第5章疲劳断裂失效分析
第五章__材料的疲劳性能(1)分析
疲劳微裂纹形成的三种形式
表面滑移带开裂解释 1)在循环载荷作用下,即使循环应力未超过材料屈服强 度,也会在试样表面形成循环滑移带 2)循环滑移带集中于某些局部区域(高应力或簿弱区) 3)循环滑移带很难去除,即使去除,再次循环加载时, 还会在原处再现 (驻留滑移带)
特征: 1)驻留滑移带一般只在表面形成,深度较浅,随循环次数 的增加,会不断地加宽 2)驻留滑移带在表面加宽过程中,会出现挤出脊和侵入 沟,在这些地方引起应力集中,引发微裂纹
四:疲劳裂纹扩展速率
试验表明:测量疲劳裂纹长度和循环周数的关系如图
疲劳裂纹扩展曲线
Δσ2﹥Δσ1
从图可知: 1)曲线的斜率da/dN(疲劳裂纹扩展速率)在整个过程中 是不断增长的 2)当da/dN无限增大,裂纹将失稳扩展,试样断裂 3)应力增加,裂纹扩展加快,a-N曲线向左上方移动,ac相 应减小 结论:裂纹扩展速率da/dN 和应力水平及裂纹长度有关 根据断裂力学: 可定义应力强度因子幅为
特征 1)疲劳源区比较光滑(受反复挤压,摩擦次数多) 2)表面硬度因加工硬化有所提高 3)可以是一个,也可能有多个疲劳源(和应力状态及 过载程度有关)
疲劳裂纹扩展区
是疲劳裂纹亚临界扩展的区域
特征 1)断口较光滑,分布有贝纹线(或海滩花样),有时还有 裂纹扩展台阶 2)贝纹线是疲劳区的最典型特征,贝纹线是以疲劳源为圆 心的平行弧线,凹侧指向疲劳源,凸侧指向裂纹扩展方向 3)近疲劳源区贝纹线较密,远离疲劳源区贝纹线较疏
5.2 疲劳破坏机理
一:金属材料疲劳破坏机理
疲劳裂纹的萌生
1)在材料簿弱区或高应力区,通过不均匀滑移, 微裂纹形成及长大而完成 2)定义裂纹长度为0.05—0.10mm时为裂纹疲劳 核,对应的循环周期为裂纹萌生期
断裂力学基础
2
5.1 结构中的裂纹
低应力断裂: 在静强度足够的情况下发生的断裂。
低应力断裂是由缺陷引起的,缺陷的最严重形式是 裂纹。裂纹,来源于材料本身的冶金缺陷或加工、制造、 装配及使用等过程的损伤。
断裂力学 研究材料内部存在裂纹情况下强度问
W
2a
s 中心裂纹
s
a s
边裂纹
at s
2c s
表面裂纹
4
裂
应力集中
纹
严重
结构或构件 强度削弱
剩余强度: 受裂纹影响降低后的强度。
载荷或腐蚀环 境作用
裂纹尺寸 剩余强度
载荷
裂纹扩展 剩余强度下降
使用时间 a) 裂纹扩展曲线
最大设计应力 正常工作应力
可能 破坏 破坏
裂纹尺寸 b) 剩余强度曲线
在大的偶然载荷下,剩余强度不足,发生破坏。
裂纹面位移沿z方向,裂纹沿 z方向撕开。 7
一、断裂力学的处理方法
当外加应力在弹性范围内,而裂纹前端的塑性区很小 时,这种断裂问题可以用线性弹性力学处理,这种断裂力 学叫线弹性断裂力学(LEFM)。适用于高强低韧金属材料 的平面应变断裂和脆性材料如玻璃、陶瓷、岩石、冰等材 料的断裂情况。
对延性较大的金属材料,其裂纹前端的塑性区已大于 LEFM能够处理的极限,这种断裂问题要用弹塑性力学处理, 这种断裂力学叫弹塑性断裂力学(EPFM)。
这是进行抗断设计的基本控制方程。
f是裂纹尺寸a和构件几何(如W)的函数,查手册;
K1C是断裂韧性(材料抗断指标),由试验确定。
K由线弹性分析得到,适用条件是裂尖塑性区尺寸r远
小于裂纹尺寸a;即:
第五章 断裂
•如用实际晶体的E,a。,γ值代入式(56)计算,例如铁,E=2×105 MPa,a0=2.5×10-10 m,γ=2 J/m2, 则σm= 4×104 MPa≈E/5。 •高强度钢,其强度只相当于E/100,相差 20倍。 •在实际晶体中必有某种缺陷,使其断裂强 度降低。
5.3.2 格雷菲斯裂纹理论(Griffith)
• 当裂纹增长到2ac后,若再增长,则系统的总 能量下降。从能量观点来看,裂纹长度的继 续增长将是自发过程。临界状态为: (Ue+W)/ a =4γ-2πσ2a/E =0 (5-10) • 于是,裂纹失稳扩展的临界应力为: σc=(2Eγ/πa)1/2 (5-11) • 临界裂纹半长为 ac=2Eγ/πσ2 (5-12) • 式(5-11)便是著名的Griffith公式。 • σc 是含裂纹板材的实际断裂强度,它与裂 纹半长的平方根成反比;
摘要发表于 Int. J. of Fracture, Vol23, No.3, 1983 译文见 力学进展, Vol15,No2,1985
对策
普及断裂的基本知识,可减少损失29%(345亿/年)。
设计、制造人员了解断裂,主动采取改进措施, 如设计;材料断裂韧性;冷、热加工质量等。
利用现有研究成果,可再减少损失24%(285亿/年)。 包括提高对缺陷影响、材料韧性、工作应力的预测 能力;改进检查、使用、维护;建立力学性能数据 库;改善设计方法更新标准规范等。
