中央空调自动控制系统设计说明

合集下载

中央空调系统 设计过程和步骤(设计新手使用)

中央空调系统 设计过程和步骤(设计新手使用)

(2)人员密度:可查阅陆耀庆《实用供热空调设计手册第二版》19.3.3 节第 1466 页(源 于国际标准) , 或 《2003 全国民用建筑工程设计技术措施-暖通空调· 动力》 1.3 节第 11 页 (此 表源于北京建筑设计研究院《建筑设备专业设计技术措施》 ) 。 或《公共建筑节能设计标准》 GB50189-2005,附录 B 其中新版实用供热空调手册上的人员密度要偏小些, 设计常采用的人员密度值比手册上 的要大。 2、确定空调机组的送风量 G ( 1) 、定性分析参数时,可将房间的总冷负荷 Q 分解成新风冷负荷 Q1+房间余热冷负 荷 Q2: 一次回风系统的所需的总冷负荷为:新风冷负荷 Q1 和消除室内余热的冷负荷 Q2,其 实, 一次回风系统跟风机盘管加新风系统, 就其制冷的最终结果即维持房间的温度和新风量 来说是一样,比如同一个房间,其所需的新风量为 G1,室内的余热冷负荷为 Q2,那么此房 间的总冷负荷 Q 应该是一定的,不论采用一次回风系统还是风机盘管加新风系统,消耗的 总冷负荷都是固定的 Q,也就是计算软件算出的房间总冷负荷。所以对于一个房间来说,其 用于消耗余热的冷负荷 Q2 是一定的, 不变的, 而空调机组所要提供的总冷负荷 Q 大小只与 系统为改房间送入的新风量大小有关, 如果一点新风不送的话, 那么空调机组所需要为改房 间提供的总冷负荷 Q 就等于该房间的余热冷负荷 Q2,此时该房间所需外界提供的总冷负荷 最小。 如果不考虑空气的中间处理过程,则无论是一次回风系统,还是风机盘管加新风系统, 只考虑始末两个状态点时,则必然都是:风量 G1 的新风由最初的 Iw 变成了最终变为了 In, 所以用于处理新风的冷负荷 Q1=G1(In-Iw),这部分就是新风冷负荷 Q1,而同时还有一部分 冷负荷是用于消除室内余热的冷负荷 Q2, 两者加起来 Q1+Q2=Q 为消耗的总冷负荷, 见 《空 气调节》第 4.3 节 118 页。 ( 2) 、一次回风系统,送风状态点 O 与房间的总冷负荷 Q 是已知的,确定新风量 G1 即可求出总的送风量 G 及 Q1,Q2,G2,或者确定总送风量 G 即可求出新风量 G1 及 Q1, Q2,G2。计算公式如下: Q=G(Ic-Io),又 Ic*G=In*G1+Iw*(G-G1),已知 G1 即可求出 G,或已知 G 即求出 G1 通常房间要满足最小新风要求,所以通常要根据规范规定的最新新风量 G1 来求得一次回风 系统的空调机组的总送风量 G, 如果是根据空调机组样本上的总冷负荷 Q 所对应的送风量 G 来选择空调机组时,这时要根据样本上的总送风量 G 来计算出新风量 G1,核对 G1 是否满 足规范规定的最小新风量要求。 通常一次回风系统,采用的是机器露点温度送风,就室内温度 Tn 的露点温度 Tn,l,送 风状态点为 Tn,l 的等温线与相对湿度线 90%的交点 O,或者是按规范规定的最大温差送风 (具体见周继红 《中央空调工程设计与施工》 67 页) , 所以送风状态点 O 肯定是固定不变的, 已知的,同时还已知的是房间的总冷负荷 Q,那么此时总冷负荷 Q 中,具体新风负荷 Q1 和

空调机组自控系统详解

空调机组自控系统详解

前言:楼宇自控系统是弱电系统中非常难的系统,很多新手楼控系统知很少,那么跟着薛哥一起来学习吧!正文:1. 中央空调系统哪些部分需要配置自动控制?主要包括两大部分:冷热源主机部分和末端设备部分,需要分别配置自动控制系统。

2. 末端设备,例如新风机组,空调机组等一般本身没有带自控系统,需另外配置自控系统好理解,但是冷热源主机部分不是都自带了控制面板吗,为什么也要配置额外的控制系统?冷热源主机设备本身确实带有控制面板,但只能对本机进行保护和控制,不能解决外围的冷冻水泵、冷却水泵、冷却塔、管路阀门等的统一协调问题,在没有配置额外的控制系统的情况下,这些设备只好手动开停;此外,冷热源主机设备本身的控制面板也不能解决多台主机之间的协调问题,例如根据冷热负荷自动选择应该开停的主机,所以中央空调系统中的冷热源主机部分通常需要配置额外的自控系统。

3. 末端设备配置自控系统有什么作用?控制系统的作用无外乎几点:1) 空调区域的温度、湿度、压力等的控制,对于舒适空调,温湿度过高过低都影响舒适感,只有自控才能将温湿度自动控制在设计值;对于工艺空调,是生产工艺的必备条件。

2) 设备的保护,自动维护等,例如过滤器的压差报警,提示及时清洗堵塞的过滤网,再如风机和加热器的连锁控制,风机关了,加热器必须自动关闭,否则可能引起火灾等。

3) 有节能的作用,例如根据负荷变化通过变频调整风机转速就可以降低风机能耗;过渡季节自动开大新风量,就可以节省主机能耗等。

4. 怎样配置自控系统?所有的自动控制系统都由三类设备构成:传感器――例如温度传感器,湿度传感器,用于把温湿度等参数变成电信号,便于输入到控制器中,相当于人体的眼睛,耳朵等信息器官;控制器――例如DDC(直接数字控制器),所有的逻辑和控制策略都在这里完成,相当于人体的大脑;执行器――例如电动调节阀等,接收来自控制器的命令,通过改变控制对象的输出来调节参数,例如电动调节阀开大,可以增大进入表冷器的冷水流量,降低送风温度等。

体育馆中央空调设计说明

体育馆中央空调设计说明

体育馆中央空调设计组名:体育馆组组长:陆华勇班级:空冷1011班指导教师小明小组成员:金鹏殷顾鹏飞宫江舟夏课程名称:空调调试与运行提交日期: 2012 年 3月 25 日目录1工程概况 (1)2技术依据 (2)3调试工程量 (3)4试运行与调试程序 (4)5试运行与调试准备工作 (5)6试运行与调试工艺方法 (6)7不合格质量处理规定 (7)8成品保护 (8)9安全与环保措施 (9)10附表 (10)工业职业技术学院体育馆由XX安装由XX监理公司负责工程监理。

馆分为上下层,采取中央空调设计的房间仅篮球主馆﹑羽毛球馆﹑乒乓球馆,其余游泳馆﹑大学生多功能厅﹑瑜伽馆﹑健美操馆﹑篮球馆副馆﹑教师办公室﹑器材存放室﹑洗手间等大小18间均采用设置通风系统。

