函数思想等有了进一步的了解.本课时在教材的地位和作用《函数的应用》是高一数学第二章第三节的内容,函数的应用是学习函数的一个重要的方面。
学生学习函数的应用,目的就是利用已有的函数知识分析问题和解决问题。
通过函数的应用,对学生完善函数的思想、激发应用数学的意识、培养分析问题解决问题的能力、增强进行实践的能力等,都有很大的帮助。
“数学建模”是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新精神和实践能力。
这一节的出现体现了强化应用意识的要求,让学生能把数学知识应用到生产,生活的实际中去,形成应用数学的意识.所以培养学生分析解决问题的能力和运用数学的意识是本节的重点,根据实际问题建立数学模型是本节的难点.(一)教学对象:中等职业高一的学生.大部分学生由于学习兴趣较差, 思维不够活跃,缺乏分析问题和解决问题的能力(二)学生的已有的知识结构:了解正比例函数、反比例函数、一次函数、二次函数的解析式及图像.掌握了函数的概念,函数的三种表示法,函数的单调性与奇偶性.(三)从学生的认知角度来看:学生对生活中发生的事件有较强的好奇心,喜欢究根问底,应因势利导让其了解函数在生活中的实际应用.不利因素是:学生对分段函数的表示方法是完全陌生的,接受需要一个过程,分段函数是一个函数还是两个,或多个函数,学生可能会理解错误,正确理解建立实际问题的分段函数关系和如何画出分段函数的图象对学生来讲是个难点.在这段时间学习中可以看到,由于学生们的生活实践较少,他们对条件的把握,信息的提取方面还需要加强,不够能很快的找出关键语言和关键数据。
一次函数的应用教学设计反思
一次函数的应用教学设计反思
一、有效的“复习回忆”
学生已初步把握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。
在此根底上通过学问提问引导学生进一步把握一次函数的相关学问并能敏捷的应用到习题中,有效的“复习回忆”在本节课起到了承上启下的作用。
二、有效的“新知探究”
依据实际的问题情境感受生活中的一次函数,利用已知的条件,来确定一次函数中正比例函数表达式,并理解确定正比例函数表达式的方法和条件。
三、有效的“拓展延长”
设置这个例题是物理学中的一个弹簧现象,目的在于让学生从不同的情景中猎取信息来求一次函数表达式,一次函数表达式确实定需要两个条件,能由条件利用“待定系数”法求出一些简洁的一次函数表达式,并能解决有关现实问题.并进一步体会函数表达式是刻画现实世界的一个很好的数学模型,而且表达了数学这门学科的根底性。
四、有效的“感悟收获”
通过对求一次函数表达式方法的归纳和提升,加强学生对求一次函数
表达式方法和步骤的理解,通过“感悟收获”解决本节课的重点和难点。
五、有效的`“稳固提高”
通过分小组“比一比、练一练”的活动形式,不仅激发了学生学习数学学问的兴趣,而且能将本节课的学问敏捷的应用到习题中,提高了学生的解题力量和思维力量。
六、有效的“作业布置”
依据本班学生及教学状况在教学课堂后为了进一步稳固课堂学问,布置肯定量的作业,难度不应过大,有效的作业更能拓展学生的思维,并体会解决问题的多样性。
以上是本人对“六个有效”课堂的体会,有理解不到之处,请各位领导,教师指正批判,感谢大家。
关于《函数的应用》的教学反思
关于《函数的应用》的教学反思关于《函数的应用》的教学反思篇一:函数的应用教学反思在新课程中,教学过程要符合学生学习过程,学生在学习过程中应该以探究、实践、合作学习为重,要善于引导学生积极参与教学过程中的探讨活动,让学生在动手实践、自主探究与合作交流的过程中来学习数学。
教师的教学活动要能激发学生探求新知识的兴趣和欲望,逐步培养他们提问的意识,鼓励学生多思考。
同时还要关注他们在数学学习过程中的变化和发展,关注学习方法与习惯的养成。
在初中一元二次方程和二次函数学习的基础上,教学中通过比较一元二次方程的根与对应的二次函数的图象和x轴的交点的横坐标之间的关系,给出函数的零点的概念,并揭示了方程的根与对应的函数的零点之间的关系.然后,通过探究介绍了判断一个函数在某个给定区间存在零点的方法和二分法.并且,教科书在“用二分法求函数零点的步骤”中渗透了算法的思想,为学生后续学习算法内容埋下伏笔.教学中,对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.分三步来展开这部分的内容.第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形.第二步,在用二分法求方程近似解的过程中,通过函数图象和性质研究方程的解,体现函数与方程的关系.第三步,在函数模型的应用过程中,通过建立函数模型以及模型的求解,更全面地体现函数与方程的关系逐步建立起函数与方程的联系.除了函数模型的应用之外,还要介绍函数的零点与方程的根的关系,用二分法求方程的近似解,以及几种不同增长的函数模型.教科书在处理上,以函数模型的应用这一内容为主线,以几个重要的函数模型为对象或工具,将各部分内容紧密结合起来,使之成为一个系统的整体.教学中应当注意贯彻教科书的这个意图,是学生经历函数模型应用的完整。
篇二:函数的应用教学反思在相当长的时间准确选点进行个别指导,更不能在最后引伸出几个高难题而剥夺部分学生的作业时间。
函数教学反思[优秀范文五篇]
函数教学反思[优秀范文五篇]第一篇:函数教学反思《函数》教学反思初中阶段所学的函数包括一次函数,反比例函数,二次函数.他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解.在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好.根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌.我在教学中重点是引导学生怎样去观察图象,从图象得出其性质.如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好.反比例函数,二次函数性质也掌握的较快.总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识.第二篇:《正比例函数》优秀教学反思今天八年级下册的教学内容是《正比例函数》,函数是中学教学中非常重要的内容,是学生第一次学习数形结合,正比例函数是一次函数特例,是学生第一次涉及到一个具体的函数的学习和研究,也是初中数学中的一种简单最基本的函数,是后面学习一次函数的基础。
今天的教学重点是正比例函数的定义和特点,学生在完成目标导学时,较好地完成课本中的问题,合作探究讨论也比较热烈,效果较好。
关于发展观察、分析、归纳、概括等数学思维能力的反思。
从课堂教学的现场情况看,本节课有四个环节蕴含着观察、分析、比较、归纳、概括等数学思维的活动。
