数据结构第7章作业 图答案
数据结构第7章-答案
一、单选题C01、在一个图中,所有顶点的度数之和等于图的边数的倍。
A)1/2 B)1 C)2 D)4B02、在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的倍。
A)1/2 B)1 C)2 D)4B03、有8个结点的无向图最多有条边。
A)14 B)28 C)56 D)112C04、有8个结点的无向连通图最少有条边。
A)5 B)6 C)7 D)8C05、有8个结点的有向完全图有条边。
A)14 B)28 C)56 D)112B06、用邻接表表示图进行广度优先遍历时,通常是采用来实现算法的。
A)栈 B)队列 C)树 D)图A07、用邻接表表示图进行深度优先遍历时,通常是采用来实现算法的。
A)栈 B)队列 C)树 D)图A08、一个含n个顶点和e条弧的有向图以邻接矩阵表示法为存储结构,则计算该有向图中某个顶点出度的时间复杂度为。
A)O(n) B)O(e) C)O(n+e) D)O(n2)C09、已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是。
A)0 2 4 3 1 5 6 B)0 1 3 6 5 4 2 C)0 1 3 4 2 5 6 D)0 3 6 1 5 4 2B10、已知图的邻接矩阵同上题,根据算法,则从顶点0出发,按广度优先遍历的结点序列是。
A)0 2 4 3 6 5 1 B)0 1 2 3 4 6 5 C)0 4 2 3 1 5 6 D)0 1 3 4 2 5 6D11、已知图的邻接表如下所示,根据算法,则从顶点0出发按深度优先遍历的结点序列是。
A)0 1 3 2 B)0 2 3 1 C)0 3 2 1 D)0 1 2 3A12、已知图的邻接表如下所示,根据算法,则从顶点0出发按广度优先遍历的结点序列是。
A)0 3 2 1 B)0 1 2 3 C)0 1 3 2 D)0 3 1 2A13、图的深度优先遍历类似于二叉树的。
A)先序遍历 B)中序遍历 C)后序遍历 D)层次遍历D14、图的广度优先遍历类似于二叉树的。
数据结构章节练习题 - 答案第7章 图
7.1选择题1.对于一个具有n个顶点和e条边的有向图,在用邻接表表示图时,拓扑排序算法时间复杂度为()A)O(n)B)O(n+e)C)O(n*n)D)O(n*n*n)【答案】B2.设无向图的顶点个数为n,则该图最多有()条边。
A)n-1B)n(n-1)/2C)n(n+1)/2【答案】B3.连通分量指的是()A)无向图中的极小连通子图B)无向图中的极大连通子图C)有向图中的极小连通子图D)有向图中的极大连通子图【答案】B4.n个结点的完全有向图含有边的数目()A)n*n B)n(n+1)C)n/2【答案】D5.关键路径是()A)AOE网中从源点到汇点的最长路径B)AOE网中从源点到汇点的最短路径C)AOV网中从源点到汇点的最长路径D)n2D)n*(n-1)D)AOV网中从源点到汇点的最短路径【答案】A6.有向图中一个顶点的度是该顶点的()A)入度B)出度C)入度与出度之和D)(入度+出度)/2【答案】C7.有e条边的无向图,若用邻接表存储,表中有()边结点。
A)e B)2eC)e-1D)2(e-1)【答案】B8.实现图的广度优先搜索算法需使用的辅助数据结构为()A)栈B)队列C)二叉树D)树【答案】B9.实现图的非递归深度优先搜索算法需使用的辅助数据结构为()A)栈B)队列C)二叉树D)树【答案】A10.存储无向图的邻接矩阵一定是一个()A)上三角矩阵B)稀疏矩阵C)对称矩阵D)对角矩阵【答案】C11.在一个有向图中所有顶点的入度之和等于出度之和的()倍A)B)1C)2D)4【答案】B12.在图采用邻接表存储时,求最小生成树的Prim 算法的时间复杂度为(A)O(n)B)O(n+e)C)O(n2)D)O(n3))【答案】B13.下列关于AOE网的叙述中,不正确的是()A)关键活动不按期完成就会影响整个工程的完成时间B)任何一个关键活动提前完成,那么整个工程将会提前完成C)所有的关键活动提前完成,那么整个工程将会提前完成D)某些关键活动提前完成,那么整个工程将会提前完成【答案】B14.具有10个顶点的无向图至少有多少条边才能保证连通()A)9B)10C)11D)12【答案】A15.在含n个顶点和e条边的无向图的邻接矩阵中,零元素的个数为()A)e B)2eC)n2-e D)n2-2e【答案】D7.2填空题1.无向图中所有顶点的度数之和等于所有边数的_____________倍。
中南大学数据结构与算法第7章图课后作业答案分解
第7章图(基础知识)习题练习答案7.1 在图7.23所示的各无向图中:(1)找出所有的简单环。
(2)哪些图是连通图?对非连通图给出其连通分量。
(3)哪些图是自由树(或森林)?答:(1)所有的简单环:(同一个环可以任一顶点作为起点)(a)1231(b)无(c)1231、2342、12341(d)无(2)连通图:(a)、(c)、(d)是连通图,(b)不是连通图,因为从1到2没有路径。
具体连通分量为:(3)自由树(森林):自由树是指没有确定根的树,无回路的连通图称为自由树:(a)不是自由树,因为有回路。
(b)是自由森林,其两个连通分量为两棵自由树。
(c)不是自由树。
(d)是自由树。
