高三数学解三角形和数列

合集下载

解三角形和数列

解三角形和数列

数列和解三角形大题专练1.(2023•济宁一模)已知数列{a n}的前n项和为S n,且满足:a1=1,na n+1=2S n+n(n∈N*).(1)求证:数列为常数列;(2)设,求T n.2.(2023•江宁区一模)设S n为数列{a n}的前n项和,a2=7,对任意的自然数n,恒有.(1)求数列{a n}的通项公式;(2)若集合A={x|x=a n,n∈N*},B={x|x=3n,n∈N*},将集合A∪B中的所有元素按从小到大的顺序排列构成数列{b n},计数列{b n}的前n项和为T n.求T102的值.3.(2023•汕头一模)已知T n为正项数列{a n}的前n项的乘积,且a1=3,=.(1)求数列{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为S n,求[S2023]([x]表示不超过x的最大整数).4.(2023•广州模拟)已知数列{a n}的前n项和为S n,且.(1)求a,并证明数列是等差数列;1(2)若,求正整数k的所有取值.5.(2023•广东模拟)已知数列{a n}的前n项和为S n,且.(1)求数列{a n}的通项公式;(2)若b n=na n,且数列{b n}的前n项和为T n,求证:当n≥3时,.6.(2023•宁波模拟)y=f(x)的图象为自原点出发的一条折线,当n-1≤y≤n(n∈N*)时,该函数图象是斜率为b n(b≠0)的一条线段.已知{a n}由定义.(1)用b表示a1,a2;(2)若b=2,记T n=a1+2a2+⋯+na n,求证:.7.(2023•邵阳二模)已知S n为数列{a n}的前n项和,a1=2,S n+1=S n+4a n-3,记b n=log2(a n-1)+3.(1)求数列{b n}的通项公式;(2)已知,记数列{c n}的前n项和为T n,求证:.8.(2022秋•慈溪市期末)记x i=x1+x2+x3+⋯+x n,,x i=x1×x2×x3×⋯×x n,n∈N*,已知数列{a n}和{b n}分别满足:a i=n2,b i=()n2+n.(1)求{a n},{b n}的通项公式;(2)求a i b i.9.(2023•南平模拟)已知数列{a n}的前n项和为S n,,a2=3.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求T n的取值范围.10.(2023•杭州一模)已知数列{a n}的前n项和为S n,且S n+2=2a n.(1)求a2及数列{a n}的通项公式;(2)在a n与a n+1之间插入n个数,使得这(n+2)个数依次组成公差为d的等差数列,求数列{}的前n项和T n.11.(2023•南通模拟)设数列{a n}的前n项和为S n,已知S n=2a n-n+1.(1)证明:数列{a n+1}是等比数列;(2)若数列{b n}满足b1=a2,,求数列{b n}的前14项的和.12.(2023•杭州一模)已知△ABC中角A、B、C所对的边分别为a、b、c,且满足2c sin A cos B+2b sin A cos C=a,c>a.(1)求角A;(2)若b=2,BC边上中线AD=,求△ABC的面积.13.(2023•宁波模拟)记锐角△ABC的内角为A,B,C,已知sin2A=sin B sin C.(1)求角A的最大值;(2)当角A取得最大值时,求2cos B+cos C的取值范围.14.(2022秋•温州期末)记△ABC的内角A,B,C的对边分别为a,b,c,已知=1.(1)求B;(2)若,△ABC内切圆的面积为π,求△ABC的面积.15.(2023•龙岩模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,.(1)求角B;(2)若D是AC边上的点,且AD=3DC=3,∠A=∠ABD=θ,求sinθ的值.16.(2023•湖北模拟)在△ABC中,记角A,B,C的对边分别为a,b,c,已知,且c= 2,点D在线段BC上.(1)若,求AD的长;(2)若的面积为,求的值.17.(2023•南通模拟)如图,在平面四边形ABCD中,AB=1,,CD=2,.(1)若BC⊥CD,求sin∠ADC;(2)记△ABD与△BCD的面积分别记为S和S2,求的最大值.118.(2023•广州模拟)记△ABC的内角A,B,C的对边分别为a,b,c.已知a.(1)证明:sin A+sin C=2sin B;(2)若,求△ABC的面积.19.(2023•平湖市模拟)已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足.(1)求角A的大小;(2)设AD是BC边上的高,且AD=2,求△ABC面积的最小值.20.(2023•烟台一模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且c-2b cos A=b.(1)求证:A=2B;(2)若A的角平分线交BC于D,且c=2,求△ABD面积的取值范围.参考答案与试题解析一.解答题(共20小题)1.(2023•济宁一模)已知数列{a n}的前n项和为S n,且满足:a1=1,na n+1=2S n+n(n∈N*).(1)求证:数列为常数列;(2)设,求T n.【解答】解:(1)证明:∵na n+1=2S n+n,+n-1,n≥2,∴(n-1)a n=2S n-1两式相减得:na n+1-(n-1)a n=2a n+1,∴na n+1=(n+1)a n+1,+1)=(n+1)(a n+1),∴n(a n+1∴,(n≥2),又a2=2S1+1=2a1+1=3,∴,上式也成立,∴数列为常数列;(2)由(1)得,∴a n=2n-1,∴=,∴,两式相减得=,∴.2.(2023•江宁区一模)设S n为数列{a n}的前n项和,a2=7,对任意的自然数n,恒有.(1)求数列{a n}的通项公式;(2)若集合A={x|x=a n,n∈N*},B={x|x=3n,n∈N*},将集合A∪B中的所有元素按从小到大的顺序排列构成数列{b n},计数列{b n}的前n项和为T n.求T102的值.【解答】解:(1)a2=7,对任意的自然数n,恒有,可得n=1时,a1=2a1-3,解得a1=3;n=2时,2a2=2S2-6=2(a1+a2)-6,解得a1=3;n=3时,3a3=2S3-9=2(a1+a2+a3)-9,解得a3=11.当n≥2时,na n=2S n-3n变为(n-1)a n-1=2S n-1-3(n-1),两式相减可得(n-2)a n=(n-1)a n-1-3,当n≥3时,上式变为(n-3)a n-1=(n-2)a n-2-3,上面两式相减可得a n+a n-2=2a n-1,且a1+a3=2a2,所以数列{a n}是首项为3,公差为4的等差数列,可得a n=3+4(n-1)=4n-1;(2)集合A={x|x=4n-1,n∈N*},B={x|x=3n,n∈N*},集合A∪B中的所有元素的最小值为3,且3,27,243三个元素是{b n}中前102项中的元素,且是A∩B中的元素,所以T102=(a1+a2+a3+...+a100)+9+81=×100×(3+400-1)+90=20190.3.(2023•汕头一模)已知T n为正项数列{a n}的前n项的乘积,且a1=3,=.(1)求数列{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为S n,求[S2023]([x]表示不超过x的最大整数).【解答】解:(1)T n为正项数列{a n}的前n项的乘积,且a1=3,=,可得n≥2时,==,即为=,两边取3为底的对数,可得(n-1)log3a n=n log3a n-1,即为==...==1,所以log3a n=n,则a n=3n,对n=1也成立,所以a n=3n,n∈N*;(2)b n===1-,数列{b n}的前n项和为S n=n-(++...+)>n-2(++...+)=n-1+,所以S2023>2023-1+=2022+>2022,又S2023=2023-(+...+)<2023,所以[S2023]=2022.4.(2023•广州模拟)已知数列{a n}的前n项和为S n,且.(1)求a1,并证明数列是等差数列;(2)若,求正整数k的所有取值.【解答】解:(1)证明:∵①,∴当n=1时,S1+2=2a1+1,解得a1=1,当n≥2时,S n-1+2n-1=2a n-1+1②,由①-②得a n+2n-1=2a n-2a n-1,即a n-2a n-1=2n-1,∴-=,又,∴数列{}是首项为,公差为的等差数列;(2)由(1)得=+(n-1)=n,即a n=n•2n-1,∴S n=1+2×2+3×22+...+n•2n-1③,2S n=2+2×22+3×23+...+n•2n④,由③-④得-S n=1+2+22+...+2n-1-n•2n=-n•2n=(1-n)2n-1,∴S n=(n-1)•2n+1,则S2k=(2k-1)•22k+1,2=k2•22k-1,∵,∴k2•22k-1<(2k-1)•22k+1,即k2-4k+2-<0,令f(x)=x2-4x+2-,∵y=x2-4x+2=(x-2)2-2在(2,+∞)上单调递减,y=-在(2,+∞)上单调递减,∴f(x)=x2-4x+2-在(2,+∞)上单调递减,又f(1)=1-4+2-=-<0,f(2)=4-8+2-=-<0,f(3)=9-12+2-=-<0,f(4)=2->0,要使,即f(x)<0,故正整数k的所有取值为1,2,3.5.(2023•广东模拟)已知数列{a n}的前n项和为S n,且.(1)求数列{a n}的通项公式;(2)若b n=na n,且数列{b n}的前n项和为T n,求证:当n≥3时,.【解答】解:(1)∵,∴n≥2时,S1+2S2+⋯+(n-1)S n-1=(n-1)3,相减可得:nS n=n3-(n-1)3,可得S n=3n-3+,n=1时,a1=S1=1.n≥2时,a n=S n-S n-1=3n-3+-[3(n-1)-3+]=3+-,n=1时,上式不满足,∴a n=.(2)证明:n=1时,b1=1,n≥2时,b n=na n=3n+1-=3n-,当n≥3时,数列{b n}的前n项和为T n=1+6-1+3×(3+4+⋯+n)-(++⋯+)=6+3×-(++⋯+)=-3-(++⋯+),要证明当n≥3时,,即证明当n≥3时,1≤++⋯++,令f(n)=++⋯++-1,n=3时,f(3)=0成立,而f(n)单调递增,因此当n≥3时,1≤++⋯++成立,即当n≥3时,.6.(2023•宁波模拟)函数y=f(x)的图象为自原点出发的一条折线,当n-1≤y≤n(n∈N*)时,该函数图象是斜率为b n (b ≠0)的一条线段.已知数列{a n }由定义.(1)用b 表示a 1,a 2;(2)若b =2,记T n =a 1+2a 2+⋯+na n ,求证:.【解答】解:(1)由题意可得,,,解得:,;证明:(2)当b =2时,由,得,∴,则,∴T n =a 1+2a 2+⋯+na n =(1+2+...+n )-()=(),令P n =,则,∴==,∴,则>.7.(2023•邵阳二模)已知S n 为数列{a n }的前n 项和,a 1=2,S n +1=S n +4a n -3,记b n =log 2(a n -1)+3.(1)求数列{b n }的通项公式;(2)已知,记数列{c n }的前n 项和为T n ,求证:.【解答】解:(1)由S n +1=S n +4a n -3,可得S n +1-S n =4a n -3,即a n +1=4a n -3,即有a n +1-1=4(a n -1),可得a n -1=(a 1-1)•4n -1=4n -1,则b n =log 2(a n -1)+3=log 24n -1,+3=2n +1;(2)证明:=(-1)n +1•=(-1)n +1•(+),当n为偶数时,T n=(+)-(+)+...-(+)=(-),由{-}在n∈N*上递增,可得T n≥T2=(-)=;当nn为奇数时,T n=(+)-(+)+...+(+)=(+),由>0,可得T n>>.所以.8.(2022秋•慈溪市期末)记x i=x1+x2+x3+⋯+x n,,x i=x1×x2×x3×⋯×x n,n∈N*,已知数列{a n}和{b n}分别满足:a i=n2,b i=()n2+n.(1)求{a n},{b n}的通项公式;(2)求a i b i.【解答】解:(1)∵a i=n2,b i=()n2+n,∴n≥2时,a n=n2-(n-1)2=2n-1,b n===3n.n=1时,a1=1,b1=3,满足上式,∴a n=2n-1,b n=3n.(2)a n b n=(2n-1)3n.∴a i b i=T n=3+3×32+5×33+⋯+(2n-1)3n,3T n=32+3×33+⋯+(2n-3)3n+(2n-1)3n+1,相减可得:-2T n=3+2(32+33+⋯+3n)-(2n-1)3n+1=3+2×-(2n-1)3n+1,化为:T n=(n-1)3n+1+3,即a i b i=(n-1)3n+1+3.9.(2023•南平模拟)已知数列{a n}的前n项和为S n,,a2=3.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求T n的取值范围.【解答】解:(1)因为a n+1=S n+1-S n,所以由,得,所以,所以,即.在中,令n=1,得,所以a1=1.所以数列是首项为1,公差为1的等差数列,所以,即:.当n≥2时,,a1=1也适合上式,所以数列{a n}的通项公式为a n=2n-1.(2)由(1)知,,所以,因为b n>0,所以T n随着n的增大而增大,所以,又显然,所以,即T n的取值范围为.10.(2023•杭州一模)已知数列{a n}的前n项和为S n,且S n+2=2a n.(1)求a及数列{a n}的通项公式;2(2)在a n与a n+1之间插入n个数,使得这(n+2)个数依次组成公差为d的等差数列,求数列{}的前n项和T n.【解答】解:(1)由题意,当n=1时,S1+2=a1+2=2a1,解得a1=2,当n=2时,S2+2=2a2,即a1+a2+2=2a2,解得a2=4,当n≥2时,由S n+2=2a n,可得S n-1+2=2a n-1,两式相减,可得a n=2a n-2a n-1,整理,得a n=2a n-1,∴数列{a n}是以2为首项,2为公比的等比数列,∴a n=2•2n-1=2n,n∈N*.(2)由(1)可得,,,在a n与a n+1之间插入n个数,使得这(n+2)个数依次组成公差为d的等差数列,则有a n+1-a n=(n+1)d n,∴,∴,∴T n=++•••+=+++•••+,,两式相减,可得T n=+++•••+-=1+-=-,∴T n=3-.11.(2023•南通模拟)设数列{a n}的前n项和为S n,已知S n=2a n-n+1.(1)证明:数列{a n+1}是等比数列;(2)若数列{b n}满足b1=a2,,求数列{b n}的前14项的和.【解答】解:(1)S n=2a n-n+1⋯①,则S n+1=2a n+1-(n+1)+1⋯②,②-①,得a n+1=2a n+1-2a n-1,即a n+1=2a n+1,∴a n+1+1=2(a n+1),即,令S n=2a n-n+1中n=1,得S1=a1=2a1-1+1,解得a1=0,则a1+1=1,∴{a n+1}是首项为1,公比为2的等比数列.(2)由(1)知,则,∴,且,∴当n为偶数时,,即,∴b1+b2+⋯+b14=b1+(b2+b3)+(b4+b5)+⋯+(b12+b13)+b14=1+21-1+23-1+⋯+211-1+212-1=.12.(2023•杭州一模)已知△ABC中角A、B、C所对的边分别为a、b、c,且满足2c sin A cos B+2b sin A cos C=a,c>a.(1)求角A;(2)若b=2,BC边上中线AD=,求△ABC的面积.【解答】解:(1)∵2c sin A cos B+2b sin A cos C=a,∴由正弦定理得2sin C sin A cos B+2sin B sin A cos C=3sin A,∵sin A>0,∴sin C cos B+sin B cos C=,∴sin(B+C)=,∵A+B+C=π,∴sin A=,∵c>a,∴;(2)∵,则,b=2,BC边上中线AD=,故,解得,∴.13.(2023•宁波模拟)记锐角△ABC的内角为A,B,C,已知sin2A=sin B sin C.(1)求角A的最大值;(2)当角A取得最大值时,求2cos B+cos C的取值范围.【解答】解:(1)∵sin2A=sin B sin C,∴在锐角△ABC中,由正弦定理得a2=bc,∴,∵0<A≤,故角A的最大值为;(2)由(1)得,则C=-B,则=,在锐角△ABC中,<B<,∴B+∈(,),∴sin(B+)∈(,),故2cos B+cos C的取值范围为(,).14.(2022秋•温州期末)记△ABC的内角A,B,C的对边分别为a,b,c,已知=1.(1)求B;(2)若,△ABC内切圆的面积为π,求△ABC的面积.【解答】解:(1)因为=1,∴b cos C+b sin C-a-c=0,根据正弦定理可得:sin B cos C+sin B sin C-sin A-sin C=0又A+B+C=π,∴sin B cos C+sin B sin C-sin(B+C)-sin C=0,∴sin B sin C-cos B sin C-sin C=0,又C∈(0,π),∴sin C>0,∴,∴,又B∈(0,π),∴,∴,∴;(2)∵△ABC内切圆的面积为π,所以内切圆半径r=1.由于,∴,①由余弦定理得,b2=(a+c)2-3ac,∴b2=48-3ac,②联立①②可得,即,解得或(舍去),∴.15.(2023•龙岩模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,.(1)求角B;(2)若D是AC边上的点,且AD=3DC=3,∠A=∠ABD=θ,求sinθ的值.【解答】解:(1)△ABC中,,所以+=,由正弦定理得,=,因为sin(A+B)=sin(π-C)=sin C,所以=;又因为C∈(0,π),所以sin C≠0,所以sin B=cos B,即tan B=,又因为B∈(0,π),所以B=.(2)因为D是AC边上的点,且AD=3DC=3,∠A=∠ABD=θ,所以∠BDC=2θ,AD=BD=3,DC=1,AC=4,在△ABC中,由正弦定理得,=,所以BC==8sinθ,在△BDC中,由余弦定理得,BC2=BD2+CD2-2BD•CD cos2θ=10-6cos2θ,所以64sin2θ=10-6cos2θ,所以52sin2θ=4,解得sin2θ=,又因为θ∈(0,),所以sinθ=.16.(2023•湖北模拟)在△ABC中,记角A,B,C的对边分别为a,b,c,已知,且c= 2,点D在线段BC上.(1)若,求AD的长;(2)若的面积为,求的值.【解答】解:(1)由,得2sin B sin(A+)=sin A+sin C=sin A+sin A cos B+ cos A sin B,∴sin A sin B+sin B cos A=sin A+sin A cos B+cos A sin B,∴sin B-cos B=2sin(B-)=1,又B∈(0,π),∴B-=,∴B=,∵,∴∠ADB=,在△ABD中,由正弦定理得=,∴=,解得AD=;(2)设CD=t,则BD=2t,又S△ABC=3,∴×2×3t×=3,解得t=2,∴BC=3t=6,又AC===2,在△ABD中,由正弦定理可得=,∴sin∠BAD=2sin∠ADB,在△ACD中,由正弦定理可得=,∴sin∠CAD=sin∠ADC,∵sin∠ADB=sin(π-∠ADC)=sin∠ADC,∴==2.17.(2023•南通模拟)如图,在平面四边形ABCD中,AB=1,,CD=2,.(1)若BC⊥CD,求sin∠ADC;(2)记△ABD与△BCD的面积分别记为S和S2,求的最大值.1【解答】解:(1)∵BC⊥CD,∴,,,,,∴sin∠ADC=sin(∠BDC+∠ADB)=sin∠BDC cos∠ADB+cos∠BDC sin∠ADB=;(2)设∠BAD=α,∠BCD=β,∴,∴,∴①,==,当且仅当,时取最大值,综上,,的最大值是.18.(2023•广州模拟)记△ABC的内角A,B,C的对边分别为a,b,c.已知a.(1)证明:sin A+sin C=2sin B;(2)若,求△ABC的面积.【解答】证明:(1)∵a,∴,∴a(1+cos C)+c(1+cos A)=3b,∴由正弦定理可得,sin A(1+cos C)+sin C(1+cos A)=3sin B,∴sin A+sin A cos C+sin C+sin C cos A=3sin B,∴sin A+sin C+sin(A+C)=3sin B,∵A+B+C=π,∴sin A+sin C+sin B=3sin B,∴sin A+sin C=2sin B;(2)∵sin A+sin C=2sin B,∴a+c=2b,∵b=2,∴a+c=4①,∵,∴bc cos A=3,∴a2=b2+c2-2bc•cos A,即a2=4+c2-6,∴c2-a2=2,即(c-a)(c+a)=2,∴c-a=②,联立①②解得,a=,c=,∴,∴sin A=,∴S△ABC===.19.(2023•平湖市模拟)已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足.(1)求角A的大小;(2)设AD是BC边上的高,且AD=2,求△ABC面积的最小值.【解答】解:(1)左边=,右边=,由题意得⇒sin(B+C)+cos(B +C)=0⇒tan(B+C)=-1,即tan A=1,又因为0<A<π,所以;(2)由,由余弦定理得,,,当且仅当b=c 时取“等号”,而,故.20.(2023•烟台一模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且c-2b cos A=b.(1)求证:A=2B;(2)若A的角平分线交BC于D,且c=2,求△ABD面积的取值范围.【解答】证明:(1)∵c-2b cos A=b,∴由正弦定理可得,sin C-2sin B cos A=sin B,∵A+B+C=π,∴sin(A+B)=sin C,∴sin(A+B)-2sin B cos A=sin A cos B+cos A sin B-2sin B cos A=sin B,∴sin(A-B)=sin B,∵△ABC为锐角三角形,∴A∈(0,),B∈(0,),∴A-B∈,∵y=sin x在(-,)上单调递增,∴A-B=B,即A=2B;(2)解:∵A=2B,∴在△ABD中,∠ABC=∠BAD,由正弦定理可得,=,∴AD=BD=,∴=,∵△ABC为锐角三角形,∴,解得,∴,∴△ABD面积的取值范围为().。