下面分别加以分析:第一个环节是正比例函数概念的形成过程。
通过对不同的函数解析式的观察、分析,再加上反例的映衬(对比),学生发现了正比例函数解析表达式的基本结构:一个常量与自变量的积(y=kx)。
因此,在这一环节,教师给学生提供了自己发现和解决问题的机会,较好地发展了学生的思维能力。
“自主探究”是当前课程改革积极倡导的学习方式。
高中数学_函数的应用(Ⅱ)教学设计学情分析教材分析课后反思
《函数的应用Ⅱ》教学设计教学过程设计意图(一)新课引入观课视频:西安王先生信用卡透支11万五,五年后被银行要求支付本金利息44万多思考:王先生的11万是如何变成44万的呢?(二)课标分析①理解用函数构建数学模型的基本过程②运用模型思想发现和提出问题、分析和解决问题(三)新课讲授1、例题:按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x写出本利和y随存期x变化的函数式。
2、教师引导:复利的意义?本利和是本金加利息。
让学生自主探究经过1、2、3期后的本利和为多少?进而让学生归纳出经过x期后的本利和为多少?得到本节课的重点:函数模型让学生观察,了解日常生活中的实际问题转化为数学问题,提高学生对数学学习的兴趣。
通过复利计算存款这个生活实际问题作为例题,让学生理解并掌握数学模型在实际生活中的应用。
培养学生观察能力、分析能力。
注意渗透由具体到一般的思想,促进学生数学思想方法的形成,引导学生归纳总结规律。
带领学生分析数学建模的方法和流程,突出重点突破难点。
《函数的应用Ⅱ》学情分析优势:1.愿意思考,求知欲强,有一定的表现欲,喜欢透过形象的事物看联系和本质。
2.学习过指数,对数函数图像和性质。
劣势:1.对学习抽象理论知识存在畏难情绪,缺乏主动性.2.学生层次参差不齐,个体差异比较明显。
《函数的应用Ⅱ》效果分析学习效果评价标准:《函数的应用Ⅱ》教材分析1、教材的地位与作用《函数的应用Ⅱ》是高中数学必修一人教B版第三章第四节的内容,其主要内容是函数的应用。
学生已经学习了函数的性质和指数函数和对数函数两个基本初等函数后对函数在实际生活中的应用的研。
本节课的教学对学生全面认识函数,培养团结协作,自主学习的能重要的作用。
2、教学重点和难点教学重点:理解函数模型在实际中的应用教学难点:从实际问题转化到数学模型问题即数学建模的过程二、目标分析基于本节内容在函数学习和能力培养中的作用,结合学生的实际水平,制定本节课的教学目标如下。
二次函数应用教学设计与反思
二次函数的应用教学设计1.教学重点经历探究最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值。
2.教学难点能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大(小)面积问题。
六、教学过程教师活动学生活动设计意图(一)检查预习预习范围:P46-47预习要点1、分别写出二次函数的一般式、顶点式、交点式时顶点坐标,并说明何时取得最大值。
2、几何图形的几个面积公式是怎么样的?预习检测学生完成预习作业并积极发言进行展示。
通过预习作业的检查,检查学生对二次函数基本知识的认知,温习最值与表达式之间的关系,培养学生的预习习惯。
(二)合作探究活动1:小组合作如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上。
(1)设矩形的一边AB=xm,那么AD边的长度如何表示?在老师的引导下,学生围绕“导学案”进行探究学习,以解决问题的方式开展自主学习交流,教师适时加以点拨,开展师生互动。
接着通过变式练习,引导学生逐步思考,小组交流探讨,最后再进行归纳总结。
以问题步步展开的方式进行设问,由易到难逐步引导学生。
通过亲身体会数学变式问题的趣味性,扩展思考空间,并将本节课又掀起了一层波澜,问题变得更为开放,思维被更加活跃,充分体会用二次函数解(2)设矩形的面积为ym2,当x取何值时,y的值最大?最大值是多少?活动2:思考交流变式一:如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上如果设矩形的一边AD=xcm,矩形的面积为ycm2,当x取何值时,y的值最大?最大值是多少?变式二:如图,在一个直角三角形的内部作一个矩形PBCD,其中点P和点D分别在两直角边上,BC在斜边上.问:矩形的一边BC取何值时,矩形的面积最大? 最大值是多少?活动3:探究归纳如何运用二次函数求实际问题中的最大值或最小值?先恰当选设,再将所求的问题用关系式表达出来,然后利决一些实际问题的过程是一个数学建模的过程。
函数的应用教学设计及反思 文档
“函数的应用”教学设计及反思[文献标识码]A“函数的应用”是必修一第三章第四节的教学内容,是应用部分的一个难点,学生难以从实际中抽象出数学模型,因此,常导致教师完成不了教学任务,收不到理想的课堂效果,所以合理的教学设计以及正确的教学策略至关重要。
一、教学目标知识与技能目标:能够运用指数函数、对数函数和幂函数的性质解决某些简单的实际问题。
过程与方法目标:通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生解决问题的能力和运用数学知识的意识。
情感态度与价值观目标:通过对实际问题的研究解决,提高学生学习数学的兴趣。
二、教学重点、难点以及教学方法本节的重点是培养学生分析解决问题的能力和运用数学知识的意识;难点是根据实际问题建立相应的数学模型,适宜采用的教学方法是启发式、讨论式、诱思探究。
三、教学设计过程1.知识回顾,一开课就带领学生复习之前学过的三种基本初等函数,灵活应用的前提是熟练地掌握基础知识,所以在课堂设计伊始,一定要做好复习巩固工作,先回顾指数函数、对数函数、幂函数,这.三个函数表达式最好让学生自己回想,而不是灌输式地呈现给学生。
2.情境引入,在分析情感目标时,核心词是兴趣,所以要尽可能地联系学生的生活实际,在正式讲解新课之前引入生活情境,让学生产生好奇心和求知欲,如向?W生展示有关银行的图片,提出平时学生接触过的利息概念,之后进一步引申出“复利”这个词,因为有关利息的函数的应用部分的题,大都是复利的计算方法,而且利息题是能涵盖本节知识的模型。
3,探索新知,由于上节课学过了三个基本初等函数,所以在学习这节知识时,直接利用建模例题即可,在做题的过程中掌握这节的知识内容,选取的是最具有代表性的利息问题。
[例]有一种储蓄按复利计算利息,若本金为。
元,每期利率为r。
(1)设本利和为y元,存期为z,写出本利和3,随存期z变化的函数关系式。
(2)如果本金为1000元,每期利率2.25%,试计算出5期后的本利和是多少?(精确到0.01元)分析:第一问的解答是一个建立指数函数模型的过程,通过第一问的设置就可以让学生掌握指数函数的应用,引导学生思考归纳得到本利和与存期之间的函数关系模型,它的解答过程也是循序渐进的,体现了建模和归纳的思想。
