双曲线试题及答案
双曲线、抛物线测试题(含答案)
双曲线、抛物线测试题 (每小题5分,共120分)1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)抛物线y 2=4x 的焦点到准线的距离是4.( )(2)抛物线既是中心对称图形,又是轴对称图形.( )(3)平面内到点F 1(0,3),F 2(0,-3)距离之差的绝对值等于6的点的轨迹是双曲线.( )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( )(5)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( )答案:(1)× (2)× (3)× (4)√ (5)×2.设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=3,则|PF 2|=( )A .1或5B .6C .7D .9 答案: C3.已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( )A .2B .62C .52D .1 答案: D 4.若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .离心率相等B .虚半轴长相等C .实半轴长相等D .焦距相等 答案: (1)D5.双曲线y 216-x 2m=1的离心率e =2,则双曲线的渐近线方程为( )A .y =±xB .y =±33x C .y =±2x D .y =±12x答案: B6.焦点为(0,6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A .x 212-y 224=1B .y 212-x 224=1C .y 224-x 212=1D .x 224-y 212=1 答案: B7.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的两个焦点分别为F 1,F 2,以线段F 1F 2为直径的圆与双曲线渐近线的一个交点是(4,3).则此双曲线的方程为( )A .y 29-x 216=1B .y 24-x 23=1C .y 216-x 29=1D .y 23-x 24=1答案: A8.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-12答案: C9.坐标平面内到定点F (-1,0)的距离和到定直线l :x =1的距离相等的点的轨迹方程是( )A .y 2=2xB .y 2=-2xC .y 2=4xD .y 2=-4x 答案: D10.抛物线y =14x 2的准线方程是( )A .y =-1B .y =-2B .x =-1 D .x =-2 答案: A11.若抛物线y 2=2px 上一点P (2,y 0)到其准线的距离为4,则抛物线的标准方程为( )A .y 2=4xB .y 2=6xC .y 2=8xD .y 2=10x 答案: C12.已知O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .22C .2 3D .4 答案: 2 313.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .1B .2C .4D .8 答案: A14.抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线方程为( )A .y 2=6xB .y 2=8xC .y 2=16xD .y 2=152x答案: B 15.设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为________;渐近线方程为________.答案:x 23-y 212=1 y =±2x 16.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.答案: 617.顶点在原点,对称轴是y 轴,并且经过点P (-4,-2)的抛物线方程是____________.答案: x 2=-8y18.两个正数a ,b 的等差中项是52,等比中项是6,且a >b ,则双曲线x 2a 2-y 2b 2=1的离心率e =________. 答案: 133 19.已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为______.答案: 2 320.若双曲线的虚轴长为12,离心率为54,则双曲线的标准方程为________.答案:x 264-y 236=1或y 264-x 236=1 21.设点P 在双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支上,双曲线的左、右焦点分别为F 1,F 2,若|PF 1|=4|PF 2|,则双曲线离心率的取值范围是________.答案: ⎝ ⎛⎦⎥⎤1,5322.已知双曲线的渐近线方程为y =±23x ,且过点M ⎝ ⎛⎭⎪⎫92,-1,则双曲线的标准方程为________.答案:x 218-y 28=1 23.F 是抛物线y 2=2x 的焦点,A ,B 是抛物线上的两点,|AF|+|BF|=6,则线段AB 的中点到y 轴的距离为________.答案: 5224.已知抛物线方程为y 2=4x ,直线l 的方程为x -y +5=0,在抛物线上有一动点P 到y 轴的距离为d 1,到直线l 的距离为d 2,则d 1+d 2的最小值为________.答案: 32-1。
高三数学双曲线试题答案及解析
高三数学双曲线试题答案及解析1.已知双曲线,分别是它的左、右焦点,是其左顶点,且双曲线的离心率为.设过右焦点的直线与双曲线C的右支交于两点,其中点位于第一象限内.(1)求双曲线的方程;(2)若直线分别与直线交于两点,求证:;(3)是否存在常数,使得恒成立?若存在,求出的值,若不存在,请说明理由。
【答案】(1);(2)见解析;(3)存在,,理由祥见解析.【解析】(1)由已知首先得到,再由离心率为2可求得的值,最后利用双曲线中基本量的关系求出值,从而就可写出所求双曲线的标准方程;(2)设直线的方程为:,与双曲线方程联立,消去得到关于的一个一元二次方程;再设,则由韦达定理就可用的式子表示出,再用点P,Q的坐标表示出直线AP及AQ的方程,再令就可写出点M,N的坐标,进而就可写出向量的坐标,再计算得,即证明得;(3)先取直线的斜率不存在的特列情形,研究出对应的的值,然后再对斜率存在的情形给予一般性的证明:不难获得,从而假设存在使得恒成立,然后证明即可.试题解析:(1)由题可知: 1分2分∴双曲线C的方程为: 3分(2)设直线的方程为:,另设:4分5分又直线AP的方程为,代入 6分同理,直线AQ的方程为,代入 7分9分(3)当直线的方程为时,解得. 易知此时为等腰直角三角形,其中,即,也即:. 10分下证:对直线存在斜率的情形也成立.11分12分13分∴结合正切函数在上的图像可知, 14分【考点】1.双曲线的标准方程;2.直线与双曲线的位置关系;3.探索性问题.2.已知双曲线C:(a>0,b>0)的一条渐近线与直线l:垂直,C的一个焦点到l的距离为1,则C的方程为__________________.【答案】x2-=1【解析】由已知,一条渐近线方程为,即又,故c=2,即a2+b2=4,解得a=1,b=3双曲线方程为x2-=1考点:双曲线的渐近线,直线与直线的垂直关系,点到直线距离公式3.若点P在曲线C1:-=1上,点Q在曲线C2:(x-5)2+y2=1上,点R在曲线C3:(x+5)2+y2=1上,则|PQ|-|PR|的最大值是________.【答案】10【解析】依题意得,点F1(-5,0),F2(5,0)分别为双曲线C1的左、右焦点,因此有|PQ|-|PR|≤|(|PF2|+1)-(|PF1|-1)|≤||PF2|-|PF1||+2=2×4+2=10,故|PQ|-|PR|的最大值是10.4.(本小题满分13分)已知双曲线的两条渐近线分别为.(1)求双曲线的离心率;(2)如图,为坐标原点,动直线分别交直线于两点(分别在第一,四象限),且的面积恒为8,试探究:是否存在总与直线有且只有一个公共点的双曲线?若存在,求出双曲线的方程;若不存在,说明理由.【答案】(1) ;(2)存在【解析】(1) 已知双曲线的两条渐近线分别为,所以根据即可求得结论.(2)首先分类讨论直线的位置.由直线垂直于x轴可得到一个结论.再讨论直线不垂直于x轴,由的面积恒为8,则转化为.由直线与双曲线方程联立以及韦达定理,即可得到直线有且只有一个公共点.试题解析:(1)因为双曲线E的渐近线分别为和.所以,从而双曲线E的离心率.(2)由(1)知,双曲线E的方程为.设直线与x轴相交于点C.当轴时,若直线与双曲线E有且只有一个公共点,则,又因为的面积为8,所以.此时双曲线E的方程为.若存在满足条件的双曲线E,则E的方程只能为.以下证明:当直线不与x轴垂直时,双曲线E:也满足条件.设直线的方程为,依题意,得k>2或k<-2.则,记.由,得,同理得.由得, 即. 由得, .因为,所以,又因为.所以,即与双曲线E有且只有一个公共点.因此,存在总与有且只有一个公共点的双曲线E,且E的方程为.【考点】1.双曲线的性质.2.直线与双曲线的位置关系.3. 三角形的面积的表示.5.设的离心率为,则的最小值为( )A.B.C.D.【答案】B【解析】由题意得,所以.【考点】双曲线及重要不等式.6.设圆锥曲线I’的两个焦点分别为F1,F2,若曲线I’上存在点P满足::= 4:3:2,则曲线I’的离心率等于( )A.B.C.D.【答案】A【解析】由::= 4:3:2,可设,,,若圆锥曲线为椭圆,则,,;若圆锥曲线为双曲线,则,,,故选A.7.已知点F是双曲线的左焦点,点E是该双曲线的右焦点,过点F且垂直于x轴的直线与双曲线交于A,B两点,△ABE是锐角三角形,则该双曲线的离心率e的取值范围是() A.(1,+∞)B.(1,2)C.D.【答案】B【解析】由AB⊥x轴,可知△ABE为等腰三角形,又△ABE是锐角三角形,所以∠AEB为锐角,即∠AEF<45°,于是|AF|<|EF|,,即,解得,又双曲线的离心率大于1,从而,故选B。
高三数学双曲线试题答案及解析