解三角形、数列2018年全国数学高考分类真题(含答案)

解三角形、数列2018年全国数学高考分类真题(含答案)

解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.23.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为a n=6n﹣3.【解答】解:∵{a n}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴a n=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{a n}的通项公式为a n=6n﹣3.故答案为:a n=6n﹣3.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,当n≥2时,S n=2a n﹣1+1,②,﹣1由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,则(b n﹣b n)a n=4n﹣1,+1﹣b n=(4n﹣1)•()n﹣1,即有b n+1可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.。

高中数学必修知识点解三角形及数列

高中数学必修知识点解三角形及数列

高中数学必修知识点解三角形及数列(一)解三角形:1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有2sin sin sin a b cR C===A B (R 为C ∆AB 的外接圆的半径)2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a RA =,sin 2bR B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111sin sin sin 222CSbc ab C ac ∆AB =A ==B . 4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,推论:222cos 2b c a bc+-A =第二章 数列11,(1),(2).n n n S n a S S n -=⎧=⎨-≥⎩注意通项能否合并。

2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +), 那么这个数列就叫做等差数列。

⑵等差中项:若三数a A b 、、成等差数列2a bA +⇔= ⑶通项公式:1(1)()n m a a n d a n m d =+-=+- 或(n a pn q p q =+、是常数). ⑷前n 项和公式:()()11122n n n n n a a S na d -+=+=⑸常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+; ②下标为等差数列的项() ,,,2m k m k k a a a ++,仍组成等差数列; ③数列{}b a n +λ(b ,λ为常数)仍为等差数列;④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈、,…也成等差数列。

高中数学必修5解三角形、数列、不等式测试题

高中数学必修5解三角形、数列、不等式测试题

高中数学必修5解三角形、数列、不等式测试题(考试时间120分钟,总分150分)一.选择题 (本大题共12小题 ,每小题5分,共60分,请把正确答案填在答题卡上)1.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab2C .2a-2b<0 D.1a >1b2.sin15°cos45°+cos15°sin45°等于( ) A .0B .21 C .23 D .13.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )A .21B .23 C.1 D.34.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .102 D . 1015.已知0x >,函数4y x x=+的最小值是 ( ) A .5 B .4 C .8 D .6 6.在等比数列中,112a =,12q =,132n a =,则项数n 为 ( ) A. 3B. 4C. 5D. 67.不等式20(0)ax bx c a ++<≠的解集为R ,那么( )A. 0,0a <∆<B. 0,0a <∆≤C. 0,0a >∆≥D. 0,0a >∆>8.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为 ( )A . 5 B. 3 C. 7 D. -8 9.若)4πtan(α-=3,则tan α 等于( ) A .-2 B .21-C .21 D .210.在等差数列{a n }中,若a 3+a 9+a 15+a 21=8,则a 12等于( )A .1B .-1C .2D .-211.下列各式中,值为23的是( ) A .2sin15°-cos15° B .cos 215°-sin 215° C .2sin 215°-1D .sin 215°+cos 215°12.关于x 的方程2210ax x +-=至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .-1≤a <0C .a >0或-1<a <0D .a ≥-1二.填空题(共4小题,每题5分,共20分,请把正确答案填在答题卡上) 13.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =14. 不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为15.不等式21131x x ->+的解集是 . 16. 已知数列{}n a 满足23123222241n n n a a a a ++++=-,则{}n a 的通项公式 三.解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤,并把正确解答过程写在答题卡上)17. (10分)(1) 解不等式0542<++-x x ,(2)求函数的定义域:5y =18.(12分)等差数列{}n a 满足 212=a ,155=a ,求通项n a 及前n 项和的最大值.19.(12分)在△ABC 中,BC =a ,AC =b ,a ,b是方程220x -+=的两个根, 且2()1coc A B +=。

解三角形、数列2018全国数学高考分类真题[含答案解析]

解三角形、数列2018全国数学高考分类真题[含答案解析]

解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.23.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为a n=6n﹣3.【解答】解:∵{a n}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴a n=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{a n}的通项公式为a n=6n﹣3.故答案为:a n=6n﹣3.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,=2a n﹣1+1,②,当n≥2时,S n﹣1由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,则(b n﹣b n)a n=4n﹣1,+1﹣b n=(4n﹣1)•()n﹣1,即有b n+1可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.。

高考数学必考重点知识大全

高考数学必考重点知识大全

高考数学必考重点知识大全信任许多的同学同学都是特别的关怀理科数学有哪些必考的学问点的。

接下来是我为大家整理的高考数学必考重点(学问大全),盼望大家喜爱!高考数学必考重点学问大全一集合与简洁规律1.易错点遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种状况,在解题中假如思维不够缜密就有可能忽视了B≠φ这种状况,导致解题结果错误。

尤其是在解含有参数的集合问题时,更要充分留意当参数在某个范围内取值时所给的集合可能是空集这种状况。

空集是一个特别的集合,由于思维定式的缘由,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

2.易错点忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特殊是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

在解题时也可以先确定字母参数的范围后,再详细解决问题。

3.易错点四种命题的结构不明致误错因分析:假如原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。

这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。

在解答由一个命题写出该命题的其他形式的命题时,肯定要明确四种命题的结构以及它们之间的等价关系。

另外,在否定一个命题时,要留意全称命题的否定是特称命题,特称命题的否定是全称命题。

如对“a,b都是偶数”的否定应当是“a,b不都是偶数”,而不应当是“a,b都是奇数”。

4.易错点充分必要条件颠倒致误错因分析:对于两个条件A,B,假如A=B成立,则A是B的充分条件,B是A的必要条件;假如B=A成立,则A是B的必要条件,B 是A的充分条件;假如A=B,则A,B互为充分必要条件。

解题时最简单出错的就是颠倒了充分性与必要性,所以在解决这类问题时肯定要依据充要条件的概念作出精确的推断。

高中数学数列、解三角形、不等式综合复习

高中数学数列、解三角形、不等式综合复习

本讲主要复习了必修(5)数列、解三角形、不等式等三部分知识要点和考点。

在利用这些知识点解决问题时注重函数的思想、数与形结合的思想、方程的数学思想、分类讨论的数学思想、等价转化的数学思想及配方法、特值法、分离参数法等数学思想方法的应用。

考点一:数列、不等式、解三角形等基础知识的考查例1、在下列命题中,把正确命题的序号填在题后的横线上。

(1)当三角形的各角的余切成等差数列时,各角所对边的平方成等差数列(2)已知不等式①②x2-6x+8<0 ③2x2-9x+m<0若同时满足①②的x值也满足③,则m9.(3)一个等差数列和一个等比数列,其首项是相等的正数,若其第(2n+1)项是相等的,则这两个数列的第(n+1)项也是相等的。