体育馆篮球主馆占地3780平方米,羽毛球馆占地1296平方米,乒乓球馆占地1023平方米。

夏季冷负荷为2012KW,冬季热负荷1610KW。

室外设计参数如下表1,室设计参数下表2所示。

篮球主馆﹑羽毛球馆﹑乒乓球馆作为主要对外开放用地,空调方式均采用新风加吊顶式空调机的方式,总共设计24台风冷模块式冷(热)水机组,新风直接从屋顶通过新丰竖井引进,只做了简单的粗放过滤后,进入每台吊装式空调机,与馆的回风混合后再经过吊装式空调机处理,有散流器送风。

其中篮球馆主馆使用12台机组,乒乓球馆和羽毛球馆均使用6台机组,单台制冷量为66KW,采用R22作为制冷剂,冷冻水的供水温度为7℃,回水温度为12℃。

单台机组制热量为68KW.表1 室外设计参数夏季:空调室外计算干球温度:32.1℃室外计算湿球温度:26℃平均风速:1.9m/s 大气压力:94.7kPa冬季:空调室外计算温度:1℃计算相对湿度:80%平均风速:1.4m/s 大气压力:96.3kPa表2 室外设计参数夏季:馆温度:27℃相对湿度为:60%冬季:温度:18℃相对湿度:30%二、技术依据(1 )提供的设计图纸;(2 )《建筑给排水及采暖工程验收质量规》(GB50242-2002);(3 )《通风与空调工程施工质量验收规》(GB50243-2002)(4 )建筑安装工程施工质量验收统一标准》(GB50300-2001)(5 )吊装空调机组﹑风机盘管﹑单螺杆式水冷式冷水机组等设备的安装使用说明书及相关的技术资料;(6 )《制冷设备﹑空气分离设备安装工程施工及验收规》(GB-50274-1998)序号名称型号L(m³/h) N(kw) 地点单位数量1 吊装式空调机组DBFP10DBFP10I10000 1.1×2 篮球馆台202 卧式暗装风机盘管FP-20 1020 0.083 篮球馆台203 风冷模块式冷热水机组 FS-L-R-60 200 顶层台244 燃气热水机组WNSO.75 1.1 顶层台 35 低噪声冷却塔LBC-M-250 11 顶层台 36 散流器XM-6方型篮球馆个707 散流器XM-6方型羽毛球馆个538 散流器XM-6方型乒乓球馆个43四、试运行和调试程序1.试运行和调试的准备工作。

中央空调自动控制系统设计说明

中央空调自动控制系统设计说明

自控系统介绍一、概述随着科技的不断发展和进步,现代化的建筑物迅速崛起及发展,已成为国民经济迅速增长的必然条件。

而现代化建筑物的大型化、智能化和多功能化,必然导致建筑物内机电设备种类繁多,技术性能复杂,维修服务保养项目的不断增加,管理工作已非人工所能应付.因此,采用自动化监控系统技术及计算机管理已成为现代建筑最重要的管理手段。

它可以大量的节省人力、能源、降低设备故障率、提高设备运行效率、延长设备使用寿命、减少维护及营运成本,提高建筑物总体运作管理水平。

建筑自动化监控系统(Building Automation System,简称BAS),实质上是一套中央监控系统(Central Control Monitoring System, 简称CCMS),有时称为综合中央管理系统.现阶段已广泛应用于各类建筑领域,以提供对各类建筑物内设备进行高效率管理与控制的有效途径。

BA系统的主要功能是:对机电设备实现以最优控制为中心的过程控制自动化;以运行状态监视和计算为中心的设备管理自动化;以安全状态监视和灾害控制为中心的安全管理自动化;以节能运行为中心的能量管理自动化.机房集中监控系统是智能建筑系统中最重要的子系统之一,这可以从以下几方面看出:智能建筑设备控制中机房设备相对比例较大,控制流程和技术较复杂,涉及自动控制、通信、计算机、图形及显示技术等。

机房集中监控系统,它不仅涉及对大厦的电、风、水等设备进行控制,而且与大厦的IT(信息技术)应用了有紧密的联系。

机房集中监控系统技术发展十分迅速,控制网络技术的突破性进展给楼宇控制领域带来巨大的影响。

机房集中监控系统是智能化工程中投资较大的部分。

1、系统的必要性随着计算机技术的发展和普及,计算机系统数量与日俱增,其配套的环境设备也日益增多,计算机房已成为各大单位的重要组成部分。

机房的环境设备(供配电、 UPS、暖通设备、等)必须时时刻刻为计算机系统提供正常的运行环境。

一旦机房设备出现故障,就会影响到计算机系统的运行,对数据传输、存储及系统运行的可靠性构成威胁,如事故严重又不能及时处理,就可能损坏硬件设备,造成严重后果。

DDC操作说明

DDC操作说明

中央空调自控系统XL50控制器操作说明苏州工业园区汉威控制系统工程有限公司二零一一年五月一.XL50 DDC介绍本控制系统采用Honeywell(霍尼威尔)公司产品Excel 50 DDC(DIRECT DIGITAL CONTROL)直接式多功能数字控制器控制,能根据现场情况方便的增加一“下行键”,移动光标至下一行;“右行键”,移动光标至下一个参数栏;“左行键”,移动光标至上一个参数栏;“增加键”,增加一个修改的单位或切换数字量的一个状态;,减少一个修改的单位或切换数字量的一个状态;三.控制说明新风空调系统的温湿度及压力控制:1.送风温度控制根据送风温度进行空调电动水阀的比例控制。

DDC盘体面板上“工作模式开关打到热源模式”时,即水管内有热水时,DDC自动控制水阀开度;当送风温度高于设定值时,电动水阀开度减小,空调送新风降温;当送风温度低于设定值时,电动水阀开度增大,空调送热风升温。

如果“工作模式开关打到冷源模式”时,即水管内有冷水时,DDC自动控制水阀开度;当送风温度高于设定值时,电动水阀开度增大,空调送冷风降温;当送风温度低于设定值时,电动水阀开度减小,空调送新风升温。

2.送风湿度控制根据送风湿度进行加湿器的开关控制。

当送风湿度低于设定值时,加湿器运行加湿;当送风湿度高于设定值时,加湿器停止工作。

3.送风压力控制根据送风压力进行空调变频风机的比例调节。

当送风压力升高时,变频器输出频率降低;当送风压力减小时,变频器输出频率升高。

从而维持送风压力稳定之目的。

4.风机压差开关联锁保护根据风机压差开关的状态,可以监测空调箱的运行状态。

空调停止工作时,应将空调电动水阀及加湿器强制关闭,起到保护空调箱之目的。

排风机系统进行温湿度及压力控制:1.排风压力控制根据排风压力进行排气变频风机的比例调节。

当排风压力升高时,变频器输出频率降低;当排风压力减小时,变频器输出频率升高。

从而维持排风压力稳定之目的。

2.风机互备控制正常工作时,一台风机运行,一台风机为备用。

建环毕设说明书 中央空调系统设计

建环毕设说明书 中央空调系统设计

摘要摘要本次毕业设计的主要内容是对天津市某酒店进行中央空调系统设计。

该建筑位于天津市,共5层,总制冷负荷约为900KW,室内采用风机盘管系统为主。

本次设计涉及到空调系统的划分,冷热负荷的计算,空调设备的选型,风管的水力计算和布置,管道的消声,防震,冷冻机房的设计,水系统的划分,水管的水力计算及水管布置,水泵和通风机的选择,通风系统的自动控制等。