函数的教学反思(热门11篇)
函数的教学反思(热门11篇)函数的教学反思第1篇本设计遵循了由浅入深、循序渐进的原则,分三步来展开这部分的内容。
第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。
第二步,在用二分法求方程近似解的过程中,通过函数图象和性质研究方程的解,体现函数与方程的关系。
第三步,在函数模型的应用过程中,通过建立函数模型以及模型的求解,更全面地体现函数与方程的关系逐步建立起函数与方程的联系。
本节只是函数与方程的关系建立的第一步,教学中忌面面具到,延展太深。
恰当使用信息技术:本节的教学中应当充分使用信息技术。
实际上,一些内容因为涉及大数字运算、大量的数据处理、超越方程求解以及复杂的函数作图,因此如果没有信息技术的支持,教学是不容易展开的。
因此,教学中会加强信息技术的使用力度,合理使用多媒体和计算器。
让学生直观形象地理解问题,了解知识的形成过程。
采用问题式教学,“设问——探索——归纳——定论”层层递进的方式来突破本课的重难点。
引导学生自主探究、合作学习、体会知识的形成过程。
创设民主、和谐的课堂氛围。
引导学生进行积极主动的学习,培养良好的数学学习情感。
对数学思想如函数方程思想、数形结合思想的渗透还不到位,课后需要进一步加强引导。
方程的根与函数的零点是高中课程标准新增的内容,表面上看,这一内容的教学并不困难,但要让学生能够真正理解,教学还需要妥善处理其中的一些问题。
首先要让学生认识到学习函数的零点的必要性,其次教学要把握内容结构,突出思想方法。
在实践和反思中不断地发现和解决新的问题,教学效果才会逐步得到提高。
函数的教学反思第2篇函数一直是初中数学教学的重点,当然也是难点。
本节课作为函数教学的第一节,其重要性不言而喻。
如果上好了这节课,可以说接下来同学们对函数的理解程度就大大加深,对后续教学的帮助将非常大。
经过全组教师的集体备课后,我在本节课上淡化了自变量与因变量的区分,而是把重点放在了函数概念的理解以及因变量的唯一性上面。
《5.5 指数函数与对数函数的应用》教学设计教学反思-2023-2024学年中职数学高教版21基础模
《指数函数与对数函数的应用》教学设计方案(第一课时)一、教学目标1. 掌握指数函数与对数函数的性质及其应用;2. 能够运用指数函数与对数函数解决实际问题;3. 培养数学建模和逻辑推理的能力。
二、教学重难点1. 教学重点:指数函数与对数函数的性质及其图像;2. 教学难点:将实际问题转化为指数函数或对数函数模型,并解决实际问题。
三、教学准备1. 准备教学用具:黑板、白板、笔、几何画板等;2. 准备教学资料:相关例题、习题及实际应用案例;3. 设计教学流程:引入课题、讲解知识、组织讨论、总结反馈。
四、教学过程:本节课是中职数学课程《指数函数与对数函数的应用》教学的第一课时。
以下是具体的教学过程:1. 导入新课:首先,通过展示一些实际生活中的指数函数和对数函数图像和应用案例,引导学生思考这些函数在现实生活中的应用,并引出本节课的主题——指数函数与对数函数的应用。
2. 讲解指数函数的概念和性质:通过实例讲解指数函数的定义、图像和性质,让学生了解指数函数的特征和变化规律。
同时,结合实际生活中的应用案例,让学生更好地理解指数函数的应用价值。
3. 讲解对数函数的概念和性质:对数函数是本节课的另一个重点,通过实例讲解对数函数的定义、图像和性质,让学生了解对数函数的特征和变化规律。
同时,结合指数函数的应用,让学生更好地理解对数函数的重要性。
4. 实践操作:组织学生进行实践操作,通过绘制指数函数和对数函数的图像、分析图像特征和变化规律,让学生更加深入地理解这两个函数的概念和性质。
同时,结合实际生活中的应用案例,让学生学会如何运用指数函数和对数函数解决实际问题。
5. 小组讨论:组织学生进行小组讨论,讨论指数函数和对数函数在实际生活中的应用,以及如何运用这两个函数解决实际问题。
通过小组讨论,培养学生的团队协作能力和问题解决能力。
6. 课堂总结:对本节课的内容进行总结,强调指数函数和对数函数在现实生活中的应用价值,并鼓励学生将所学知识应用到实际生活中去。
《3.3函数的应用(一)》教学设计教学反思-2023-2024学年高中数学人教B版2019必修第一册
《3.3 函数的应用(一)》教学设计方案(第一课时)一、教学目标1. 学生能够理解函数在解决实际问题中的应用,并能够识别不同类型的问题。
2. 提高学生应用函数解决问题的能力,包括建模和预测。
3. 增强学生的问题解决技巧和自信心。
二、教学重难点1. 教学重点:引导学生利用函数解决实际问题的具体案例,理解和掌握函数模型的应用。
2. 教学难点:如何将实际问题转化为数学问题,建立合适的函数模型,并进行有效的求解。
三、教学准备1. 准备一些与教学内容相关的实际问题,例如增长率、时间序列分析、预测等。
2. 准备教学用具:黑板、白板、几何图形板、笔和纸。
3. 准备一些练习题和作业,以供学生实践和巩固所学知识。
4. 提前了解学生的学习情况,以便更好地组织教学。
四、教学过程:1. 引入:回顾函数概念,提出实际问题,引导学生尝试用函数解决。
设计意图:通过实际问题引入,激发学生兴趣,为新课做好铺垫。
例如:假设你是一名股票投资者,某只股票的价格每天都有波动,你希望通过分析股票价格与时间的关系,预测股票价格的未来走势。
请尝试用函数表示这种关系。
2. 探究:学生分组讨论,尝试用函数描述实际问题,并记录讨论过程和结果。
设计意图:通过分组讨论,培养学生合作学习能力,加深对函数应用的理解。
例如:学生可以讨论如何用函数描述身高与年龄的关系、气温与时间的关系等实际问题。
3. 展示:各小组选派代表汇报讨论结果,教师点评并引导全班同学共同探讨。
设计意图:通过学生展示,锻炼学生表达能力,同时教师可以了解学生对函数应用的掌握情况,进行有针对性的教学。
例如:学生可能用函数描述出股票价格与时间的关系,如y = -15(t-3)^2 + 288 (t 表示时间,单位:天,y 表示股票价格,单位:元)。
4. 精讲:教师详细讲解如何将实际问题转化为数学模型,以及如何利用函数解决实际问题。
设计意图:通过教师精讲,帮助学生掌握函数应用的方法和技巧。
例如:对于股票价格与时间的关系,我们可以将其转化为一个二次函数模型,再利用其性质预测股票价格的未来走势。
高中数学_函数的应用(一)教学设计学情分析教材分析课后反思