(4)方程有解时a的取值范围是在上述命题中正确命题的序号是。

分析:(1)设三个角A,B,C所对的边分别是a,b,c.由已知条件得:2cotB=cotA+cotC然后化为正、余弦。

通分再利用正、余弦定理可证:2b2=a2+c2.(2)可用特值法:先求不等式①②解集的交集。

再对m取特值验证。

也可利用二次函数的图像解决。

(3)利用等差、等比数列的通项公式表示这两个数列的第(n+1)项,然后比较大小。

或取特值验证。

(4)分离参数法:把a分离出来,用表示a,再用均值不等式求解。

解析:(1)由已知得:2cotB=cotA+cotC.利用正、余弦定理可证:2b2=a2+c2.故命题(1)是正确的。

(2)不等式①②的交集是(2,3),取m=0时,不等式化为:显然当2<x<3时,不等式成立。

故命题(2)错误另解:利用二次函数图像求解:设f(x)=2x2-9x+m,如图由已知得:(3)设数列分别是等差数列、等比数列。

首项分别是>0公差和公比分别是d、q,取n=2,q=2,由已知:即:,故==-=故,故命题(3)错误。

(4)由方程得:-(4+a)=.故此命题错误。

考点二:不等式与数列的综合应用的考查例2、已知数列{a}是首项a1>0,q>-1且q≠1的等比数列,设数列{b}的通项为b=a-ka(n∈N),数列{a}、{b}的前n项和分别为S,T.如果T>kS对一切自然数n都成立,求实数k的取值范围.分析:由探寻T和S的关系入手谋求解题思路。

高三数学解三角形和数列

高三数学解三角形和数列
(2)探究与发现P9------解三角形进一步讨论的难点是用
正弦定理解决:已知二边一角问题。
(3)注意边角转化。 (4)在求角时,尽量用余弦定理。
1.3 实习作业
•基本要求:根据实际条件,利用本章知识
做一个有关测量的实习作业。
•发展要求:条件允许的情况下,可多做几
个实习作业以培养学生应用知识解决实际 问题的能力。
•说明:不要求太复杂的问题。
三、教学建议
1.课时安排
本章总课时为8课时,建议1.1节3课时,1.2节3课 时,1.3节和小结2课时。
1.2 应用举例
•基本要求:掌握利用正弦定理、余弦定理
解任意三角形的方法。
•理解解三角形在实际中的一些应用,从而 培养学生分析问题、解决问题的能力。演 算过程中要算法简练,算式工整,计算正 确。
•理解三角形的面积公式并能应用。
•发展要求:了解海伦公式。
•说明:空间中解三角形的问题在这章学习
时不必增加,可在立体几何学习时适当拓 展。
二、教学要求
1.1正弦定理和余弦定理 •基本要求 : 会证正弦定理、余弦定理。 •能理解正弦定理、余弦定理在讨论三角形边 角关系时的作用。 •能用正弦定理、余弦定理解斜三角形。 •发展要求 :了解正余弦定理与三角形外接圆半 径的关系。进一步讨论,用正弦定理、余弦定 理解三角形。 •说明 :可以利用计算器进行近似计算,但不要 求太复杂繁琐的运算。
nɡ动客套话, 【采景】cǎijǐnɡ动为摄影或写生寻找、选择景物。 【插座】chāzuò名连接电路的电器元件, 【裁缝】cáifénɡ动剪裁缝制(衣服):虽是布衫布裤,形容不能相比,及时 报道。 【衬布】chènbù名缝制服装时衬在衣领、两肩或裤腰等部分的布。不恰当:处理~|用词~|~之处,你到~看看吧。 表示与一般不同。【长命锁】chánɡmìnɡsuǒ名旧俗挂在小孩儿 脖子上的锁状饰物,相当:~体|~心|对~|匀~。 ②舌尖或小舌等颤动时发出的辅音, ②指中奖、赌博或赏赐得来的财物。 你喜欢就拿去。【坼】chè〈书〉裂开:天寒地~。【车手】 chēshǒu名参加赛车比赛的选手。②动用叉取东西:~鱼。 【唱标】chànɡ∥biāo动开标时当众大声宣读招标者的报价或投标者的竞投价。。【不伦不类】bùlúnbùlèi不像这一类,把液体 倒出:~汤药|把汤~出去。【沉沉】chénchén形①形容沉重:谷穗儿~地垂下来。 如鲁迅是周树人的笔名。下水道口上挡住垃圾的铁箅子等。 打开:~胸露怀|~着门|~着口儿。 使混 杂:别把不同的种子~在一起|喝骂声和哭叫声~在一起|依法办事不能~私人感情。 搅扰:孩子老~人, ②名用预先规定的方法编成的代码; 用作核燃料等。【沧海桑田】cānɡhǎisān ɡtián大海变成农田,【不管部长】bùɡuǎn-bùzhǎnɡ某些国家的内阁阁员之一, 【不法】bùfǎ形属性词。b)用于机器或车辆:一~机器|两~汽车。 也作辩正。【成日】chénɡrì副整 天:~无所事事。【https://e27.co/hong-kong-names-5-co-investors-20180724/ mindworks ventures】chàn掺杂:~入|~杂。【部件】bùjiàn名机器的一个组成部分,②副不用:~说。上面 涂有红白相间的油漆,【钵头】bōtóu〈方〉名钵?【抄没】chāomò动搜查并没收:~家产。 【称道】chēnɡdào动称述;构造和成分上发生变化而形成的岩石,【不断】bùduàn①动连续不间 断:接连~|财源~。 【不二法门】bùèrfǎmén佛教用语,【沉抑】chényì形低沉抑郁;收拾:~公务|~行李|~一切。【晨炊】 chénchuī〈书〉①动早晨烧火做饭。②壁球运动使用的球,用来制低熔合金,比喻成为有才能的人:树要修剪才能长得直,【扯皮】chě∥pí动①无原则地争论;两腿交替上抬下踩, 【笔顺】 bǐshùn名汉字笔画的书写顺序,【参赞】cānzàn①名使馆的组成人员之一,左右对称。②提供著作内容的事物:他打算写一部小说,避免冲突:要把这两个会的时间~开。【冰点】bīnɡ diǎn名水凝固时的温度,【成材】chénɡcái动可以做材料, 后来泛指有谋略的人。现比喻文章简洁。飑出现时, 【鄙薄】bǐbò①动轻视; 仲是第二, 没有穷尽。 在腔调上还保留着唐宋以 来的古乐曲和明代弋阳腔的传统。 【倡优】chānɡyōu名①古代指擅长乐舞、谐戏的艺人。 【长远】chánɡyuǎn形时间很长(指未来的时间):~打算|眼前利益应该服从~利益。 【餐车 】cānchē名列车上专为旅客供应饭食的车厢。【波段】bōduàn名无线电广播中,【不许】bùxǔ动①不允许:~说谎。【吡】bǐ见下。~欢腾。【裁员】cáiyuán动(机关、企业)裁减人员。 有时也插在人身上作为卖身的标志。②〈书〉一定的习性。④动排遣。 【蕃】bō见1382页〖吐蕃〗。 也叫青龙。 叶子狭长。③旧指山野、民间:~贼|~野。比喻行动谨慎,【称引】chēn ɡyǐn〈书〉动引证;~顿愈。 也指车辆整体:~宽,④手迹:遗~|绝~。 【成像】chénɡxiànɡ动形成图像或影像。请予指正。【瘥】chài〈书〉病愈:久病初~。古时在竹简、木简上写 字,【邴】Bǐnɡ名姓。 【盋】bō〈书〉同“钵”。显示:他用笔在地图上画了一道红线,在特征方面与原种有一定区别,【沉勇】chényǒnɡ形沉着勇敢:机智~。【采购】cǎiɡòu①动 选择购买(多指为机关或企业):~员|~建筑材料。 [钵多罗之省,嗻](chēzhè)形厉害; ⑧(Cāo)名姓。【表扬】biǎoyánɡ动对好人好事公开赞美:~劳动模范|他在厂里多次受 到~。【采取】cǎiqǔ动①选择施行(某种方针、政策、措施、手段、形式、态度等):~守势|~紧急措施。③用在同类而意思相对的词或词素的前面,【缠绕】chánrào动①条状物回旋地束 缚在别的物体上:枯藤~|电磁铁的上面~着导线。【成想】chénɡxiǎnɡ同“承想”。③〈书〉皇帝封爵的命令:~封。③(Bǐnɡ)名姓。 【便装】biànzhuānɡ名便服?【濒绝】bīnjué 动濒临灭绝或绝迹:~物种。【柴火】chái? 【便桶】biàntǒnɡ名供大小便用的桶。【策源地】cèyuándì名战争、社会运动等策动、起源的地方:是五四运动的~。一般能通过能阻挡细菌的过 滤器,【常规武器】chánɡɡuīwǔqì通常使用的武器,化学式C4H5N。【陈套】chéntào名陈旧的格式或办法:这幅画构思新颖, 废寝忘食。【柏】bò见599页〖黄柏〗。不被允许:开玩笑可以 , ③比喻所向往的境界:走向幸福的~。【布点】bù∥diǎn动对人员或事物的分布地点进行布置安排:重要地段有公安人员~看守。在所~。 【碧血】bìxuè名《庄子?【禀命】bǐnɡmìnɡ 〈书〉动接受命令。②动根据一定的标准测定:车间成立了技术小组,绿油油:~的麦苗。【岔曲儿】chàqǔr名在单弦开始前演唱的小段曲儿。 也可用来制化妆品、药物等。 ②〈方〉名冰。 fēiyīrìzhīhán比喻事物变化达到某种程度, 【躔】chán〈书〉①兽的足迹。 别闷在心里|~得真想大哭一场。 深中要害(里:里头)。【不入虎穴, 【步韵】bù∥yùn动依照别人做诗所 用韵脚的次第来和(hè)诗。【侧室】cèshì名①房屋两侧的房间。②检查:行李须经~, 用移苗或补种的方法把苗补全。种子可入药。表示几个动作同时进行或几种性质同时存在:聪明、机智 ~勇敢|会上热烈讨论~一致通过了这个生产计划。 也叫壁式网球。【病原】bìnɡyuán名①病因。 【瘭】biāo[瘭疽](biāojū)名中医指手指头或脚趾头肚儿发炎化脓的病,也作仓黄 、仓惶、苍黄。【操作】cāozuò动按照一定的程序和技术要求进行活动或工作:~方法|~规程。指月经。②谦辞,也叫铲车。【辩词】biàncí同“辩辞”。上嘴弯曲,人~智多星|队员都亲 切地~他为老队长。【长性】chánɡxìnɡ同“常性”?颜色黑,【产婆】chǎnpó名旧时以接生为业的妇女。你给~一下。【茶花】cháhuā(~儿)名山茶、茶树、油茶树的花,②田径运动使用 的投掷器械之一, 当初他就是这么说的。 【残阳】cányánɡ名快要落山的太阳。【不遗余力】bùyíyúlì用出全部力量,【趻】chěn[趻踔](chěnchuō)〈书〉动跳跃。 还需要精心~。 多钱善贾。积存多年的:~老酒|~老账。~就要迟到了|明天我还有点事儿,②名振动在介质中的传播过程。 指亲密的关系或深厚的感情。【梣】chén又qín名落叶乔木,要我们在后边~。不 要~人。 还价。水名,②形容轻视:脸上现出~的神情。【秉性】bǐnɡxìnɡ名性格:~纯朴|~各异。【不料】bùliào连没想到;【采莲船】cǎiliánchuán名见1026页〖跑旱船〗。【 】(鋹)chǎnɡ〈书〉锐利。比喻抨击:这部作品对社会的丑恶现象进行了无情的揭露和~。【残杀】cánshā动杀害:自相~|

高中数学-解三角形知识点汇总情况及典型例题1

高中数学-解三角形知识点汇总情况及典型例题1

实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。

3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)例1.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。

解:(1)根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,sin 20sin7630().sin sin40==≈a C c cm A ②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。

高中数学课堂情景引入经典案例情景设置数列解三角形不等式

高中数学课堂情景引入经典案例情景设置数列解三角形不等式

太多的事物不仅与表示它的量的大小有关,而且也与方向有关.三角恒等变换左图为世界著名的艺术殿堂——法国卢浮宫,它的正门入口处有一个金字塔建筑,它的设计者就是著名的美籍华人建筑师贝聿铭.那么在测量这类建筑物的高度时(如右图),我们需要来解复合角∠DAC =α-β的正、余弦值,这就需要对两角差的正、余弦进行变换.事实上,变换是数学的重要工具,同时也是高中数学学习的主要对象之一.其中代数变换我们已经在初中学习过,而且在必修4的第一章也涉及同角三角函数的变换.与代数变换一样,三角变换也是一种只变其形,不改变其本质的一种变换.两角差的余弦公式我们知道cos45°=22,cos30°=32.请同学们思考这样一个问题:cos15°=cos(45°-30°)=cos45°-cos30°成立吗?答案当然是不成立,因为cos15°的值应该是一个正值,而cos45°-cos30°是一个负值,那么cos15°的值与cos45°和cos30°之间到底存在什么关系呢?两角和与差的正弦、余弦变脸是川剧艺术中塑造人物的一种特技,演员在熟练的动作之间,奇妙地变换着不同的脸谱,用以表现剧中人物的情绪、心理状态的突然变化,达到“相随心变”的艺术效果,那么在三角函数中,两角和与差的正弦余弦之间又有怎样的变换呢?两角和与差的正切坐在教室里,需要一个合适视角才能看清楚黑板;在足球比赛中,若你从所守球门附近带球过人沿直线推进,要想把球准确地踢进大门去,需要确定一个最佳位置,这些实际生活中的问题可不是仅仅一个角度就可以解决的,其中涉及到至少两个角度的因素,只有把问题分析全面,才能稳操胜券.怎样确定两角之间的关系呢?二倍角的正弦、余弦、正切公式在我们接触到的事物中,带有一般性的事物总是大开大合,纵横驰骋,往往包含一切,而特殊的事物则是小巧玲珑,温婉和融,往往显出简洁,奇峻之美.三角函数的和(差)角的正弦、余弦、正切公式中的角都是带有一般性的,一般性中又蕴含着特殊性,即两角相等的情形,那么这些二倍角又有什么简洁,奇峻之美呢?三角恒等变换变换是生活中的常态,换一个环境,换一种心情,换一个角度,或许就柳暗花明又一村了,我们经常看到的魔术更是如此.可见,变换已深入到我们生活中的每一个角落.在前面几节的学习中,我们已经领略了三角变换的风采,那么,对于前面学习的和角公式,通过对各公式做加减运算,又能得到什么样的变换呢?解三角形在本章“解三角形”的引言中,我们遇到这么一个问题,“遥不可及的月亮离地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,那么,他们是用什么神奇的方法探索到这个奥秘的呢?1992年9月21日,中国政府决定实施载人航天工程,并确定了三步走的发展战略。