关键词:中央空调、通风设计、设备选择、水力计算、冷冻机房Abstractthe main content of this graduation design is a four-star hotel in Tianjin for central air conditioning system design. The building is located in Tianjin, a total of 5 layers, total cooling load is 900KW, indoor fan coil system. This design involves the division of the air conditioning system, cooling and heat load calculation, the selection of air conditioning equipment, duct hydraulic calculation and arrangement of pipeline of noise elimination, shockproof, the design of the cooling room, the division of water system, the hydraulic calculation of pipe and pipe arrangement, the choice of the pump and fan, ventilation system, such as automatic control目录第1章工程概况 (1)1.1室外气象参数 (1)1.2室内设计参数 (1)第2章负荷计算 (2)2.1冷负荷理论根据 (3)2.1.1房间冷负荷的构成: (3)2.1.2.房间湿负荷的构成: (3)2.1.3主要计算公式: (3)2.2新风量的计算 (7)2.2.1新风量标准的选取 (8)2.2.2新风量的确定 (8)2.2.3新风量计算结果与分析 (8)第三章方案选择与计算 (9)3.1空调系统方案选择 (9)3.2空调冷热源选择 (10)3.2.1 空调冷热源选择原则 (10)3.2.2冷热源方案比较 (11)3.2.3本工程选择计算 (12)3.3新风系统的方案确定 (13)3.4 空调水系统论证 (13)3.4.1按调节特征分类 (13)3.4.2按管路布置方式分类 (15)第四章空调设备的选择与计算 (15)4.1 风机盘管的计算与选择 (16)4.1.1 风机盘管的选择计算 (16)4.1.2 风机盘管选型 (17)4.2 新风机组的选择 (18)4.2.1 新风方案....................................................................... 错误!未定义书签。

中央空调系统设计要点(标准版)

中央空调系统设计要点(标准版)

中央空调系统设计要点(标准版)一、概述中央空调系统是现代建筑中不可或缺的重要组成部分,它为人们提供舒适、健康、环保的室内环境。

随着我国经济的快速发展和人们生活水平的提高,中央空调系统在各类建筑中的应用越来越广泛。

本文主要针对中央空调系统的设计要点进行详细阐述,以期为设计师和工程师提供参考。

二、设计原则1.节能环保:在设计中央空调系统时,应充分考虑节能环保要求,选用高效节能的设备,降低能耗,减少对环境的污染。

2.实用性:中央空调系统设计应充分考虑建筑物的实际需求,确保系统稳定、可靠、安全地运行。

3.经济性:在满足使用需求的前提下,合理选择设备和材料,力求降低投资和运行成本。

4.灵活性:中央空调系统设计应具有一定的灵活性,以满足建筑物在使用过程中可能出现的变更需求。

5.可靠性:选用高品质的设备和材料,确保系统长期稳定运行,降低故障率。

三、设计要点1.空调负荷计算空调负荷计算是中央空调系统设计的基础,应充分考虑建筑物所在地区的气候特点、建筑物的朝向、围护结构、使用功能等因素。

计算负荷时,应准确把握室内外设计参数,如室内温度、湿度、新风量等。

2.系统选型根据建筑物的使用需求和负荷计算结果,选择合适的中央空调系统类型。

常见的系统类型有:冷水机组、风冷热泵、水源热泵、多联机等。

在选择系统类型时,应充分考虑建筑物的特点、投资预算、运行成本等因素。

3.设备选型与布置(1)冷水机组:根据负荷计算结果,选择合适的水冷或风冷冷水机组。

冷水机组的能效比(COP)是评价其节能性能的重要指标。

(2)水泵:选择合适的水泵,确保系统流量、扬程满足设计要求。

水泵的选型应考虑系统阻力和水泵的效率。

(3)冷却塔:根据冷却负荷选择合适的冷却塔,确保冷却效果。

冷却塔的选型应考虑冷却水的水质、环境温度等因素。

(4)风冷热泵或多联机:根据建筑物的使用需求和负荷计算结果,选择合适的风冷热泵或多联机。

设备的能效比(COP)和性能系数(SCOP)是评价其节能性能的重要指标。

中央空调自动控制系统概述

中央空调自动控制系统概述
l 50 91 67 37 38 E- ma i 1 : 3 9 75 6 0 2 1 1 @q q. c o m
气 处理 设备 作用 是将 空气 处理 到规 定 的状 态 ,主要 设 备有 空气 过滤 器 、空气 冷却 器 、空气 加热器 、空 气 加湿 器和 喷水 室等;空调风 系 统可分 为送 风 系统 和排 风 系统 ,主 要有 风机 、风 管 系统和 室 内送风 口
冬、 夏季 节室外 设计 计算 参数 ,以及最 不 利室 内热 、
1 中央 空调 系统

个 典 型 的空 调 系 统 有 空 调 冷 热 源 、 空 气 处
理 设备 、空调风 系统 、空调水 系 统及 空调 自动控 制 和 调 节 装 置 5大 部 分 组 成 。
冷热 源 为空气 处理 设备提供 处理 空气所 需 的冷 量 和热 量 , 主要 设备 为冷 水机 组 、 热 泵 或锅 炉等 空
s ys t e m i n d e t a i l s . I n t r o d u c e d s e v e r l a c o mmo n me ho t d s o f c e n ra t l a i r c o n d i t i o n i n g a u t o ma ic t c o n ro t l ma i n l y.
装置等;空调水系统主要是将冷媒水或热媒水从冷 源或 热源 输送 至 空气处 理设 备 ,主要 由水泵 和水 管
0 引言
国家 标准 GB 5 0 1 5 5 . 9 2《 采 暖通 风 与空气 调 节 术语 标 准 》第 7 . 1 . 1 条 对 自动 控 制 的定 义 为 : “ 在 无 人直 接参 与下 , 采用 控制 装置 使被 控设 备 、 系统 、 生 产过程 或环境 按着 预定 的方式运 行或使 被控参 数保 持规 定值 的操 作 ” 。从 这 一定义 来看 , 暖 通 空调 自动

中央空调系统节能控制系统设计方案

中央空调系统节能控制系统设计方案

KT仟亿中央空调系统节能控制系统设计方案 北京仟亿达科技有限公司1 概述国家“十一五”规划纲要中明确提出要把节约资源和保护环境基本国策,建设低投入、高产出,低消耗、少排放,能循环、可持续的国民经济体系和资源节约型、环境友好型社会。