• Griffith认为,裂纹尖端局部区域的材料强度可
达其理论强度值。 • 倘若由于应力集中的作用而使裂纹尖端的应 力超过材料的理论强度值,则裂纹扩展,引 起断裂。 • 根据弹性应力集中系数的计算,可以得到相似 公式 • Griffith公式适用于陶瓷、玻璃这类脆性材料。
失效分析知识点
失效分析知识点第一章概论1.失效的定义:当这些零件失去其应有的功能时,则称该零件失效。
2.失效三种情况:(1).零件由于断裂、腐蚀、磨损、变形等从而完全丧失其功能;(2).零件在外部环境作用下,部分的失去其原有功能,虽然能工作,但不能完成规定功能,如由于磨损导致尺寸超差等;(3).零件能够工作,也能完成规定功能,但继续使用时,不能确保安全可靠性。
3. 失效分析定义:对失效产品为寻找失效原因和预防措施所进行的一切技术活动。
也就是研究失效的特征和规律,从而找出失效的模式和原因。
4. 失效分析过程:事前分析(预防失效事件的发生)、事中分析(防止运行中设备发生故障)、事后分析(找出某个系统或零件失效的原因)。
5. 失效分析的意义:(1).失效分析的社会经济效益:失效将造成巨大的经济损失;质量低劣、寿命短导致重大经济损失;提高设备运行和使用的安全性。
(2).失效分析有助于提高管理水平和促进产品质量提高;(3).失效分析有助于分清责任和保护用户(生产者)利益;(4).失效分析是修订产品技术规范及标准的依据;(5).失效分析对材料科学与工程的促进作用:材料强度与断裂;材料开发与工程应用。
第二章失效分析基础知识一.机械零件失效形式与来源:1.按照失效的外部形态分类:(1)过量变形失效:扭曲、拉长等。
原因:在一定载荷下发生过量变形,零件失去应有功能不能正常使用。
(2)断裂失效:一次加载断裂(静载荷):由于载荷或应力超过当时材料的承载能力而引起;环境介质引起的断裂:环境介质和应力共同作用引起的低应力脆断;疲劳断裂(交变载荷):由于周期作用力引起的低应力破坏。
(3)表面损伤失效:磨损:由于两物体接触表面在接触应力下有相对运动,造成材料流失所引起的一种失效形式;腐蚀: 环境气氛的化学和电化学作用引起。
(4).注:断裂的其他分类断裂时变形量大小:脆性断裂、延性断裂;裂纹走向与晶相组织的关系:穿晶断裂、沿晶断裂;2.失效的来源:(1).设计的问题:高应力部位存在沟槽、机械缺口及圆角半径过小等;应力计算错误;设计判据不正确。
材料失效分析(第五章-疲劳)
§2
疲劳裂纹萌生与扩展机理(模型)
一、疲劳裂纹萌生机理 1、挤出挤入模型—Wood模型
10
金属表面形成的挤出脊与挤入沟
11
2、位错销毁模型—藤田模型
两列平行的异号刃位错,在相距几个原子间隔 (约10埃)的两平行滑移面上互相对峙塞积;
由于这种位错排列所产生的高拉应力引起原子 面分离,形成孔洞
12
20
锯齿形断口或棘轮花样
轴类零件在交变扭转应力作用下产生的 有应力集中(轴颈)+扭矩作用
多源裂纹
裂纹以螺旋状方式向前扩展,最后汇合于轴的中央 若为单向交变扭转应力——棘轮花样 若为双向交变扭转应力——锯齿状断口
21
锯齿形断口
棘轮花样
22
3、瞬断区
形貌:具有断口三要素(放射区、剪切唇)的特征
对于塑性材料,断口为纤维状、暗灰色 对于脆性材料,断口为结晶状 位置:自由表面 断面中心
7
4、疲劳断裂过程
疲劳裂纹的萌生: 表面(次表面、内部) 疲劳裂纹的扩展(两个阶段)
8
第一阶段:裂纹起源于材料表面,向内部扩展
范围较小,约2—5个晶粒之内 显微形貌不好分辨 与拉伸轴约成45°角,裂纹扩展主要是由于τ 的作用
扩展速度很慢,每一应力循环只有埃数量级
第二阶段:断面与拉伸轴垂直,凹凸不平 裂纹扩展路径是穿晶的 扩展速度快,每一应力循环微米数量级 显微特征:疲劳辉纹
3、空穴模型—Mott模型
由于螺位错围绕着环形通道,进行连续交叉滑移运动, 结果从表面上挤出了材料的一个舌片,并相应地形成 了一个空穴,这个空穴就是疲劳裂纹源
13
4、位错交叉滑移模型—Cottrell和Hull模型
14
二、疲劳裂纹扩展模型
疲劳断裂失效分析精品PPT课件
3.1 疲劳断裂的基本形式和特征
5、疲劳断裂对腐蚀介质的敏感性
金属材料的疲劳断裂除取决于材料本身的性能 外,还与零件运行的环境条件有着密切的关系。对 材料敏感的环境条件虽然对材料的静强度也有一定 的影响,但其影响程度远不如对材料疲劳强度的影 响来得显著。大量实验数据表明,在腐蚀环境下材 料的疲劳极限较在大气条件下低得多,甚至就没有 所说的疲劳极限。
2
5.1 疲劳断裂的基本形式和特征
大多数的工程金属构件的疲劳失效都是以正断形 式进行的。特别是体心立方金属及其合金以这种形式 破坏的所占比例更大;上述力学条件在试件的内部裂 纹处容易得到满足,但当表面加工比较粗糙或具有较 深的缺口、刀痕、蚀坑、微裂纹等应力集中现象时, 正断疲劳裂纹也易在表面产生。