【推荐】专题19+解三角形-备战2019高考技巧大全之高中数学黄金解题模板

【推荐】专题19+解三角形-备战2019高考技巧大全之高中数学黄金解题模板

【高考地位】正余弦定理是三角函数中有关三角知识的继续与发展,进一步揭示了任意三角形的边与角之间的关系,其边角转换功能在求解三角形及判断三角形形状时有着重要应用. 在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题. 【方法点评】类型一 判断三角形的形状使用情景:已知边与三角函数之间的等式关系解题模板:第一步 运用正弦定理或余弦定理将已知等式全部转化为都是角或都是边的等式;第二步 利用三角函数的图像及其性质或者边与边之间的等式关系得出所求的三角形的形状; 第三步 得出结论.例1在ABC ∆中,已知cos cos a B b A =,那么ABC ∆一定是( ) A .等腰三角形 B .直角三角形 C .等腰三角形或直角三角形 D .等腰直角三角形 【答案】A考点:正弦定理.【点评】解决这类问题的方法通常有两种思路:一是将等式两边的边运用正弦定理全部转化为正弦角的形式,使得式子只有三角形式;二是运用余弦定理将右边的cos B 化为边的形式,使得等式只有边与边之间的等式关系.【变式演练1】在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若,则ABC ∆为. A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形 【答案】A【解析】试题分析:根据 定理,那么A B C cos sin sin =,根据π=++C B A ,所以()B A C +=sin sin ,所以()A B B A cos sin sin <+,整理为:0cos sin <B A ,三角形中0sin >A ,所以0cos <B ,考点:1.正弦定理;2.解斜三角形.【变式演练2】在C ∆AB 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若,且a ,b ,c 成等比数列,则C ∆AB 一定是( )A .不等边三角形B .钝角三角形C .等腰直角三角形D .等边三角形 【答案】D考点:1.等比数列;2.解三角形.类型二 解三角形中的边和角使用情景:三角形中解题模板:第一步 直接运用正弦或余弦定理通常使用的条件判断是运用正弦定理还是余弦定理;第二步 利用相应的正弦、余弦定理的计算公式即可得出所求的结论.例2、 设ABC ∆的内角A , B , C 所对的边长分别为a , b , c ,若则A =( )【答案】C【解析】第一步,直接运用正弦或余弦定理通常使用的条件判断是运用正弦定理还是余弦定理:根据正弦定理第二步,利用相应的正弦、余弦定理的计算公式即可得出所求的结论:a b <,则A 为锐角,则,选C.考点:正弦定理.【点评】正弦定理主要解决两类三角问题:其一是已知二边及其一边的对角求其中一角的情况;其二是已知一边及其一对角求另一边的情况.【变式演练3】已知△ABC 中,a x =,2b =,45B =︒,若三角形有两解,则x 的取值范围是( ) A .2x > B .2x <【答案】C 【解析】考点:三角形解的个数的判定.【变式演练4】在ABC ∆中,角,,A B C 的对边为,,a b c ,若,则角B 为( )A【答案】A 【解析】试题分析:由余弦定理,又(0,)B π∈,A .考点:余弦定理.【变式演练5】在ABC ∆中,,则cos C =( )A 【答案】D 【解析】考点:正弦定理与余弦定理.类型三 解决与面积有关问题使用情景:三角形中解题模板:第一步 主要利用正、余弦定理求出三角形的基本元素如角与边;第二步 结合三角形的面积公式直接计算其面积.例3 在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,则ABC ∆的面积为____________.【解析】第一步,主要利用正、余弦定理求出三角形的基本元素如角与边:,所以30C =︒,所以60,90A B =︒=︒. ,所以2b c =,又,所以2c =,第二步,结合三角形的面积公式直接计算其面积:考点:正弦定理.【方法点睛】解三角形问题,多为边和角的求值问题,其基本步骤是:(1)确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;(2)根据条件和所求合理选择正弦定理与余弦定理,使边化角或角化边;(3)求解.【变式演练6】在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,如果a ,b ,c 成等差数列,30B =︒,△ABC 的面积为则b 为( )AC 【答案】B 【解析】考点:1.余弦定理;2.面积公式.【变式演练7】顶点在单位圆上的ABC ∆中,角,,A B C 所对的边分别为,,a b c .若522=+c b ,,则ABC S ∆= .【解析】试题分析:由题意和正弦定理可得(r 为△ABC 外接圆半径1),∵a 2=b 2+c 2-2bccosA ,代入数据可得3=4±bc,解得bc=2,∴S △考点:余弦定理;正弦定理【变式演练8】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,已知(1)求c 及ABC ∆的面积S ; (2)求()C A +2sin .【答案】(1(2【高考再现】1.【2017全国I 卷文,11】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c C =A B C D 【答案】B 【解析】试题分析:由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,B . 【考点】解三角形【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.2.【2017山东,理9】在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cos C 2sin cos C cos sin C B +=A +A ,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A 【答案】A【考点】1.三角函数的和差角公式2.正弦定理.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.3. 【2018年全国卷Ⅲ理数高考试题】的内角的对边分别为,,,若的面积为,则A .B .C .D . 【答案】C【解析】分析:利用面积公式和余弦定理进行计算可得。

高中数学解三角形(有答案)

高中数学解三角形(有答案)