提出了“十一五”期间单位国内生产总值能源消耗降低20%左右、主要污染物排放总量减少10%等目标。

这是针对资源环境压力日益加大的突出问题提出来的,体现了建设资源节约型、环境友好型社会的要求,是现实和长远利益的需要,具有明确的政策导向。

中央空调在各大中型民用、商用建筑中的普及,带来了严重的能耗问题。

中央空调系统的电耗一般占整座建筑电耗的50%~60%,建筑能耗则占全国总能耗的1/3左右,因此提高能源利用率是我国能源可持续发展的方向。

中央空调系统的设计通常按建筑物所在地的极端气候条件来计算其最大冷负荷,并由此确定空调主机的装机容量及空调水系统的供水流量。

然而,实际上每年只有极短时间出现最大冷负荷的情况。

因此,中央空调系统在绝大部分时间里,都是在部分负荷(远小于其额定容量)条件下运行的。

据统计,实际空调负荷平均只有设备能力的50%左右,这无疑造成了大量的能源白白浪费。

而且,空调水系统的水泵、风机等机电设备,长期处在工频额定状态下高速运行,机械磨损严重,导致设备故障增加和使用寿命缩短。

另一方面,空调负荷又具有变动性.由于季节交替、气候变幻、昼夜轮回、使用变化(如旅游旺、淡季)及人流量增减(如宾馆入住率的变化)等各种因素变化的影响,中央空调系统的负荷具有起伏变化和不恒定的特点,如果中央空调的运行方式不能根据负荷的变化而调节,始终在额定容量(即满负荷状态)下运行,也势必造成巨大的能源浪费.由北京仟亿达科技有限公司提供的中央空调分布式系统节能控制装置——KTC—2005系列、KTC-2005系列产品,以模糊控制理论为指导、以计算机技术、系统集成技术、变频调速技术为控制手段,以多年丰富的实践经验和数据为基础,科学地实现了中央空调能量供应按末端负荷需要提供,最大限度地减少了空调系统能源浪费,从而达到高效节约能耗的目的。

中央空调自动控制系统

中央空调自动控制系统

中央空调自动控制系统中央空调自动控制的内容与被控参数中央空调系统由空气加热、冷却、加湿、去湿、空气净化、风量调节设备以及空调用冷、热源等设备组成。

这些设备的容量是设计容量,但在日常运行中的实际负荷在大部分时间里是部分负荷,不会达到设计容量.所以,为了舒适和节能,必须对上述设备进行实时控制,使其实际输出量与实际负荷想适应.目前,对其容量控制已实现不同程度的自动化,其内容也日渐丰富。

被控参数主要有空气的温度、湿度、压力(压差)以及空气清新度、气流方向等,在冷热源方面主要是冷、热水温度,蒸汽压力。

有时还需要测量、控制供回水干管的压力差,测量供回水温度以及回水流量等。

在对这些参数进行控制的同时,还要对主要参数进行指示、记录、打印,并监测各机电设备的运行状态及事故状态、报警。

中央空调设备主要具有以下自控系统:风机盘管控制系统、新风机组控制系统、空调机组控制系统、冷冻站控制系统、热交换站控制系统以及有关给排水控制系统等。

中央空调自动控制的功能(1)创造舒适宜人的生活与工作环境对室内的温度、相对湿度、清新度等加以自动控制,保持控制的最佳品质。

具有防噪音措施(采用低噪音机器设备)。

可以在建筑物自动化系统中开放背景轻音乐等。

通过中央空调自动控制系统,能够使人们生活、工作在这话总环境中,心情舒畅,从而能大大提高工作效率.而对工艺性空调而言,可提供生产工艺所需的空气的温度、湿度、洁净度的条件,从而保证产品的质量.(2)节约能源在建筑物的电器设备中,中央空调的能耗是最大的,因此需要对这类电器设备进行节能控制。

中央空调采用自动控制系统后,能够大大节约能源.(3)创造了安全可靠的生产条件自动监测与安全系统,使中央空调系统能够正常工作,在发现故障时能及时报警并进行事故处理。

中央空调自动控制系统的基本组成室温的自动控制系统.它是由恒温室、热水加热器、传感器、调节器、执行器机构和(调节阀)调节机构组成。

其中恒温室和热水加热器组成调节对象(简称对象),所谓调节对象是指被调参数按照给定的规律变化的房间、设备、器械、容器等。

中央空调自控系统施工方案

中央空调自控系统施工方案

中央空调自控系统施工方案一、引言中央空调自控系统是一种利用先进的控制技术,实现对中央空调系统进行集中控制与管理的系统。

它能够自动调节空调的温度、湿度、风速等参数,实现室内舒适的环境条件。

本文将介绍中央空调自控系统的施工方案,包括系统组成、施工步骤、设备选型等内容,以期为工程实施提供一定的指导。

二、系统组成中央空调自控系统主要由以下几个组成部分构成:1. 控制器:负责接收传感器反馈的信号,并根据设定的参数进行控制。

2. 传感器:包括温度传感器、湿度传感器、CO2传感器等,用于实时监测室内环境参数。

3. 执行器:如电动阀门、风机等,用于执行控制命令,调节空调系统的运行状态。

4. 通信网络:用于实现传感器、控制器和执行器之间的信息交互和数据传输。

三、施工步骤中央空调自控系统的施工步骤主要分为系统设计、材料采购、布线安装、设备调试等阶段。

1. 系统设计根据不同的工程需求,进行中央空调自控系统的整体设计。

包括系统的布置图、电路图、通信网络方案等。

确保系统设计与实际工程的要求相符合。

2. 材料采购根据系统设计的需求清单,采购所需的控制器、传感器、执行器等设备,确保设备的质量和性能符合规定标准。

3. 布线安装根据设计图纸进行布线安装。

将控制器、传感器与执行器之间的连接线缆进行合理布置,并进行相关的接线工作。

确保布线的可靠性和安全性。

4. 设备调试安装完毕后,对系统进行调试。

包括控制器和传感器的正常工作状态检查、执行器的校准等工作。

确保系统运行的稳定性和效果。

四、设备选型设备选型是中央空调自控系统施工中的重要环节。

合理的设备选型能够确保系统的性能和可靠性。

1. 控制器选型根据系统的规模和功能需求,选择合适的控制器。

考虑控制器的品牌、型号、功能、扩展性等因素。

2. 传感器选型根据需要监测的参数和准确度要求,选择合适的传感器。

如温度传感器、湿度传感器、CO2传感器等。

3. 执行器选型根据系统的要求,选择合适的执行器,如电动阀门、风机等。

基于PLC的中央空调控制系统设计说明

基于PLC的中央空调控制系统设计说明

1.绪论随着生活水平的提高,人们对物质生活的要求也逐渐提高,空调系统在建筑家具中的应用也越来越广泛。

本着节能降耗的要求,对空调监控系统的需求也越来越大。

亚控科技产品组态王软件和PLC(Programmable Logic Controller)作为工业控制领域的优秀控制软件和控制器,在非工业领域如空调监控系统等中也起着重要作用。