7.2 在图7.24(下图)所示的有向图中:(1) 该图是强连通的吗? 若不是,则给出其强连通分量。
(2) 请给出所有的简单路径及有向环。
(3) 请给出每个顶点的度,入度和出度。
(4) 请给出其邻接表、邻接矩阵及逆邻接表。
答:(1)该图是强连通的,所谓强连通是指有向图中任意顶点都存在到其他各顶点的路径。
(2)简单路径是指在一条路径上只有起点和终点可以相同的路径:有v1v2、v2v3、v3v1、v1v4、v4v3、v1v2v3、v2v3v1、v3v1v2、v1v4v3、v4v3v1、v3v1v4、另包括所有有向环,有向环如下:v1v2v3v1、v1v4v3v1(这两个有向环可以任一顶点作为起点和终点)(3)每个顶点的度、入度和出度:D(v1)=3ID(v1)=1OD(v1)=2D(v2)=2 ID(v2)=1OD(v2)=1D(v3)=3 ID(v3)=2OD(v3)=1D(v4)=2 ID(v4)=1OD(v4)=1(4)邻接表:(注意边表中邻接点域的值是顶点的序号,这里顶点的序号是顶点的下标值-1)vertex firstedge next┌─┬─┐┌─┬─┐┌─┬─┐0│v1│─→│ 1│─→│ 3│∧│├─┼─┤├─┼─┤└─┴─┘1│v2│─→│ 2│∧│├─┼─┤├─┼─┤2│v3│─→│ 0│∧│├─┼─┤├─┼─┤3│v4│─→│ 2│∧│└─┴─┘└─┴─┘逆邻接表:┌─┬─┐┌─┬─┐0│v1│─→│ 2│∧│├─┼─┤├─┼─┤1│v2│─→│ 0│∧│├─┼─┤├─┼─┤┌─┬─┐2│v3│─→│ 1│─→│ 3│∧│├─┼─┤├─┼─┤└─┴─┘3│v4│─→│ 0│∧│└─┴─┘└─┴─┘邻接矩阵:0 1 0 10 0 1 01 0 0 00 0 1 07.3 假设图的顶点是A,B...,请根据下述的邻接矩阵画出相应的无向图或有向图。
数据结构--图---作业及部分答案
数据结构习题第七章图一、选择题1、一个有n个顶点的无向图最多有( C )条边。
A、nB、n(n-1)C、n(n-1)/2D、2n2、具有4个顶点的无向完全图有( A )条边。
A、6B、12C、16D、203、具有6个顶点的无向图至少有( A )条边才能保证是一个连通图。
A、5B、6C、7D、84、设连通图G的顶点数为n,则G的生成树的边数为( A )。
A、n-1B、nC、2nD、2n-15、已知一个图,若从顶点a出发进行深度和广度优先搜索遍历,则可能得到的顶点序列分别为( D )和(B )(1)A、abecdf B、acfebd C、acebfd D、acfdeb(2)A、abcedf B、abcefd C、abedfc D、acfdeb6、采用邻接表存储的图的深度和广度优先搜索遍历算法类似于二叉树的( B )和( D )。
A、中序遍历B、先序遍历C、后序遍历D、层次遍历7、已知一有向图的邻接表存储结构如下图所示,分别根据图的深度和广度优先搜索遍历算法,从顶点v1出发,得到的顶点序列分别为( C )和( B )。
A、v1,v2,v3,v4,v5B、v1,v3,v2,v4,v5C、v1,v2,v3,v5,v4D、v1,v4,v3,v5,v28、已知一个图如下,在该图的最小生成树中各边上权值之和为( C ),在该图的最小生成树中,从v1到v6的路径为(G )。
A、31B、38C、36D、43E、v1,v3,v6F、v1,v4,v6G、v1,v5,v4,v6H、v1,v4,v3,v69、正确的AOE网必须是(C )A、完全图B、哈密尔顿图C、无环图D、强连通图10、已知一个图如下,则由该图得到的一种拓扑序列为( A )。
A、v1,v4,v6,v2,v5,v3B、v1,v2,v3,v4,v5,v6C、v1,v4,v2,v3,v6,v5D、v1,v2,v4,v6,v3,v511、下面结论中正确的是( B )A、在无向图中,边的条数是顶点度数之和。
数据结构作业系统_第七章答案
数据结构作业系统_第七章答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March7.22③试基于图的深度优先搜索策略写一算法,判别以邻接表方式存储的有向图中是否存在由顶点vi到顶点vj的路径(i≠j)。
注意:算法中涉及的图的基本操作必须在此存储结构上实现。
实现下列函数:Status DfsReachable(ALGraph g, int i, int j);/* Judge if it exists a path from vertex 'i' to *//* vertex 'j' in digraph 'g'. *//* Array 'visited[]' has been initialed to 'false'.*/图的邻接表以及相关类型和辅助变量定义如下:Status visited[MAX_VERTEX_NUM];typedef char VertexType;typedef struct ArcNode {int adjvex;struct ArcNode *nextarc;} ArcNode;typedef struct VNode {VertexType data;ArcNode *firstarc;} VNode, AdjList[MAX_VERTEX_NUM];typedef struct {AdjList vertices;int vexnum, arcnum;} ALGraph;Status DfsReachable(ALGraph g, int i, int j)/* Judge if it exists a path from vertex 'i' to *//* vertex 'j' in digraph 'g'. *//* Array 'visited[]' has been initialed to 'false'.