高三数学双曲线试题答案及解析1.已知双曲线-=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为( )A.-=1B.-=1C.-=1D.-=1【答案】A【解析】由x2+y2-6x+5=0知圆心C(3,0),半径r=2.又-=1的渐近线为bx±ay=0,且与圆C相切.由直线与圆相切,得=2,即5b2=4a2,①因为双曲线右焦点为圆C的圆心,所以c=3,从而9=a2+b2,②由①②联立,得a2=5,b2=4,故所求双曲线方程为-=1,选A.2.若实数满足,则曲线与曲线的()A.离心率相等B.虚半轴长相等C.实半轴长相等D.焦距相等【答案】D【解析】,则,,双曲线的实半轴长为,虚半轴长为,焦距为,离心率为,双曲线的实半轴长为,虚半轴长为,焦距为,离心率为,因此,两双曲线的焦距相等,故选D.【考点】本题考查双曲线的方程与基本几何性质,属于中等题.3.(本小题满分13分)已知双曲线的两条渐近线分别为.(1)求双曲线的离心率;(2)如图,为坐标原点,动直线分别交直线于两点(分别在第一,四象限),且的面积恒为8,试探究:是否存在总与直线有且只有一个公共点的双曲线?若存在,求出双曲线的方程;若不存在,说明理由.【答案】(1) ;(2)存在【解析】(1) 已知双曲线的两条渐近线分别为,所以根据即可求得结论.(2)首先分类讨论直线的位置.由直线垂直于x轴可得到一个结论.再讨论直线不垂直于x轴,由的面积恒为8,则转化为.由直线与双曲线方程联立以及韦达定理,即可得到直线有且只有一个公共点.试题解析:(1)因为双曲线E的渐近线分别为和.所以,从而双曲线E的离心率.(2)由(1)知,双曲线E的方程为.设直线与x轴相交于点C.当轴时,若直线与双曲线E有且只有一个公共点,则,又因为的面积为8,所以.此时双曲线E的方程为.若存在满足条件的双曲线E,则E的方程只能为.以下证明:当直线不与x轴垂直时,双曲线E:也满足条件.设直线的方程为,依题意,得k>2或k<-2.则,记.由,得,同理得.由得, 即. 由得, .因为,所以,又因为.所以,即与双曲线E有且只有一个公共点.因此,存在总与有且只有一个公共点的双曲线E,且E的方程为.【考点】1.双曲线的性质.2.直线与双曲线的位置关系.3. 三角形的面积的表示.4.设分别为双曲线的左、右焦点,双曲线上存在一点使得则该双曲线的离心率为A.B.C.D.3【答案】B【解析】因为是双曲线上一点,所以,又所以,,所以又因为,所以有,,即解得:(舍去),或;所以,所以故选B.【考点】1、双曲线的定义和标准方程;2、双曲线的简单几何性质.5.已知A1,A2双曲线的顶点,B为双曲线C的虚轴一个端点.若△A1BA2是等边三角形,则双曲线的离心率e等于.【答案】2【解析】由题意可知,解得,即,所以.则.【考点】双曲线的简单几何性质.6.已知双曲线的右焦点与抛物线的焦点重合,则该双曲线的焦点到其渐近线的距离为()A.B.C.D.【答案】A【解析】抛物线的焦点坐标为,因此双曲线的右焦点的坐标也为,所以,解得,故双曲线的渐近线的方程为,即,因此双曲线的焦点到其渐近线的距离为,故选A.【考点】1.双曲线的几何性质;2.点到直线的距离7.已知双曲线="1" 的两个焦点为、,P是双曲线上的一点,且满足,(1)求的值;(2)抛物线的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.【答案】(1) (2)16【解析】(1)根据题意,又,,,又|P F|•|PF|="|" F F|=, |P F|<4,得在区间(0,4)上有解,所以因此,又,所以(2)双曲线方程为=1,右顶点坐标为(2,0),即所以抛物线方程为直线方程为由(1)(2)两式联立,解得和所以弦长|AB|==168.设F是抛物线的焦点,点A是抛物线与双曲线的一条渐近线的一个公共点,且轴,则双曲线的离心率为_______.【答案】【解析】由抛物线方程,可得焦点为,不妨设点在第一象限,则有,代入双曲线渐近线方程,得,则,所以双曲线离率为.故正确答案为.【考点】1.抛物线;2.双曲线.9.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线-y2=1的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为()A.B.C.D.【答案】A【解析】由于M(1,m)在抛物线上,∴m2=2p,而M到抛物线的焦点的距离为5,根据抛物线的定义知点M到抛物线的准线x=-的距离也为5,∴1+=5,∴p=8,由此可以求得m=4,=,而双曲线的渐近线方程为y=±,根据题意得,双曲线的左顶点为A(-,0),∴kAM=,∴a=.10.设双曲线的渐近线方程为,则的值为()A.4B.3C.2D.1【答案】C【解析】由双曲线方程可知渐近线方程为,故可知。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.双曲线的渐近线方程是A.B.C.D.【答案】A【解析】因为双曲线的方程为,令,所以渐近线方程是.【考点】双曲线的渐近线方程.2.双曲线的虚轴长等于( )A.B.-2t C.D.4【答案】C【解析】由于双曲线,所以其虚轴长,故选C.【考点】双曲线的标准方程.3.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.4.已知、是双曲线(,)的左右两个焦点,过点作垂直于轴的直线与双曲线的两条渐近线分别交于,两点,是锐角三角形,则该双曲线的离心率的取值范围是()A.B.C.D.【答案】B是锐【解析】根据题意,易得,由题设条件可知为等腰三角形,2角三角形,只要为锐角,即即可;所以有,即解出故选B【考点】双曲线的简单性质5.设P是双曲线上一点,该双曲线的一条渐近线方程是,分别是双曲线的左、右焦点,若,则等于()A.2B.18C.2或18D.16【答案】C【解析】整理准线方程得,∴,a=4,∴=2a=8或=2a=8,∴=2或18,故选C..【考点】双曲线的简单性质;双曲线的应用.6.双曲线的渐近线方程为( )A.B.C.D.【答案】C【解析】令,解得【考点】双曲线渐近线的求法.7.如图,动点到两定点、构成,且,设动点的轨迹为。
(1)求轨迹的方程;(2)设直线与轴交于点,与轨迹相交于点,且,求的取值范围。
【答案】(1)(2)【解析】(1)求动点轨迹方程,一般有四步.第一步,设所求动点的坐标,第二步,将条件转化为坐标表示,本题,两边取正切,转化为斜率关系,第三步,化简关系式为常见方程形式,第四步,根据方程表示图像,去掉不满足的部分.(2)研究取值范围,首先将表示为函数关系式.因为等于,所以先求出,从而有,利用直线与双曲线有两个交点这一限制条件,得到m>1,且m2,这作为所求函数定义域,求出值域即为的取值范围是试题解析:解(1)设M的坐标为(x,y),显然有x>0,.当∠MBA=90°时,点M的坐标为(2,, ±3)当∠MBA≠90°时;x≠2.由∠MBA=2∠MAB,有tan∠MBA=,即化简得:3x2-y2-3=0,而又经过(2,,±3)综上可知,轨迹C 的方程为3x2-y2-3=0(x>1) 5分 (2)由方程消去y ,可得。
高中双曲线培优试题及答案
高中双曲线培优试题及答案一、选择题1. 双曲线的标准方程是:A. \( x^2/a^2 - y^2/b^2 = 1 \)(焦点在x轴上)B. \( y^2/a^2 - x^2/b^2 = 1 \)(焦点在y轴上)C. \( x^2/b^2 - y^2/a^2 = 1 \)(焦点在x轴上)D. \( y^2/b^2 - x^2/a^2 = 1 \)(焦点在y轴上)答案:A和B2. 已知点P(3,2)在双曲线 \( x^2/9 - y^2/16 = 1 \) 上,求点P到双曲线的焦点F的距离。
A. 5B. 7C. 9D. 11答案:B二、填空题1. 双曲线 \( x^2/a^2 - y^2/b^2 = 1 \) 的渐近线方程是________。
答案:\( y = \pm \frac{b}{a}x \)2. 若双曲线 \( x^2/a^2 - y^2/b^2 = 1 \) 经过点(2,-3),则a的值为________。
答案:\( \sqrt{5} \)三、解答题1. 已知双曲线 \( x^2/16 - y^2/9 = 1 \),求其焦点坐标。
解:根据双曲线的标准方程,可以求得 \( a = 4 \),\( b = 3 \)。
由双曲线的性质,焦点到中心的距离 \( c = \sqrt{a^2 + b^2} = 5 \)。
因为焦点在x轴上,所以焦点坐标为(±5,0)。
2. 已知点A(-3,4)和B(1,-2),求以AB为实轴的双曲线方程。
解:首先求出AB的长度,即实轴长度 \( 2a = \sqrt{(-3-1)^2 + (4+2)^2} = 2\sqrt{20} \)。
因此,\( a = \sqrt{20} \)。
由于点A 在双曲线的左支上,所以虚轴长度 \( b = \sqrt{a^2 - (2a)^2/4} = \sqrt{5} \)。
因此,双曲线的方程为 \( (x+3)^2/20 - y^2/5 = 1 \)。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.已知双曲线的一个焦点与抛物线的焦点相同,则双曲线的渐近线方程是()A.B.C.D.【答案】C【解析】根据题意,由于双曲线的一个焦点与抛物线的焦点相同(),那么可知,则可知双曲线的渐近线方程是,故选C.【考点】双曲线的性质,抛物线点评:解决的关键是对于双曲线和抛物线性质的熟练表示,属于基础题。
2.若双曲线(b>0)的离心率为2,则实数b等于()A.1B.2C.D.3【答案】C【解析】由双曲线方程可知【考点】双曲线的性质离心率点评:本题涉及到的性质:3.过双曲线的左焦点作圆的切线,切点为E,延长FE交抛物线于点P,若E为线段FP的中点,则双曲线的离心率为( )A.B.C.D.【答案】D【解析】画图。
抛物线的焦点,准线。
连接和EO,则,即有,所以点P到准线的距离等于2a,所以点P的横坐标为,由点P在抛物线上,得点。
又OP=OF=c,所以,解得。
故选D。
【考点】抛物线的性质;两点距离公式;双曲线的性质。
点评:本题几何问题,画图是关键。
一向以来,圆锥曲线是个难点,这需要我们平时多做一些题目提高认识、掌握知识。
4.设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐进线垂直,那么此双曲线的离心率为()A.B.C.D.【答案】D【解析】设该双曲线方程为=1(a>0,b>0),可得它的渐近线方程为y=±x,焦点为F(c,0),点B(0,b)是虚轴的一个端点∴直线FB的斜率为k=FB∵直线FB与直线y=x互相垂直,∴-×=-1,得b2=ac∵b2=c2-a2,∴c2-a2=ac,两边都除以a2,整理得e2-e-1=0解此方程,得e=,∵双曲线的离心率e>1,∴e=,故选D。
【考点】本题主要考查双曲线的标准方程与简单几何性质等知识。
点评:本题给出双曲线的焦点与虚轴一端的连线与渐近线垂直,求它的离心率,着重考查了双曲线的标准方程与简单几何性质等知识,属于中档题.5.函数的图象与方程的曲线有着密切的联系,如把抛物线的图象绕原点沿逆时针方向旋转就得到函数的图象.若把双曲线绕原点按逆时针方向旋转一定角度后,能得到某一个函数的图象,则旋转角可以是()A.B.C.D.【答案】C【解析】确定双曲线的渐近线方程,求出倾斜角,即可得到结论.双曲线的渐近线方程为y=±x,其倾斜角为30°或150°。
双曲线测试题及答案
a
a
e2 e 2 0 , (e 1)(e 2) 0 ,所以 e 2 .故选 C.