本次空调监控系统就是采用组态王作为上位机监控软件和人机交互界面,PLC作为下位机和空调系统控制器,实现对空调系统的实时监控。

2.系统设计原理空调监控系统主要利用PLC的控制功能,通过执行装载在PLC部的预先设定的控制程序并执行上位机实时的命令语句,调节空调系统中的阀门开度、控制水泵启停、监控并采集空调系统中温度传感器、湿度传感器、压力传感器、水流开关等现场仪器仪表的数据,转换为组态王可用的数据格式传送给组态王软件。

组态王接收PLC采集的现场数据并实时的在组态画面中动态实时显示,此外,组态王可接收组态画面中的有操作人员输入的命令并下传给下位机PLC,实现对空调系统的调节控制。

2.1.空调系统原理空调系统主要就是调节室空气的冷、热、干、湿,并起净化空气的作用,使人们工作、生活在比较舒适的环境中。

空调系统主要由三部分组成:空气调节系统、制冷系统、供热系统。

2.1.1空气调节系统监控原理A.新风机组监控原理新风机组主要靠包括进口挡板、加热器、表冷器、过滤器、加湿器、送风机及各种传感器和执行机构等。

使得在夏季通过表冷器湿新风降温、除湿,冬季通过加热器、加湿器使空气加热、加湿。

新风机组监控的主要容如下:(1)监控送风温度。

由送风通道的温度传感器实测送风温度,信号送入控制器,与送风温度设定值进行比较,采取控制算法生成控制指令调节冷、热水供水阀门开度,用以调节热水(或冷水)流量,是送风温度控制在设定值围,保持室温度恒定。

(2)送风湿度控制。

由送风通道的湿度传感器检测湿度信息送入处理器经运算后控制冷水阀或蒸汽阀开度,使被调环境的湿度保持恒定。

中央空调设计说明 文

中央空调设计说明 文

设计说明一、设计依据1.采暖通风与空气调节设计规范【GB50019-2003】2.综合医院建筑设计规范【JGJ49-88】3.高层民用建筑设计防火规范【GB 50045—95(2005年版)】4.民用建筑热工设计规范【GB 50179-93】5.全国民用建筑工程设计技术措施【《暖通空调.动力》分册】6.公共建筑设计节能设计标准【DBJ01-621-2005】7.人民防空地下室设计规范【GB50038-2005】8.医院洁净手术部建筑技术规范【GB50333-2002】二、建筑概况设计范围****门急诊楼建筑面积58100 m2,建筑高度59.95m,地上十三层,地下三层,地下三层平时为库房,战时为物资库,地下二层为库房,导管室,冷冻站,热交换站,空压站,真空吸引等设备用房,部分为机械停车库;地下一层为车库入口和设备用房一层——十一层为一般门诊,急诊和急诊病房,其中四层为急诊手术和ICU;十二,十三层为办公用房和报告厅。

本施工图设计范围为新门诊综合楼的空气调节,通风及防排烟系统设计。

三、设计计算参数1.室外设计参数夏季大气压:1020.4 hPa冬季大气压:998.6 hPa;夏季室外通风计算干球温度:30 ℃;夏季室外空调计算干球温度33.2 ℃;夏季室外空调日平均计算干球温度:28.6℃;夏季室外空调计算湿球温度:26.4℃;冬季采暖室外计算干球温度:-9℃;冬季空气调节室外计算干球温度:-12℃;冬季通风室外计算干球温度:-5℃;冬季最冷月月平均相对湿度:45﹪;2.建筑热工:建筑外窗,外门,外墙,屋顶均尽量严密及采取保温措施,使屋顶的最大传热系数为0.55 w/(m2 .k),外墙最大的为0.60 w/(m2 .k),外窗最大为2.30 w/(m2 .k)。

四、空调设计1.室内设计参数五、空调系统设计1.空调设计冷负荷:6300kw,空调设计热负荷:5800kw;2.加湿方式:舒适性空调采用于蒸汽加湿,净化空调系统采用间接干蒸气加湿,总的蒸汽加湿量为1.8 t/h.3.一层门诊大厅,十二层报告厅设置低风速单风道全空气系统,全热回收,并考虑过渡季节加大新风量运行。

中央空调电气控制系统设计说明

中央空调电气控制系统设计说明

毕业设计(论文)中央空调电气控制系统设计专业名称:学生:学号:指导教师:XXX 职称:XXX工程大学继续教育学院2017年月曰•页脚一.指导教师对学生的评语及答辩推荐意见指导教师(签名)___________年月日二、答辩委员会评语及成绩(无指导教师推荐意见不能答辩)答辩小组教师签字:答辩委员会主任(签名)___________该设计以纺织车间为设计背景,针对传统中央空调调节方式的局限性,选用西门子PLC S7-200和MM430变频器,充分利用恒v/f变频技术,实现对中央空调风机转速的控制,以此来为纺织车间设计了中央空调送风系统电气控制线路。

文中详细地介绍了中央空调送风系统电气控制线路的设计和开发过程。

该设计主要包括两部分,即硬件的选择和软件的设计,硬件选择主要是对低压电器控制柜、变频器、PLC及扩展模块等的选择。

软件设计主要是为满足中央空调控制要求而编写的PLC程序及对一些相关变频参数的设置。

在此基础上借助变频调速技术,让风机在一定围平滑调速,进而使系统由局部送风来满足织机的湿度要求,而整个车间则按照舒适性空调的要求进行全面送风。

由于对电机实现了软起动,大大降低了起动电流,避免了对电机和电网的冲击。

同时系统还设计了报警和保护功能,使中央空调在发生异常时,能够自动报警和停机保护。

关键词:中央空调;PLC;变频调速技术AbstractThe design background of textile design workshop,The traditional way of the 1 imitations of central air conditioning,Use Siemens PLC S7-200 and MM430 Inverter,Full use of constant v/f frequency technology,Fan speed to achieve control of central air conditioning,Textile workshop in order to design a central air conditioning system electrical control circuit.Introduced in detail the central air conditioning system electrical control circuit design and development process. The design ineludes two parts,That the choice of hardware and software design,Hardware choices of the low-voItage electrical control cabinet, inverter, PLC f and the choice of expansion modules, etc・・ Software designed primarily to meet the requirements of the central air-conditioning control program written in PLC and frequency conversion of some related parameter settings. On this basis, with frequency conversion technology,So smooth fan speed within a certain range,Then the system by the local air supply to meet humidity requirements loom,The entire plant in accordance with the requirements of comfort air conditioning full blast•・Achieved due to soft start the motor,Greatly reduce the starting current,Avoid the impact of the motor and power grid .At the same time the system is also designed to alarm and protection,The central air conditioning when an exception occurs,Automatically alarm and shutdown protection. Keywords: central air conditioning; PLC; frequency control technology第一章引言 (1)1.1课题的选题背景及意义 (1)1.2课题的主要研究容 (1)第二章中央空调送风系统整体方案设计 (3)2.1系统整体设计思想 (3)2.2系统控制方案的设计与选择 (4)2.3系统设计容 (5)第三章系统硬件设计 (6)3.1系统组成及各部分的分析选择 (6)3.2系统电气控制原理图 (7)3.3 PLC外围接线图 (10)3.4控制系统的I/O地址分配 (10)3.5系统外围接线图 (12)第四章系统软件设计与调试 (13)4.1系统工作过程分析 (13)4.2 PLC程序设计 (13)4. 3 MM430参数设置 (22)4.4系统调试 (24)第五章系统模拟实验 (27)5.1模拟实验台的硬件组成 (27)5.2模拟实验软件设计 (27)5.3系统模拟实验过程 (30)5.4实验小结 (30)结论 (31)参考文献 (32)致 (33)第一章引言随着现代工业的不断发展,生产技术的不断进步,对于产品的精度要求也不断提高,生产工艺对车间温度、湿度、风速、洁净度等参数的要求更是越来越高,因此对恒温恒湿中央空调的使用要求也就越来越高。