*/ {int k;ArcNode *p;visited[i]=1;for(p=g.vertices[i].firstarc;p;p=p->nextarc){if(p){k=p->adjvex;if(k==j)return 1;if(visited[k]!=1)if(DfsReachable(g,k,j))return 1;}}return 0;}7.23③同7.22题要求。
《数据结构》第二版严蔚敏课后习题作业参考答案(1-7章)
《数据结构》第二版严蔚敏课后习题作业参考答案(1-7章)【第一章绪论】1. 数据结构是计算机科学中的重要基础知识,它研究的是如何组织和存储数据,以及如何通过高效的算法进行数据的操作和处理。
本章主要介绍了数据结构的基本概念和发展历程。
【第二章线性表】1. 线性表是由一组数据元素组成的数据结构,它的特点是元素之间存在着一对一的线性关系。
本章主要介绍了线性表的顺序存储结构和链式存储结构,以及它们的操作和应用。
【第三章栈与队列】1. 栈是一种特殊的线性表,它的特点是只能在表的一端进行插入和删除操作。
本章主要介绍了栈的顺序存储结构和链式存储结构,以及栈的应用场景。
2. 队列也是一种特殊的线性表,它的特点是只能在表的一端进行插入操作,而在另一端进行删除操作。
本章主要介绍了队列的顺序存储结构和链式存储结构,以及队列的应用场景。
【第四章串】1. 串是由零个或多个字符组成的有限序列,它是一种线性表的特例。
本章主要介绍了串的存储结构和基本操作,以及串的模式匹配算法。
【第五章数组与广义表】1. 数组是一种线性表的顺序存储结构,它的特点是所有元素都具有相同数据类型。
本章主要介绍了一维数组和多维数组的存储结构和基本操作,以及广义表的概念和表示方法。
【第六章树与二叉树】1. 树是一种非线性的数据结构,它的特点是一个节点可以有多个子节点。
本章主要介绍了树的基本概念和属性,以及树的存储结构和遍历算法。
2. 二叉树是一种特殊的树,它的每个节点最多只有两个子节点。
本章主要介绍了二叉树的存储结构和遍历算法,以及一些特殊的二叉树。
【第七章图】1. 图是一种非线性的数据结构,它由顶点集合和边集合组成。
本章主要介绍了图的基本概念和属性,以及图的存储结构和遍历算法。
【总结】1. 数据结构是计算机科学中非常重要的一门基础课程,它关注的是如何高效地组织和存储数据,以及如何通过算法进行数据的操作和处理。
本文对《数据结构》第二版严蔚敏的课后习题作业提供了参考答案,涵盖了第1-7章的内容。
数据结构课后习题答案第七章
第七章图(参考答案)7.1(1)邻接矩阵中非零元素的个数的一半为无向图的边数;(2)A[i][j]= =0为顶点,I 和j无边,否则j和j有边相通;(3)任一顶点I的度是第I行非0元素的个数。
7.2(1)任一顶点间均有通路,故是强连通;(2)简单路径V4 V3 V1 V2;(3)0 1 ∞ 1∞ 0 1 ∞1 ∞ 0 ∞∞∞ 1 0邻接矩阵邻接表(2)从顶点4开始的DFS序列:V5,V3,V4,V6,V2,V1(3)从顶点4开始的BFS序列:V4,V5,V3,V6,V1,V27.4(1)①adjlisttp g; vtxptr i,j; //全程变量② void dfs(vtxptr x)//从顶点x开始深度优先遍历图g。
在遍历中若发现顶点j,则说明顶点i和j间有路径。
{ visited[x]=1; //置访问标记if (y= =j){ found=1;exit(0);}//有通路,退出else { p=g[x].firstarc;//找x的第一邻接点while (p!=null){ k=p->adjvex;if (!visited[k])dfs(k);p=p->nextarc;//下一邻接点}}③ void connect_DFS (adjlisttp g)//基于图的深度优先遍历策略,本算法判断一邻接表为存储结构的图g种,是否存在顶点i //到顶点j的路径。
设 1<=i ,j<=n,i<>j.{ visited[1..n]=0;found=0;scanf (&i,&j);dfs (i);if (found) printf (” 顶点”,i,”和顶点”,j,”有路径”);else printf (” 顶点”,i,”和顶点”,j,”无路径”);}// void connect_DFS(2)宽度优先遍历全程变量,调用函数与(1)相同,下面仅写宽度优先遍历部分。
数据结构第七章参考答案
习题71.填空题(1)由10000个结点构成的二叉排序树,在等概率查找的条件下,查找成功时的平均查找长度的最大值可能达到(___________)。
答案:5000.5(2)长度为11的有序序列:1,12,13,24,35,36,47,58,59,69,71进行等概率查找,如果采用顺序查找,则平均查找长度为(___________),如果采用二分查找,则平均查找长度为(___________),如果采用哈希查找,哈希表长为15,哈希函数为H(key)=key%13,采用线性探测解决地址冲突,即d i=(H(key)+i)%15,则平均查找长度为(保留1位小数)(___________)。