x2
9.已知双曲线
a2
y2 b2
1(a>0,b>0 的左、右焦点分别为 F1、F2,以 F1F2 为直径的圆
被直线 x y 1截得的弦长为 6 a,则双曲线的离心率为( ) ab
A.3
B.2
C. 3
D. 2
D. y2 x2 2
【答案】D
【解析】由已知,双曲线焦点在 x 轴上,且为等轴双曲线,故选 D.
x2
y2
3.已知双曲线 =1(a>0,b>0),过其右焦点且垂直于实轴的直线与双曲线交于
a2
b2
M ,N 两点,O 是坐标原点,若OM ON ,则双曲线的离心率为( )
1 3
A.
2
【答案】C 【解析】
【答案】C
【解析】
因 k AF
a b
,故直线 BF
的方程为 x
b a
y c ,与
y
b a
x 联立可得点 B 的坐标
为
【答案】D 【解析】
由 已 知 可 得 圆 心 到 直 线 的 距 离 d ab ab c2 ( ab )2 ( 6a )2
a2 b2 c
c
2
c4 5 a2c2 a4 0 2e4 5e2 2 0 e2 2 e 2 ,故选 D. 2
10.设 F1, F2 分别是双曲线
x02
c2
y
2 0
0 ,又因|
PF1
|
|
PF2
|
2a
,故 |
PF2
|
2a
,即 (x0
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.设是关于t的方程的两个不等实根,则过,两点的直线与双曲线的公共点的个数为A.3B.2C.1D.0【答案】D【解析】关于t的方程的不同的两根为0,,不妨取=0,=,直线AB 过原点,斜率为==,恰是双曲线的一条渐近线,故与该双曲线的公共点的个数为0,故选D.【考点】直线的方程,双曲线的渐近线,2.已知F1、F2分别为双曲线的左、右焦点,点P为双曲线右支上的一点,满足,且,则该双曲线离心率为.【答案】.【解析】,在中,设,则,.【考点】双曲线的离心率.3.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.4.双曲线的顶点到其渐近线的距离等于()A.B.C.1D.【答案】B.【解析】由题意可知双曲线的顶点坐标为,渐近线方程为,因此顶点到渐近线的距离为.【考点】双曲线的标准方程与渐近线方程.5.已知双曲线与抛物线有一个共同的焦点F, 点M是双曲线与抛物线的一个交点, 若, 则此双曲线的离心率等于( ).A.B.C.D.【答案】A【解析】:∵抛物线的焦点F(,0),∴由题意知双曲线的一个焦点为F(c,0),>a,(1)即p>2a.∴双曲线方程为,∵点M是双曲线与抛物线的一个交点, 若,∴p点横坐标x=,代入抛物线y2=8x得P,把P代入双曲线P,得,解得或因为p>2a.所以舍去,故(2)联立(1)(2)两式得c=2a,即e=2.故选A.【考点】抛物线的简单性质;双曲线的离心率的求法.6.已知双曲线的两条渐近线的夹角为,则双曲线的离心率的值是.【答案】【解析】根据渐近线方程有,可知其渐近线的斜率的绝对值小于1,所以两条渐近线的倾斜角分别是与,则根据,得,根据双曲线中有则离心率为.【考点】双曲线渐近线,离心率.7.双曲线的离心率为()A.B.C.D.【答案】C【解析】依题意可得,所以,所以该双曲线的离心率,故选C.【考点】双曲线的标准方程及其几何性质.8.在平面直角坐标系xOy中,已知焦点在x轴上的双曲线的渐近线方程为x±2y=0,则该双曲线的离心率为.【答案】【解析】因为焦点在x轴上的双曲线的渐近线方程为,所以【考点】双曲线渐近线方程9.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的渐近线方程是()A.B.C.D.【答案】C【解析】因为双曲线的一个焦点到一条渐近线的距离为所以因此因为双曲线的渐近线方程为所以该双曲线的渐近线方程是.【考点】双曲线的渐近线方程10.设、分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为()A.B.C.D.【答案】C【解析】因为,所以三角形为等腰三角形,因此到直线的距离等于底边上的高线长,从而因此又所以该双曲线的渐近线方程为.【考点】双曲线的渐近线11.双曲线的离心率大于的充分必要条件是()A.B.C.D.【答案】C【解析】由题可知,,,因为,所以,故选C.【考点】双曲线的离心率.12.若双曲线的渐近线方程为,则它的离心率为.【答案】.【解析】由双曲线的渐近线方程为及性质可知,两边平方得,即.【考点】双曲线的几何性质.13.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于 .【答案】2【解析】由题意知抛物线的焦点为,∴;双曲线的焦点到其渐近线的距离.【考点】双曲线的定义、抛物线的定义.14.已知、为双曲线C:的左、右焦点,点在曲线上,∠=,则到轴的距离为()A.B.C.D.【答案】B【解析】题中唯一的条件是,为了充分利用此条件,我们设,且不妨设,则根据双曲线定义有,对利用余弦定理有,即,因此可求得,下面最简单的方法是利用面积法求得到轴的距离,,可得。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.已知抛物线的准线与双曲线交于A,B两点,点F为抛物线的焦点,若为直角三角形,则双曲线的离心率是A.B.C.2D.3【答案】B【解析】抛物线的准线方程,设,焦点,由于为直角三角形,,,所以得,,.【考点】双曲线的离心率.2.已知双曲线方程,则过点和双曲线只有一个交点的直线有________条.【答案】【解析】由双曲线方程可知它是焦点在轴上的等轴双曲线,直线为它的渐近线,点在两个顶点之间,过可作与渐近线平行的两条直线,它们与此双曲线都各有一个公共点,但它们与双曲线是相交关系,此外过还可以作两条与双曲线右支都相切的直线,因此过点和双曲线只有一个交点的直线共有条,要注意两条是相交,另两条是相切,关注双曲线渐近线的特殊作用.【考点】直线与双曲线的位置关系.3.已知F是双曲线的左焦点,A为右顶点,上下虚轴端点B、C,若FB交CA于D,且,则此双曲线的离心率为().A . B. C. D.【答案】B.【解析】如图,由已知可得直线FB的方程为:,直线AC的方程为:,联立前两方程可得D点坐标为:,因此有,又,所以有,整理得,又,所以有:即,故.【考点】直线方程的交点问题,两点间的距离公式(或向量的模长公式),双曲线的性质(含离心率公式).4.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.5.已知P是双曲线的右支上一点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,下列命题正确的是( ).A.双曲线的焦点到渐近线的距离为; B.若,则e的最大值为;C.△PF1F2的内切圆的圆心的横坐标为a ;D.若∠F1PF2的外角平分线交x轴与M, 则.【答案】C【解析】的焦点坐标为,渐近线方程为,对于选项A, 焦点到渐近线的距离,故A错;对于选项B,设,若,令所以即解得.故B错;对于选项C:如图,设切点A,由切线长定理得:,即,所以,故△PF1F2的内切圆的圆心的横坐标为a,所以选项C正确对于选项D:由外角平分线定理得:,故选项D错误,故选项为C..【考点】渐近线方程;点到直线的距离公式;焦半径公式;外角平分线定理;合比定理.6.若双曲线的渐近线与方程为的圆相切,则此双曲线的离心率为.【答案】【解析】先根据双曲线方程求得双曲线的渐近线,进而利用圆心到渐近线的距离为圆的半径求得和的关系,进而利用求得和的关系,则双曲线的离心率可求.【考点】双曲线的简单性质.7.若抛物线的焦点与双曲线的右焦点重合,则p的值为()A.B.C.D.【答案】C【解析】双曲线的右焦点坐标为(2,0),而抛物线的焦点坐标为(,0),∴=2,p=4.【考点】抛物线与双曲线的焦点坐标.8.若抛物线的焦点与双曲线的右焦点重合,则的值为()A.2B.4C.8D.【答案】C【解析】抛物线的焦点F为(,0),双曲线的右焦点F2(4,0),由已知得=4,∴p=8.故选C.【考点】圆锥曲线的共同特征.9.设为双曲线的两个焦点,点在双曲线上且,则的面积是【答案】1【解析】由题意可得a=1,b=2,c=,得F2(0,),F1(0,-),又F1F22=20,|PF1-PF2|=4,由勾股定理可得:F1F22=PF12+PF22=(PF1-PF2)2+2PF1•PF2=16+2PF1•PF2,∴PF1•PF2=2,所以=1.故选B..【考点】双曲线的简单性质.10.在平面直角坐标系xOy中,已知焦点在x轴上的双曲线的渐近线方程为x±2y=0,则该双曲线的离心率为.【答案】【解析】因为焦点在x轴上的双曲线的渐近线方程为,所以【考点】双曲线渐近线方程11.双曲线的焦点到它的渐近线的距离为_________________;【答案】1【解析】由双曲线方程可知,则,即,所以焦点为,渐近线为。