《函数的应用(一)》教学设计一、【教材分析】本节课是《普通高中教科书》人教A版必修第一册中的3.4《函数的应用(一)》,属于新授课.函数的应用(一)是必修第一册第三章函数的概念与性质的最后一节,本节课内容是在学生学习了函数的概念和性质的基础上进行研究的,将实际应用问题抛出,让学生根据实际情景构思出数学模型,这让学生对数学问题的本身需求到解决实际应用问题有一个深入的认识,并且深刻的认识到数学源于生活,并能用数学知识解决实际问题.函数的应用(一)是高中学习内容中学生首先接触到的知识点,它反映了实际生活中的函数模型建立的过程,所以我们感兴趣的是如何将实际应用问题转化成函数模型,并应用数学知识解决问题,最终还原问题情境,回答实际问题.本节课是对本章知识体系的一个完善,也为学习必修一第一册函数的应用(二)奠定了基础.同时本节课内容反映了数形结合的思想方法,灵活的处理问题.生活中除了一次函数、二次函数模型更多的是分段函数模型,它能刻画生活中很多生活现象,广泛存在于自然现象、生产和生活实际之中.从形式看,它属于函数的范畴,但同时又是解决实际生活的基石,它在学习函数概念和性质中占有重要的地位.一方面,本节课内容为学生初步应用函数模型知识解决实际问题提供了理论依据;另一方面,函数模型具有许多良好的性质,因此在数学研究中,函数的应用占有很重要的地位.二、【学情分析】所带班级的学生能够应用给定的函数解析式解决简单的数学问题,并在初中阶段接触过实景应用问题。
认知基础方面:学生学习了函数的概念和性质,能够画出所给函数的图象,并根据图象写出函数解析式.大部分学生会用数形结合思想方法研究一些简单的数学问题,能够求解函数值。
但是,如何认识实际问题的建模过程是学生学习的难点.函数图象的变量和变量之间的关系学生可通过教师的指导由特殊到一般去建立函数模型,体会如何去观察函数图象的过程.三、【教学目标】通过具体实例,感受运用函数建立模型的过程和方法,体会一次函数、二次函数、分段函数模型在数学和其他学科中的重要性,初步树立函数的观点.根据前面的分析,确定了本次课的教学目标:1.通过运用函数的有关知识解决实际生活中的问题,加深对函数概念的理解;2.会应用一次函数、二次函数、分段函数模型解决实际问题;(重难点)3.了解数学知识来源于生活,又服务于生活.四、【教学过程】一、情境引入——神奇的庐山之旅以学生非常熟悉的《望庐山瀑布》引入,诗人李白把庐山的瀑布勾画的传神入化,雄伟奇丽,气象万千,宛如一幅生动的山水画。
函数的实际应用教案
函数的实际应用教案一、教学目标通过本教案的学习,学生应能够:1.了解函数的概念及其在数学和实际生活中的应用;2.掌握函数的定义和表示方法;3.学会解决实际问题时使用函数进行建模和求解。
二、教学重点1.函数的定义和表示方法;2.函数在实际问题中的应用。
三、教学难点1.函数的实际应用;2.使用函数进行建模和求解实际问题。
四、教学过程Step 1 引入1.引导学生回顾函数的定义:函数是一种对应关系,它将一个集合的每个元素与另一个集合的唯一元素相对应。
2.通过几个简单的例子,让学生了解函数的基本概念,并引发学生对函数在实际生活中的应用的思考。
Step 2 函数的表示方法1.介绍函数的表示方法:函数可以用方程、表格和图像来表示。
2.通过具体的例子,让学生了解不同表示方法之间的转换关系,并掌握如何将方程、表格和图像互相转换。
Step 3 函数在实际问题中的应用1.引导学生思考函数在实际问题中的应用,比如数学建模、物理问题、经济问题等。
2.通过一些实际问题的例子,让学生体会到函数在实际生活中的重要性,并了解如何将实际问题转化为函数的形式进行求解。
Step 4 使用函数进行建模和求解问题1.讲解如何使用函数进行建模:根据实际问题中的条件和要求,选择适当的变量和函数形式来建立数学模型。
2.通过一些综合性的例子,让学生掌握使用函数进行建模的方法和技巧,并学会通过求解函数来解决实际问题。
Step 5 练习与拓展1.设计一些练习题,让学生运用所学知识解决实际问题;2.引导学生思考更多的实际问题,并尝试用函数进行建模和求解。
五、教学评价1.观察学生在课堂中的表现,包括参与讨论的积极性、解决问题的能力等;2.布置作业,检查学生对函数实际应用的理解和运用能力。
六、教学反思通过本节课的教学,学生对函数的实际应用有了更深入的了解。
在教学过程中可以通过实际问题的引入,让学生深入体验函数在解决实际问题中的作用,培养学生的数学思维和建模能力。
《3.3函数的应用(一)》教学设计教学反思-2023-2024学年高中数学人教B版19必修第一册
《3.3 函数的应用(一)》教学设计方案(第一课时)一、教学目标1. 理解函数在实际问题中的应用,能够列出函数关系式;2. 掌握函数应用中的解题思路和方法;3. 培养解决实际问题的思维能力和逻辑推理能力。
二、教学重难点1. 教学重点:掌握函数在实际问题中的应用,列出函数关系式;2. 教学难点:如何引导学生理解和掌握函数应用中的解题思路和方法。
三、教学准备1. 准备教学素材:搜集有关函数应用的实际案例和数据;2. 制作多媒体课件:通过图片、视频等方式展示函数在实际问题中的应用;3. 安排学生预习:让学生提前了解函数的基本概念和性质,为新课做好准备。
四、教学过程:本节课的教学设计主要分为以下几个环节:导入新课、新课教学、课堂练习、小结与作业。
1. 导入新课:通过实际生活中的例子,如股票价格变化图,引出函数图像的概念,进而引出本节课的主题——函数的应用。
2. 新课教学:(1) 讲解函数的应用,包括函数在解决实际问题中的作用,以及如何根据函数图像分析数据等。
(2) 通过具体的例子,引导学生如何根据函数图像分析数据,发现问题,并给出解决方案。
(3) 讲解如何利用函数图像进行预测和决策,并举例说明。
(4) 让学生进行小组讨论,分享他们在日常生活中遇到的函数应用实例,并分享他们的理解和感受。
3. 课堂练习:给学生布置一些与本节课内容相关的练习题,以检验学生对新知识的掌握情况,同时也可以帮助学生更好地理解所学内容。
4. 小结与作业:(1) 小结本节课的主要内容,强调重点和难点。
(2) 布置作业:让学生自己寻找一些与函数应用相关的实际问题,尝试用本节课所学知识解决这些问题,并在下次课上进行分享。
在课堂教学中,应注重学生的参与和互动,通过实例和互动讨论,帮助学生更好地理解和掌握所学内容。
同时,也应注重学生的反馈和评价,及时调整教学策略,以提高教学效果。
教学设计方案(第二课时)一、教学目标1. 学生能够理解函数在解决实际问题中的应用,提高运用函数知识解决实际问题的能力。
《3.4 函数的应用》教学设计教学反思-2023-2024学年中职数学高教版2021基础模块上册
《函数的应用》教学设计方案(第一课时)一、教学目标1. 理解函数的概念,掌握函数的定义域和值域。
2. 学会运用函数知识解决简单的实际问题。
3. 培养数学思维和解决问题的能力。
二、教学重难点1. 重点:函数的概念和性质。
2. 难点:将实际问题转化为数学问题,建立函数模型。
三、教学准备1. 准备教学用具:黑板、粉笔、函数图象工具软件。
2. 准备教学材料:相关实际问题案例,函数模型建立方法。