设计说明书初稿

设计说明书初稿

河南理工大学本科毕业设计(论文)摘要摘要本工程为山东科技大学学生宿舍楼飞的中央空调工程,本工程的目的为根据所学基础理论和专业知识,结合本工程实际,设计出合适的空调系统,让生活在该宿舍楼的学生有良好舒适的空气环境,以便于他们全身心投入学习。

设计具体的方法为:首先进行建筑的冷热负荷计算,根据计算的冷热负荷确定工程的冷热源;然后进行建筑内部空调方式的比较和确定,确定空调方式以后便可以进行风系统和水系统的设计计算了,由计算结果就可以对所需设备进行比较和选型,并对相关细节进行处理;最后做出图纸和设计说明书以备参考使用。

经过认真严谨的计算和设计过程后,本设计采用的的空调系统经济合理,简单实用,达到了节能和舒适性的要求,并在建筑物特点和实际空调方式的基础上,使系统的功能性和和操作性得到提高。

关键词:宿舍楼,中央空调,水冷机组,风机盘管—新风系统河南理工大学本科毕业设计(论文) AbstractAbstractThis works is for the central air conditioning engineering of Shandong University of Science and Technology students' dormitory building student.This project aims to according to the study of basic theory and professional knowledge, combined with the practical engineering, design a proper air-conditioning,Let the students live in good and comfortable air environment in the dormitory students, so that they devote themselves to their study.The design methods are: First step is calculating building cooling and heating load, the hot and cold source for the project is determined based on the calculated cooling and heating load,and then compared the different air conditioning modes, so we can chose the suitable air conditioner, and the next step is designing and calculating of wind systems and water systems.The results can be compared for selection of the equipment, and relevant detail processing. Finally, make the design drawings and instructions for use and reference. Through the calculation and design process of serious posterior. The design of the air conditioning system is economical and reasonable, simple and practical, energy saving and comfort requirements, and based on the features of buildings and the actual air conditioning system, the function and operation of the system is to be improved.Keywords:official building, central air conditioning, cooling water chiller fan coil units (F C Us)--fresh air system河南理工大学本科毕业论文目录第一章绪论 (1)第二章工程概况 (3)2.1 工程简介 (3)2.2 设计基本资料 (3)2.3 设计内容 (4)第三章负荷计算说明 (5)3.1负荷计算方法 (5)3.1.1外墙和屋顶冷负荷 (5)3.1.2窗户瞬时冷负荷和窗户日射得热冷负荷 (5)3.1.3设备、照明和人体散热得热冷负荷 (6)3.1.4 新风冷负荷 (6)3.1.5湿负荷 (7)3.1.6 建筑热负荷 (7)3.2负荷计算举例 (9)3.2.1201宿舍夏季冷负荷计算 (9)3.2.2201宿舍夏季湿负荷计算 (15)3.2.3201宿舍冬季热负荷计算 (15)3.3冷、热负荷计算结果 (15)第四章空调方案的确定 (16)4.1 空调系统的分类 (16)4.1.1按照空气处理设备的集中程度情况分类 (16)4.1.2 按负担室内负荷所用的介质种类分类 (16)4.1.3根据集中空调系统处理的空气来源分类 (17)4.2 空调系统的划分 (18)4.2.1 系统划分的原因 (18)4.2.2 系统化分的原则 (18)4.3 空调制冷方案的确定 (19)4.4 送风方案方案的确定 (20)第五章系统风量的确定 (21)5.1 送风量的确定 (21)5.2新风量的确定 (22)5.3 风机盘管加新风系统风量的计算 (22)5.4 各房间风量冷负荷计算结果见附录D (24)第六章空调设备的选型 (25)6.1 风机盘管选型 (25)6.2 风机盘管冷凝水处理 (26)6.3新风机组的选型 (26)6.4卫生间排风风机选型 (27)6.5 风口选型 (28)第七章水力计算 (28)7.1 空调水系统 (29)7.1.1 空调水系统的选型比较 (29)7.1.2 空调水系统的布置 (31)7.1.3 风机盘管水系统新风水系统水力计算 (31)7.1.4 水管系统中的阀门 (34)7.2空调风系统 (34)7.2.1 空调房间气流组织 (34)7.2.2 新风入口布置注意事项 (35)7.2.3 送风口的布置原则 (36)7.2.4 新、排风口的防雨百叶尺寸的确定 (36)7.2.5 风道的布置和制作要求 (37)7.2.6 风管阀门的选择 (38)7.2.7 新风管的设计计算 (38)7.3 冷凝水的排出 (40)7.4 风、水系统的平面图和系统图 (40)第八章制冷站方案的确定 (41)8.1制冷机组的选择 (41)8.1.1确定制冷方式 (41)8.1.2确定制冷剂种类 (41)8.1.3确定冷凝器冷却方式 (42)8.1.4确定制冷系统设计工况 (42)8.2冷冻水泵的选择 (42)8.2.1冷冻水循环水量 (42)8.2.2冷冻水泵扬程 (43)8.2.3冷冻水泵选型 (43)8.3冷却水泵选型 (44)8.3.1确定冷却水循环水量 (44)8.3.2确定冷却水泵扬程 (45)8.3.3冷却水泵选型 (45)8.4冷却塔的选择 (46)8.5热交换器的选择 (46)8.6 定压补水设备 (46)8.7 水处理设备 (47)8.8制冷机房的布置 (48)第九章结论 (49)参考文献 (50)致谢 (51)第一章绪论空调设计是一项综合性较强的工作,它不仅需要设计人员掌握本专业的理论知识并具备一定的实践经验,同时还要求设计人员掌握本专业工程设计的方法、程序和相关的法规、标准,因此必须加以严肃认真的对待。

基于plc的中央空调自动控制系统设计说明

基于plc的中央空调自动控制系统设计说明

基于plc的中央空调自动控制系统设计摘要中央空调系统是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常大,约占建筑物总电能消耗的50%。