高三数学双曲线试题答案及解析
高三数学双曲线试题答案及解析1.已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则·的最小值为________.【答案】-2【解析】由题可知A1(-1,0),F2(2,0),设P(x,y)(x≥1),则=(-1-x,-y),=(2-x,-y),·=(-1-x)(2-x)+y2=x2-x-2+y2=x2-x-2+3(x2-1)=4x2-x-5.∵x≥1,函数f(x)=4x2-x-5的图象的对称轴为x=,∴当x=1时,·取得最小值-2.2.设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A.B.C.D.【答案】D【解析】取,则,直线为,,即,∴,∴,∴,由,∴.【考点】双曲线的标准方程、两直线垂直的充要条件.3. [2014·大同模拟]设双曲线-=1(a>0)的渐近线方程为3x±2y=0,则a的值为() A.4B.3C.2D.1【答案】C【解析】双曲线的渐近线y=±x,所以a=2,选C项.4.双曲线-y2=1的顶点到其渐近线的距离等于________.【答案】【解析】由-y2=1知顶点(2,0),渐近线x±2y=0,∴顶点到渐近线的距离d==.5.若抛物线的焦点是双曲线的一个焦点,则实数等于()A.B.C.D.【答案】C【解析】双曲线的焦点坐标是,,抛物线的焦点坐标是所以,或得故选【考点】抛物线和双曲线的焦点.6.等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为()A.B.C.D.【答案】C【解析】设等轴双曲线方程为,抛物线的准线为,由|AB|=,则,把坐标代入双曲线方程得,所以双曲线方程为,即,所以a2=4,a=2,所以实轴长2a=4,选C.7.已知双曲线(),与抛物线的准线交于两点,为坐标原点,若的面积等于,则A.B.C.D.【答案】C【解析】抛物线的准线是,代入双曲线方程得,,所以,解得.【考点】曲线的交点,三角形的面积.8.已知圆:和圆:,动圆M同时与圆及圆相外切,则动圆圆心M的轨迹方程是().A.B.C.D.【答案】A【解析】如图所示,设动圆M与圆及圆分别外切于点A和点B,根据两圆外切的充要条件,得,.因为,所以.这表明动点M到两定点、的距离的差是常数2,且小于.根据双曲线的定义,动点M的轨迹为双曲线的左支(点M到的距离大,到的距离小),这里a=1,c=3,则,设点M的坐标为(x,y),其轨迹方程为.9.已知,则双曲线的离心率为()A.B.2C.D.【答案】C【解析】双曲线方程可化为,即,因此双曲线的半实轴长为2,半虚轴长为1,所以半焦距为,所以离心率为.【考点】双曲线的标准方程及几何性质.10.的右焦点到直线的距离是()A.B.C.D.【答案】D【解析】双曲线的右焦点为,由点到直线的距离公式得右焦点到直线的距离为.【考点】双曲线的焦点及点到直线的距离.11.已知双曲线上一点,过双曲线中心的直线交双曲线于两点,记直线的斜率分别为,当最小时,双曲线离心率为( )A. B. C D【答案】B【解析】由题得,设点,由于点A,B为过原点的直线与双曲线的焦点,所以根据双曲线的对称性可得A,B关于原点对称,即.则,由于点A,C都在双曲线上,故有,两式相减得.则,对于函数利用导数法可以得到当时,函数取得最小值.故当取得最小值时, ,所以,故选B【考点】导数最值双曲线离心率12.过双曲线上任意一点P,作与实轴平行的直线,交两渐近线M,N两点,若,则该双曲线的离心率为____.【答案】【解析】依题意设,则.所以由.可得.即.所以离心率.【考点】1.圆锥曲线的性质.2.向量的数量积.3.方程的思想.13.已知抛物线的准线过双曲线的左焦点且与双曲线交于A、B两点,O 为坐标原点,且△AOB的面积为,则双曲线的离心率为()A.B.4C.3D.2【答案】D【解析】解:抛物线的准线方程为:,由题意知,双曲线的左焦点坐标为,即且,因为△AOB的面积为,所以,,即:所以,,解得:,故应选D.【考点】1、抛物线的标准方程;2、双曲线的标准方程及简单几何性质.14.双曲线=1上一点P到右焦点的距离是实轴两端点到右焦点距离的等差中项,则P点到左焦点的距离为________.【答案】13【解析】由a=4,b=3,得c=5.设左焦点为F1,右焦点为F2,则|PF2|=(a+c+c-a)=c=5,由双曲线的定义,得|PF1|=2a+|PF2|=8+5=1315.已知双曲线的一个焦点与抛物线的焦点重合,且其渐近线的方程为,则该双曲线的标准方程为A.B.C.D.【答案】C【解析】由题可知双曲线的一个焦点坐标是(0,5),可设双曲线方程为,利用表示坐标,建立方程,解方程即可.【考点】(1)共渐近线的双曲线方程;(2)抛物线的几何性质.16.设F是双曲线的右焦点,双曲线两渐近线分另。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.以双曲线的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是 .【答案】【解析】设抛物线方程为,由已知可得双曲线的右焦点坐标为(3,0),所以,抛物线方程为.【考点】双曲线的性质与抛物线的方程2.已知中心在原点的双曲线的渐近线方程是,且双曲线过点(Ⅰ)求双曲线的方程;(Ⅱ)过双曲线右焦点作倾斜角为的直线交双曲线于,求.【答案】(1);(2)6【解析】(1)设双曲线的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与双曲线的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:(1)设双曲线方程为:,点代入得:,所以所求双曲线方程为:(2)直线的方程为:,由得:,.【考点】(1)双曲线的方程;(2)直线与双曲线的综合问题.3.设双曲线的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为()A.B.5C.D.【答案】C【解析】将双曲线的渐进线方程代如抛物线方程y=x2+1中化简得,由只有一公共点可知即,所以即,答案选C.【考点】1.双曲线的渐进线方程;2.直线与抛物线的位置关系4.已知抛物线的准线与双曲线交于两点,点为抛物线的焦点,若为直角三角形,则双曲线的离心率是()A.B.C.2D.3【答案】B【解析】抛物线的准线为,它与双曲线交于两点,则坐标为,抛物线的焦点,因为为直角三角形,则有,从而有,,因此,故选择B.【考点】圆锥曲线的性质.5.若双曲线的左、右焦点分别为F1,F2,线段F1F2被抛物线的焦点分成5:3两段,则此双曲线的离心率为______.【答案】【解析】由已知设已知双曲线的焦半径为c,则且左右两焦点的坐标分别为:,又抛物线的焦点坐标为,由已知有即:,故应填入:.【考点】双曲线的离心率.6.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.7.若双曲线的离心率为2,则等于()A.B.C.D.1【答案】D.【解析】由,又∵.【考点】双曲线的标准方程.8.与双曲线有共同的渐近线,并且过点A(6,8)的双曲线的标准方程为__________.【答案】【解析】设所求双曲线为,把点(6,8)代入,得,解得λ=-4,∴所求的双曲线的标准方程为.故答案为:.【考点】双曲线的性质和应用.9.若双曲线的渐近线与方程为的圆相切,则此双曲线的离心率为.【答案】【解析】先根据双曲线方程求得双曲线的渐近线,进而利用圆心到渐近线的距离为圆的半径求得和的关系,进而利用求得和的关系,则双曲线的离心率可求.【考点】双曲线的简单性质.10.已知中心在坐标原点,焦点在轴上的双曲线的渐近线方程为,则此双曲线的离心率为()A.B.C.D.5【答案】B【解析】由题意,得,所以离心率=,故选B.【考点】双曲线的几何意义.11.设F1,F2分别是双曲线的左、右焦点.若点P在双曲线上,且·=0,则|+|=( )A.B.C.D.【答案】B【解析】因为·=0,所以,则|+|==|2|=|2|=,故选B.【考点】1.双曲线的性质;2.向量加法和数量积的几何意义.12.双曲线的渐近线方程为( )A.B.C.D.【答案】C【解析】令,解得【考点】双曲线渐近线的求法.13.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的渐近线方程是()A.B.C.D.【答案】C【解析】因为双曲线的一个焦点到一条渐近线的距离为所以因此因为双曲线的渐近线方程为所以该双曲线的渐近线方程是.【考点】双曲线的渐近线方程14.已知F1、F2为双曲线的左、右焦点,点P在C上,,则P到x轴的距离为()A.B.C.D.【答案】B【解析】由余弦定理得,所以即由三角形面积得解得,因此P到x轴的距离为.