2
5.1 疲劳断裂的基本形式和特征
1、切断疲劳失效
切断疲劳初始裂纹是由切应力引起的。切应力引 起疲劳初裂纹萌生的力学条件是:切应力/缺口切断 强度≥1;正应力/缺口正断强度<1。
切断疲劳的特点是:疲劳裂纹起源处的应力应变 场为平面应力状态;初裂纹的所在平面与应力轴约成 45º角,并沿其滑移面扩展。
2
5.2 疲劳断口形貌及其特征
5.2.1 疲劳断口的宏观形貌及其特征
由于疲劳断裂的过程不同于其他断裂,因而形成了疲劳断 裂 特有的断口形貌,这是疲劳断裂分析时的根本依据。
典型的疲劳断口的宏观形貌结构可分为疲劳核心、疲劳源区 、疲劳裂纹的选择发展区、裂纹的快速扩展区及瞬时断裂区等 五个区域。一般疲劳断口在宏观上也可粗略地分为疲劳源区、 疲劳裂纹扩展区和瞬时断裂区三个区域,更粗略地可将其分为 疲劳区和瞬时断裂区两个部分。大多数工程构件的疲劳断裂断 口上一般可观察到三个区域,因此这一划分更有实际意义。
失效分析之五
2.0
2.4
试样直径
2
10
5.1 过载断裂的基本形式和特征
3、载荷性质的影响
载荷性质不仅对断口中“三要素”的相对大小有影响, 载荷性质不仅对断口中“三要素”的相对大小有影响,而且其断 裂的 性质有时也会发生很大的变化。 性质有时也会发生很大的变化。
冲击断口形貌示意图 a—一般情况,b—材料塑性较好,c—材料脆性较大,d—脆性断口 一般情况, 材料塑性较好, 材料脆性较大 材料脆性较大, 一般情况 材料塑性较好 脆性断口 F—纤维区,R—放射区,S—剪切唇 纤维区, 放射区, 纤维区 放射区 剪切唇
2
7
5.1 过载断裂的基本形式和特征
(3)中碳钢及中碳合金钢的调质状态,断口的主要特征是具 中碳钢及中碳合金钢的调质状态, 有粗大的放射剪切花样,基本上无纤维区和剪切唇。 有粗大的放射剪切花样,基本上无纤维区和剪切唇。放射剪切是一 种典型的剪切脊。这是在断裂起裂后扩展时, 种典型的剪切脊。这是在断裂起裂后扩展时,沿最大切应力方向发 生剪切变形的结果。其另一特点是放射元不是直线的, 生剪切变形的结果。其另一特点是放射元不是直线的,这是因为变 形约束小,裂纹钝化,致使扩展速度较慢等。 形约束小,裂纹钝化,致使扩展速度较慢等。 (4)塑性较好的材料,由于变形约束小,断口上可能只有纤 塑性较好的材料,由于变形约束小, 维区和剪切唇而无放射区。 维区和剪切唇而无放射区。 (5)纯金属还可能出现一种全纤维的断口或45°角的滑开断口 纯金属还可能出现一种全纤维的断口或45° 45 (6)脆性材料的过载断裂,在其断口上可能完全不出现“三 脆性材料的过载断裂,在其断口上可能完全不出现“ 要素”的特征,而呈现细瓷状、结晶状及镜面反光状等特征。 要素”的特征,而呈现细瓷状、结晶状及镜面反光状等特征。
疲劳与断裂
变幅载荷
随机载荷
24
Three primary fatigue analysis methods which are the stress-life approach, strainlife approach, and the fracture mechanics approach, will be discussed. These methods have their own region of application with some degree of overlap between them.
二、疲劳破坏机理及断口微观特征
疲劳裂纹萌生机理:
疲劳裂纹的起始或萌生,称为疲劳裂纹成核。 疲劳裂 纹成核 扩展至临 界尺寸 断裂 发生
裂纹起源(裂纹源)在何处? 高应力处: 1)应力集中处;缺陷、夹杂,或孔、切口、台阶等 2)构件表面; 应力较高,有加工痕迹, 平面应力状态,易于滑移发生。
16
延性金属中的滑移
19
疲劳条纹(striation) 不同于海滩条带(beach mark) Cr12Ni2WMoV钢疲劳条纹:(金属学报,85)
透射电镜:1-3万倍
S
谱块
t
循环
条纹
20
条带
疲劳裂纹扩展的微观机理 1976 Crooker
Cr12Ni2WMoV钢疲劳断口微观照片:(金属学报,85)
三种破坏形式:
微解理型 microcleavage
23
1.5 疲劳问题研究方法
裂纹扩展规律 断裂力学规律
缺口影响 尺寸、光洁度 等影响 平均应力的影响 Goodman直线 Miner 累积损伤理论 雨流计数法
损伤容限设计 构件S-N曲线 (各种修正) 无限寿 命设计 安全寿 命设计
金属材料疲劳断裂机理分析
金属材料疲劳断裂机理分析一、引言金属材料常见的失效形式之一是疲劳断裂,而疲劳断裂机理的分析对于提高金属材料的使用寿命具有重要意义。
本文将对金属材料疲劳断裂机理进行详细分析。