答案:6,3,1.6(3)在折半查找中,查找终止的条件为(___________)。
答案:找到匹配元素或者low>high?(4)某索引顺序表共有元素275个,平均分成5块。
若先对索引表采用顺序查找,再对块元素进行顺序查找,则等概率情况下,分块查找成功的平均查找长度是(___________)。
答案:31(5)高度为8的平衡二叉树的结点数至少是(___________)。
答案: 54 计算公式:F(n)=F(n-1)+F(n-2)+1(6)对于这个序列{25,43,62,31,48,56},采用的散列函数为H(k)=k%7,则元素48的同义词是(___________)。
答案:62(7)在各种查找方法中,平均查找长度与结点个数无关的查找方法是(___________)。
答案:散列查找(8)一个按元素值排好的顺序表(长度大于2),分别用顺序查找和折半查找与给定值相等的元素,平均比较次数分别是s和b,在查找成功的情况下,s和b的关系是(___________);在查找不成功的情况下,s和b的关系是(___________)。
答案:(1)(2s-1)b=2s([log2(2s-1)]+1)-2[log2(2s-1)]+1+1(2)分两种情况考虑,见解答。
数据结构作业答案第章图作业答案
第7章 图 自测卷解答 姓名 班级一、单选题(每题1分,共16分) 前两大题全部来自于全国自考参考书!( C )1. 在一个图中,所有顶点的度数之和等于图的边数的 倍。
A .1/2 B. 1 C. 2 D. 4 (B )2. 在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的 倍。
A .1/2 B. 1 C. 2 D. 4 ( B )3. 有8个结点的无向图最多有 条边。
A .14 B. 28 C. 56 D. 112 ( C )4. 有8个结点的无向连通图最少有 条边。
A .5 B. 6 C. 7 D. 8 ( C )5. 有8个结点的有向完全图有 条边。
A .14 B. 28 C. 56 D. 112 (B )6. 用邻接表表示图进行广度优先遍历时,通常是采用 来实现算法的。
A .栈 B. 队列C. 树D. 图 ( A )7. 用邻接表表示图进行深度优先遍历时,通常是采用 来实现算法的。
A .栈 B. 队列C. 树D. 图 ( )8. 已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是( D )9. 已知图的邻接矩阵同上题8,根据算法,则从顶点0出发,按深度优先遍历的结点序列是A . 0 2 4 3 1 5 6 B. 0 1 3 5 6 4 2 C. 0 4 2 3 1 6 5 D. 0 1 3 4 2 5 6 ( )10. 已知图的邻接矩阵同上题8,根据算法,则从顶点0出发,按广度优先遍历的结点序列是A . 0 2 4 3 6 5 1 B. 0 1 3 6 4 2 5 C. 0 4 2 3 1 5 6 D. 0 1 3 4 2 5 6 (建议:0 1 2 3 4 5 6) ( C )11. 已知图的邻接矩阵同上题8,根据算法,则从顶点0出发,按广度优先遍历的结点序列是A . 0 2 4 3 1 6 5 B. 0 1 3 5 6 4 2 C. 0 1 2 3 4 6 5 D. 0 1 2 3 4 5 6A .0 2 4 3 1 5 6B. 0 1 3 6 5 4 2C. 0 4 2 3 1 6 5D. 0 3 6 1 5 4 2建议:先画出图,再深度遍历⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡0100011101100001011010110011001000110010011011110( A )12. 已知图的邻接表如下所示,根据算法,则从顶点0出发不是深度优先遍历的结点序列是A.0 1 3 2 B. 0 2 3 1C. 0 3 2 1D. 0 1 2 3(A)14. 深度优先遍历类似于二叉树的A.先序遍历 B. 中序遍历 C. 后序遍历 D. 层次遍历(D)15. 广度优先遍历类似于二叉树的A.先序遍历 B. 中序遍历 C. 后序遍历 D. 层次遍历(A)16. 任何一个无向连通图的最小生成树A.只有一棵 B. 一棵或多棵 C. 一定有多棵 D. 可能不存在(注,生成树不唯一,但最小生成树唯一,即边权之和或树权最小的情况唯一)二、填空题(每空1分,共20分)1. 图有邻接矩阵、邻接表等存储结构,遍历图有深度优先遍历、广度优先遍历等方法。
数据结构第七章习题答案
第七章图
1.下面是一个图的邻接表结构,画出此图,并根据此存储结构和深度优先搜索
算法写出从C开始的深度优先搜索序列。
0A13^
1B35^
2C30^
3D4^
4E^
5F4^
【解答】
A B F
C D E
C开始的深度优先搜索序列:CDEABF(唯一的结果)
2.假定要在某县所辖六个镇(含县城)之间修公路,若镇I和镇J之间有可能通
过道路连接,则Wij表示这条路的长度。
要求每个镇都通公路且所修公路总里程
最短,那么应选择哪些线路来修。