【考点】双曲线定义15.我们把离心率为e=的双曲线(a>0,b>0)称为黄金双曲线.如图,是双曲线的实轴顶点,是虚轴的顶点,是左右焦点,在双曲线上且过右焦点,并且轴,给出以下几个说法:①双曲线x2-=1是黄金双曲线;②若b2=ac,则该双曲线是黄金双曲线;③如图,若∠F1B1A2=90°,则该双曲线是黄金双曲线;④如图,若∠MON=90°,则该双曲线是黄金双曲线.其中正确的是()A.①②④B.①②③C.②③④D.①②③④【答案】D【解析】①由双曲线x2-=1,可得离心率e=,即可判断出该双曲线是否是黄金双曲线;②由b2=ac,可得c2-a2-ac=0,化为e2-e-1=0,又e>1,解得e,即可判断出该双曲线是否是黄金双曲线;③如图,由∠F1B1A2=90°,可得|B1F1|2+|B1A2|2=|F1A2|2,可得b2+c2+b2+a2=(a+c)2,化为c2-ac-a2=0,即可判断出该双曲线是否是黄金双曲线;④如图,由∠MON=90°,可得MN⊥x轴,|MF2|=,可得△MOF2是等腰直角三角形,得到c=,即可判断出该双曲线是否是黄金双曲线.【考点】圆锥曲线的综合应用.16.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1(-c,0)、F2(c,0).若双曲线上存在点P,使,则该双曲线的离心率的取值范围是________.【答案】【解析】根据正弦定理与题中等式,算出=e(e是椭圆的离心率).作出椭圆的左准线l,作PQ⊥l于Q,根据椭圆的第二定义得=e,所以|PQ|=|PF2|=.设P(x,y),将|PF1|、|PF2|表示为关于a、c、e、x的式子,利用|PF2|+|PF1|=2a解出x=.最后根据椭圆上点的横坐标满足-a≤x≤a,建立关于e的不等式并解之,即可得到该椭圆离心率的取值范围.【考点】(1)正弦定理;(2)椭圆的定义;(3)椭圆的几何性质.17.设P是双曲线上一点,该双曲线的一条渐近线方程是,分别是双曲线的左、右焦点,若,则等于 ( )A.2B.18C.2或18D.16【答案】C【解析】因为双曲线渐近线方程是,所以又因为,所以等于2或18【考点】双曲线定义,渐近线方程18.已知,,,则动点的轨迹是()A.双曲线B.圆C.椭圆D.抛物线【答案】D【解析】∵<=4∴由双曲线定义知点P的轨迹是双曲线.【考点】双曲线的定义.19.过点的双曲线的渐近线方程为为双曲线右支上一点,为双曲线的左焦点,点则的最小值为 .【答案】8【解析】由题可设双曲线方程为:,把代入得=1,所以双曲线方程为:,设双曲线右焦点为,∵P在双曲线右支上及由双曲线定义可知,∴,当点P为线段与双曲线交点时.【考点】1.双曲线的定义;2.双曲线的标准方程;3.双曲线的几何性质.20.已知,,,则动点的轨迹是()A.圆B.椭圆C.抛物线D.双曲线【答案】D【解析】∵<=4∴由双曲线定义知点P的轨迹是双曲线.【考点】双曲线的定义.21.双曲线的渐近线方程为()A.B.C.D.【答案】D【解析】因为双曲线的方程为,故,所以该双曲线的渐近线方程为,故选D.【考点】双曲线的性质.22.已知动点的坐标满足方程,则的轨迹方程是()A.B.C.D.【答案】C【解析】这个方程相信读者一定可以化简出最终结论(无非就是移项平方去根号),但如果考虑到方程中各式子的几何意义的话,可能解法更好,此方程表示点与到点的距离比到点的距离之差为8,而这正好符合双曲线的定义,点的轨迹是双曲线,只不过是右支。
双曲线试题及答案
双曲线试题及答案1. 已知双曲线的方程为 \(\frac{x^2}{a^2} - \frac{y^2}{b^2} =1\),其中 \(a = 3\),\(b = 4\),求双曲线的焦点坐标。
答案:双曲线的焦点坐标为 \((\pm\sqrt{a^2 + b^2}, 0)\),代入 \(a = 3\) 和 \(b = 4\),得到焦点坐标为 \((\pm 5, 0)\)。
2. 双曲线 \(\frac{x^2}{9} - \frac{y^2}{16} = 1\) 的渐近线方程是什么?答案:双曲线的渐近线方程为 \(y = \pm\frac{b}{a}x\),代入\(a = 3\) 和 \(b = 4\),得到渐近线方程为 \(y =\pm\frac{4}{3}x\)。
3. 如果一个双曲线的中心在原点,且通过点 \((2, 3)\),并且其一条渐近线方程为 \(y = 2x\),求双曲线的方程。
答案:设双曲线方程为 \(\frac{x^2}{a^2} - \frac{y^2}{b^2}= 1\),由于渐近线方程为 \(y = 2x\),可知 \(\frac{b}{a} = 2\)。
将点 \((2, 3)\) 代入方程得 \(\frac{4}{a^2} - \frac{9}{b^2} =1\)。
联立 \(b = 2a\) 解得 \(a = 1\),\(b = 2\),因此双曲线方程为 \(x^2 - \frac{y^2}{4} = 1\)。
4. 已知双曲线 \(\frac{x^2}{16} - \frac{y^2}{9} = 1\) 与直线\(y = mx + 1\) 相交,求直线的斜率 \(m\) 的取值范围。
答案:将直线方程代入双曲线方程,得到 \(\frac{x^2}{16} -\frac{(mx + 1)^2}{9} = 1\)。
整理得 \((9 - 16m^2)x^2 - 32mx -70 = 0\)。
双曲线测试题及答案
1.顶点为A 1(0,-25),A 2(0,25),焦距为12的双曲线的标准方程是( )2.双曲线的实轴长、虚轴长、焦距成等比数列,则双曲线的离心率是( )3.θ是第三象限角,方程x 2+y 2sin θ=cos θ表示的曲线是( )4.经过点M (3,-1),且对称轴在坐标轴上的等轴双曲线的方程是( )5.若ax 2+by 2=b (ab <0),则这个曲线是( )6.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( )7.双曲线8kx 2-ky 2=8的一个焦点坐标是(0,3),则k 的值是( )8.已知双曲线中心在坐标原点且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的方程是( )9.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )10.双曲线x 2n -y 2=1(n >1)的左、右两焦点分别为F 1、F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=2n +2,则△PF 1F 2的面积为( )11.双曲线x 2-y 2=1的两条渐近线的夹角为________.12.P 是双曲线x 264-y 236=1上一点,F 1、F 2是双曲线的两个焦点,且|PF 1|=17,则|PF 2|的值为________.13.x 24-t +y 2t -1=1表示双曲线,则实数t 的取值范围是____________.14.F 1、F 2是双曲线y 29-x 216=1的两个焦点,M 是双曲线上一点,且|MF 1|·|MF 2|=32,求△F 1MF 2的面积为___________________.15.根据下列条件,求双曲线的标准方程.(1)经过点⎝⎛⎭⎫154,3,且一条渐近线为4x +3y =0;(2)P (0,6)与两个焦点连线互相垂直,与两个顶点连线的夹角为π3.16.过双曲线x 2-y 23=1的左焦点F 1,作倾斜角为π6的直线与双曲线的交点为A ,B ,求线段AB 的长.18.已知双曲线的一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐标为-23,求双曲线的标准方程.19.设点P 到点M (-1,0),N (1,0)的距离之差为2m ,到x 轴、y 轴的距离之比为2∶1,求m 的取值范围.20.直线y =ax +1与双曲线3x 2-y 2=1相交于A ,B 两点,当a 为何值时,以AB 为直径的圆经过原点1.共轭双曲线的离心率分别为e 1和e 2,那么 2.双曲线的离心率为2,则它的两条渐近线之间的夹角θ(θ∈[0,2π])为 3.双曲线3mx 2-my 2=3的一个焦点是(0,2),则m 的值是4.若方程ax 2-by 2=1、 ax 2-by 2=λ(a >0,b >0,λ>0,λ≠1)分别表示两圆锥曲线C1、C2,则C1、与C2有相同的 ( )5.双曲线9y 16x 22-=1的右准线与渐近线在第四象限的交点和右焦点连线的斜率是( )6.过双曲线x 2-y 2=4上任一点M(x 0,y 0)作它的一条渐近线的垂线段,垂足为N,O是坐标原点,则ΔMON的面积是( )7.设双曲线2222by a x -=1(a >0,b >0)的一条准线与两条渐近线相交于A、B两点,相应的焦点为F,以AB为直径的圆恰过点F,则该双曲线的离心率为8.