3. 设计教学活动:引导学生通过实际例子,引入函数概念,讲解函数性质,引导学生建立函数模型解决实际问题。
4. 预习提示:学生预习内容,准备相关实际例子,提出疑问。
四、教学过程:(一)导入新课1. 复习提问:请学生回顾初中学习的函数概念,请学生列举生活中的函数关系式。
2. 引出课题:今天我们一起来学习中职数学课程《函数的应用》。
(二)教学实施任务一:理解函数的概念1. 教师介绍函数的定义,并引导学生理解定义中的三个要素:定义域、值域、对应法则。
2. 教师举例说明函数的应用,如:一次函数、二次函数、指数函数、对数函数等的应用场景。
3. 学生小组讨论,分享生活中的函数实例。
4. 分享与讨论:请学生分享自己搜集的函数实例,并讨论函数的用途和特点。
任务二:构建函数模型1. 教师介绍常见的函数模型及其应用场景,如:一次函数模型在市场营销中的应用,指数函数模型在经济增长中的应用等。
2. 教师引导学生思考如何构建适合的函数模型来解决实际问题。
3. 学生尝试构建函数模型,并尝试用函数解决实际问题。
4. 成果展示与交流:请学生展示自己的成果,并分享构建函数模型和解决问题的思路和方法。
任务三:应用函数的优化与决策1. 教师引导学生分析如何根据函数的性质进行优化和决策,如:利用函数的单调性、奇偶性、周期性等性质进行决策。
2. 学生尝试利用函数进行优化和决策,并与其他同学分享自己的方法和心得。
(三)课堂小结1. 请学生回顾本节课学习的内容,包括函数的概念、构建函数模型的方法和利用函数进行优化决策的思路等。
高中数学_函数的应用(第一课时)教学设计学情分析教材分析课后反思
《函数的应用(第一课时)》教学设计一、创设情境问题引入:求方程01532=-+x x 的实数根. 变式:求方程01535=-+x x 的实数根. 数学史上,人们曾希望得到一般的五次以上代数方程的根式解,但经过长期的努力仍无结果,1824年挪威年仅22岁的数学家阿贝尔(N.H.Abel ,1802-1829)成功地证明了五次以上一般方程没有根式解.五次以上的高次方程不能用代数运算来求解,我们就必须寻求新的角度——函数来解决这个方程的问题.【设计意图】从学生的认知冲突中,引发学生的好奇心和求知欲,推动问题进一步的探究.通过对数学史的讲解,培养学生学习数学的兴趣,开门见山地提出利用函数思想解决方程根的问题.二、新知探究1.零点的概念问题1:求方程0322=--x x 的实数根,并画出函数322--=x x y 的图像. 1-,3具有多重角色,它能够使这个方程成立,也能够使这个函数的函数值为0,它又是函数图像与x 轴交点的横坐标.这样1-,3就把函数与方程联系到一起了,在方程里,1-,3叫做方程的实数根,在函数里,它能够使得函数值为0,我们就称它为函数的零点. 定义:对于函数)(x f y =,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点(zero point ).【设计意图】以学生熟悉一元二次方程和二次函数图像为平台,观察方程和函数形式上的联系,得出函数零点的概念.问题2:下列函数的零点分别多少?(1)38y x =-;(2)(1)(2)(3)y x x x =---;(3)221y x x =-+;(4)223y x x =-+. 结论:方程0)(=x f 有实数根0x ⇔函数)(x f y =的图像与x 轴有交点坐标为)0,(0x ⇔函数)(x f y =有零点0x .【设计意图】通过练习,使学生进一步理解函数零点的概念,强调求函数的零点可转化为求方程的根或求函数图像与x 轴的交点.2.函数零点的判定问题3:如图是某地0~12时的气温变化图,中间一部分看不清楚,假设气温是连续变化的,请将图形补充成完整的函数图像.这段时间内,是否一定有某时刻的气温为ο0C?/h为什么?(展示学生解答)因为气温是连续不断的,并且0时的温度是-4οC ,12时的温度是8οC ,所以这两点之间一定会通过0οC .问题4:满足什么条件,函数)(x f y =在))(,()),(,(b f b B a f a A 间的图像与x 轴一定有交点?图像是连续不断的,端点值异号()()0f a f b ⋅<.【设计意图】从现实生活中的问题,让学生体会动与静的关系,整体与局部的关系.将现实生活中的问题抽象成数学模型,由图形语言转化为数学语言,培养学生的观察能力和提取有效信息的能力.零点存在性定理:如果函数)(x f y =在区间],[b a 上的图像是连续不断的一条曲线,并且有0)()(<⋅b f a f ,那么函数)(x f y =在区间),(b a 内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程0)(=x f 的根.下面我们对这个定理做更深入的探讨.问题5:如果函数的图像不是连续不断的,结论会不会一定成立?不一定.(用反比例函数来演示)问题6:若函数)(x f y =在),(b a 内有零点,一定有0)()(<⋅b f a f 吗?不一定.(32)(2--=x x x f ,可以发现在区间]4,2[-上有零点,但0)4()2(>⋅-f f .) 函数存在零点,端点函数值不一定异号.问题7:满足定理条件,函数)(x f y =在区间),(b a 内有几个零点?至少有一个.(用函数(1)(2)(3)(4)y x x x x =----的图像说明).【设计意图】使学生准确理解零点存在性定理,强调结论不能随便改动. 三、新知应用1.回扣:观察下表,分析函数153)(5-+=x x x f 在定义域内是否存在零点?分析:函数153)(5-+=x x x f 图像是连续不断的,又因为0)1()0(<⋅f f ,所以在区间)1,0(上必存在零点.引申:函数在定义域上是不是只有一个零点吗?(通过几何画板作图帮助了解零点的情况.)函数)(x f y =在区间),(b a 上存在零点且单调,则零点唯一.【设计意图】初步应用定理来判断函数零点存在问题.引导学生探索判断函数零点的方法,通过做出)(,x f x 的对应值表,来寻找函数值异号的区间;借助几何画板作出函数的图象分析零点问题,并对函数有一个零点形成直观认识,为例2判断函数零点的个数作好准备.2.例题:求函数62ln )(-+=x x x f 的零点个数.分析:用计算器或计算机作出)(,x f x 的对应值表和图像.由表可知,0)3(,0)2(><f f ,则0)3()2(<⋅f f ,说明函数)(x f 在区间)3,2(内有零点. 结合函数)(x f 的单调性,)(x f 的零点仅有一个.如果没有计算器或计算机,如何来找呢?在定义域(0,)+∞上找特殊点进行估值:(1)40f =-<,(2)ln22lne 210f =-<-=-<,(3)ln3lne 10f =>=>,0)3()2(<⋅f f .结论:图像连续的单调函数若存在零点,则零点唯一.