通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。

本文首先介绍了中央空调的结构和工作原理,然后采用西门子的S7—200PLC作为主控制单元,利用传统PID控制算法,通过西门子MM440 变频器控制水泵运转速度,保证系统根据实际负荷的情况调整流量,实现恒温控制,同时又可以节约大量能源。

关键词:PLC;中央空调;控制Design of automatic control system for central air conditioningsystem based on PLCAbstractThe central air conditioning system is one of the necessary supporting facilities of modern large-scale buildings. The consumption of electric energy is very large, which accounts for about 50% of the total energy consumption. The frozen host usually in the central air-conditioning system load can automatically according to the change of temperature and load regulation, refrigeration pump and cooling pump matched with the frozen host can automatically adjust the load, almost run 100% under load operation, resulting in a great waste of energy, but also worsen the operation environment and operation quality of Central air conditioning. This paper first introduces the structure and working principle of central air conditioning, then use SIEMENS S7 200PLC as the main control unit, using the traditional PID control algorithm, through the SIEMENS MM440 inverter control pumpspeed ensure system according to the actual situation to adjust load flow, realize constant temperature control, but also can save a lot of energy.Key words:PLC; central air conditioning; control目录摘要 (I)1绪论 (1)1.1课题的研究背景 (1)1.2 国外中央空调控制系统的研究现状 (2)2中央空调控制的原理 (4)2.1中央空调系统的结构和原理 (4)2.2中央空调电机的软启动原理及应用 (4)3中央空调控制系统的硬件设计 (7)3.1 变频器的原理 (7)3.2 西门子MM440变频器性能介绍 (7)3.2.1 主要特征 (8)3.2.2 控制性能的特点 (8)3.3PLC选型 (9)3.4人机界面设计 (10)3.5系统硬件设计 (11)4控制系统软件设计 (14)4.1PLC的初始设定 (14)4.2 PLC主程序流程图 (16)4.3程序设计 (17)4.3.1中央空调控制系统的I/O分配表 (17)4.3.2 程序中使用的存储器及功能 (18)结论 (20)参考文献 (21)致 (24)附录 PLC软件源程序 (26)1绪论1.1课题的研究背景随着国民经济的发展和人民生活水平的日益提高,中央空调系统己广泛应用于工业与民用建筑域,如宾馆、酒店、写字楼、商场、厂房等场所,用于保持整栋大厦温度恒定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自控系统介绍一、概述随着科技的不断发展和进步,现代化的建筑物迅速崛起及发展,已成为国民经济迅速增长的必然条件。

而现代化建筑物的大型化、智能化和多功能化,必然导致建筑物内机电设备种类繁多,技术性能复杂,维修服务保养项目的不断增加,管理工作已非人工所能应付。

因此,采用自动化监控系统技术及计算机管理已成为现代建筑最重要的管理手段。

它可以大量的节省人力、能源、降低设备故障率、提高设备运行效率、延长设备使用寿命、减少维护及营运成本,提高建筑物总体运作管理水平。

建筑自动化监控系统(Building Automation System,简称BAS),实质上是一套中央监控系统(Central Control Monitoring System, 简称CCMS),有时称为综合中央管理系统。

现阶段已广泛应用于各类建筑领域,以提供对各类建筑物内设备进行高效率管理与控制的有效途径。

BA系统的主要功能是:对机电设备实现以最优控制为中心的过程控制自动化;以运行状态监视和计算为中心的设备管理自动化;以安全状态监视和灾害控制为中心的安全管理自动化;以节能运行为中心的能量管理自动化。

机房集中监控系统是智能建筑系统中最重要的子系统之一,这可以从以下几方面看出:智能建筑设备控制中机房设备相对比例较大,控制流程和技术较复杂,涉及自动控制、通信、计算机、图形及显示技术等。

机房集中监控系统,它不仅涉及对大厦的电、风、水等设备进行控制,而且与大厦的IT(信息技术)应用了有紧密的联系。

机房集中监控系统技术发展十分迅速,控制网络技术的突破性进展给楼宇控制领域带来巨大的影响。

机房集中监控系统是智能化工程中投资较大的部分。

1、系统的必要性随着计算机技术的发展和普及,计算机系统数量与日俱增,其配套的环境设备也日益增多,计算机房已成为各大单位的重要组成部分。

机房的环境设备(供配电、 UPS、暖通设备、等)必须时时刻刻为计算机系统提供正常的运行环境。

一旦机房设备出现故障,就会影响到计算机系统的运行,对数据传输、存储及系统运行的可靠性构成威胁,如事故严重又不能及时处理,就可能损坏硬件设备,造成严重后果。

所以机房的集中管理更为重要,一旦系统发生故障,造成的经济损失更是不可估量。

尤其目前国内普遍缺乏机房环境设备的专业管理人员,在许多地方的机房不得不安排软件人员或者不太懂机房设备管理甚至根本不懂机房设备维护的人员值班,这对机房的安全运行无疑又是一个不利因素。

正是为了解决上述问题,本自控方案实现了机房设备的统一监控,减轻了机房维护人员负担,提高了系统的可靠性,实现了机房的科学管理。

2、设计依据该系统的设计配置,完全依据业主对项目自控系统的招标文件及相关专业设计图纸。

该系统实施所涉及的技术标准和规范,产品标准和规范及工程标准规范包括如下:《民用建筑电气设计规范》(JGJ16-2008)《智能建筑设计标准》(GB/T50314-2006)《智能建筑工程质量验收规范》(GB 50339-2003)《综合布线系统工程验收规范》(GB 50312-2007)《综合布线系统工程验收规范》(GB 50311-2007)《建筑物防雷设计规范》(GB50057-2010)《电气装置安装工程施工及验收规范》(GB50254-96GB50259-96)《信息技术互连国际标准》(ISO/IEC ISP 12061-6-1995)《高层民用建筑设计防火规范》(GB50045-95 2005年版)《采暖通风与空气调节设计规范》(GB50019-2003)《自动化仪表安装工程施工质量检验验收规范》(GB50131-2007)3、设计原则我公司对该系统的设计思路,均遵循以下优化原则:保证系统的可靠性、适用性和先进性。

系统的技术性能和质量指标应达到国际领先水平;同时,系统的安装调试、软件编程和操作使用又应简便易行,容易掌握,适合中国国情和本项目的特点。

追求最优化的系统设备配置在满足用户对功能、质量、性能、价格和服务等各方面要求的前提下,追求最优化的系统设备配置,以尽量降低系统造价。

实现一体化控制要求将项目有限的几个子系统置于一个中央监控系统监视、控制之下,不但方便安装和操作,节约系统投资,并且不同的子系统连接起来后,还可以产生单独控制所不具备的新功能。

保留足够的扩展容量随着科技的发展,需要控制的场合和设备都会不断增加,所以控制容量上保留一定的余地,不全部用满,以便在系统中加入新的控制点;也尽量考虑未来科学的发展和新技术的应用。