若直线y=kx+2与双曲线x 2-y 2=6的右支有两个不同的交点,则k 的范围是 ( )9.已知平面内有一定线段AB ,其长度为4,动点P 满足|PA|-|PB|=3,O 为AB 的中点,则|PO|的最小值为 ( )10.以椭圆169x 2+144y 2=1的右焦点为圆心,且与双曲线9x 2-16y 2=1的渐近线相切的圆的方程为 ( )11.与双曲线16y 9x 22-=1有共同的渐近线,且经过点A(-3,32)的双曲线的一个焦点到一条渐近线的距离是 ( 12.已知两点M (0,1)、N (10,1),给出下列直线方程:①5x-3y-22=0;②5x-3y-52=0;③x-y-4=0;④4x-y-14=0在直线上存在点P 满足|MP|=|NP|+6的所有直线方程是( )13.已知点P 在双曲线16x 2-9y 2=1上,并且P 到这条双曲线的右准线的距离恰是P 到这条双曲线的两个焦点的距离的等差中项,那么P 的横坐标是 .14.已知椭圆m x 2+n y 2=1与双曲线p x 2-q y 2=1(m 、n 、p 、q∈R +)有共同的焦点F 1、F 2,P 是椭圆和双曲线的一个交点,则|PF 1||PF 2|= .15.P 是双曲线22ax -22b y =1上的一点,F 1、F 2是它的两个焦点,若∠PF 1F 2=150,∠PF 2F 1=750,则双曲线的离心率为 .16.设F1、F2是双曲线x 2-y 2=4的两焦点,Q是双曲线上任意一点,从F1引∠F1QF2平分线的垂线,垂足为P,则点P的轨迹方程是 .17.已知直线l 与圆x 2+y 2+2x =0相切于点T,且与双曲线x 2-y 2=1相交于A、B两点,若T是线段AB的中点,求直线l 的方程.18.直线y =k x +1与双曲线3x 2-y 2=1相交于不同二点A 、B . (1) 求k 的取值范围;2.若以AB 为直径的圆经过坐标原点,求该圆的半径.19.已知圆(x +4) 2+y 2=25圆心为M 1,(x -4) 2+y 2=1的圆心为M 2,一动圆与这两个圆都外切. (1)求动圆圆心的轨迹方程;(2)若过点M 2的直线与(1)中所求轨迹有两个交点A 、B ,求| M 1A |·| M 2B |取值范围.20.已知双曲线的中心在原点,对称轴为坐标轴,且过点A (52,-12),双曲线的一条渐近线平行于直线12x -5y +35=0.(1) 求双曲线的标准方程.(2) 若F 1、F 2为此双曲线的左、右焦点,l 为左准线,能否在此双曲线左支上求一点P ,使|PF 1|是P 到l 的距离d与|PF 2|的等比中项?若能够,则求出点P 的坐标;若不能够,说明理由.22.已知定直线l 1:y=kx ,l 2:y=-kx(k 为非零常数),定点A (1,0),P 是位于∠MON 内部的动点(如图),过A 作l 1、l 2的两条平行线与射线OP 分别交于Q 、R 两点,且有关系|OP|2=|OR|·|OQ|. (1) 求动点P 的轨迹;(2) 求这样的点P ,它在(1)的轨迹上,且使ΔAQR 的面积等于41|k|.过双曲线x 2-y 23=1的左焦点F 1,作倾斜角为π6的直线与双曲线的交点为A ,B ,求线段AB 的长.1答案 B解析 顶点在y 轴上,a =25,c =6,得b =4.∴标准方程为y 220-x 216=1.2答案 C 解析 由2a ·2c =(2b )2及b 2=c 2-a 2,得c 2-ac -a 2=0,e 2-e -1=0,解得e =1±52,由e >1得,e =1+52.A .1B .-1 C.12 D .-123答案 D 解析 方程可化为x 2cos θ+y21tan θ=1,∵θ是第三象限角,∴cos θ<0,1tan θ>0,故选D.4答案 D 解析 设双曲线方程为x 2-y 2=k ,将M 点坐标代入得k =8.所以双曲线方程为x 2-y 2=8.5答案 B 解析 原方程可化为x 2b a +y 2=1,因为ab <0,所以ba<0,所以曲线是焦点在y 轴上的双线,故选B.6答案 C 解析 由题意两定圆的圆心坐标为O 1(0,0),O 2(4,0),设动圆圆心为O ,动圆半径为r ,则|OO 1|=r +1,|OO 2|=r +2,∴|OO 2|-|OO 1|=1<|O 1O 2|=4,故动圆圆心的轨迹为双曲线的一支.7答案 B 解析 原方程可化为x 21k -y 28k=1,由一个焦点坐标是(0,3)可知c =3,且焦点在y 轴上,c 2=(-1k )+(-8k )=-9k =9,所以k =-1,故选B.8答案 B 解析 设双曲线方程为x 2a 2-y 2b2=1,因为c =5,c 2=a 2+b 2,所以b 2=5-a 2,所以x 2a 2-y 25-a 2=1.由于线段PF 1的中点坐标为(0,2),则P 点的坐标为(5,4).代入双曲线方程得5a 2-165-a 2=1,解得a 2=1或a 2=25(舍去),所以双曲线方程为x 2-y 24=1.故选B.9答案 B解析 ||PF 1|-|PF 2||=2a ,即3|PF 2|=2a ,所以|PF 2|=2a3≥c -a ,即2a ≥3c -3a ,即5a ≥3c ,则c a ≤53.10答案 B 解析 不妨设|PF 1|>|PF 2|,则|PF 1|-|PF 2|=2n ,由|PF 1|+|PF 2|=2n +2,解得|PF 1|=n +2+n ,|PF 2|=n +2-n ,|F 1F 2|=2n +1,所以|PF 1|2+|PF 2|2=|F 1F 2|2,所以∠F 1PF 2=90°.所以S △PF 1F 2=12|PF 1|·|PF 2|=1.11答案 90°12答案 33解析 在双曲线x 264-y 236=1中,a =8,b =6,故c =10.由P 是双曲线上一点,得||PF 1|-|PF 2||=16.因为|PF 1|=17,所以|PF 2|=1或|PF 2|=33.又|PF 2|≥c -a =2,得|PF 2|=33.13答案 t >4或t <1解析 由题意知:(4-t )(t -1)<0,即(t -4)(t -1)>0, ∴t >4或t <1.14答案 16解析 由题意可得双曲线的两个焦点是F 1(0,-5)、F 2(0,5), 由双曲线定义得:||MF 1|-|MF 2||=6,联立|MF 1|·|MF 2|=32得|MF 1|2+|MF 2|2=100=|F 1F 2|2,所以△F 1MF 2是直角三角形,从而其面积为S =12|MF 1|·|MF 2|=16.15解 (1)因直线x =154与渐近线4x +3y =0的交点坐标为⎝⎛⎭⎫154,-5,而3<|-5|,故双曲线的焦点在x 轴上, 设其方程为x 2a 2-y 2b2=1,由⎩⎪⎨⎪⎧⎝⎛⎭⎫1542a 2-32b2=1,b 2a 2=⎝⎛⎭⎫432,解得⎩⎪⎨⎪⎧a 2=9,b 2=16.故所求的双曲线方程为x 29-y 216=1.(2)设F 1、F 2为双曲线的两个焦点.依题意,它的焦点在x 轴上.因为PF 1⊥PF 2,且|OP |=6, 所以2c =|F 1F 2|=2|OP |=12,所以c =6.又P 与两顶点连线夹角为π3,所以a =|OP |·tan π6=23,所以b 2=c 2-a 2=24.故所求的双曲线方程为x 212-y 224=1.16解 双曲线焦点坐标为F 1(-2,0)、F 2(2,0),直线AB 的方程为y =33(x +2),把该直线方程代入双曲线方程,得8x 2-4x -13=0.设A (x 1,y 1)、B (x 2,y 2),所以x 1+x 2=12,x 1x 2=-138.|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=1+13×(12)2-4×(-138)=3.∴线段AB 的长为3.17解 (1)如图建立直角坐标系xOy ,以AA ′为x 轴,AA ′的中点为坐标原点O ,CC ′与BB ′平行于x 轴.设双曲线方程为22221x y a b-=(a>0,b>0),则a=21,AA ′=7.又设B(11,y 1),C(9,y2), 因为点B 、C 在双曲线上,所以有2212291,7y b-=①9272-y 22b2=1,② 由题意知y 2-y 1=20.③由①、②、③得y 1=-12,y 2=8,b =7 2.故双曲线方程为x 249-y 298=1.18解 设双曲线的标准方程为x 2a 2-y 2b2=1,且c =7,则a 2+b 2=7.①由MN 中点的横坐标为-23知,中点坐标为⎝⎛⎭⎫-23,-53. 设M (x 1,y 1),N (x 2,y 2),则由⎩⎨⎧x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1,得b 2(x 1+x 2)(x 1-x 2)-a 2(y 1+y 2)(y 1-y 2)=0.