【设计意图】学生应用例题1方法来解决例题2的零点存在性问题,并结合函数的单调性判断零点的个数问题.3.练习:求函数3()35f x x x =--+的零点个数.【设计意图】通过练习使学生进一步理解函数零点个数的判定方法,形成运用定理解决问题的能力.四、达标测试1.若函数b ax x x f --=2)(的两个零点是2和3,则ab =___.2.已知函数图像是连续不断的,且有如下对应值表:A .1个B .2个C .3个D .4个 3.设0x 是方程04ln =-+x x 的根,则0x 在下列哪个区间内 ( )A .)2,1(B .)3,2(C .)4,3(D .)5,4(4.函数1()e 4x f x x -=+-的零点有___个.答案:1.-30 2.C 3.B 4.1【设计意图】通过达标测试,使学生充分理解本课所学知识,检测学生对知识的掌握程度.五、课堂小结一个概念 一个结论 一个例题六、课后作业课本88P 练习2 92P 习题A 1,2.七、下节预告我们已经可以利用求根公式来求一些方程的根,对于没有公式解的方程,我们借助函数的零点能估计方程的根所处的大致区间,能不能求出方程的根呢?这就是我们下节课学习的内容――用二分法求方程的近似解.《函数的应用(第一课时)》学情分析从教材体系安排来看,前面已安排了函数的概念、函数的性质及基本初等函数等有关知识的学习,但是对于函数与方程的关系,学生的理解还不系统.本节课正是由此入手来引发学生的认知冲突,产生求知的欲望,而问题解决的关键依然依赖于学生原有的认知结构──数形结合的思想.学生已经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图像,判断方程根的存在性提供了一定的知识基础.方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础.高一学生虽然具备了一定的分析问题和解决问题的能力,但他们重视具体问题的运算而轻视对问题的抽象分析,对数学思想和方法的认识还不够,归纳类比能力比较欠缺.在函数的学习中,常表现出不适,感觉难以接受,主要是数形结合与数学抽象不能很好地联系,缺乏对函数与方程本质的联系,将函数孤立起来,认识不到函数在高中数学中的核心地位.从方程根的角度理解函数零点,学生并不会觉得困难.而用函数来确定方程根的个数和大致范围,则需要适应,学生存在直观体验与准确理解的矛盾.零点存在性判定的获得与应用,必须让学生从一定量的具体案例中操作感知,通过更多的实例来验证.《函数的应用(第一课时)》效果分析本节课从一元二次方程的根与相应二次函数的图像关系出发,引出函数零点的概念.从现实生活中“气温”的问题,让学生体会动与静的关系,整体与局部的关系,并将生活中的问题抽象成数学模型,由图形语言转化为数学语言,得到函数存在零点的判定方法,并结合函数的单调性判定函数零点的个数,体会数学的应用价值.在教学过程中注重学生的主导地位,积极调动学生的活动,发挥学生的主动性.在教学设计上,讲练结合,注重教学点拨,让学生充分体会函数与方程、数形结合的思想在解决数学问题中的重要应用.通过本节课的学习,学生基本掌握了求函数零点的方法,但是对于成绩较好的学生可以很轻松的讲方程的问题转化成两个函数交点问题.本节课主要教学目的是让学生了解函数零点的概念,理解函数零点存在的判定方法,并能解决实际问题.本节课的教学重点是理解理解函数零点的概念,探索并掌握函数零点存在性定理,认识方程的根与函数的零点之间的密切联系;难点是在具体的问题情境中,能用有关知识解决相应的问题.1.“教”的效果:(1)在本课的教学一开始,结合一元二次方程、高次方程及相应的函数的关系来引入函数零点的,使学生带着问题进入本节课的讨论.(2)本节课的教学过程分为提出问题、引发认知冲突、观察分析、归纳概括、得出结论、总结提高等环节,在教师的精心组织下,对学生各种能力进行培养,并以促进了学生发展,又以学生的发展带动其学习,同时,也有效促进了学生学会如何学习,使学生的探索能力得到了提高.(3)通过讨论、交流等活动,营造了融洽的课堂气氛,实现了良好的师生互动,完成了预先的教学设计过程,在板书设计方面有待改进,课件展示得当,但时间把握有点仓促.2.“学”的效果:(1)学生通过本节课的学习,认识到方程的根与函数的零点的密切联系,理解了函数零点的概念,大部分同学掌握了函数零点存在性定理并能初步应用.(2)学生对于函数零点存在性定理掌握较好,但对实际运用不太熟练,有是需要教师进行点拨.(3)学生思维活跃,特别是在零点存在性的判断上,都能积极发言,发表自己的见解,并能举出相关的实例.《函数的应用(第一课时)》教材分析函数是中学教学的核心概念,与方程、不等式等其他知识都有广泛的联系,而函数的零点就是它们的一个连接点,将数与形,函数与方程有机的联系在一起.本节是《函数的应用》的第一课时,学生在系统地学习了函数的概念及性质,基本初等函数知识后,学习方程的根与函数零点之间的关系,并结合函数的图像和性质来判断方程的根的存在性及根的个数,从而理解函数在某个区间上存在零点的判定方法,为后继内容“用二分法求方程的近似解”的学习奠定基础,因此本节内容具有承前启后的作用,地位重要.在大学《数学分析》中,函数零点存在性定理有严格的证明,它是证明介值定理的依据,也可以说是介值定理的特殊情形,因此这部分内容是联结初等数学和高等数学的桥梁.本节内容有函数零点的概念、函数零点存在性定理两个主要内容.首先利用具体的一元二次方程的根与相应的二次函数图像与x 轴交点的横坐标的关系,归纳到一般情形,给出函数零点的概念,符合从特殊到一般的认识规律.连续函数零点存在定理是本节的重点内容,在定理形成的过程中,如何将函数图像通过零点且穿过x 轴转化为代数式,并明确定理是函数零点存在的充分不很必要条件是难点.用函数思想解决数学问题是本节课一个重要的教学目标,当我们用函数的观点看待方程的时候,由函数()y f x =所决定的方程是()0f x =,这样方程的根就变成函数的零点,体现了数学知识之间的内在联系和化归思想.数学抽象也是高中数学核心素养的指标之一,在探究连续函数零点存在性定理时,教材从函数图像入手,为学生的思维活动提供直观背景,帮助学生探究和发现结论,这种先直观后抽象的研究方法有利于对数学真正的认识和理解.在函数的学习中一定要形成画函数图像的习惯,这样有助于提高运用几何思想把握图形的能力.基于以上分析,制定本节课教学目标如下:了解函数零点的概念,理解方程的根与函数的零点的关系;理解图像连续的函数存在零点的判定方法,并能进行简单的应用.在探究方程的根与函数的零点的关系,图像连续的函数存在零点的判定方法中体会数形结合、函数与方程的数学思想,从特殊到一般的归纳思想.在函数与方程的联系中体验数学中的转化思想的意义和价值;在教学中让学生体验探究的过程、发现的乐趣,培养学生的辨证思维.《函数的应用(第一课时)》评测练习一、课堂练习1.