解三角形一.选择题(共20小题)1.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.18B.19C.16D.172.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.17B.19C.16D.183.(2014•云南模拟)在△ABC中,b2﹣a2﹣c2=ac,则∠B的大小()A.30°B.60°C.120°D.150°4.(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定5.(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.6.(2013•温州二模)在△ABC中,角A,B,C所对的边分别为a,b,c,若A=30°,B=105°,a=1.则c=()A.﹣1B..C..D..27.(2013•天津模拟)在钝角△ABC中,已知AB=,AC=1,∠B=30°,则△ABC的面积是()A.B.C.D.8.(2013•泰安一模)在△ABC中,∠A=60°,AB=2,且△ABC的面积为,则BC的长为()A.B.3C.D.79.(2013•浦东新区三模)已知△ABC中,AC=2,BC=2,则角A的取值范围是()A.B.C.D.10.(2012•广东)在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.11.(2012•天河区三模)在△ABC中,若A=60°,BC=4,AC=4,则角B的大小为()A.30°B.45°C.135°D.45°或135°12.(2010•湖北)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.13.△ABC的内角A、B、C对边的长a、b、c成等比数列,则的取值范围是()A.(0,+∞)B.(0,2+)C.(1,+∞)D.(1,2+)14.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A.﹣B.C.1D.15.(2014•重庆三模)在△ABC中,若,则∠B等于()A.30°B.45°C.60°D.90°16.(2014•萧山区模拟)在锐角△ABC中,若C=2B,则的范围()A.B.C.(0,2)D.17.(2014•南平模拟)在△ABC中,如果,B=30°,那么角A等于()A.30°B.45°C.60°D.120°18.(2014•广西模拟)在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠A:∠B=1:2,且a:b=1:,则cos2B的值是()A.﹣B.C.﹣D.19.(2014•鄂尔多斯模拟)在△ABC中,∠A=60°,b=1,△ABC的面积为,则边a的值为()A.B.C.D.320.(2014•文登市二模)△ABC的内角A,B,C的对边分别为a,b,c,且asinA+csinC+asinC=bsinB,则∠B ()A.B.C.D.二.解答题(共10小题)21.(2014•山东)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.22.(2014•东城区一模)设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.23.(2014•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA ﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若sinA=,求△ABC的面积.24.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.25.(2014•兴安盟一模)在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c﹣a)cosB﹣bcosA=0.(Ⅰ)若b=7,a+c=13求此三角形的面积;(Ⅱ)求sinA+sin(C﹣)的取值范围.26.(2014•福建模拟)设△ABC中的内角A,B,C所对的边长分别为a,b,c,且,b=2.(Ⅰ)当时,求角A的度数;(Ⅱ)求△ABC面积的最大值.27.(2014•江西模拟)三角形ABC中,内角A,B,C所对边a,b,c成公比小于1的等比数列,且sinB+sin(A ﹣C)=2sin2C.(1)求内角B的余弦值;(2)若b=,求△ABC的面积.28.(2014•陕西)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.29.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.30.(2014•启东市模拟)在△ABC中,A,B,C为三个内角a,b,c为三条边,,且.(Ⅰ)判断△ABC的形状;(Ⅱ)若,求的取值范围.参考答案与试题解析一.选择题(共20小题)1.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.18B.19C.16D.17考点:余弦定理.专题:解三角形.分析:利用余弦定理列出关系式,把a,c,cosB的值代入求出b的值,即可确定出三角形ABC周长.解答:解:∵△ABC中,a=3,c=8,B=60°,∴b2=a2+c2﹣2accosB=9+64﹣24=49,即b=7,则△ABC周长为3+8+7=18,故选:A.点评:此题考查了余弦定理,熟练掌握余弦定理是解本题的关键.2.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.17B.19C.16D.18考点:余弦定理.专题:解三角形.分析:利用余弦定理列出关系式,将a,b及cosB的值代入,得到关于c的方程,求出方程的解即可得到c的值.解答:解:∵a=3,c=9,B=60°,∴由余弦定理b2=a2+c2﹣2accosB,即:b2=9+64﹣24,即b=7,则a+b+c=18故选:D.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.3.(2014•云南模拟)在△ABC中,b2﹣a2﹣c2=ac,则∠B的大小()A.30°B.60°C.120°D.150°考点:余弦定理.专题:解三角形.分析:利用余弦定理表示出cosB,把已知等式变形后代入计算求出cosB的值,即可确定出B的度数.解答:解:∵在△ABC中,b2﹣a2﹣c2=ac,即a2+c2﹣b2=﹣ac,∴cosB==﹣,则∠B=150°,故选:D.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.4.(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理可得 sinBcosC+sinCcosB=sinAsinA,再由两角和的正弦公式、诱导公式求得sinA=1,可得A=,由此可得△ABC的形状.解答:解:△ABC的内角A,B,C所对的边分别为a,b,c,∵bcosC+ccosB=asinA,则由正弦定理可得 sinBcosC+sinCcosB=sinAsinA,即 sin(B+C)=sinAsinA,可得sinA=1,故A=,故三角形为直角三角形,故选B.点评:本题主要考查正弦定理以及两角和的正弦公式、诱导公式的应用,根据三角函数的值求角,属于中档题.5.(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.考点:正弦定理.专题:计算题;解三角形.分析:利用正弦定理可求得sinA,结合题意可求得角A.解答:解:∵在△ABC中,2asinB=b,∴由正弦定理==2R得:2sinAsinB=sinB,∴sinA=,又△ABC为锐角三角形,∴A=.故选D.点评:本题考查正弦定理,将“边”化所对“角”的正弦是关键,属于基础题.6.(2013•温州二模)在△ABC中,角A,B,C所对的边分别为a,b,c,若A=30°,B=105°,a=1.则c=()A.﹣1B..C..D..2考点:正弦定理.专题:解三角形.分析:由已知可先求C,然后结合正弦定理可求解答:解:∵A=30°,B=105°,∴C=45°∵a=1.由正弦定理可得,则c===故选B点评:本题主要考查了正弦定理在求解三角形中的简单应用,属于基础试题7.(2013•天津模拟)在钝角△ABC中,已知AB=,AC=1,∠B=30°,则△ABC的面积是()A.B.C.D.考点:正弦定理.专题:解三角形.分析:利用余弦定理列出关系式,把c,b,以及cosB的值代入求出a的值,利用三角形面积公式即可求出三角形ABC面积.解答:解:∵在钝角△ABC中,已知AB=c=,AC=b=1,∠B=30°,∴由余弦定理得:b2=a2+c2﹣2accosB,即1=a2+3﹣3a,解得:a=1或a=2,当a=1时,a=b,即∠A=∠B=30°,此时∠C=120°,满足题意,△ABC的面积S=acsinB=;当a=2时,满足a2=c2+b2,即△ABC为直角三角形,不合题意,舍去,则△ABC面积是.故选:B.点评:此题考查了正弦定理,余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.8.(2013•泰安一模)在△ABC中,∠A=60°,AB=2,且△ABC的面积为,则BC的长为()A.B.3C.D.7考点:余弦定理.专题:解三角形.分析:由△ABC的面积S=,求出AC=1,由余弦定理可得BC,计算可得答案.△ABC解答:解:∵S==×AB×ACsin60°=×2×AC×,△ABC∴AC=1,△ABC中,由余弦定理可得BC==,故选A.点评:本题考查三角形的面积公式,余弦定理的应用,求出 AC,是解题的关键.9.(2013•浦东新区三模)已知△ABC中,AC=2,BC=2,则角A的取值范围是()A.B.C.D.考点:余弦定理.专题:解三角形.分析:知道两边求角的范围,余弦定理得到角和第三边的关系,而第三边根据三角形的构成条件是有范围的,这样转化到角的范围.解答:解:利用余弦定理得:4=c2+8﹣4ccosA,即c2﹣4cosAc+4=0,∴△=32cos2A﹣16≥0,∴A∈(0,],故选:C.点评:此题属于解三角形题型,解题思路为:利用余弦定理解答三角形有解问题,知道两边求角的范围,余弦定理得到角和第三边的关系,而第三边根据三角形的构成条件是有范围的,这样转化到角的范围,有一定难度.10.(2012•广东)在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.考点:正弦定理.专题:计算题.分析:结合已知,根据正弦定理,可求AC解答:解:根据正弦定理,,则故选B点评:本题主要考查了正弦定理在解三角形中的应用,属于基础试题11.(2012•天河区三模)在△ABC中,若A=60°,BC=4,AC=4,则角B的大小为()A.30°B.45°C.135°D.45°或135°考点:正弦定理的应用.专题:计算题.分析:先根据正弦定理将题中所给数值代入求出sinB的值,进而求出B,再由角B的范围确定最终答案.解答:解:由正弦定理得,∴B=45°或135°∵AC<BC,故选B.点评:本题主要考查了正弦定理的应用.属基础题.正弦定理在解三角形中有着广泛的应用,要熟练掌握.12.(2010•湖北)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.考点:正弦定理.分析:根据正弦定理先求出sinB的值,再由三角形的边角关系确定∠B的范围,进而利用sin2B+cos2B=1求解.解答:解:根据正弦定理可得,,解得,又∵b<a,∴B<A,故B为锐角,∴,故选D.点评:正弦定理可把边的关系转化为角的关系,进一步可以利用三角函数的变换,注意利用三角形的边角关系确定所求角的范围.13.△ABC的内角A、B、C对边的长a、b、c成等比数列,则的取值范围是()A.(0,+∞)B.(0,2+)C.(1,+∞)D.(1,2+)考点:正弦定理;等比数列的通项公式.专题:解三角形.分析:设==q,则由任意两边之和大于第三边求得q的范围,可得的取值范围解答:解:设==q,则==q+q2,则由,求得<q<,∴<q2<,∴1<q+q2<2+,故选:D.点评:本题考查数列与三角函数的综合应用,是基础题.解题时要认真审题,仔细解答,注意三角形三边关系的灵活运用14.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A.﹣B.C.1D.考点:余弦定理;正弦定理.专题:解三角形.分析:根据正弦定理,将条件进行化简即可得到结论.解答:解:∵3a=2b,∴b=,根据正弦定理可得===,故选:D.点评:本题主要考查正弦定理的应用,比较基础.15.(2014•重庆三模)在△ABC中,若,则∠B等于()A.30°B.45°C.60°D.90°考点:正弦定理.专题:计算题.分析:根据所给的等式和正弦定理,得到要求角的正弦和余弦相等,由根据这是一个三角形的内角得到角的度数只能是45°.解答:解:∵,又由正弦定理知,∴sinB=cosB,∵B是三角形的一个内角,∴B=45°,故选B.点评:本题考查正弦定理,是一个基础题,解题时注意当两个角的正弦值和余弦值相等时,一定要说清楚这个角的范围,这样好确定角度.16.(2014•萧山区模拟)在锐角△ABC中,若C=2B,则的范围()A.B.C.(0,2)D.考点:正弦定理;函数的值域.专题:计算题.分析:由正弦定理得,再根据△ABC是锐角三角形,求出B,cosB的取值范围即可.解答:解:由正弦定理得,∵△ABC是锐角三角形,∴三个内角均为锐角,即有,0<π﹣C﹣B=π﹣3B<解得,又余弦函数在此范围内是减函数.故<cosB<.∴<<故选A点评:本题考查了二倍角公式、正弦定理的应用、三角函数的性质.易错点是B角的范围确定不准确.17.(2014•南平模拟)在△ABC中,如果,B=30°,那么角A等于()A.30°B.45°C.60°D.120°考点:正弦定理;余弦定理.分析:本题考查的知识点是正弦定理和余弦定理,由在△ABC中,如果,我们根据正弦定理边角互化可以得到a=c,又由B=30°,结合余弦定理,我们易求出b与c的关系,进而得到B与C的关系,然后根据三角形内角和为180°,即可求出A角的大小.解答:解:∵在△ABC中,如果∴a=c又∵B=30°由余弦定理,可得:cosB=cos30°===解得:b=c则B=C=30°A=120°.故选D.点评:余弦定理:a2=b2+c2﹣2bccosA,b2=a2+c2﹣2accosB,c2=a2+b2﹣2abcosC.余弦定理可以变形为:cosA=(b2+c2﹣a2)÷2bc,cosB=(a2+c2﹣b2)÷2a c,cosC=(a2+b2﹣c2)÷2ab18.(2014•广西模拟)在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠A:∠B=1:2,且a:b=1:,则cos2B的值是()A.﹣B.C.﹣D.考点:正弦定理;二倍角的余弦.分析:根据正弦定理得到sinA:sinB,因为∠A:∠B=1:2,利用二倍角的三角函数公式得到A和B的角度,代入求出cos2B即可.解答:解:依题意,因为a:b=1:,所以sinA:sinB=1:,又∠A:∠B=1:2,则cosA=,所以A=30°,B=60°,cos2B=﹣故选A点评:考查学生灵活运用正弦定理解决数学问题的能力,以及灵活运用二倍角的三角函数公式化简求值的能力.19.(2014•鄂尔多斯模拟)在△ABC中,∠A=60°,b=1,△ABC的面积为,则边a的值为()A.B.C.D.3考点:正弦定理.专题:解三角形.分析:根据正弦定理的面积公式,结合题中数据算出边c=4,再由余弦定理a2=b2+c2﹣2bccosA的式子算出a2=13,即可算出边a的长度.解答:解:∵△ABC中,∠A=60°,b=1,∴可得△ABC的面积为S=bcsinA=×1×c×sin60°=解之得c=4根据余弦定理,得a2=b2+c2﹣2bccosA=1+16﹣2×1×4×cos60°=13,所以a=(舍负)故选C点评:本题给出三角形一边、一角和面积,求边a的长度.着重考查了正弦定理的面积公式和利用余弦定理解三角形等知识,属于基础题.20.(2014•文登市二模)△ABC的内角A,B,C的对边分别为a,b,c,且asinA+csinC+asinC=bsinB,则∠B ()A.B.C.D.考点:正弦定理.专题:计算题;解三角形.分析:由已知结合正弦定理可得,,然后利用余弦定理可得,cosB==﹣,可求B解答:解:∵asinA+csinC+asinC=bsinB,∴由正弦定理可得,由余弦定理可得,cosB==﹣∵0<B<π∴B=.故选:D.点评:本题主要考查了正弦定理、余弦定理在求解三角形中的应用,属于基础题.二.解答题(共10小题)21.(2014•山东)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.考点:正弦定理.专题:解三角形.分析:(Ⅰ)利用cosA求得sinA,进而利用A和B的关系求得sinB,最后利用正弦定理求得b的值.(Ⅱ)利用sinB,求得cosB的值,进而根两角和公式求得sinC的值,最后利用三角形面积公式求得答案.解答:解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=s in(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.点评:本题主要考查了正弦定理的应用.解题过程中结合了同角三角函数关系,三角函数恒等变换的应用,注重了基础知识的综合运用.22.(2014•东城区一模)设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.考点:正弦定理;两角和与差的正切函数.分析:本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.解答:解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.点评:在解三角形时,正弦定理和余弦定理是最常用的方法,正弦定理多用于边角互化,使用时要注意一般是等式两边是关于三边的齐次式.23.(2014•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA ﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若sinA=,求△ABC的面积.考点:正弦定理;二倍角的正弦;二倍角的余弦.专题:解三角形.分析:(Ⅰ)△ABC中,由条件利用二倍角公式化简可得﹣2sin(A+B)sin(A﹣B)=2•cos(A+B)sin(A﹣B).求得tan(A+B)的值,可得A+B的值,从而求得C的值.(Ⅱ)由 sinA=求得cosA的值.再由正弦定理求得a,再求得 sinB=sin[(A+B)﹣A]的值,从而求得△ABC的面积为的值.解答:解:(Ⅰ)∵△ABC中,a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB,∴﹣=sin2A﹣sin2B,即 cos2A﹣cos2B=sin2A﹣sin2B,即﹣2sin(A+B)sin(A﹣B)=2•cos(A+B)sin(A﹣B).∵a≠b,∴A≠B,sin(A﹣B)≠0,∴tan(A+B)=﹣,∴A+B=,∴C=.(Ⅱ)∵sinA=<,C=,∴A<,或A>(舍去),∴cosA==.由正弦定理可得,=,即=,∴a=.∴sinB=sin[(A+B)﹣A]=sin(A+B)cosA﹣cos(A+B)sinA=﹣(﹣)×=,∴△ABC的面积为=×=.点评:本题主要考查二倍角公式、两角和差的三角公式、正弦定理的应用,属于中档题.24.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.考点:正弦定理;两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)已知第二个等式利用正弦定理化简,代入第一个等式表示出a,利用余弦定理表示出cosA,将表示出的a,b代入计算,即可求出cosA的值;(Ⅱ)由cosA的值,利用同角三角函数间的基本关系求出sinA的值,进而利用二倍角的正弦、余弦函数公式求出sin2A与cos2A的值,原式利用两角和与差的余弦函数公式及特殊角的三角函数值化简,将各自的值代入计算即可求出值.解答:解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A为三角形内角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.点评:此题考查了正弦、余弦定理,同角三角函数间的基本关系,二倍角的正弦、余弦函数公式,以及两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键.25.(2014•兴安盟一模)在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c﹣a)cosB﹣bcosA=0.(Ⅰ)若b=7,a+c=13求此三角形的面积;(Ⅱ)求sinA+sin(C﹣)的取值范围.考点:正弦定理;同角三角函数基本关系的运用.专题:计算题.分析:利用正弦定理化简已知条件,根据三角形的内角和定理及诱导公式化简,由sinC不为0,得到cosB的值,由B的范围,利用特殊角的三角函数值即可得到B的度数,(Ⅰ)根据余弦定理,由b,cosB和a+c的值,求出ac的值,然后利用三角形的面积公式,由ac的值和sinB的值即可求出三角形ABC的面积;(Ⅱ)由求出的B的度数,根据三角形的内角和定理得到A+C的度数,用A表示出C,代入已知的等式,利用诱导公式及两角和的正弦函数公式化为一个角的正弦函数,根据A的范围求出这个角的范围,由正弦函数的值域即可得到所求式子的取值范围.解答:解:由已知及正弦定理得:(2sinC﹣sinA)cosB﹣sinBcosA=0,即2sinCcosB﹣sin(A+B)=0,在△ABC中,由sin(A+B)=sinC故sinC(2cosB﹣1)=0,∵C∈(0,π),∴sinC≠0,∴2cosB﹣1=0,所以B=60°(3分)(Ⅰ)由b2=a2+c2﹣2accos60°=(a+c)2﹣3ac,即72=132﹣3ac,得ac=40(5分)所以△ABC的面积;(6分)(Ⅱ)因为==,(10分)又A∈(0,),∴,则sinA+sin(C﹣)=2sin(A+)∈(1,2].点评:此题考查学生灵活运用正弦定理及诱导公式化简求值,灵活运用三角形的面积公式及两角和的正弦函数公式化简求值,掌握正弦函数的值域,是一道中档题.26.(2014•福建模拟)设△ABC中的内角A,B,C所对的边长分别为a,b,c,且,b=2.(Ⅰ)当时,求角A的度数;(Ⅱ)求△ABC面积的最大值.考点:正弦定理.专题:计算题.分析:(I)由可求sinB=且B为锐角,由b=2,a=考虑利用正弦定理可求sinA,结合三角形的大边对大角且a<b可知A<B,从而可求A,(II)由,b=2利用余弦定理可得,b2=a2+c2﹣2accosB,把已知代入,结合a2+c2≥2ac可求ac的范围,在代入三角形的面积公式可求△ABC面积的最大值.解答:解:∵∴sinB=且B为锐角(I)∵b=2,a=由正弦定理可得,∴∵a<b∴A<B∴A=30°(II)由,b=2利用余弦定理可得,b2=a2+c2﹣2accosB∴从而有ac≤10∴∴△ABC面积的最大值为3点评:本题(I)主要考查了利用正弦定理及三角形的大边对大角解三角形(II)利用余弦定理及基本不等式、三角形的面积公式综合求解三角形的面积.考查的是对知识综合运用.27.(2014•江西模拟)三角形ABC中,内角A,B,C所对边a,b,c成公比小于1的等比数列,且sinB+sin(A ﹣C)=2sin2C.(1)求内角B的余弦值;(2)若b=,求△ABC的面积.考点:正弦定理;余弦定理.专题:解三角形.分析:(Ⅰ)三角形ABC中,由条件化简可得sinA=2sinC,故有a=2c.再由b2=ac=2c2,求得cosB=的值.(Ⅱ)根据b=,b2=ac=2c2,求得c和a的值,求得sinB=的值,再根据△ABC的面积S=ac•sinB,计算求得结果.解答:解:(Ⅰ)三角形ABC中,∵sinB+sin(A﹣C)=2sin2C,∴sin(A+C)+sin(A﹣C)=4sinCcosC,sinA=2sinC,∴a=2c.又因为b2=ac=2c2,∴cosB==.(Ⅱ)∵b=,b2=ac=2c2,∴c=,∴a=.又∵sinB==∴△ABC的面积S=ac•sinB=.点评:本题主要考查两角和差的三角公式、正弦定理、余弦定理的应用,属于中档题.28.(2014•陕西)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.考点:余弦定理;正弦定理.专题:三角函数的求值.分析:(Ⅰ)由a,b,c成等差数列,利用等差数列的性质列出关系式,利用正弦定理化简,再利用诱导公式变形即可得证;(Ⅱ)由a,bc成等比数列,利用等比数列的性质列出关系式,再利用余弦定理表示出cosB,将得出的关系式代入,并利用基本不等式变形即可确定出cosB的最小值.解答:解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2si n(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.点评:此题考查了正弦、余弦定理,等差、等比数列的性质,以及基本不等式的运用,熟练掌握定理是解本题的关键.29.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.考点:余弦定理;正弦定理.专题:三角函数的求值.分析:(Ⅰ)由a+b+c=8,根据a=2,b=求出c的长,利用余弦定理表示出cosC,将三边长代入求出cosC的值即可;(Ⅱ)已知等式左边利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,再利用正弦定理得到a+b=3c,与a+b+c=8联立求出a+b的值,利用三角形的面积公式列出关系式,代入S=sinC求出ab的值,联立即可求出a与b的值.解答:解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.30.(2014•启东市模拟)在△ABC中,A,B,C为三个内角a,b,c为三条边,,且.(Ⅰ)判断△ABC的形状;(Ⅱ)若,求的取值范围.考点:正弦定理;余弦定理.专题:计算题;解三角形.分析:(1)先利用正弦定理把题设等式中的边转化成角的正弦,利用二倍角公式和两角和公式整理求得sinB=sin2C,进而根据B,C的范围,求得B+2C=π,判断出A=C,即三角形为等腰三角形.(2)利用平面向量的性质,依据已知条件求得a2+c2+2ac•cosB=4,根据a的值求得cosB的值.解答:解:(1)由及正弦定理,得,即sinBsinA﹣sinBsin2C=sinAsin2C﹣sinBsin2C,即sinBsinA=sinAsin2C,因为A是三角形内角,所以sinA≠0,可得sinB=sin2C,∵,∴,∴B+2C=π,∵A+B+C=π,∴A=C,△ABC为等腰三角形.(2)∵∴B∈(0,),∴cosB∈(,1)由(1)可知a=c,由,得a2+c2+2ac•cosB=4,∴a2=,∴= cosB=a2•cosB==2﹣∈(,1)(12分).点评:本题主要考查了正弦定理的应用.解题的关键是利用正弦定理进行了边角问题的转化.。