∵⎩⎨⎧x 1+x 2=-43y 1+y 2=-103,且y 1-y 2x 1-x 2=1,∴2b 2=5a 2.② 由①,②求得a 2=2,b 2=5.∴所求方程为x 22-y 25=1.19解 设P 点坐标为(x ,y ),依题意有|y ||x |=2,即y =±2x (x ≠0)①因此点P ,M ,N 三点不共线, ∴||PM |-|PN ||<|MN |=2.∵||PM |-|PN ||=2|m |>0,∴0<|m |<1.故点P 在以M ,N 为焦点的双曲线x 2m 2-y 21-m 2=1②上.由①,②解得x 2=m 2(1-m 2)1-5m 2.∵1-m 2>0,∴1-5m 2>0,0<|m |<55.∴m 的取值范围是⎝⎛⎭⎫-55,0∪⎝⎛⎭⎫0,55.20解 将y =ax +1代入3x 2-y 2=1可得 (3-a 2)x 2-2ax -2=0Δ=4a 2+8(3-a 2)=24-4a 2 Δ>0,则a 2<6设A 、B 坐标分别为(x 1,y 1),(x 2,y 2)则x 1+x 2=2a 3-a 2,x 1x 2=2a 2-3∠AOB =90°,即AO ⊥BO , ∴k AO ·k BO =-1,∴x 1x 2+y 1y 2=0, 即x 1x 2+(ax 1+1)(ax 2+1)=0, 即(1+a 2)x 1x 2+a (x 1+x 2)+1=0,即(1+a 2)2a 2-3+a 2a3-a 2+1=0,∴a 2=1,满足a 2<6且a 2≠3的条件. 所以当a =±1时,以AB 为直径的圆经过原点.一、D B B D C A A D B A C D 二、13.56414.4(m-p)15.2 16.4y x22=+三、17.解:显然,直线l 与x 轴不平行,因此,可设l :x =ky +a ,代入x 2-y 2=1,得(k 2-1)y 2+2kay +a 2-1=0.显然k 2-1≠0,则y T =1k ka 2y y 2B A --=+,从而x T =ky T +a =-1k a 2-,∴T (-1k a 2-,-1k ka 2-).∵点T在圆x 2+y 2+2x =0上,∴(-1k a 2-)2+(-1k ka 2-)2-1k a 22-=0,即k 2=a +2 ①.易知已知圆的圆心为O/(-1,0),由O/T⊥l ,得TO /k =-lk 1,由此可得k=0,或k 2=2a +1.当k =0时,由①得a =-2,则l :x =-2;当k 2=2a +1时,由①得a =1,k =±3,则l :x =±3y +1.故l : x =-2或x =±3y +1.18.解:(1)当k=0时,y=1与3x 2-y 2=1有二公共点;若k≠0,则x=k1(y-1)代入3x 2-y 2=1有(3-k 2)y 2-6y+3-k 2=0,显然k 2=3时,直线与双曲线渐近线平行,无二公共点,所以k 2≠3.由y∈R,所以Δ=36-4(3-k 2)2≥0,所以0<k 2<6,且k 2≠3.综合知k≠(-6,6)且k≠±3时,直线与双曲线交于二点,反之亦然.(2)设A(x 1,y 1)、B(x 2,y 2),消去y ,得(3-k 2)x 2-2kx-2=0的二根为x 1、x 2,所以x 1+x 2=2k 3k 2-,x 1x 2=2k 32--,由(1)知y 1y 2=1,因为圆过原点,以AB 为直径,所以x 1x 2+y 1y 2=0,所以k 2=1,即k=±1为所求的值.19.解: (1)∵|P M 1|-5=|P M 2|-1,∴|P M 1|-|P M 2|=4,∴动点P的轨迹是以M 1、M 2 为焦点的双曲线的右支,其方程为12y 4x 22-=1(x ≥2).(2)利用双曲线的第二定义,得| M 1A |·| M 2B |≥100. 20.解:(1)双曲线的方程为25x 2-144y 2=1;(2)假设满足题意的点P 存在,设P(x 0,y 0)(x 0<-5),∴|PF 1|2=d|PF 2|,又|PF 2|-|PF 1|=10,e=513,∴d |PF |1=e ,即|PF 1|=513d ,∴(513d)2=d(10+513d),解之,d=52125.∵左准线l 的方程x=-1325,∴d=|x 0-(-1325)|=52125,∴x 0=-52225>-5,与x 0<-5矛盾,∴这样的点P不存在.21.解:建立如图所示的直角坐标系,其中O 为AB 中点,以千米为单位,依题意,PB-PA=4,A (3,0),B (-3,0),所以P 点在以A 、B为焦点的双曲线的右支上,双曲线方程为4x 2-5y 2=1,又P 在BC 的中垂线上,由C (-5,23),得BC 中垂线方程为y-3=33(x+4), 即x=3y-7.由{)0x (20y 4x 5,7y 3x 22>=--=有P (8,53),所以PA直线斜率k=38035--=3,即∠Pax=3π,且|PA|=10(千米), 所以炮击方位角为A 点的东偏北600,炮击距离为10千米.22.解:(1)设P(x 0,y 0),则射线OP 的方程为y=00x y x(x ≥0),AQ 的方程为y=k(x-1),AR 的方程为y=-k(x-1).由⎪⎩⎪⎨⎧=-=,x x y y ),1x (k y 00消去y 得x Q =000y k x k x -.同法可得x R =000y k x k x +.由于|OP|2=|OQ|·|OR|等价于x P 2=x Q ·x R ,由000y k x k x -·000y k x k x +=x 02,得x 02(x 02k 2-y 02-k 2)=0,∵x 0≠0,∴x 02k 2-y 02-k 2=0,即点P 的轨迹方程是x 2-22k y =1(x>0).(2)|OR|=]x x 4)x x ][()x y (1[Q R 2Q R 200-++=20200y x |k ||y |2+⋅,又A 点到OP 的距离h=20200y x |y |+,依题意:|k |y x |y |20200+⋅·20200y x |y |+=41|k|,∴y 0=±21|k|,x 0=411+=25,∴点P 的坐标为P (25,±21|k|).。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.双曲线的渐近线与圆相切,则双曲线离心率为(). A.B.2C.D.3【答案】B【解析】双曲线的渐近线方程是,即;因为渐近线与圆相切,所以,即,则,.【考点】双曲线的几何性质.2.已知,分别是双曲线的左、右焦点,过点且垂直于轴的直线与双曲线交于,两点,若是钝角三角形,则该双曲线离心率的取值范围是A.B.C.D.【答案】B【解析】为钝角三角形,且,,即,,,即,.【考点】双曲线的简单几何性质.3.双曲线上的一点到一个焦点的距离等于1,那么点到另一个焦点的距离为 .【答案】17.【解析】首先将已知的双曲线方程转化为标准方程,然后根据双曲线的定义知双曲线上的点到两个焦点的距离之差的绝对值为,即可求出点到另一个焦点的距离为17.【考点】双曲线的定义.4.若双曲线的左焦点在抛物线的准线上,则P的值为A.2B.3C.4D.【答案】C【解析】双曲线的左焦点坐标为:,抛物线y2=2px的准线方程为,所以,解得:p=4,故选C.【考点】双曲线和抛物线的性质.5.若原点和点分别是双曲线的中心和左焦点,点为双曲线右支上的任意一点,则的取值范围为 ( )A.B.C.D.【答案】A【解析】因为是双曲线的左焦点,所以,解得,所以双曲线的方程为,设点,则有,因为,所以,此二次函数对应的抛物线的对称轴为,而,所以当时,取得最小值,所以的取值范围为,选A.【考点】1.双曲线的标准方程及其几何性质;2.二次函数的图像与性质.6.以下四个关于圆锥曲线的命题中:①设为两个定点,为非零常数,,则动点的轨迹为双曲线;②过定圆上一定点作圆的动点弦,为坐标原点,若则动点的轨迹为圆;③,则双曲线与的离心率相同;④已知两定点和一动点,若,则点的轨迹关于原点对称.其中真命题的序号为(写出所有真命题的序号).【答案】②③④【解析】对于①,由双曲线的定义可知,动点的轨迹为双曲线的一支,所以①不正确;对于②,由,可知点为弦的中点,连结,则有即,而均为定点,所以点的轨迹是以为直径的圆,所以②正确;对于③,设的离心率分别为,则有,,所以③正确;对于④,设动点,则由可得,将代入等式左边可得,所以动点的轨迹关于原点对称,即④正确;综上可知,真命题的序号是②③④.【考点】1.双曲线的定义;2.动点的轨迹问题;3.双曲线的离心率.7.过双曲线的一个焦点作垂直于实轴的弦,是另一焦点,若是钝角三角形,则双曲线的离心率范围是()A.B.C.D.【答案】C【解析】根据题意,△PQF1是等腰直角三角形,且被F1F2分成两个全等的等腰直角三角形.由此结合双曲线的定义,可解出a=(-1)c,即可得到该双曲线的离心率.【考点】求双曲线的离心率问题.8.