下列函数的零点分别多少?(1)38y x =-;(2)(1)(2)(3)y x x x =---;(3)221y x x =-+;(4)223y x x =-+.2.求函数3()35f x x x =--+的零点个数.二、达标测试1.若函数b ax x x f --=2)(的两个零点是2和3,则ab =___.2.已知函数)(x f 图像是连续不断的,且有如下对应值表:则函数至少有零点( )A .1个B .2个C .3个D .4个3.设0x 是方程04ln =-+x x 的根,则0x 在下列哪个区间内 ( )A .)2,1(B .)3,2(C .)4,3(D .)5,4( 4.函数1()4x f x e x -=+-的零点有___个.三、测评结果测试试题紧扣本节内容,检查学生对内容的掌握程度,从测评结果来看,学生能较好地理解函数的零点与方程的根的关系,并能利用根的存在性定理与函数的单调性研究函数的零点所在大致区间以及零点的个数.《函数的应用(第一课时)》课后反思本节课在新课标理念的指导下,本着“教师的主导地位与学生的主体地位相统一”的教学原则下组织教学,采用问题探究式的教学方法并配以多媒体辅助教学,通过教师的点拨,启发学生主动思考、动手操作来达到对知识的发现和接受,并形成初步的应用技能.本节课以学生熟悉一元二次方程和二次函数图像为平台,由具体到一般,逐步建立起函数与方程的联系.从现实生活中的气温变化问题,让学生体会动与静的关系,整体与局部的关系,并将生活问题抽象成数学模型,将图形语言转化为数学语言,探究函数的零点存在的条件,并通过深入探究,形成自己对本节课重难点的理解和掌握.课堂练习和例题,由浅入深,承上启下,各有侧重,让学生体会运用函数性质及其图像来解题的重要数学思想,通过达标测试,使学生充分理解本课所学知识,检测学生对知识的掌握程度.从教后反馈来看,我的引导比较到位,讲解透彻,重点突出,前后呼应,学生的课堂活动积极,课堂气氛融洽,实现了良好的师生互动,完成了预先的教学设计过程.从学生的课后反馈来看,基础较好的学生反映课堂容量较小,也有部分同学反映练习题比较简单,不能很好的满足各个层次学生的需要,今后在习题的选择上应多下功夫,精选细练,力求让每个学生各有所得,帮助他们更好的理解当堂的基础知识,也便于课后学生个人的复习总结,同时在教学中我较多地注意了知识的理解与能力的培养,对学生核心素养的形成引导不够.在今后的教学中我仍会坚持将信息技术融入数学教学,努力提升个人的专业素养,培养学生的学习兴趣,提高教学质量.教学过程中出现的两个问题:1.例2还可以看作是两个函数的交点问题.如:函数x y ln =与62+-=x y .因为联立方程组⎩⎨⎧+-==62ln x y x y ,消去y ,得到62ln +-=x x 即062ln =-+x x ,故函数62ln -+=x x y 的零点也是两函数图像交点的横坐标,这样将未知函数图像转化为已知函数图像问题,进一步加强数学建模的应用.2.在目前高考不允许使用计算器的情况下,可提醒学生学会利用估算来确定函数值的大小.如例2中计算:(2)ln22lne 210f =-<-=-<,(3)ln3lne 10f =>=>.《函数的应用(第一课时)》课标分析函数与方程是中学数学的重要内容,是初等数学与高等数学的连接纽带,在教学中有着不可替代的位置.函数的零点为研究方程的根提供了新的途径.《函数的应用》这一单元的课标要求“结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.通过本章的学习,使学生学会二分法求方程近似解的方法,从中体会函数与方程之间的联系.”本节课是《函数的应用》的第一节课,通过对二次函数的图像的研究建立一元二次方程的根与相应的二次函数的图像的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形,提出函数的零点的概念,明确方程的根与函数的零点的关系,并通过生活问题的抽象到函数,探究图像连续的函数的存在零点的判定方法,为“用二分法求方程的近似解”的学习做好准备,同时为方程与函数提供了零点这个连接点,揭示了两者之间的本质联系,这正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础.之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,既体现了函数与方程的思想,又渗透了数形结合的思想,同时培养学生数学抽象、数学建模、数据分析的数学核心素养.。
高中数学_《函数的应用(一)》教学设计学情分析教材分析课后反思
教学设计教学目标1.能结合具体的现实问题情境,合理选择已经学习过的正比例函数、反比例函数、一次函数、二次函数、幂函数与分段函数等函数模型,解决简单的实际问题.2.通过学习具体的例题,体会应用函数知识解决实际问题的过程和方法,提升学生的数学抽象素养和数学建模素养.3.体会函数与现实世界的密切联系,初步理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具.教学重难点教学重点:将实际问题中的量抽象成数学中的变量,并找到变量之间的关系.教学难点:将实际问题中的量抽象成数学中的变量,并找到变量之间的关系.课前准备PPT 课件.教学过程一、问题导入问题1:一次函数、反比例函数、二次函数、幂函数的解析式分别是什么?师生活动:学生自由发言,老师补充.预设答案:(1)一次函数:f (x )=kx +b (k ,b 为常数,k ≠0);反比例函数:f (x )=kx (k 为常数,k ≠0);二次函数:f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0);幂函数:f (x )=x α(α为常数);设计意图:通过复习做好新旧知识衔接.引语:我们学习过的一次函数、二次函数、幂函数等都与现实世界有紧密联系,借助这些函数,我们能解决现实世界中的许多问题.(板书:函数的应用(一)) 二、新知探究例1 设小王的专项扣除比例、专项附加扣除金额、依法确定的其他扣除金额与3.1.2例8相同,全年综合所得收入额为x (单位:元),应缴纳综合所得个税税额为y (单位:元).(1)求y 关于x 的函数解析式;(2)如果小王全年的综合所得由189600元增加到249600元,那么他全年应缴纳多少综合所得个税?师生活动:老师引导学生分析题目中涉及的变量的实际意义以及它们之间的关系,根据3.1.2例8中公式②,可得应纳税所得额t 关于综合所得收入额x 的解析式t =g (x ),再结合y =f (t )的解析式③,即可得出y 关于x 的函数解析式. 问题2:本题中涉及了几个变量?你能写出它们之间的关系吗?由公式得:t =x -60000-x (8%+2%+1%+9%)-52800-4560=0.8x -117360. 