I11112233445 J23564546566 W ij1239102626474
(1).画出该图。
(2).用C语言描述该图的数组表示法存储结构,并注明你所使用变量的实际含义。
(3).图示你所定义的数据结构。
(4).标识出你选择的线路。
【解答】
(1)
(2)
#define MAX 6
char vexs[MAX];
出该图的所有强连通分量。
(2).在图中删除弧<2,1>,然后写出从顶点1开始的拓扑有序序列。
【解答】
(1) 共4个强连通分量:
(2) 1,3,2,6,5,4
5 4
6 1 3 2
4
15 10
2
15 20 30 4 10
10。
数据结构-第7章图答案
7.3 图的遍历 从图中某个顶点出发游历图,访遍图中其余顶点, 并且使图中的每个顶点仅被访问一次的过程。 一、深度优先搜索 从图中某个顶点V0 出发,访问此顶点,然后依次 从V0的各个未被访问的邻接点出发深度优先搜索遍 历图,直至图中所有和V0有路径相通的顶点都被访 问到,若此时图中尚有顶点未被访问,则另选图中 一个未曾被访问的顶点作起始点,重复上述过程, 直至图中所有顶点都被访问到为止。
void BFSTraverse(Graph G, Status (*Visit)(int v)) { // 按广度优先非递归遍历图G。使用辅助队列Q和访问标志数组 visited。 for (v=0; v<G.vexnum; ++v) visited[v] = FALSE; InitQueue(Q); // 置空的辅助队列Q for ( v=0; v<G.vexnum; ++v ) if ( !visited[v]) { // v尚未访问 EnQueue(Q, v); // v入队列 while (!QueueEmpty(Q)) { DeQueue(Q, u); // 队头元素出队并置为u visited[u] = TRUE; Visit(u); // 访问u for ( w=FirstAdjVex(G, u); w!=0; w=NextAdjVex(G, u, w) ) if ( ! visited[w]) EnQueue(Q, w); // u的尚未访问的邻接顶点w入队列Q
4。邻接多重表
边结点
mark ivex
顶点结点
ilink
jvex
jlink
info
data
firstedge
#define MAX_VERTEX_NUM 20 typedef emnu {unvisited, visited} VisitIf; typedef struct Ebox { VisitIf mark; // 访问标记 int ivex, jvex; // 该边依附的两个顶点的位置 struct EBox *ilink, *jlink; // 分别指向依附这两个顶点的下一条 边 InfoType *info; // 该边信息指针 } EBox; typedef struct VexBox { VertexType data; EBox *firstedge; // 指向第一条依附该顶点的边 } VexBox; typedef struct { VexBox adjmulist[MAX_VERTEX_NUM]; int vexnum, edgenum; // 无向图的当前顶点数和边数 } AMLGraph;
数据结构 习题 第七章 图 答案
第7章图二.判断题部分答案解释如下。
2. 不一定是连通图,可能有若干连通分量 11. 对称矩阵可存储上(下)三角矩阵14.只有有向完全图的邻接矩阵是对称的 16. 邻接矩阵中元素值可以存储权值21. 只有无向连通图才有生成树 22. 最小生成树不唯一,但最小生成树上权值之和相等26. 是自由树,即根结点不确定35. 对有向无环图,拓扑排序成功;否则,图中有环,不能说算法不适合。
42. AOV网是用顶点代表活动,弧表示活动间的优先关系的有向图,叫顶点表示活动的网。
45. 能求出关键路径的AOE网一定是有向无环图46. 只有该关键活动为各关键路径所共有,且减少它尚不能改变关键路径的前提下,才可缩短工期。
48.按着定义,AOE网中关键路径是从“源点”到“汇点”路径长度最长的路径。
自然,关键路径上活动的时间延长多少,整个工程的时间也就随之延长多少。
三.填空题1.有n个顶点,n-1条边的无向连通图2.有向图的极大强连通子图3. 生成树9. 2(n-1) 10. N-1 11. n-1 12. n 13. N-1 14. n15. N16. 3 17. 2(N-1) 18. 度出度 19. 第I列非零元素个数 20.n 2e21.(1)查找顶点的邻接点的过程 (2)O(n+e) (3)O(n+e) (4)访问顶点的顺序不同 (5)队列和栈22. 深度优先 23.宽度优先遍历 24.队列25.因未给出存储结构,答案不唯一。
本题按邻接表存储结构,邻接点按字典序排列。