二、金属材料的疲劳断裂1. 疲劳断裂的概念疲劳断裂是材料受到循环或重复应力作用后,出现裂纹并扩展,最终导致材料破坏的一种失效形式。
2. 疲劳断裂的特点(1)与静态断裂不同,疲劳断裂通常在应力水平低于静态破坏强度时出现。
(2)疲劳断裂往往发生在金属材料受到循环应力或者滞后循环应力的情况下。
(3)疲劳断裂是一个逐渐形成的过程,通常由细小的裂纹开始,然后扩展到整个截面并导致材料断裂。
3. 疲劳断裂的影响因素(1)应力幅值对于金属材料疲劳断裂的影响很大。
一般来说,应力幅值越大,疲劳断裂的损伤就越严重。
(2)材料的力学性质对于疲劳断裂也有很大的影响。
通常来说,强度越高的材料越难发生疲劳断裂,但是当强度相同时,材料的硬度越高,就越容易疲劳断裂。
(3)疲劳断裂还受到持续时间、温度、材料的化学成分和缺陷的影响。
4. 疲劳断裂的分类根据裂纹的扩展速率和应力比,疲劳断裂可以分为以下几类:(1)低周疲劳断裂:在循环应力下,材料的裂纹扩展速率很慢,往往需要上百万以上次循环才会导致疲劳断裂。
(2)中周疲劳断裂:循环应力下材料的裂纹扩展速率较快,在千-十万次循环后就能导致疲劳断裂。
(3)高周疲劳断裂:循环应力下材料的裂纹扩展速率极快,在数十万-数百万次循环内就会导致疲劳断裂。
5. 疲劳断裂的机理(1)金属材料的疲劳断裂过程一般分为始裂阶段和稳定扩展阶段。
(2)始裂阶段:在材料表面出现较小的裂纹,形成的原因是在应力作用下,材料中的微小缺陷和夹杂物开始聚集和扩散。
(3)稳定扩展阶段:当裂纹扩展到一定长度时,会出现塑性形变,当扩展到一定程度时,材料就会出现断裂。
(4)材料疲劳断裂机理可以采用形变、断裂学和金相学等多方面知识进行解释。
三、疲劳断裂机理分析1. 循环应力下的金属变形材料在循环应力下,会出现塑性变形和弹性变形两种不同的变形形式。
4.疲劳与疲劳断裂解析
3 疲惫断口形貌及其特征
2
25
5 影响疲惫缘由及措施
4、装配与联接效应 装配与联接效应对构件的疲惫寿命有很大的影响。
正确的拧紧力矩可使其疲惫寿命提高5倍以上。简洁消失的问题是,认 为越大的拧紧力对提高联接的牢靠性越有利,使用实践和疲惫试验说明,这 种看法具有很大的片面性。
5.使用环境 环境因素〔低温、高温及腐蚀介质等〕的变化,使材料的疲惫强度显 著降低,往往引起零件过早的发生断裂失效。例如镍铬钢〔0.28%C,11.5 % Ni,0.73%Cr〕,淬火并回火状态下在海水中的条件下疲惫强度大约只是 在大气中的疲惫极限的20%。
2
14
1、疲惫裂纹源区 疲惫裂纹源区是疲惫裂纹萌生的策源地,是疲惫破坏的起点, 多处于机件的外表,源区的断口形貌多数状况下比较平坦、光 亮,且呈半圆形或半椭圆形。
由于裂纹在源区内的扩展速率缓慢,裂纹外表受反复挤压、摩 擦次数多,所以其断口较其他两个区更为平坦,比较光亮。在 整个断口上与其他两个区相比,疲惫裂纹源区所占的面积最小 。
相垂直。
大多数的工程金属构件的疲惫失效都是以此种形式进 展的。特殊是体心立方金属及其合金以这种形式破坏的所占 比例更大;上述力学条件在试件的内部裂纹处简洁得到满足 ,但当外表加工比较粗糙或具有较深的缺口、刀痕、蚀坑、 微裂纹等应力集中现象时,正断疲惫裂纹也易在外表产生。
高强度、低塑性的材料、大截面零件、小应力振幅、 低的加载频率及腐蚀、低温条件2均有利于正断疲惫裂纹的萌 6
疲劳断裂失效分析与表面强化预防
1 .结构材料的疲劳失效特征
疲劳失效是材料在循环载荷作用 下发生 的损伤和破 坏过程 。一般而言疲劳断裂包 括裂纹 的萌 生 、裂纹 的扩
展和最终 的断裂三个过程 ,因此疲 劳断 口上有 三个相对
对疲劳断裂失效而 言,应该将疲 劳裂纹 的萌生 与疲 劳裂纹的扩展 ( 包括疲 劳小裂纹和长裂纹的扩展) 结合 起来 ,综合考 虑 疲 劳 裂 纹 的 “ ” 与 “ ” 的 过程 , 裂 断
参磊 工热 工 加
维普资讯
—
m
』 垫丝墨
特征 :
其 一, 劳裂纹源多位 于应 刀痕 、压 痕 、擦 伤 、锻 造 皱 皮 、折 l 叠 、疏松 、空洞 以及组织 中的晶界与孪 品界 、熔渣 、夹 杂物 、白点 、第二相粒子 、滑移集 中带 和形 变集 中带 等 部位都易于萌生疲劳裂纹 。 其二 ,疲劳裂纹扩展时 ,在延展性 好 的材料上易 产 生疲劳条带 ,在 脆性材料上多产生银纹或剪切带。 其三 ,对于疲 劳断裂 的瞬 断区 ,延展性好 的材料 多 以韧窝形态发生切 断 ,在脆性材料 上多产生结 晶特征 的
( )疲劳失效为低应力长时间无 明显 塑性 变形 的宏 1
观脆性断裂。
( )疲劳失效是 由材料局部的组 织不 断发生损伤变 2
化并且逐 渐 累积而 成 ,疲 劳总 是从 最 薄弱 的 区域 开始
( 图 1。 见 )
强调了裂纹的萌生 和扩展两个 阶段 。一 个零件要 “ 裂” 必须有裂纹 的产生并使裂纹长大 , 要想 “ 断” 必须是零