令t ≤0,得x ≤146700;令t >0,得x >146700.所以个人应纳税所得额t =⎩⎨⎧0,0<x ≤146700,0.8x -117360,x >146700.由3.1.2例8可知个税税额y =⎩⎪⎪⎨⎪⎪⎧0,t =0,0.03t ,0<t ≤36000,0.1t -2520,36000<t ≤144000,0.2t -16920,144000<t ≤300000,0.25t -31920,300000<t ≤420000,0.3t -52920,420000<t ≤660000,0.35t -85920,660000<t ≤960000,0.45t -181920,t >960000.③)660000<t ≤960000 971700<x ≤1346700 y =0.35t -85920=0.28x -126996t >960000 x >1346700 y =0.45t -181920=0.36x -234732 所以,函数解析式为y =⎩⎪⎪⎨⎪⎪⎧0,0≤x ≤146700,0.024x -3520.8,146700<x ≤191700,0.08x -14256,191700<x ≤326700,0.16x -40392,326700<x ≤521700,0.2x -61260,521700<x ≤671700,0.24x -88128,671700<x ≤9717000.28x -126996,971700<x ≤1346700,0.36x -234732,x >1346700.④ (2)根据④,当x =249600时,y =0.08×249600-14256=5712.所以,小王全年需要缴纳的综合所得个税税额为5712元.教师点拨:网络上计算个税税额、房贷还款额的小程序都是先建立函数模型,再由程序员编写程序做成的.由此可见,有了函数模型,就可以通过研究函数获得实际问题的答案.设计意图:通过例1使学生初步体会应用函数知识解决实际问题的过程和方法,提升学生的数学抽象、逻辑推理、数学运算和数学建模素养.问题2,3,4都是引导学生将复杂问题拆分成一些简单问题,问题2引导学生将实际问题转化为数学问题,问题3,4是引导学生确定函数的对应关系与定义域,直击问题本质.三、典例归纳(1)你能说说应用函数知识解决实际问题的一般步骤吗?(2)你认为最关键的步骤是什么?师生活动:师生一起总结.预设的答案:(1)①阅读理解,抓取信息,即确定实际问题中的变量;②建立函数模型,即确定变量间的关系;③求函数模型的解;④作答,即把数学结果转译成具体问题的结论.(2)建立函数模型,确定问题中函数的对应关系与定义域.设计意图:通过梳理本节课的内容,引导学生总结解决实际问题的.四、目标检测设计意图:通过练习题,巩固用函数解决实际问题的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“函数的应用”教学设计及反思
[文献标识码]A
“函数的应用”是必修一第三章第四节的教学内容,是应用部分的一个难点,学生难以从实际中抽象出数学模型,因此,常导致教师完成不了教学任务,收不到理想的课堂效果,所以合理的教学设计以及正确的教学策略至关重要。
一、教学目标
知识与技能目标:能够运用指数函数、对数函数和幂函数的性质解决某些简单的实际问题。
过程与方法目标:通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生解决问题的能力和运用数学知识的意识。
情感态度与价值观目标:通过对实际问题的研究解决,提高学生学习数学的兴趣。
二、教学重点、难点以及教学方法
本节的重点是培养学生分析解决问题的能力和运用数学知识的意识;难点是根据实际问题建立相应的数学模型,适宜采用的教学方法是启发式、讨论式、诱思探究。
三、教学设计过程
1.知识回顾,一开课就带领学生复习之前学过的三种基本初等函数,灵活应用的前提是熟练地掌握基础知识,所以在课堂设计伊始,一定要做好复习巩固工作,先回顾指数函数、对数函数、幂函数,这.
三个函数表达式最好让学生自己回想,而不是灌输式地呈现给学生。
2.情境引入,在分析情感目标时,核心词是兴趣,所以要尽可能地联系学生的生活实际,在正式讲解新课之前引入生活情境,让学生产生好奇心和求知欲,如向?W生展示有关银行的图片,提出平时学生接触过的利息概念,之后进一步引申出“复利”这个词,因为有关利息的函数的应用部分的题,大都是复利的计算方法,而且利息题是能涵盖本节知识的模型。
3,探索新知,由于上节课学过了三个基本初等函数,所以在学习这节知识时,直接利用建模例题即可,在做题的过程中掌握这节的知识内容,选取的是最具有代表性的利息问题。
[例]有一种储蓄按复利计算利息,若本金为。
元,每期利率为r。
(1)设本利和为y元,存期为z,写出本利和3,随存期z变化的函数关系式。
(2)如果本金为1000元,每期利率2.25%,试计算出5期后的本利和是多少?(精确到0.01元)
分析:第一问的解答是一个建立指数函数模型的过程,通过第一问的设置就可以让学生掌握指数函数的应用,引导学生思考归纳得到本利和与存期之间的函数关系模型,它的解答过程也是循序渐进的,体现了建模和归纳的思想。
设置第二问来考查模型的实际应用,清楚实际问题中已知数据与模型中变量之间的对应关系,并求解模型,得到实际问题的解,通过此例讲解让学生掌握数学建模的一般步骤。
.
解:(1)存期x=1时的本利和为:y=a+ar=a(1+r);存期x=2时的本利和为:y=a(1+r)+a(1+r)r=a(1+r)2;存期x=3时的本利和为:y=a(1+r)2+a(1+r)2r=a(1+r)2;…;存期x时的本利和为:y=a(1+r)x。
(2)由题意知a=1000,r=2.25%,
当x=5时,y=a(1+r)2=1000×(1+2.25%)5=1000×1.02255=1117.68,所以5期后的本利和是1117.68元。
第一问与第二问解决后,就可以通过做题过程引导学生总结数学建模的一般步骤:审题、建模、求解、还原,
4.归纳总结,最后带领学生回顾一遍今天所学的核心内容,即建立数学模型的一般步骤,有利于学生对知识的消化吸收。
四、总结反思
反思函数的应用这节课的教学设计及分析,得到以下结论。
1.注意与实际结合的重要性,在教学设计中多引入现实情境,在设计例题时选择能提起学生兴趣的题干,比如上述例题,选取学生们都很熟悉的银行利息素材。
2.注意例题的经典性,在进行教学设计时注意例题一定要有普遍性、针对性,涵盖知识要全面,比如上述采用的例题。
3.注意题目设置的灵活性,就像函数的应用这节课例题中的第三问,不只使学生理解已知与未知在函数模型中的意义,而且巧妙地设计了第二种解法。
.
4.注意变式训练的必要性,在教学设计时要在例题的基础上添加变
式训练,探寻多种解题方法,使学生真正学会灵活运用。