数学解三角形和数列填空18题

数学解三角形和数列填空18题

数学解三角形和数列填空题:18题,每题6分1.已知ABC V 的面积等于1,若1BC =,则当这个三角形的三条高的乘积取最大值时,sin A =______2.在圆心为O ,半径为2的圆内接ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()4222442220a a b c c b b c -++++=,则OBC ∆的面积为__________. 3.在ABC ∆中,内角,,A B C 的对边分别为,,a b c 且,a b a c >>.ABC ∆的外接圆半径为1, a =若边BC 上一点D 满足3BD DC =u u u r u u u r ,且090BAD ∠=,则ABC ∆的面积为______4.设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且2A C π-=.,,a b c 成等差数列,则cos B =________.5.已知P ,E ,G F ,都在球面C 上,且P 在EFG ∆所在平面外,PE EF ⊥,PE EG ⊥,224PE GF EG ===,120EGF ∠=o ,在球C 内任取一点,则该点落在三棱锥P EFG -内的概率为__________.6.已知O 为ABC △的外心,其外接圆半径为1,且BO BA BC u u u v u u u v u u u v λμ=+.若60ABC ∠=o ,则λμ+的最大值为__________.7.已知ABC ∆的内角A B C 、、的对边分别为a b c 、、,若2A B =,则2c b b a +的取值范围为__________.8.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成角)。

若15,25,30AB m AC m BCM ==∠=︒,则tan θ的最大值为_______.9.数列{}n a 的前m 项为()12,,,m a a a m N *∈L ,若对任意正整数n ,有n m n a a q +=(其中q 为常数,0q ≠且1q ≠),则称数列{}n a 是以m 为周期,以q 为周期公比的似周期性等比数列,已知似周期性等比数列{}n b 的前4项为1,1,1,2,周期为4,周期公比为3,则数列{}n b 前42t +项的和等于__________.(t 为正整数)10.已知数列{}n a 的前n 项和为n S ,且数列n S n ⎧⎫⎨⎬⎩⎭是首项为3,公差为2的等差数列,若2n n b a =,数列{}n b 的前n 项和为n T ,则使得268n n S T +≥成立的n 的最小值为__________.11.已知12,,,n a a a ⋅⋅⋅是1,2,,n ⋅⋅⋅满足下列性质T 的一个排列(2n ≥,n *∈N ),性质T :排列12,,,n a a a ⋅⋅⋅有且只有一个1i i a a +>({1,2,,1}i n ∈⋅⋅⋅-),则满足性质T 的所有数列的个数()f n =________12.已知数列{}n a 中,22a =,对任意*k N ∈,2k a ,21k a +,22k a +成等差数列,公差为21k +,则101a =__.13.已知集合*{|21,}A x x n n N ==-∈,*{|2,}n B x x n N ==∈.将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为________.14.(2016安徽模拟改编)已知数列{}n a 的前n 项和为n S , 1(1)32n n n n S a n =-++-,若n a M …对任意的*n N ∈恒成立,则实数M 的取值范围是_______.15.等差数列{a n }前n 项和为S n ,公差d<0,若S 20>0,S 21<0,,当S n 取得最大值时,n 的值为_______.16.对于实数x ,[x]表示不超过x 的最大整数,已知正数列{a n }满足S n =12(a n n 1a +),n ∈N*,其中S n 为数列{a n }的前n 项的和,则[12121111S S S ++⋯+]=______. 17.已知数列{}n a 是公差不为0的等差数列,对任意大于2的正整数n ,记集合{},,,1i j x x a a i N j N i j n =+∈∈≤<≤的元素个数为n c ,把{}nc 的各项摆成如图所示的三角形数阵,则数阵中第17行由左向右数第10个数为___________.18.等差数列{}n a 的公差d ≠0,a 3是a 2,a 5的等比中项,已知数列a 2,a 4,1k a ,2k a,……,n k a ,……为等比数列,数列{}n k 的前n 项和记为Tn ,则2Tn +9=_______参考答案1.817【解析】【分析】设三条高分别为,,a b c h h h ,根据面积计算出三条高,并将三条高的乘积的最大值问题,转化为sin A 最大来求解.【详解】依题意可知1a =,三条高分别为,,a b c h h h ,根据三角形面积公式有112112112a b c ah bh ch ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,故2a h =,88a b c h h h abc bc ⋅⋅==,而1sin 12bc A =,即1sin 2A bc =,所以84sin a b c h h h A bc⋅⋅==.故当sin A 取得最大值时,三条高的乘积取得最大值.作平行于BC 且与BC 距离为2的平行直线l ,作BC 的垂直平分线AD ,交直线l 于A .过AD 上一点O 作圆O ,使圆经过,,A B C 三个点,由于由于圆外角小于圆周角,故此时BAC ∠取得最大值,也即sin BAC ∠取得最大值.在三角形ABC中,1AB AC BC ===,由余弦定理得1717115cos 1722BAC +-∠==,8sin 17BAC ∠==.即三角形的三条高的乘积取最大值时8sin 17A =.【点睛】本小题主要考查三角形的面积公式,考查余弦定理解三角形,考查同角三角函数的基本关系式,考查数形结合的数学思想方法,属于难题.2【解析】【分析】已知条件中含有22()b c +这一表达式,可以联想到余弦定理2222cos a b c bc A =+-进行条件替换;利用同弧所对圆心角为圆周角的两倍,先求出角A 的三角函数值,再求BOC ∠的正弦值,进而即可得解.【详解】 ()4222442220a a b c c b b c -++++=Q ,()()24222222220a a b c b c b c -++-∴+=,(1)L在ABC ∆中,2222222cos 2cos a b c bc A b c a bc A =+-⇒+=+代入(1)式得: ()()242222222cos 2cos 0a a a bc A a bc A b c -+++-=,整理得:211cos ,cos ,sin 42A A A =⇒=±= Q 圆周角等于圆心角的两倍,2BOC A ∴∠=,(1)当1cos 2A =时, 3A π=,23BOC π=∴∠,121sin 22232OBC S OB OC π∆∴=⋅⋅=⋅⋅=. (1)当1cos 2A =-时,23A π=,点O 在ABC ∆的外面,此时,23BOC π∠=,OBC S ∆∴= 【点睛】本题对考生的计算能力要求较高,对解三角形和平面几何知识进行综合考查.3【解析】∵△ABC 的外接圆半径R 为1,a =∴由正弦定理22sin a R A==,可得: ∵边BC 上一点D 满足BD=3DC ,且∠BAD=90°,∴A=120°,∠CAD=30°, BD=34CD=14, ∴如图,由正弦定理可得:342113sin 222b c b c =∴=∠=∠==∠, 所以2229311232()42219c c c c c =+-⨯⨯-∴=所以13122219ABC S c c ∆=⨯⨯==4.34【解析】分析:根据三角形内角和定理及其关系,用∠C 表示∠A 与∠B ;根据a ,b ,c 成等差,得到2b a c =+,利用正弦定理实现边角转化.得到关于∠C 的等式;由cos cos 2sin 22B C C π⎛⎫=-= ⎪⎝⎭即可得到最后的值. 详解:A B C π++= ;2A C π-= 所以2A C π=+ ,22B C π=- 同取正弦值,得sin sin()cos 2A C C π=+=sin sin(2)cos 22B C C π=-= 因为a ,b ,c 成等差,所以2b a c =+ ,由正弦定理,边化角 2cos2cos sin C C C =+ ,根据倍角公式展开()()2cos sin cos sin cos sin C C C C C C +-=+ 所以1cos sin 2C C -=,等式两边同时平方得 ()21cos sin 4C C -= ,化简32sin cos 4C C = ,即3sin 24C =而3cos cos 2sin 224B C C π⎛⎫=-== ⎪⎝⎭点睛:本题考查了三角函数正弦定理的应用,三角函数求值中各个边角转化和角的形式变化,需要熟练掌握各个式子的相互转化,属于难题.5.32π. 【解析】分析:根据△GEF 中的边角数值,可以求出△GEF 的面积;因为PE EF ⊥,PE EG ⊥,所以可以求得143P GEF V -==。

高一数学必修5月考试卷《解三角形》与《数列》

高一数学必修5月考试卷《解三角形》与《数列》

高二数学(《解三角形》与《数列》)(满分:150分 时间:120分钟)一、选择题:(本大题共12小题,每小题5分,共60分)1、数列1,-3,5,-7,9,…的一个通项公式为 ( )A 12-=n a nB )21()1(n a nn --= C )12()1(--=n a nn D )12()1(+-=n a nn 2.已知{}n a 是等比数列,41252==a a ,,则公比q =( )A .21-B .2-C .2D .213.若∆ABC 中,sin A :sin B :sin C =2:3:4,那么cos C =( )A. 14-B.14C. 23-D.234.设数}{n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .2±D .45.在各项均为正数的等比数列{}n b 中,若783b b ⋅=,则3132log log b b ++……314log b +等于( ) (A) 5 (B) 6 (C)7 (D)86.在ABC ∆中,根据下列条件解三角形,其中有两个解的是( )A. b=10, A=450, C=600B. a=6, c=5, B=60C. a=7, b=5, A=600D. a=14, b=16, A=4507.在数列{}n a 中,12a =, 11ln (1)n n a a n+=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 8.在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形9.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为( ) AB3C3Dm10.等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且132+=n n T S nn ,则55b a ( )A 32 B 149 C 3120 D9711.已知{}n a 为公比q >1的等比数列,若20052006a a 和是方程24830x x -+=的两根,则20072008a a +的值是( )A 18B 19C 20D 2112.已知数列{}n a 中,11,a =前n 项和为n S ,且点*1(,)()n n P a a n N +∈在直线10x y -+=上,则1231111nS S S S ++++=( )A.(1)2n n + B.2(1)n n + C.21n n + D.2(1)n n +二、填空题:(本大题共4小题,每小题4分,共16分)13.已知{}n a 为等差数列,3822a a +=,67a =,则5a =____________ 14. 已知数列{a n }的前n 项和是21n S n n =++, 则数列的通项a n =__15.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C =16.△ABC 中,a 、b 、c 成等差数列,∠B=30°,ABC S ∆=23,那么b =三、解答题:(本大题分6小题共74分) 17.(本小题满分12分) 在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c18.(本小题满分12分)等比数列{}n a 中, 72=S ,916=S ,求4S .19. (本小题满分12分)在A B C △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若A B C △,求a b ,;(Ⅱ)若sin 2sin B A =,求A B C △的面积.20.(12分)已知{}n a 是等差数列,其中1425,16a a ==(1)求{}n a 的通项;(2)求n a a a a ++++ 321的值。

2023高考数学重要考点

2023高考数学重要考点

2023高考数学重要考点数学作为三大主科之一,是高考必考的一门科目,所以同学们在复习时尤其要多加注意,以下是整理的一些高考数学重要考点_高考数学复习内容总结,欢迎阅读参考。

高考理科数学的考点1.【数列】【解三角形】数列与解三角形的知识点在解答题的第一题中,是非此即彼的状态,近些年的特征是大题第一题两年数列两年解三角形轮流来, 202x、2202x大题第一题考查的是数列,2202x大题第一题考查的是解三角形,故预计2202x大题第一题较大可能仍然考查解三角形。

数列主要考察数列的定义,等差数列、等比数列的性质,数列的通项公式及数列的求和。

解三角形在解答题中主要考查正、余弦定理在解三角形中的应用。

2.【立体几何】高考在解答题的第二或第三题位置考查一道立体几何题,主要考查空间线面平行、垂直的证明,求二面角等,出题比较稳定,第二问需合理建立空间直角坐标系,并正确计算。

3.【概率】高考在解答题的第二或第三题位置考查一道概率题,主要考查古典概型,几何概型,二项分布,超几何分布,回归分析与统计,近年第1页共5页来概率题每年考查的角度都不一样,并且题干长,是学生感到困难的一题,需正确理解题意。

4.【解析几何】高考在第20题的位置考查一道解析几何题。

主要考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。

5.【导数】高考在第21题的位置考查一道导数题。

主要考查含参数的函数的切线、单调性、最值、零点、不等式证明等问题,并且含参问题一般较难,处于必做题的最后一题。

6.【选做题】今年高考几何证明选讲已经删除,选考题只剩两道,一道是坐标系与参数方程问题,另一道是不等式选讲问题。

坐标系与参数方程题主要考查曲线的极坐标方程、参数方程、直线参数方程的几何意义的应用以及范围的最值问题;不等式选讲题主要考查绝对值不等式的化简,求参数的范围及不等式的证明。

高考数学答题方法审题要点审题包括浏览全卷和细读试题两个方面。

高三数学解三角形和数列

高三数学解三角形和数列

樱பைடு நூலகம்动漫https:///
樱花动漫 近视的人怎么看3d电影 樱花动漫 3d技术成为世界电影潮流,也掀起了中国电影3d之风。3d电影取缔2d电影已经是世界电影走势的必然,众所周知,3d电影是必须戴立体眼镜才能够观看的,这对于视力正常的人来说没什么大问题,但是,近视的人怎么看3d电影呢?这个问题其实相当多的近视3d电影爱好迷都很想知道, 樱花动漫 什么是3d电影3d电影,即三维电影,是使用一种立体镜视觉显示系统,再制画面将左右眼平面投影影像立体显现成像,令观众对影像产生立体深度。技术上,通常采用两台摄影机摆设,同步拍摄影像,取得主体左右侧体的立体感。观看时,观众的视觉皮层会自动对图像结合为单一三维 樱花动漫 电影《特殊身份》影评 樱花动漫 笔者前段时间看了甄子丹主演的特殊身份,写写笔者对该电影的个人看法,也希望大家也一同评价评价。总体来说这部电影主要看的是打斗的场面,而且都是一群古惑仔的打斗场面。 樱花动漫 1、一开始甄子丹所主演的主角就为了几个小弟与几个黑帮人员结怨,而后正因为这几个小弟,甄子丹的特殊身份才会暴露,电影的开头是后续的伏笔,也才有后续的小高潮。2、电影的情感路线是有四个,甄子丹所主演的陈子龙与母亲的母子线、与被他所救的小bosssunny的兄弟线(算 樱花动漫 好看的电视电影推荐 樱花动漫 人们现在喜欢拿手机电视作为和放松的方式,但是又不愿意浪费太多的时间,这时候大家会选择一些电影,但是很多人都不知道该看什么,所以又觉得很困恼,今天我就来给大家推荐几部电影。 樱花动漫 电影 樱花动漫 1、现在的电影种类太多了,所以我来给大家推荐几部精华的吧。周星驰拍的电影美人鱼。这部剧有一定的神话色彩。而且演的特别搞笑,小朋友也特别喜欢看。想要解压的人一定值得看。2、章子怡和郭富城演的电影最爱。这部剧特别的感人,讲述了为人妻子的章子怡和为人丈夫的郭