25题(1) 25题(2) 26.普里姆(prim )算法和克鲁斯卡尔(Kruskal )算法 27.克鲁斯卡尔28.边稠密 边稀疏 29. O(eloge ) 边稀疏 30.O(n 2) O(eloge) 31.(1)(V i ,V j )边上的权值 都大的数 (2)1 负值 (3)为负 边32.(1)n-1 (2)普里姆 (3)最小生成树 33.不存在环 34.递增 负值 35.16036.O(n 2) 37. 50,经过中间顶点④ 38. 75 39.O(n+e )40.(1)活动 (2)活动间的优先关系 (3)事件 (4)活动 边上的权代表活动持续时间41.关键路径 42.(1)某项活动以自己为先决条件 (2)荒谬 (3)死循环 43.(1)零 (2)V k 度减1,若V k 入度己减到零,则V k 顶点入栈 (3)环44.(1)p<>nil (2)visited[v]=true (3)p=g[v].firstarc (4)p=p^.nextarc45.(1)g[0].vexdata=v (2)g[j].firstin (3)g[j].firstin (4)g[i].firstout (5)g[i].firstout (6)p^.vexj (7)g[i].firstout (8)p:=p^.nexti (9)p<>nil (10)p^.vexj=j(11)firstadj(g,v 0) (12)not visited[w] (13)nextadj(g,v 0,w)46.(1)0 (2)j (3)i (4)0 (5)indegree[i]==0 (6)[vex][i] (7)k==1 (8)indegree[i]==047.(1)p^.link:=ch[u ].head (2)ch[u ].head:=p (3)top<>0 (4)j:=top (5)top:=ch[j].count(6)t:=t^.link48.(1)V1 V4 V3 V6 V2 V5(尽管图以邻接表为存储结构,但因没规定邻接点的排列,所以结果是不唯一的。
数据结构第七章课后习题答案
7_1对于图题7.1(P235)的无向图,给出:(1)表示该图的邻接矩阵。
(2)表示该图的邻接表。
(3)图中每个顶点的度。
解:(1)邻接矩阵:0111000100110010010101110111010100100110010001110(2)邻接表:1:2----3----4----NULL;2: 1----4----5----NULL;3: 1----4----6----NULL;4: 1----2----3----5----6----7----NULL;5: 2----4----7----NULL;6: 3----4----7----NULL;7: 4----5----6----NULL;(3)图中每个顶点的度分别为:3,3,3,6,3,3,3。
7_2对于图题7.1的无向图,给出:(1)从顶点1出发,按深度优先搜索法遍历图时所得到的顶点序(2)从顶点1出发,按广度优先法搜索法遍历图时所得到的顶点序列。
(1)DFS法:存储结构:本题采用邻接表作为图的存储结构,邻接表中的各个链表的结点形式由类型L_NODE规定,而各个链表的头指针存放在数组head中。
数组e中的元素e[0],e[1],…..,e[m-1]给出图中的m条边,e中结点形式由类型E_NODE规定。
visit[i]数组用来表示顶点i是否被访问过。
遍历前置visit各元素为0,若顶点i被访问过,则置visit[i]为1.算法分析:首先访问出发顶点v.接着,选择一个与v相邻接且未被访问过的的顶点w访问之,再从w 开始进行深度优先搜索。
每当到达一个其所有相邻接的顶点都被访问过的顶点,就从最后访问的顶点开始,依次退回到尚有邻接顶点未曾访问过的顶点u,并从u开始进行深度优先搜索。
这个过程进行到所有顶点都被访问过,或从任何一个已访问过的顶点出发,再也无法到达未曾访问过的顶点,则搜索过程就结束。
另一方面,先建立一个相应的具有n个顶点,m条边的无向图的邻接表。
数据结构第三版第七章作业参考答案
else { t=(BTNode *)malloc(sizeof(BTNode));
t->data=b->data; t1=Swap(b->lchild); t2=Swap(b->rchild); t->lchild=t2; t->rchild=t1; } return t; }
}
7.7 假设二叉树采用二叉链存储结构,t 指向根结点,p 所指结点为任一给 定的结点,设 计一个算法,输出从根结点到p 所指结点之间路径。
解:本题可以采用《教程》中例 7.8 的方法(只需对该算法作简单修改即
可
)
。
这
里
介
绍另一种方法,即非递归后序遍历树t(参见《教程》7.4.3 小节后序遍历非
递
归
二叉树树 形表示。
答:由《教程》7.6 节的构造算法得到的二叉树的构造过程和二叉树如图 7.3 所示。
b 左:c 右:ed
a 左:cbed 右:hgijf
f 左:hgij 右:空
c 左:空 右:空
d
g
左:e
左:h
右:空 右:ij
e 左:空 右:空
h 左:空 右:空
i 左:空 右:j
j 左:空 右:空
图 7.3 二叉树的构造过程
7.3 设给定权集 w={2,3,4,7,8,9},试构造关于 w 的一棵哈夫曼树,并求其带权 路径长度 WPL。
答:本题的哈夫曼树如图 7.4 所示。
33
18
15
9
97
8
5
4
2
3
图 7.4 一棵哈夫曼树
其带权路径长度WPL=(9+7+8)×2+4×3+(2+3)×4=80。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章 图一、单选题( C )1. 在一个图中,所有顶点的度数之和等于图的边数的 倍。