匀性 ,决定了疲 劳失效具有随机性 。
章, 对存在一定尺寸的裂纹或缺陷,通过分析剩余寿命
/ 剩余强度来计 算构 件 的安 全 ,一方 面可充 分发 挥材 料
第5章-疲劳断裂失效分析PPT课件
降低
材料强度
增加
升高
材料塑性
增加
降低
温度
升高
降低
腐蚀介质
强
降低
2021
14
4、疲劳断裂对材料缺陷的敏感性
• 金属的疲劳失较具有对材料的各种缺陷均 为敏感的特点。因为疲劳断裂总是起源于 微裂纹处。这些微裂纹有的是材料本身的 冶金缺陷,有的是加工制造过程中留下的, 有的则是使用过程中产生的。
2021
15
2021
16
5.2 疲劳断口形貌及其特征
5.2.1 疲劳断口的宏观特征
1.金属疲劳断口宏观形貌
• 由于疲劳断裂的过程不同于其他断裂,因 而形成了疲劳断裂特有的断口形貌,这是 疲劳断裂分析时的根本依据。
2021
17
图5-1 疲劳断口示意图
2021
18
• 典型的疲劳断口的宏观形貌结构可分为疲 劳核心、疲劳源区、疲劳裂纹的选择发展 区、裂纹的快速扩展区及瞬时断裂区等五 个区域。一般疲劳断口在宏观上也可粗略 地分为疲劳源区、疲劳裂纹扩展区和瞬时 断裂区三个区域,更粗略地可将其分为疲 劳区和瞬时断裂区两个部分。大多数工程 构件的疲劳断裂断口上一般可观察到三个 区域,因此这一划分更有实际意义。
2021
39
图5-10 锯齿状断口形成过程示意图
2021
40
图5-11 锯齿状断口
2021
41
5.2.3 疲劳断口的微观形貌特征
• 疲劳断口微观形貌的基本特征是在电子显 微镜下观察到的条状花样,通常称为疲劳 条痕、疲劳条带、疲劳辉纹等。疲劳辉纹 是具有一定间距的、垂直于裂纹扩展方向、 明暗相交且互相平行的条状花样 。
2021
24
热疲劳断裂的主要因素和裂纹特征
热疲劳断裂的主要因素和裂纹特征断裂失效分析(4)钟培道(北京航空材料研究院,北京100095)5.3 疲劳断裂失效分析疲劳断裂失效分析的内容包括:分析判断零件的断裂失效是否属于疲劳断裂与疲劳断裂的类别;引起疲劳断裂的载荷类型与大小以及疲劳断裂的起源等。
疲劳断裂失效分析的目的则是找出引起疲劳断裂的确切原因,从而为防止同类疲劳断裂失效再次出现所要采取的措施提供依据。
5.3.1 疲劳断裂的宏观分析典型的疲劳断口按照断裂过程的先后有三个明显的特征区,即疲劳源区、扩展区和瞬断区,见图12。
图12 疲劳断口的宏观特征在一般情况下,通过宏观分析即可大致判明该断口是否属于疲劳断裂、断裂源区的位置、裂纹的扩展方向以及载荷的类型。
(1)疲劳断裂源区的宏观特征及位置的判别宏观上所说的疲劳源区包括裂纹的萌生与第一阶段扩展区。
疲劳源区一般位于零件的表面或亚表面的应力集中处,由于疲劳源区暴露于空气与介质中的时间最长,裂纹扩展速率较慢,经过反复张开与闭合的磨损,同时在不同高度起始的裂纹在扩展中相遇,汇合形成辐射状台阶或条纹。
因此,疲劳源区一般具有如下宏观特征:①氧化或腐蚀较重,颜色较深;②断面平坦、光滑、细密,有些断口可见到闪光的小刻面;③有向外辐射的放射台阶或放射状条纹;④在源区虽看不到疲劳弧线,但有向外发射疲劳弧线的中心。
有时疲劳源区不只一个,在存在多个源区的情况下,需要找出疲劳断裂的主源区。
(2)疲劳断裂扩展区的宏观特征该区断面较平坦,与主应力相垂直,颜色介于源区与瞬断区之间,疲劳断裂扩展阶段留在断口上最基本的宏观特征是疲劳弧线(又称海滩花样或贝壳花样)见图13。
图13 疲劳弧线(3)瞬时断裂区的宏观特征疲劳裂纹扩展至临界尺寸(即零件剩余截面不足以承受外载时的尺寸)后发生失稳快速破断,称为瞬时断裂。
断口上对应的区域简称瞬断区,其宏观特征与带尖缺口一次性断裂的断口相近。
5.3.2 疲劳断口的微观分析疲劳断裂的微观分析必须建立在宏观分析的基础上,它是宏观分析的继续和深化。
失效分析3-2(疲劳断裂修改)
一、疲劳断裂的基本概念
1.定义
------在交变载荷(交变应力或循环载荷)的作用下,虽然应力低于 金属材料的抗拉强度,有时甚至低于屈服极限,但经过一定的循环 周期后,金属构件会发生突然断裂。
2.分类
腐蚀疲劳 高温疲劳 微振疲劳 接触疲劳
低周疲劳 高周疲劳
交变 频率
环 疲劳 载
境
荷
1) 屈服强度
材料的屈服强度和疲劳极限之间有一定的关系; 一般来说,材料的屈服强度越高,疲劳强度也越高
提高疲劳强度设法提高材料的屈服强度!如采用屈 服强度和抗拉强度比值高的材料或细化晶粒。
四. 影响疲劳断裂的因素
2)构件表面状态
表面粗糙度愈小,应力集中愈小,疲劳强度也愈高。 材随着表面粗糙度的增加,疲劳极限下降。
表面淬火、渗碳和氮化等表面热处理,喷丸、表面滚压、 冷拔、挤压和抛光等机械加工, 都产生有利的残余压应力。 工程上常用这些方法提高构件的疲劳抗力。