舒适——提供舒适良好的工作环境节能——降低能耗和管理成本在满足舒适性的前提下,机房集中监控系统通过合理组织设备运行,使大楼的运行费用为最低。

即以能耗值最低为控制目标,进行优化系统控制。

安全——提供突发故障的预防手段如果建筑内的机电设备突然发生故障而停机,将对整个建筑产生不良后果。

本自控方案可以从以下几个方面预防这种局面的出现:随时检查设备的实际负载和额定负载,一旦发现设备过载,立即自动卸载同时向中央控制室发出报警信号,以防损坏贵重设备;监视设备运行状况,一旦发现其中某台设备运行异常,立即报警通知检修人员前去检查,以防引起更大范围的设备故障;自动记录设备的累计运行小时数,当累计值达到规定的维修时间时,自动报告中央控制室,及时提醒进行设备检修;当一组设备中的某台设备出现故障不能继续运转时,自动切换到备用设备;同时,对于临时停电的情况,当恢复供电后,系统自动执行顺序启动程序,可保证设备投运顺利,避免启动失败对设备的损害。

通过这些检测、报警和处理方式,使智能建筑对机电设备突发故障具备有效的预防手段,以确保设备和财产安全。

高效——提高设备运行效率、减少管理人员数量在没有智能楼宇自动化监控系统的建筑物中,设备的开关、维护及保养都需要人去操作,这样不可避免地要求建筑配置庞大的人员队伍,而采用了本自控方案之后,上述工作均由系统根据预先设计好的程序自动完成,大批的人力将被减少下来,首先节约了管理上的开支,同时也减少了由于管理众多人员所引起的一系列问题。

实惠——降低初期的投资及未来升级费用本自控方案的扩展性能极强,实现起来极其灵活方便。

扩展时只需将所需的扩展模块连接至原有的控制器,或将新增的控制器直接连接到楼内计算机局域网的网络通讯线上即可。

直接降低了设备控制的初期投资成本。

——相信采用我公司为您精心优化设计,使您将获得具有高度的灵活性与可扩展性,满足将来发展的需要的可靠动力,为您长久创造安全、健康、舒适宜人和能提高工作效率的人性化办公与商业环境。

二、主机机房控制系统介绍:本自控方案采用工业级控制器PLC(可编程序控制器)为核心的控制系统,所有的逻辑控制功能均由程序完成,简化了外围电路,极大的提高了系统的可靠性。

并具有动态画面监控系统,监控显示采用触模式液晶显示屏,操作简单方便。

本系统能够对温度、压力、液位、设备状态等现场参数进行采集、显示,并根据工艺要求自动控制机组、水泵、电动阀、风机等机房内所有设备的运行,能够连续记录系统数据,方便管理人员查阅,能够自动判断系统及设备的故障,并发出声光报警。

整套系统可以做到完全自动控制,无需人为参与。

本自控方案所有配件均采用工业级产品,主要部件均为国际国内知名厂家的产品,所有配件都经过多年在各种项目中长期使用测试过,完全能够保证系统在恶劣的环境中长期稳定可靠的运行。

同时本公司可提供最优化的机房配电系统及整体解决方案,并可根据用户要求设计其他功能。

1、 本控制系统的先进性我单位自控系统采用了完善的现代工业控制技术,配备工业计算机系统及可编程控制器、执行机构和检测元件,在充分考虑系统造价的前提下同时兼顾了自控系统的先进性、兼容性、可靠性和实用性。

自控系统采用集散型(DCS )结构,实现集中管理、分散控制的技术目标。

系统由控制工作站(即上位机)和现场控制器(即下位机)两部分组成。

上位机以图形和菜单的形式提供友好的人机界面,并承担控制模型中较为复杂的计算、以及系统运行数据的管理;下位机除提供底层输入输出操作外,还承担简单的闭环控制。

下位机在脱离上位机时能维持空调系统的基本运行,并具备支持这一功能的人机交互手段。

自控系统和水源热泵机组相结合能发挥更大的软硬件功能,可通过控制器直接控制机组,使得用户不用走到机组前面也能够对热泵机组的运行状态了如指掌。

作为楼宇自控系统(BAS)的一个子系统,本自控系统方案为BAS 提供Ethernet 网接口,符合OPC 通讯协议,使BAS 无需附加设备就能接纳本系统。

本方案还维护一个数据共享区并实时更新共享区中的数据,供BAS 中其它系统读取、调用,以实现信息共享。

…….机组压力变送器温度变送器电动阀控制柜监控界面循环泵自控系统界面自控系统方案的中央计算机采用工业微机,为金属全密封工业机箱,配备可连续工作的工业电源及PC完全兼容主板,能适应较为恶劣的工业现场,并能满足长时间不间断工作的要求。

系统总体结构参见下页所示,主系统下辖4个子系统:开关量输入/输出模块,用于控制水泵、风阀、风机的开关量输出,及上述设备的运行状况检测、故障检测和液位开关检测。

模拟量输入/输出模块,用于对模拟量信号的检测,及对调节阀等设备的模拟量输出。

中央控制单元可通过RS485通讯接口,实现热泵机组内部参数的读取。

现场总线集线器,用于对所有集成式数字传感器输出信号的采集。

子系统由可编程控制器(PLC)组成,中央控制单元与各子系统之间由RS485通讯接口实现数据交换。

控制柜外观2、自控系统结构特点:采用一对多的DCS结构,集中管理分散控制,以充分释放故障风险。

采用了总线技术,使结构更为紧凑,故障率得以进一步降低。

采用了电流变送传感器,稳定可靠,不受干扰且不存在信号衰减。

中央控制单元由工业微机担任,金属全密封工业机箱,配备可连续工作的工业电源及PC完全兼容主板,能适应较为恶劣的工业现场,并能满足长时间不间断工作的要求。

下位机以控制器为核心,完成数据采集及底层的控制回路。

下位机在脱离上位机时仍能对空调系统进行基本控制,下位机和上位机通过RS485总线进行数据交换。

3、三个操作层面“全自动层面”——不仅能根据工况自动启停设备,还能根据控制目标不断调控系统运行参数。

“上位手动层面”——即当第一层面失效或因操作者对系统有非常规操作要求时,可在上位机的图形接口上利用鼠标的点击可启动或关闭任意设备。

“配电柜手动操作”—所有的设备具有手自动转换开关,在特殊情况下可以不依赖自动系统,由人为手动开启。

触摸屏显示界面4、中央控制单元中央控制单元由工业控制计算机及外围辅助设备自动监测控制和管理软件等组成,为整个自控系统的核心部分.中央控制单元的主要作用是对自控系统的管理功能,如提供图形化人机交互界面,负责将系统的运行数据定时加入到数据库、并具有数据库维护及制表、打印等功能,根据对各受控设备和检测点的巡检结果作出故障判断并发出故障或异常报警,根据事先按逐时负荷编制的时间表自动切换系统工况以在必要时实现无人值守等。

相关文档
最新文档