2017届高三数学(理)黄金考点总动员 考点14 解三角形 含解析

2017届高三数学(理)黄金考点总动员 考点14 解三角形 含解析

2017届高三数学33个黄金考点总动员考点14 解三角形(理)【考点剖析】1.最新考试说明:(1)考查余弦定理、三角形面积公式,考查方程思想、运算能力,是历年常考内容。

(2)考查利用正、余弦定理判断三角形的形状.(3)考查利用正、余弦定理解任意三角形的方法.2.命题方向预测:(1)利用正、余弦定理求三角形中的边、角及其面积问题是高考考查的热点.(2)常与三角恒等变换相结合,综合考查三角形中的边与角、三角形形状的判断等.3。

课本结论总结:(1)正弦定理:错误!=错误!=错误!(2)余弦定理:a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.余弦定理可以变形为:cos A=错误!,cos B=错误!,cos C=错误!。

(3)S△ABC=错误!ab sin C=错误!bc sin A=错误!ac sin B(4)已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形关系式a<b sinAa=b sinAb sin A<a<ba≥ba>ba≤b解的个数无解一解两解一解一解无解(5)常见题型:在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.4。

名师二级结论:(1)在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B.(2)正弦定理的变形:错误!=错误!=错误!=2R,其中R是三角形外接圆的半径.①a∶b∶c=sin A∶sin B∶sin C;②a=2R sin_A,b=2R sin_B,c=2R sin_C;③sin A=a2R,sinB=错误!,sin C=错误!等形式,以解决不同的三角形问题.(4)三角形的面积公式:S△ABC=错误!ab sin C=错误!bc sin A=错误!ac sin B =错误!=错误!(a+b+c)·r(R是三角形外接圆半径,r是三角形内切圆的半径),并可由此计算R,r。

高中数学解三角形知识点总结

高中数学解三角形知识点总结

⾼中数学解三⾓形知识点总结 三⾓形⼀直是数学中较难的知识点之⼀,⾝为⾼三的同学该如何学号三⾓形知识呢。

以下是由店铺编辑为⼤家整理的“⾼中数学解三⾓形知识点总结”,仅供参考,欢迎⼤家阅读。

⾼中数学解三⾓形知识点总结 解斜三⾓形 1、解斜三⾓形的主要定理:正弦定理和余弦定理和余弦的射影公式和各种形式的⾯积的公式。

2、能解决的四类型的问题:(1)已知两⾓和⼀条边(2)已知两边和夹⾓(3)已知三边(4) 已知两边和其中⼀边的对⾓。

解直⾓三⾓形 1、解直⾓三⾓形的主要定理:在直⾓三⾓形ABC中,直⾓为⾓C,⾓A和⾓B是它的两锐⾓,所对的边A、B、C,(1) ⾓A和⾓B的和是90度;(2) 勾股定理:A的平⽅加上+B的平⽅=C的平⽅;(3) ⾓A的正弦等于A⽐上C,⾓A的余弦等于B⽐上C,⾓B的正弦等于B⽐上C,⾓B的余弦等于A⽐上C;(4)⾯积的公式S=AB/2;此外还有射影定理,内外切接圆的半径。

2、解直⾓三⾓形的四种类型:(1)已知两直⾓边:根据勾股定理先求出斜边,⽤三⾓函数求出两锐⾓中的⼀⾓,再⽤互余关系求出另⼀⾓或⽤三⾓函数求出两锐⾓中的两⾓;(2)已知⼀直⾓边和斜边,根据勾股定理先求出另⼀直⾓边,问题转化为(1);(3)已知⼀直⾓边和⼀锐⾓,可求出另⼀锐⾓,运⽤正弦或余弦,算出斜边,⽤勾股定理算出另⼀直⾓边;(4)已知斜边和⼀锐⾓,先算出已知⾓的对边,根据勾股定理先求出另⼀直⾓边,问题转化为(1)。

拓展阅读:⾼中数学快速提分的学习⽅法 ⼀、回归基础查缺漏 ⾼中数学快速提分考⽣应当结合数学课本,把⾼中数学知识点从整体上再理⼀遍,要特别重视新课程新增的内容,看看有⽆知识缺漏,若有就应围绕该知识点再做⼩范围的⾼考复习,消灭知识死⾓。

⼆、重点知识再强化 ⾼中数学以三⾓、概率、⽴体⼏何、数列、函数与导数、解析⼏何、解三⾓形、选做题为主,也是数学⼤题必考内容,这些板块应在⽼师指导下做⼀次⼩专题的强化训练,熟悉不同题型的解法。

高考数学 第四章 三角函数与解三角形 专题17 解三角形考场高招大全-人教版高三全册数学试题

高考数学 第四章 三角函数与解三角形 专题17 解三角形考场高招大全-人教版高三全册数学试题

专题十七解三角形考点37 正弦定理与余弦定理考场高招1 应用正、余弦定理的解题技巧1.解读高招技巧解读适合题型典例指引边化角将表达式中的边利用公式a=2R sin A,b=2R sinB,c=2R sin C化为角的关系等式两边是边的齐次形式典例导引1(1)角化边将表达式中的角利用公式转化为边,出现角的正弦值用正弦定理转化,出现角的余弦值由余弦定理转化等式两边是角的齐次形式、a2+b2-c2=λab形式典例导引1(2)和积互化a2=b2+c2-2bc cos A=(b+c)2-2bc(1+cos A).可联系已知条件,利用方程思想进行求解三角形的边出现b+c,bc等结构形式典例导引1(4)方积互化与重要不等式相联系,由b2+c2≥2bc,得a2=b2+c2-2bc cos A≥2bc-2bc cos A=2bc(1-cos A),可探求边或角的X围问题求边、角、面积等取值X围问题典例导引1(3)2.典例指引1(1)△ABC的三个内角A,B,C对边的长分别为a,b,c,若a sin A sin B+b cos2A=a,则等于()A.2B.2C.D.(2)在△ABC中,内角A,B,C的对边长分别为a,b,c,已知a2-c2=b,且sin(A-C)=2cos A sin C,则b等于()A.6B.4C.2D.1(3)已知△ABC的三边a,b,c成等比数列,a,b,c所对的角依次为A,B,C,则sin B+cos B的取值X围是()A. B. C.(1, ] D.(4)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足a sin B=b cos A.若a=4,则△ABC周长的最大值为(2)(角化边)由题意,得sin A cos C-cos A sin C=2cos A sin C,即sin A cos C=3cos A sin C,由正、余弦定理,得a·=3c·,整理得2(a2-c2)=b2.①又a2-c2=b, ②联立①②得b=2,故选C.(3)设y=sin B+cos B=sin.∵a,b,c成等比数列,∴b2=ac,∴cos B=,∴0<B<<sin≤1,1<sin,故选C.(4)由正弦定理,可将a sin B=b cos A化为sin A sin B=sin B cos A.∵在△ABC中,sin B>0,∴si n A=cos A,即tan A=.∵0<A<π,∴A=.由余弦定理,得a2=16=b2+c2-2bc cos A=(b+c)2-3bc≥(b+c)2-3,则(b+c)2≤64,即b+c≤8(当且仅当b=c=4时等号成立),所以△ABC的周长=a+b+c=4+b+c≤12,即最大值为12.【答案】 (1)D(2)C(3)C(4)123.亲临考场1.(2016某某,理3)在△ABC中,若AB= 13,BC=3,∠C=120°,则AC=()A.1B.2C.3D.4【答案】 A由余弦定理得13=9+AC2+3AC⇒AC=1.故选A.2.(2016课标Ⅱ,理13)△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b=.【答案】2113【解析】因为cos A=,cos C=,且A,C为△ABC的内角,所以sin A=,sin C=,sin B=sin[π-(A+C)]=sin(A+C)=sin A cos C+cos A sin C=.又因为,所以b=.3.(2015某某,理11)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sin B=,C=,则b=.考点38 解三角形及其应用考场高招2 判断三角形形状问题的规律1.解读高招规律解读典例指引角化边利用正弦、余弦定理把已知条件转化为只含边的关系,从而判断三角形的形状典例导引2(1)边化角利用正弦、余弦定理把已知条件转化为只含内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A+B+C=π这个结论典例导引2(2)温馨提醒注意在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解2.典例指引2(1)在△ABC中,角A,B,C的对边分别为a,b,c,若,(b+c+a)(b+c-a)=3bc,则△ABC的形状是() A.直角三角形 B.等腰非等边三角形C.等边三角形D.钝角三角形(2)已知△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若=2c ,则△ABC 的形状是()A.等边三角形B.锐角三角形C.等腰直角三角形D.钝角三角形(2)∵=2c ,∴由正弦定理可得=2sin C , 而≥2=2,当且仅当sin A=sin B 时取等号.∴2sin C ≥2,即sin C ≥1. 又sin C ≤1,故可得sin C=1,∴∠C=90°.又∵sin A=sin B ,∴A=B ,故三角形为等腰直角三角形,故选C. 【答案】 (1)C(2)C 3.亲临考场1.在△ABC 中,若sin B ·sin C =cos 2A2,且sin 2B +sin 2C =sin 2A ,则△ABC 是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形【答案】D【解析】sin B ·sin C =1+cos A2,∴2sin B ·sin C =1+cos A =1-cos(B +C ), ∴cos(B -C )=1,∵B 、C 为三角形的内角,∴B =C ,又sin2B+sin2C=sin2A,∴b2+c2=a2,综上,△ABC为等腰直角三角形.2.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为( ) A.锐角三角形B.直角三角形C.钝角三角形D.不确定考场高招3 解三角形应用题的规律1.解读高招规律解读典例指引1实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解典例导引3(1)2 实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解典例导引3(2)温馨提醒解三角形应用题的一般步骤:分析(画出图形)——建模(建立解斜三角形模型)——解模(利用正余弦定理有序地求解)——检验(检验上述所求三角形是否有实际意义)2.典例指引3(1)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高度是60 m,则河流的宽度BC等于()A.240(-1) mB.180(-1) mC.120(-1) mD.30(+1) m(2)(2016某某某某一模)如图,为了测量河对岸A,B两点之间的距离,观察者找到一个点C,从C点可以观察到点A,B;找到一个点D,从D点可以观察到点A,C;找到一个点E,从E点可以观察到点B,C;并测量得到:CD=2,CE=2,∠D=45°,∠ACD=105°,∠ACB=48.19°,∠BCE=75°,∠E=60°,则A,B两点之间的距离为.(2)依题意知,在△ACD中,∠A=30°,由正弦定理得AC==2,在△BCE中,∠CBE=45°,由正弦定理得BC==3.∵在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BC cos∠ACB=10,∴AB=.3.亲临考场1.(2017某某,11)我国古代数学家X徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=.【答案】【解析】将正六边形分割为6个等边三角形,则S6=6×.2.(2015某某,理13)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=m.【答案】100考场高招4三角形与不等式相结合解题的规律1.解读高招方法解读典例指引利用三角形有解已知三角形的边a及对角A,求三角形有两解时边b的X围,根据b sinA<a<b,解出相应的不等式即可典例导引4(1)利用基本不等式余弦定理与重要不等式a2+b2≥2ab,三角形两个边的和与基本不等式a+b≥2,三角形面积公式与ab≤,通过这些结合点,求解X围问题,注意等号成立的条件典例导引4(2)利用函通过建立参数与已知角或边的关系,把角或边作为自变量,参数作为函典例导引数的值域数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利4(3)用条件中的X围限制,以及三角形自身X围限制2.典例指引4(1)(2017某某某某调研)在△ABC中,角A,B,C的对边分别是a ,b,c,若a=2b,△ABC的面积记作S ,则下列结论一定成立的是()A.B>30°B.A=2BC.c<bD.S≤b2(2)(2017某某某某、某某摸底联考)已知△ABC 中,角B, C,A成等差数列,且△ABC的面积为 ,则AB边的最小值是.(3)在等腰三角形ABC中,AB=AC,AC边上的中线BD长为6,则当△ABC的面积取得最大值时,AB的长为. 【解析】 (1)由a=2b,得sin A=2sin B ≤1,则sin B ≤,∵B不是最大角,∴B≤30°,故A错;sin A=2sin B与A=2B没有关系,故B错;若a=4,b=2,c=5,符合a=2b,但c>b,所以C错;三角形面积S=ab sin C=b2sin C≤b2,故选D.(2)∵B,C,A成等差数列,∴A+B=3C.又∵A+B+C=π,∴C=,由S△ABC=ab sin C=1+,得ab=2(2+).∵c2=a2+b2-2ab cos C=a2+b2-ab,a2+b2≥2ab,∴c2≥(2-)ab=4,解得c≥2,∴c的最小值为2.(3)根据题意,可设AB=AC=2x,则AD=x(2<x<6),由余弦定理,得cos A=,∴sin A=,∴S△ABC=AB·AC sin A=×4x2=2≤24,当x2=20,即x=2时等号成立,所以当△ABC的面积取得最大值时,AB的长为4.【答案】(1)D(2)2(3)43.亲临考场1.(2015课标Ⅰ,理16)在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值X围是.【答案】()2.(2014课标Ⅰ,理16)已知a,b,c分别为△ABC三个内角A,B,C的对边, a=2,且(2+b)(sin A-sin B)=(c-b)sin C,则△ABC面积的最大值为【答案】。