5)材料的成分和组织
在各类工程材料中,结构钢的疲劳强度最高。
在结构钢中,疲劳强度随着含碳量增加而增高,钼、铬 和镍等也有相似的效应 。
冶金缺陷是指材料中的非金属夹杂物、气泡、元素的偏 析,等等。存在于表面的夹杂物是应力集中源,会导致夹 杂物与基体界面之间过早地产生疲劳裂纹。
裂交替作用的复杂过程,通常有切向扩展和正向扩展两个阶段。
(a) 疲劳裂纹扩展示意图 (b) 螺栓实际使用中的疲劳裂纹 图3-30 疲劳裂纹扩展的两个阶段
第一阶段:裂纹起源于材料表面,向内部扩展范围较小,约2-5个晶粒之内 与拉伸轴约成45角,扩展速度很慢,每一应力循环只有埃数量级 第二阶段:断面与拉伸轴垂直,凹凸不平裂纹扩展路径是穿晶的扩展速度快,每一应力循环 微米数量级,显微特征:疲劳辉纹
金属疲劳断裂与失效分析
辉纹类型
• 塑性辉纹
• 连续、一个方向弯曲 • 真空→不明显
• 脆性辉纹
• 裂纹沿解理平面扩展,尖端塑性变形很小。 • 辉纹+河流花样(与扩展方向一致)。 • 脆性材料或高强度塑性材料(腐蚀环境下)→容易出现。 • Fcc不发生解理→不出现脆性疲劳辉纹。
(2)轮胎花样
• 疲劳裂纹形成后→压应力作用→ 凸出硬质点(切变位移)→擦痕 • 压缩载荷→ 出现 • 与辉纹平行,不是疲劳本身形貌 • 低周疲劳容易出现。 • 压应力过大或过小→不出现
4、接触疲劳(磨损疲劳)
• 产生:循环接触压应力→局部剥落(滚动轴承、齿轮、车轮) • 特征
• 表面、次表面麻点;剥落 • 源区→疲劳台阶 • 辉纹因摩擦断续、不清楚 • 介于疲劳于磨损之间的破坏方式
• 影响因素 表面、夹杂、应力集中、润滑、载荷……
轴承滚道表面剥落
二、腐蚀疲劳
1、工作条件:腐蚀环境+交 变载荷
这种方式 • 低强度高塑性材料→大应力幅、加载速度快以此种方式 • 薄壁件→以此种方式
2、正断疲劳
• 正应力致断,初始裂纹与应力轴垂直
• 裂纹尖端→平面应变状态、 • 应力集中严重的面→出现
• 通常BCC材料裂纹扩展中、后期出现 • 高强度、低塑性、粗截面、小应力幅、低速加载、腐蚀环境、低
温→容易出现
塑性变形→韧窝 • 高强度钢、厚度大、脆性材料+应
力高
高应力作用(低周或高周瞬断区)的 韧窝+辉纹
判定
• 宏观与微观结合 • 工作状态 • 材料不同→特征有差异
源区
瞬断 区
失效分析案例
• 例:模锻机锤杆, 40Cr钢经调质,使用 一个月断裂
• 服役条件:工作时, 承受大压-小拉,但 并不绝对垂直,存在 附加的弯曲应力。
弹簧疲劳断裂或失效的原因分析
弹簧疲劳断裂或失效的原因分析一、分解弹簧永久变形及其影响因素弹簧的永久变形是弹簧失效的主要原因之一,弹簧的永久变形,会使弹簧的变形或负荷超出公差范围,而影响机器设备的正常工作。
检查弹簧永久变形的方法:1、快速高温强压处理检查弹簧永久变形。
是把弹簧压缩到一定高度或全部并紧,然后放在开水中或温箱保持10~60分钟,再拿出来卸载,检查其自由高度和给定工作高度下的工作载荷。
2、长时间的室温强压处理检查弹簧永久变形:是在室温下,将弹簧压缩或压并若干天,然后卸载,检查其自由高度和给定工作高度下的工作载荷。
二、弹簧断裂及其影响因素弹簧的断裂破坏也是弹簧的主要失效形式之一,弹簧断裂形式可分为;疲劳断裂,环境破坏(氢脆或应力腐蚀断裂)及过载断裂。
1、弹簧的疲劳断裂:弹簧的疲劳断裂属于设计错误,材料缺陷,制造不当及工作环境恶劣等因素。
疲劳裂纹往往起源于弹簧的高应力区,如拉伸弹簧的钩环、压缩弹簧的内表面、压缩弹簧(两端面加工的压缩弹簧)的两端面。
受力状态对疲劳寿命的影响(a)恒定载荷状态下工作的弹簧比恒定位移条件下工作的弹簧,其疲劳寿命短得多。
(b)受单向载荷的弹簧比受双向载荷的弹簧的疲劳寿命要长得多。
(c)载荷振幅较大的弹簧比载荷振幅较少的弹簧的疲劳寿命要短得多。
2、腐蚀疲劳和摩擦疲劳腐蚀疲劳:在腐蚀条件下,弹簧材料的疲劳强度显著降低,弹簧的疲劳寿命也大大缩短。
摩擦疲劳:由于摩擦磨损产生细微的裂纹而导致破坏的现象叫摩擦疲劳。
3、弹簧过载断裂弹簧的外加载荷超过弹簧危险截面所有承受的极限应力时,弹簧将发生断裂,这种断裂称为过载断裂。
过载断裂的形式:(a)强裂弯曲引起的断裂;(b)冲击载荷引起的断裂;(c)偏心载荷引起的断裂三、后处理的缺陷原因及防止措施缺陷一:脱碳对弹簧性能影响:疲劳寿命低缺陷产生原因:1、空气炉加热淬火未保护气2、盐浴脱氧不彻底防止措施:1、空气炉加热淬火应通保护气或滴有机溶液保护:盐浴炉加热时,盐浴应脱氧,杂质BAO质量分数小于0.2%。
材料性能学第5章
图5-9 F-R再生核模型
24
a—交变应力为零,循环开 始时,裂纹处于闭合状态。 b—随拉应力增加,裂纹前 端因解理断裂向前扩展。 c—在切应力作用下,沿 45°方向在很窄范围内产生 局部塑性变形。 d—发生塑性钝化,裂纹停 止扩展。 e—应力为零或进入压应力 周期,裂纹闭合,其尖端重 图5-10 脆性疲劳条带形成过程示意图 新变得尖锐,但裂纹已经向 前扩展了一个条带的距离。