A .1/2 B. 1 C. 2 D. 4 (B )2. 在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的 倍。
A .1/2 B. 1 C. 2 D. 4 ( B )3. 有8个结点的无向图最多有 条边。
A .14 B. 28 C. 56 D. 112 ( C )4. 有8个结点的无向连通图最少有 条边。
A .5 B. 6 C. 7 D. 8 ( C )5. 有8个结点的有向完全图有 条边。
A .14 B. 28 C. 56 D. 112 (B )6. 用邻接表表示图进行广度优先遍历时,通常是采用 来实现算法的。
A .栈 B. 队列 C. 树 D. 图 ( A )7. 用邻接表表示图进行深度优先遍历时,通常是采用 来实现算法的。
A .栈 B. 队列 C. 树 D. 图 ()8. 已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是( D )9. 已知图的邻接矩阵同上题8,根据算法,则从顶点0出发,按深度优先遍历的结点序列是 A . 0 2 4 3 1 5 6 B. 0 1 3 5 6 4 2 C. 0 4 2 3 1 6 5 D. 0 1 3 4 2 5 6 ( C )11. 已知图的邻接矩阵同上题8,根据算法,则从顶点0出发,按广度优先遍历的结点序列是A . 0 2 4 3 1 6 5 B. 0 1 3 5 6 4 2C. 0 1 2 3 4 6 5D. 0 1 2 3 4 5 6 ( D )12. 已知图的邻接表如下所示,根据算法,则从顶点0出发按深度优先遍历的结点序列是( A )13. 已知图的邻接表如下所示,根据算法,则从顶点0出发按广度优先遍历的结点序列是⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡0100011101100001011010110011001000110010011011110A .0 1 3 2 B. 0 2 3 1 C. 0 3 2 1 D. 0 1 2 3( A )14. 深度优先遍历类似于二叉树的A .先序遍历 B. 中序遍历 C. 后序遍历 D. 层次遍历 ( D )15. 广度优先遍历类似于二叉树的A .先序遍历 B. 中序遍历 C. 后序遍历 D. 层次遍历 ( A )16. 任何一个无向连通图的最小生成树A .只有一棵 B. 一棵或多棵 C. 一定有多棵 D. 可能不存在 (注,生成树不唯一,但最小生成树唯一,即边权之和或树权最小的情况唯一)二、填空题1. 图有 邻接矩阵 、 邻接表 等存储结构,遍历图有 深度优先遍历 、 广度优先遍历 等方法。
2. 有向图G 用邻接表矩阵存储,其第i 行的所有元素之和等于顶点i 的 出度 。
3. 如果n 个顶点的图是一个环,则它有 n 棵生成树。
(以任意一顶点为起点,得到n-1条边)4. n 个顶点e 条边的图,若采用邻接矩阵存储,则空间复杂度为 O(n 2) 。
5. n 个顶点e 条边的图,若采用邻接表存储,则空间复杂度为 O(n+e) 。
6. 设有一稀疏图G ,则G 采用 邻接表 存储较省空间。
7. 设有一稠密图G ,则G 采用 邻接矩阵 存储较省空间。
8. 图的逆邻接表存储结构只适用于 有向 图。
9. 已知一个图的邻接矩阵表示,删除所有从第i10. 图的深度优先遍历序列 不是 惟一的。
11. n 个顶点e 条边的图采用邻接矩阵存储,深度优先遍历算法的时间复杂度为 O(n 2) ;若采用邻接表存储时,该算法的时间复杂度为 O(n+e) 。
12. n 个顶点e 条边的图采用邻接矩阵存储,广度优先遍历算法的时间复杂度为 O(n 2) ;若采用邻接表存储,该算法的时间复杂度为 O(n+e) 。
13. 图的BFS 生成树的树高比DFS14. 用普里姆(Prim)算法求具有n 个顶点e 条边的图的最小生成树的时间复杂度为 O(n 2) ;用克鲁A .0 3 2 1 B. 0 1 2 3 C. 0 1 3 2 D. 0 3 1 2斯卡尔(Kruskal)算法的时间复杂度是O(elog2e) 。
15. 若要求一个稀疏图G的最小生成树,最好用克鲁斯卡尔(Kruskal) 算法来求解。
16. 若要求一个稠密图G的最小生成树,最好用普里姆(Prim)算法来求解。
17. 用Dijkstra算法求某一顶点到其余各顶点间的最短路径是按路径长度递增的次序来得到最短路径的。
18. 拓扑排序算法是通过重复选择具有0 个前驱顶点的过程来完成的。
三、分析求解题1. 已知如图所示的有向图,请给出该图的:(2)邻接矩阵;(3)邻接表;(4)逆邻接表。
答案:2. 请对下图的无向带权图:(1) 写出它的邻接矩阵,并按普里姆算法求其最小生成树; (2) 写出它的邻接表,并按克鲁斯卡尔算法求其最小生成树。
解:设起点为a 。
可以直接由原始图画出最小生成树,而且最小生成树只有一种(类)!邻接矩阵为:→→→ → → →→ → → → → → → → → → → ^ → → → ^ → → → ^ → → → ^⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞064560252036307945670555505395504340先罗列:f ---2---g a —3--cf —3—e a —4---b d —4—h(a,b,c) (e,f,g) (d,h) 取b —5—d, g —5--d 就把三个连通分量连接起来了。