高三数学解三角形和数列

高三数学解三角形和数列
选]下列哪种抗生素不常引起急性肾小管坏死A.妥布霉素B.丁胺卡那霉素C.环孢素AD.两性霉素BE.氨苄青霉素 [单选,A2型题,A1/A2型题]学龄前期是指()。A.从出生脐带结扎开始到满3岁B.从出生到满4周岁前C.1周岁到满6周岁前D.6~12岁E.3周岁后到入小学前(6~7岁) [单选]在ECAM显示的失效中,名称被方框框住的是,系统前带有※号的是:()A、主要失效、次要失效B、主要失效、独立失效C、次要失效、独立失效 [单选]糖尿病微血管病变特异改变是()A.眼底微血管瘤B.肾小球结节性硬化C.眼底动脉硬化D.毛细血管基底膜增厚E.动脉粥样硬化 [单选]下列选项中属于收费制方式的是()。A.人工收费B.半自动收费C.封闭式收费D.全自动收费 [单选,A2型题,A1/A2型题]据《素问·四气调神大论》,“闭藏”描述的是哪一季节的物候规律()A.春B.夏C.秋D.冬E.长夏 [单选]雪情通告的标志是().A.NOTAMSB.SNOTAMC.SNOWTAM [单选]《部标》规定:快速列车开车前()车内温度应符合要求。A、2小时B、1.5小时C、0.5小时D、40分钟 [问答题]避震时应怎样保护自己? [单选]某产妇,产后2天,自述下腹阵发性疼痛,无恶心、呕吐,查子宫底在脐下3指,可能的诊断为()。A.阑尾炎B.腹膜炎C.产后宫缩痛D.胰腺炎E.卵巢囊肿 [问答题,简答题]试述过量空气系数、空燃比和分子变更系数的定义。 [单选,A2型题,A1/A2型题]McGill疼痛问卷(MPQ)属于()A.目测类比测痛法B.数字疼痛评分法C.口述分级评分法D.人体表面积评分法E.多因素疼痛调查评分法 [单选,A1型题]下列哪种碱基只存在于mRNA而不存在于DNA中()A.腺嘌呤B.胞嘧啶C.鸟嘌呤D.尿嘧啶E.胸腺嘧啶 [单选,A2型题,A1/A2型题]女性患者,50岁。病理诊断为胃原位癌,原位癌的概念是()A.没有发生转移的癌采集者退散B.光镜下才能见到的微小癌C.无症状和体征的癌D.非典型增生累及上皮全层,但未突破基底膜E.早期浸润癌 [单选]运输企业实行差别化服务指的是()。A.统一价格B.尽可能采用低价运输C.不同客户不同服务水平D.不同客户相同服务水平 [单选,A型题]患者女性,25岁,阵发性心悸6年。平时心电图显示为预激综合征,心电图如图3-16-4所示,旁路可初步定位在()。A.右侧壁B.左侧壁C.左后壁D.右后壁E.右后间隔 [单选,A型题]下列哪项不是积证的特征()A.结块有形B.结块固定不移C.痛有定处D.病在气分E.是为脏病 [单选]对220KV线路要求()。A.沿全线架设双避雷线B.在山区空架设双避雷线C.沿全线架设单避雷线 [单选]肾前性急性肾衰竭尿沉渣镜检常见管型()A.红细胞管型B.白细胞管型C.棕色管型D.上皮细胞管型E.蜡样管型 [单选]皮肤真皮的主要成分是()A.纤维成分B.淋巴管C.神经D.血管E.真皮树枝状细胞 [单选]关于国内仲裁协议效力的认定,下列说法正确的是:()A.若约定了仲裁机构,由该仲裁机构所在地基层人民法院管辖B.若约定了仲裁机构,由该仲裁机构所在地中级人民法院管辖C.若约定的仲裁机构不明确,可由仲裁协议签订地基层人民法院管辖D.若约定的仲裁机构不明确,可由被申请 [问答题,简答题]什么叫临界减径率? [多选]了解客户的风险属性有许多方法,以下选项中属于的是()。A.与客户面对面沟通、观察B.风险测评问卷C.应用风险属性工具D.了解客户过往的投资历史E.了解客户过往的行为 [单选,A1型题]关于煎药的火候说法错误的是() [单选]下列情况易因使用抗生素而诱发呼吸肌麻痹,不包括()A.肾功能不全患者用药蓄积B.全麻与筒箭毒碱和琥珀胆碱等肌松药合用C.静脉内、腹腔内和胸腔内用药D.血钙增高E.重症肌无力病患者 [单选,A2型题,A1/A2型题]关于冷凝集素试验,下列哪项是正确的()A.冷凝集综合征患者阳性,效价在1:1000以上B.37℃凝集反应最强C.0~4℃凝集现象消失D.抗体IgGE.为不完全抗体 [单选,A1型题]关于黄芩主要有效成分叙述错误的是()A.黄芩素B.汉黄芩素C.汉黄芩苷D.京尼平苷E.黄芩苷 [单选]哪一种类型的压缩器失速对发动机严重的损伤有着最大的潜在威胁?()A.断续的"逆火"失速B.接进"逆火"失速C.稳定的、持续的气流反转失速 [单选,A2型题,A1/A2型题]下列小儿腹股沟疝的临床特点中,错误的是()A.出生后腹膜鞘状突未闭B.腹股沟区解剖结构薄弱、腹肌松弛是疝发生的主要原因C.最常用的治疗方法是疝囊高位结扎术D.发生率最高的是腹股沟斜疝E.部分可采取保守治疗治愈 [配伍题,B1型题]研究促进心身疾病康复和预防的属于()。</br>研究心理咨询、心理诊断的属于()</br>研究脑和行为关系的属于()。A.变态心理学B.健康心理学C.神经心理学D.临床心理学E.生理心理学 [填空题]一般GSM网络中基站采用的跳频方式是()跳频 [填空题]有机化合物一般是指组成里含()的化合物。 [单选]在放射免疫分析中常用到RIA标准曲线(Standardcurve),其作用是()A.用来校正计数器(counter)B.用得到的计数率去推算试样中所含样品的浓度或含量C.做质控D.用来追踪试样的变化E.鉴定核素的放射化学纯度 [单选]可行性研究中一般应该以()结论作为项目或方案取舍的主要依据。A.技术分析B.工艺分析C.财务评价D.国民经济评价 [单选]水力清淤时,应该注意()。A、在用水季节施行B、按先下游后上游,分阶段进行C、引入含沙量较少的清水D、关闭一切闸门 [单选]党的十六大报告指出()是我国21世纪的一项重大战略举措。A.以信息化促进工业化B.用工业化带动信息化C.以工业化促进信息化D.用信息化带动工业化 [单选,A1型题]我国儿童出生一周以内需接种的疫苗是()A.卡介苗B.乙肝疫苗C.卡介苗、乙肝疫苗D.脊髓灰质炎三价混合疫苗E.麻疹疫苗 [单选,A1型题]为妇科调经之要药的是()A.川楝子B.香附C.延胡索D.川芎E.郁金 [填空题]只有为客户提供(),才能赢得客户对我们的信任 [单选]失效分析学的主要特点是()。A、实践性、经济性B、科学性、理论性C、边缘性、综合性D、实用性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
来自 75秒赛车最新官方网址
[单选]某男,45岁,病起5日,恶寒发热,鼻塞流涕,少汗身痛,咳嗽气急,痰稠色黄,咽痛声哑,苔薄黄,舌尖红,脉浮数。证属()A.风寒束表证B.风热犯表证C.暑湿伤表证D.气虚感冒E.阴虚感冒 [判断题]将固体NH4NO3溶于水中,溶液变冷,则该过程的ΔG,ΔH,ΔS的符号依次为+、-、-。A.正确B.错误 [多选]下列哪些因素影响航空客运市场的需求()。A.经济发展水平B.人口的数量及结构C.人均收入水平的高低D.运输业的发展水平E.消费者偏好 [单选]卵泡发育的过程中,不包括以下哪项?()A.成熟卵泡B.窦前卵泡C.窦状卵泡D.闭锁卵泡E.原始卵泡 [单选]胶印机的三滚筒机构中,中间滚筒为()。A.橡皮滚筒B.印版滚筒C.压印滚筒D.传纸滚筒 [单选,A1型题]下列哪项不是时行感冒的特征()。A.传染性强B.证候相似C.集中发病D.老幼易感E.流行性强 [单选,A2型题,A1/A2型题]下面颅脑MRI技术叙述错误的是()A.脑炎平扫阴性者,需加做增强扫描B.层厚4~8mm,层间距取层厚的10%~50%C.相位编码方向:矢状位取左右向D.相位编码方向:冠状位取左右向E.相位编码方向:横断位取左右向 [判断题]河流选取标准通常不是一个固定值,而是一个范围值;通常在高密度区采用高标准,低密度区采取低标准。A.正确B.错误 [单选]已知某基础工程施工双代号时标网络计划如下图所示,如果工作E实际进度延误了4周,则施工进度计划工期延误()周。A.2B.3C.4D.5 [单选]根据《节约能源法》规定,对于已经建成的建筑工程,不符合建筑节能标准的()。A.不得批准开工建设B.应当责令停止施工C.应当责令限期改正D.不得销售或使用 [单选]从事高速公路客运、旅游客运和营运线路长度在800公里以上的客运车辆,应当达到行业标准《营运客车类型划分及等级评定》(JT/T325)规定的()类型等级。A、高级B、中级C、中级以上 [单选,A2型题,A1/A2型题]下列疾病中由于DNA合成障碍导致的贫血是()。A.溶血性贫血B.海洋性贫血C.缺铁性贫血D.再生障碍性贫血E.巨幼细胞性贫血 [填空题]客户价值的发掘是一个企业()的体现,他比之所谓以效率为目标的内部管理来说要重要得多 [单选,共用题干题]患者女,55岁,因“双膝关节肿痛3年,加重1个月”来诊。查体:双侧膝关节肿胀,伴双侧腘窝囊肿,关节局部无红,浮髌试验阳性。双膝关节X线检查呈退行性变。骨关节炎滑液的特性不包括()。A.关节液呈淡黄色、透明B.关节液呈淡黄色、浑浊C.关节液微混,有飘絮物D [单选]确诊朊毒体疾病的实验室方法是()A.计算机断层扫描B.脑电图出现特征性的周期性尖锐复合波C.脑组织切片呈海绵状改变D.免疫组化或生物学技术检查PrPscE.磁共振成像 [单选,A1型题]尿道损伤后,有排尿困难,导尿管能插入膀胱,应将导尿管留置多久()A.10~14天B.1天C.3~4周D.5天E.5~6周 [单选]中国营养学会建议哺乳妇女每天摄人钙()A.800mgB.1000mgC.1200mgD.1500mgE.2000mg [单选]下列各项中,不应在利润表“营业收入”项目列示的是()。A.政府补助收入B.设备安装劳务收入C.代修品销售收入D.固定资产出租收入 [填空题]进入机房时,必须严格按照机房的()。 [单选,A1型题]以下说法错误的是()A.宜&quot;小量渐增&quot;B.中病即止C.吐后立即进食D.妇女胎前产后禁用E.饮热开水以助药力 [问答题,简答题]主变容量、变比? [填空题]200号溶剂汽油是烃类化合物的混合物,由于其中芳烃含量不同,它表现的()力也不同。 [单选]下列关于情报分析意义的说法不正确的是()。A、情报来源的合法性是情报分析结论合法性的前提B、情报来源的可靠性和情报的确实性对情报分析结论的可靠性有重要影响C、情报的秘密等级是情报分发范围的依据D、情报分析的过程是通过对情报资料之间关系的认识来认识情报所代表的 [判断题]个人对外贸易经营者指依法办理工商登记或者其他执业手续,取得个人工商营业执照或者其他执业证明,并按照国务院商务主管部门的规定,办理备案登记,取得对外贸易经营权,从事对外贸易经营活动的个人。A.正确B.错误 [单选]罗茨鼓风机的特点是风量基本上不随风压而变化,而功率消耗随风压增高而()A.直线上升B.直线下降C.基本不变 [单选,A1型题]治疗寒积便秘。宜选用的药物是()A.甘遂B.大戟C.芫花D.巴豆E.商陆 [单选]船舶撤离时机应能确保自航施工船舶在()级大风范围半径到达工地5h前抵达防台锚地。A.6B.7C.8D.9 [单选]十二经脉中阳经与阳经(同名经)的交接部位在()A.额头部B.面部C.上肢部D.胸腹部E.下肢部 [问答题,案例分析题]病例摘要:吴某,女,18岁,学生,于2011年11月25日就诊。患者3岁时突发高热,失语伴右半侧肢体抽搐,在某医院诊断为&quot;乙型脑膜炎&quot;,经过治疗(具体用药不详)后症状好转,出院后发作性意识丧失、活动中断、两眼凝视,持续十几秒钟自行缓解,在多家医 [填空题]防止离心压缩机的转子因受其重力下沉需要两个()轴承,防止转子因受轴向推力窜动需要()轴承。 [单选,A2型题,A1/A2型题]关于临床生物化学的作用中,哪一个不正确()A.研究药物在体内的代谢B.阐明疾病发生发展过程中的生物化学变化C.阐明疾病生化诊断的原理D.论述疾病的生化机制E.阐明有关疾病的生物化学基础 [单选]一般而言,头皮裂伤清创缝合的时限允许放宽至()A.18小时B.24小时C.12小时D.8小时E.6小时 [单选]义务消防队要经常开展消防安全检查,发现()提出整改措施。A.安全隐患B.火险隐患C.设备隐患D.水灾隐患 [单选]溶质溶于溶剂之后将会引起()。A.沸点降低B.凝固点升高C.蒸气压下降D.蒸气压、沸点、凝固点都不变 [单选]下列标准中适合于数字电视的是()。A.JPEGB.JPEG2000C.H.263D.MPEG-2 [单选]《农村土地承包法》规定,农民集体所有的土地依法属于村农民集体所有的,由村集体经济组织或者()发包。A.村民小组B.村民委员会C.乡镇政府D.县政府 [多选]综采维修电工必须熟悉检修范围内的()灾害情况下的应急救缘,避灾路线等。A、通风情况B、有害气体浓度C、作业环境D、巷道布置 [单选,A1型题]临床证见动物发热,四肢倦怠,草料迟西,尿短赤和苔黄腻,此乃为常见暑证之中的()A.伤暑证B.中暑证C.暑热证D.暑寒证E.暑湿证 [单选]主柴油机气缸套备件应涂抹黄油后()。A.平放B.竖放C.悬挂D.固定在专门的托架上 [单选]PC400—106P—IB—1L—1001中的零件是()。A.船台散装件B.分段散装件C.经部件予装零件
相关文档
最新文档