以提高疲劳抗力。 ▶ 晶界开裂产生裂纹
晶界弱化、粗化等也会使晶界开裂。强化、净化、 细化晶界,可提高材料的疲劳抗力。 ▶ 材料内部的缺陷(如气孔、夹杂、分层、各向异 性、相变或晶粒不均匀等),都会因局部的应力集 中而引发裂纹。
19
疲劳裂纹扩展的方式和机理 ▶ 疲劳裂纹扩展,按扩展方向可分为两个阶段
常将0.05~0.10mm的裂纹定义为疲劳裂纹核, 由此来确定疲劳裂纹的萌生期。
14
疲劳裂纹一般都萌生于零件的表面,可能有三 个位置: 对纯金属或单相合金,尤其是单晶体,裂纹多 萌生在表面滑移带处,即所谓驻留滑移带的地方。 当经受较高的应力/应变幅时,裂纹萌生在晶 界处,特别是在高温下更为常见。 对一般的工业合金,裂纹多萌生在夹杂物或第 二相与基体的界面上。
在电子显微镜下可显示出疲劳条带。疲劳带是每次循环 加载时形成的。
20
图5-7 疲劳条带 (a)韧性条带×1000 (b)脆性条带×600
21
► 裂纹扩展的塑性钝化模型(L-S模型)
a—交变应力为零,循环开始时, 裂纹处于闭合状态。 b—拉应力增加,裂纹张开,且 顶端沿最大切应力方向产生滑移。 c—拉应力达到最大时,滑移区 扩大,裂纹顶端变为半圆形,并 停止扩展。裂纹顶端由于塑性变 形产生塑性钝化,应力集中减少。 d—应力反向,滑移方向改变, 裂纹表面被压拢,裂纹顶端弯折 成一对耳状切口。 e—压应力最大值时,裂纹完全 图5-8 韧性疲劳条带形成过程示意图 闭合,并恢复到开始状态。
断裂失效分析
滑移分离的基本特征是:断面倾斜,呈45°角;断口 附近有明显的塑性变形,滑移分离是在平面应力状态 下进行的。
滑移分离的主要微观特征是滑移线或滑移带、蛇形花 样、涟波花样、延伸区。
2. 滑移分离
a. 蛇形花样,多晶体材料受到较大的塑形变形产生 交滑移,导致滑移面分离,形成起伏弯曲的条纹,
三、疲劳断裂失效分析 4.低周疲劳断裂的判据 案例:
某发动机的涡轮叶片和轮盘 上多个榫齿出现了超过修理 标准的裂纹,且裂纹部位基 本上在第三齿,多数为单裂, 少数为对裂,亦有邻裂的情 况。
断口源区为穿晶滑移类解理 断裂形貌,呈多源特征,扩 展区主要为扇形解理扩展形 貌和疲劳条带特征,为起始 应力较大的以低周疲劳为主 的疲劳开裂。
最基本的特征是疲劳弧线,也称海滩花样或贝壳花样
(3) 瞬断区的宏观特征 与静载拉伸断口相近
瞬断区面积的大小取决于载荷的大小、材料的性质环境 介质等因素。
三、疲劳断裂失效分析
2.疲劳断裂的宏观分析
案例:
某电气控制盒固定脚焊 缝附近断裂,断口可见 疲劳弧线和源区的磨损 特征,扩展较充分,瞬 断区面积 较小,断 口具有典 型的疲劳 断裂特征。
③按断面相对位移形式分类 按两断面在断裂过程中相对运动的方向可分为: a. 张开型(I型); b. 前后滑移型(II型); c. 剪切性(III型)。
④按断裂方式分类 按断面所受的外力类型的不同分为正断、切断及混合 断裂三种。
2.断裂分类
⑤按断裂机制分类 可分为解理、准解理、韧窝、滑移分离、沿晶及疲劳等多种断裂。
叶片槽位处裂纹断口低倍
扩展区载荷变化较大的条带特征 据源区较远处条带特征
三、疲劳断裂失效分析
5.腐蚀疲劳断裂失效分析 腐蚀疲劳断裂是在腐蚀环境与交应载荷协同、交互作用下发
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、疲劳断裂对腐蚀介质的敏感性
• 金属材料的疲劳断裂除取决于材料本身的 性能外,还与零件运行的环境条件有着密 切的关系。对材料敏感的环境条件虽然对 材料的静强度也有一定的影响,但其影响 程度远不如对材料疲劳强度的影响来得显 著。大量实验数据表明,在腐蚀环境下材 料的疲劳极限较在大气条件下低得多,甚 至就没有所说的疲劳极限。
第5章疲劳断裂失效分析
• 大多数的工程金属构件的疲劳失效都是以正 断形式进行的。特别是体心立方金属及其合 金以这种形式破坏的所占比例更大;上述力 学条件在试件的内部裂纹处容易得到满足, 但当表面加工比较粗糙或具有较深的缺口、 刀痕、蚀坑、微裂纹等应力集中现象时,正 断疲劳裂纹也易在表面产生。
• 高强度、低塑性的材料、大截面零件、小应 力振幅、低的加载频率及腐蚀、低温条件均 有利于正断疲劳裂纹的萌生与扩展。
量的实验数据,目前仍然有许多设备和机器发生疲
劳断裂。
•
疲劳设计现在已从无限寿命设计发展到有限寿
命设计。零件、构件和设备的寿命估算,已成为疲
劳强度的一个重要组成部分。疲劳已从一个古老的
概念发展成为材料科学、力学和工程设计相结合的
一门新兴学科——疲劳强度。
第5章疲劳断裂失效分析