3. 已知二维数组表示的图的邻接矩阵如下图所示。
试分别画出自顶点1出发进行遍历所得的深度优先生成树和广度优先生成树。
4. 试利用Dijkstra 算法求图中从顶点a 到其他各顶点间的最短路径,写出执行算法过程中各步的状态。
解:最短路径为:(a,c,f,e,d,g,b )5.给定下列网G:(1) 试着找出网G 的最小生成树,画出其逻辑结构图; (2) 用两种不同的表示法画出网G 的存储结构图;(3) 用C 语言(或其他算法语言)定义其中一种表示法(存储结构)的数据类型。
解:(1(2⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞1012696841015121520982012412→ →^→ →→ → ^→ →→ ^ → →^ → →→ ^ → →^ → →五、算法设计题1. 编写算法,由依次输入的顶点数目、弧的数目、各顶点的信息和各条弧的信息建立有向图的邻接表。
解:Status Build_AdjList(ALGraph &G) //输入有向图的顶点数,边数,顶点信息和边的信息建立邻接表 {InitALGraph(G); scanf("%d",&v);if(v<0) return ERROR; //顶点数不能为负 G .vexnum=v; scanf("%d",&a);if(a<0) return ERROR; //边数不能为负G.arcnum=a;for(m=0;m<v;m++)G.vertices[m].data=getchar(); //输入各顶点的符号for(m=1;m<=a;m++){t=getchar();h=getchar(); //t为弧尾,h为弧头if((i=LocateVex(G,t))<0) return ERROR;if((j=LocateVex(G,h))<0) return ERROR; //顶点未找到p=(ArcNode*)malloc(sizeof(ArcNode));if(!G.vertices.[i].firstarc) G.vertices[i].firstarc=p;else{for(q=G.vertices[i].firstarc;q->nextarc;q=q->nextarc);q->nextarc=p;}p->adjvex=j;p->nextarc=NULL;}//whilereturn OK;}//Build_AdjList2. 试在邻接矩阵存储结构上实现图的基本操作:DeleteArc(G,v,w) ,即删除一条边的操作。
(如果要删除所有从第i个顶点出发的边呢?提示:将邻接矩阵的第i行全部置0 )解://本题中的图G均为有向无权图。
Status Delete_Arc(MGraph &G,char v,char w)//在邻接矩阵表示的图G上删除边(v,w){if((i=LocateVex(G,v))<0) return ERROR;if((j=LocateVex(G,w))<0) return ERROR;if(G.arcs[i][j].adj){G.arcs[i][j].adj=0;G.arcnum--;}return OK;}//Delete_Arc3. 试基于图的深度优先搜索策略写一算法,判别以邻接表方式存储的有向图中是否存在由顶点v i到顶点v j的路径(i≠j)。
注意:算法中涉及的图的基本操作必须在此存储结构上实现。
int visited[MAXSIZE]; //指示顶点是否在当前路径上int exist_path_DFS(ALGraph G,int i,int j)//深度优先判断有向图G中顶点i到顶点j是否有路径,是则返回1,否则返回0{if(i==j) return 1; //i就是jelse{for(p=G.vertices[i].firstarc;p;p=p->nextarc){k=p->adjvex;if(!visited[k]&&exist_path(k,j)) return 1;//i下游的顶点到j有路径}//for}//else}//exist_path_DFS解2:(以上算法似乎有问题:如果不存在路径,则原程序不能返回0。
我的解决方式是在原程序的中引入一变量level来控制递归进行的层数。
具体的方法我在程序中用红色标记出来了。
)int visited[MAXSIZE]; //指示顶点是否在当前路径上int level=1;//递归进行的层数int exist_path_DFS(ALGraph G,int i,int j)//深度优先判断有向图G中顶点i到顶点j是否有路径,是则返回1,否则返回0{if(i==j) return 1; //i就是jelse{visited[i]=1;for(p=G.vertices[i].firstarc;p;p=p->nextarc,level--){ level++;k=p->adjvex;if(!visited[k]&&exist_path(k,j)) return 1;//i下游的顶点到j有路径}//for}//elseif (level==1) return 0;}//exist_path_DFS附加题:【严题集7.27④】采用邻接表存储结构,编写一个判别无向图中任意给定的两个顶点之间是否存在一条长度为k的简单路径的算法。