5.1 疲劳断裂失效的基本形式来自特征第5章疲劳断裂失效分析
5.2 疲劳断口形貌及其特征
5.2.1 疲劳断口的宏观特征
1.金属疲劳断口宏观形貌
• 由于疲劳断裂的过程不同于其他断裂,因 而形成了疲劳断裂特有的断口形貌,这是 疲劳断裂分析时的根本依据。
• 在工程上通常把试件上产生一条可见的初 裂纹的应力循环周次(N0)或将N0与试件 的总寿命Nf的比值(N0/Nf)作为表征材料 疲劳裂纹萌生孕育期的参量。
第5章疲劳断裂失效分析
部分材料的N0/Nf值
第5章疲劳断裂失效分析
各因素对N0/Nf值影响的趋势
影响因素 应力幅 应力集中 材料强度 材料塑性 温度 腐蚀介质
第5章疲劳断裂失效分析
2.正断疲劳失效
• 正断疲劳的初裂纹,是由正应力引起的。初 裂纹产生的力学条件是:正应力/缺口正断 强度≥1,切应力/缺口切断强度<1。
• 正断疲劳的特点是:疲劳裂纹起源处的应力 应变场为平面应变状态;初裂纹所在平面大 致上与应力轴相垂直,裂纹沿非结晶学平面 或不严格地沿着结晶学平面扩展。
第5章疲劳断裂失效分析
2、疲劳断裂应力很低
• 循环应力中最大应力幅值一般远低于材料的 强度极限和屈服极限。例如,对于旋转弯曲 疲劳来说,经107次应力循环破断的应力仅为 静弯曲应为的20~40%;对于对称拉压疲劳 来说,疲劳破坏的应力水平还要更低一些。
对于钢制构件,在工程设计中采用的近似计 算公式为:
σ-1 = (0.4 - 0.6)σb
或
σ-1 = 0.285 (σs+σb)
第5章疲劳断裂失效分析
3、疲劳断裂是一个损伤积累的过程
• 疲劳断裂不是立即发生的,而往往经过很 长的时间才完成的。疲劳初裂纹的萌生与 扩展均是多次应力循环损伤积累的结果。
• 疲劳裂纹萌生的孕育期与应力幅的大小、 试件的形状及应力集中状况、材料性质、 温度与介质等因素有关。
第5章疲劳断裂失效分析
5.1.2 疲劳断裂失效的一般特征
• 金属零件在使用中发生的疲劳断裂具有突 发性、高度局部性及对各种缺陷的敏感性 等特点。引起疲劳断裂的应力一般很低, 断口上经常可观察到特殊的、反映断裂各 阶段宏观及微观过程的特殊花样。
第5章疲劳断裂失效分析
1、疲劳断裂的突发性
• 疲劳断裂虽然经过疲劳裂纹的萌生、亚临 界扩展、失稳扩展三个过程,但是由于断 裂前无明显的塑性变形和其它明显征兆, 所以断裂具有很强的突发性。即使在静拉 伸条件下具有大量塑性变形的塑性材料, 在交变应力作用下也会显示出宏观脆性的 断裂特征。因而断裂是突然进行的。
第5章 疲劳断裂失效分析
第5章疲劳断裂失效分析
•
疲劳断裂是金属构件断裂的主要形式之一,在
金属构件疲劳断裂失效分析基础上形成和发展了疲
劳学科。自从Wöhler的经典疲劳著作发表以来,人
们充分地研究了不同材料在各种不同载荷和环境条
件下试验时的疲劳性能。尽管大多数工程技术人员
和设计人员已经注意到疲劳问题,而且已积累了大
• 切断疲劳的特点是:疲劳裂纹起源处的应 力应变场为平面应力状态;初裂纹的所在 平面与应力轴约成45º角,并沿其滑移面扩 展。
第5章疲劳断裂失效分析
• 由于面心立方结构的单相金属材料的切断强度一般 略低于正断强度,而在单向压缩、拉伸及扭转条件 下,最大切应力和最大正应力的比值(即软性系数) 分别为2.0、0.5、0.8,所以对于这类材料,其零件 的表层比较容易满足上述力学条件,因而多以切断 形式破坏。例如铝、镍、铜及其合金的疲劳初裂纹, 绝大多数以这种方式形成和扩展。低强度高塑性材 料制作的中小型及薄壁零件、大应力振幅、高的加 载频率及较高的温度条件都将有利于这种破坏形式 的产生。
• 但其基本形式只有两种,即由切应力引起 的切断疲劳及由正应力引起的正断疲劳。 其它形式的疲劳断裂,都是由这两种基本 形式在不同条件下的复合。
第5章疲劳断裂失效分析
1.切断疲劳失效
• 切断疲劳初始裂纹是由切应力引起的。切 应力引起疲劳初裂纹萌生的力学条件是: 切应力/缺口切断强度≥1;正应力/缺口正断 强度<1。
5.1.1 疲劳断裂失效的基本形式 • 按交变载荷的形式不同,可分为拉压疲劳、
弯曲疲劳、扭转疲劳、接触疲劳、振动疲 劳等; • 按疲劳断裂的总周次的大小(Nf)可分为高 周疲劳(Nf>105)和低周疲劳(Nf< 104);
第5章疲劳断裂失效分析
• 按零件服役的温度及介质条件可分为机械 疲劳(常温、空气中的疲劳)、高温疲劳、 低温疲劳、冷热疲劳及腐蚀疲劳等。
变化 增加 加大 增加 增加 升高 强
对N0/Nf值影响的趋势
降低 降低 升高 降低 降低 降低
第5章疲劳断裂失效分析
4、疲劳断裂对材料缺陷的敏感性
• 金属的疲劳失较具有对材料的各种缺陷均 为敏感的特点。因为疲劳断裂总是起源于 微裂纹处。这些微裂纹有的是材料本身的 冶金缺陷,有的是加工制造过程中留下的, 有的则是使用过程中产生的。