双曲线的离心率为_______;渐近线方程为_______.【答案】2;【解析】由于双曲线,所以,所以所以离心率.故填2.由于双曲线的焦点在x轴上,所以渐近线的方程为.故填.【考点】1.双曲线的性质.2.双曲线中三个基本量的关系.9.已知,,,则动点的轨迹是()A.双曲线B.圆C.椭圆D.抛物线【答案】D【解析】∵<=4∴由双曲线定义知点P的轨迹是双曲线.【考点】双曲线的定义.10.双曲线的渐近线方程是 .【答案】【解析】因为双曲线的渐近线方程为,所以可得所求渐近线方程为.【考点】双曲线的几何性质.11.双曲线的渐近线方程为 .【答案】【解析】因为双曲线的方程为,所以,所以该双曲线的渐近线方程为.【考点】双曲线的性质.12.抛物线的焦点F恰好是双曲线的右焦点,且它们的交点的连线过点F,则双曲线的离心率为.【答案】【解析】因为抛物线的焦点为.所以.由于双曲线与抛物线的对称性可知,要使两交点的连线过.只有一种情况该直线垂直于x轴.因此可得抛物线过点代入抛物线的方程可得离心率为.故填.【考点】1.双曲线的性质.2.抛物线的性质.3.圆锥图形的对称性.4.离心率的概念.13.设是双曲线的两个焦点,是上一点,若,且的最小内角为,则的离心率为()A.B.C.D.【答案】D【解析】不妨设是双曲线右支上的一点,根据定义可得,又,所以,又且,所以的最小内角为,根据余弦定理可得,又,即代入化简可得,故选D.【考点】1.双曲线的定义;2.用余弦定理解三角形.14.已知双曲线的两个焦点为F1(-,0)、F2(,0),M是此双曲线上的一点,且满足则该双曲线的方程是()A.B.C.D.【答案】A【解析】由题意知且,所以。
高三数学双曲线试题答案及解析
高三数学双曲线试题答案及解析1.在平面直角坐标系xOy中,若双曲线-=1的离心率为,则m的值为________.【答案】2【解析】由题意得m>0,∴a=,b=.∴c=,由e==,得=5,解得m=2.2.已知双曲线的中心在原点,焦点在x轴上,它的一条渐近线与x轴的夹角为α,且<α<,则双曲线的离心率的取值范围是________.【答案】(,2)【解析】由题意得tanα=,∴1<<,∴e==∈(,2).3. [2013·四川高考]抛物线y2=4x的焦点到双曲线x2-=1的渐近线的距离是() A.B.C.1D.【答案】B【解析】焦点(1,0)到渐近线y=x的距离为,选B项.4. [2014·北京模拟]△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是________.【答案】-=1(x>3)【解析】如图所示,设△ABC内切圆分别在AB,BC,AC上的切点为G,F,E,由切线长定理知,|AG|=|AE|,|CE|=|CF|,|BG|=|BF|,∴|AC|-|BC|=|AG|-|BG|=6<|AB|,可知,点C是以A,B为焦点的双曲线右支,由双曲线的定义可得所求轨迹方程为-=1(x>3).5.若中心在原点、焦点在坐标轴上的双曲线的一条渐近线方程为,则此双曲线的离心率为【答案】或【解析】由题意的:或,所以或,因此双曲线的离心率为或【考点】双曲线的渐近线6.在一张矩形纸片上,画有一个圆(圆心为O)和一个定点F(F在圆外).在圆上任取一点M,将纸片折叠使点M与点F重合,得到折痕CD,设直线CD与直线OM交于点P,则点P的轨迹为( )A.双曲线B.椭圆C.圆D.抛物线【答案】A【解析】由OP交⊙O于M可知|PO|-|PF|=|PO|-|PM|=|OM|<|OF|(F在圆外),∴P点的轨迹为双曲线,故选A.7.已知点到双曲线的一条渐近线的距离为,则双曲线的离心率为.【答案】【解析】双曲线一条渐近线方程为,所以【考点】点到直线距离公式,双曲线渐近线8.已知双曲线,以右顶点为圆心,实半轴长为半径的圆被双曲线的一条渐近线分为弧长为1:2的两部分,则双曲线的离心率为()A.B.C.D.【答案】B【解析】由题意得,弦所对圆心角为所以圆心到弦即渐近线的距离为因此有【考点】点到直线距离,双曲线的渐近线9.已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A、B两点,且AB的中点为N(-12,-15),则E的方程为____________.【答案】=1【解析】设双曲线的标准方程为=1(a>0,b>0),由题意知c=3,a2+b2=9.设A(x1,y1),B(x2,y2),则有两式作差得,又AB的斜率是=1,所以将4b2=5a2代入a2+b2=9得a2=4,b2=5,所以双曲线的标准方程是=1.10.拋物线顶点在原点,它的准线过双曲线=1(a>0,b>0)的一个焦点,并与双曲线实轴垂直,已知拋物线与双曲线的一个交点为,求拋物线与双曲线方程.【答案】y2=4x 4x2-=1【解析】由题设知,拋物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p=2c,设拋物线方程为y2=4c·x.∵拋物线过点,∴6=4c·.∴c=1,故拋物线方程为y2=4x.又双曲线=1过点,∴=1.又a2+b2=c2=1,∴=1.∴a2=或a2=9(舍).∴b2=,故双曲线方程为4x2-=111.圆的圆心到双曲线的渐近线的距离是()A.B.C.D.【答案】A【解析】圆的圆心为,双曲线的渐近线为,所以所求距离为.【考点】1、圆与双曲线;2、点到直线的距离.12.分别是双曲线的左右焦点,过点的直线与双曲线的左右两支分别交于两点。
高三数学双曲线试题答案及解析
高三数学双曲线试题答案及解析1.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )A.B.2C.4D.8【答案】C【解析】设C:-=1.∵抛物线y2=16x的准线为x=-4,联立-=1和x=-4得A(-4,),B(-4,-),∴|AB|=2=4,∴a=2,∴2a=4.∴C的实轴长为4.2.已知双曲线左、右焦点分别为,若双曲线右支上存在点P 使得,则该双曲线离心率的取值范围为()A.(0,)B.(,1)C.D.(,)【答案】【解析】由已知及正弦定理知,即.设点的横坐标为,则,所以,,,即,解得,选.【考点】双曲线的几何性质,正弦定理,双曲线的第二定义.3.如图,已知双曲线的左、右焦点分别为,P是双曲线右支上的一点,轴交于点A,的内切圆在上的切点为Q,若,则双曲线的离心率是A.3B.2C.D.【答案】B【解析】设,由图形的对称性及圆的切线的性质得,因为,所以,所以,所以又,所以,,所以故选B.【考点】1、双曲线的标准方程;2、双曲线的简单几何性质;3、圆的切线的性质.4. (2014·咸宁模拟)双曲线-=1的渐近线与圆x2+(y-2)2=1相切,则双曲线离心率为() A.B.C.2D.3【答案】C【解析】因为双曲线-=1(a>0,b>0)的渐近线为bx±ay=0,依题意,直线bx±ay=0与圆x2+(y-2)2=1相切,设圆心(0,2)到直线bx±ay=0的距离为d,则d===1,所以双曲线离心率e==2.5.双曲线-y2=1的顶点到其渐近线的距离等于________.【答案】【解析】由-y2=1知顶点(2,0),渐近线x±2y=0,∴顶点到渐近线的距离d==.6.已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的离心率为( )A.2B.C.D.【答案】D【解析】双曲线焦点到渐近线的距离为,即,又,代入得,解得,即,故选.【考点】双曲线的标准方程与几何性质.7.已知,则双曲线:与:的()A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等【答案】D【解析】双曲线的离心率是,双曲线的离心率是,故选D8.已知双曲线的两个焦点分别为,以线段直径的圆与双曲线渐近线的一个交点为.则此双曲线的方程为A.B.C.D.【答案】A【解析】由题意,,∴①,又双曲线的渐近线为,因此②,则①②解得,∴双曲线方程为,选A.【考点】双曲线的标准方程与性质.9.在平面直角坐标系中,定点,两动点在双曲线的右支上,则的最小值是()A.B.C.D.【答案】D【解析】由图可知,当直线MA、MB与双曲线相切时,∠AMB最大,此时最小,设过点M的双曲线切线方程为:代入整理得,,则△==0,解得=,即=,∴==,故选D.【考点】1.直线与双曲线的位置关系;2.二倍角公式;3.数形结合思想;4.转化与化归思想10.双曲线的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为( )A.B.C.D.【答案】A【解析】在直角三角形中,设则,因此离心率为【考点】双曲线定义11.已知双曲线C1:=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为________.【答案】x2=16y【解析】∵双曲线C1:=1(a>0,b>0)的离心率为2,∴=2,∴b=a,∴双曲线的渐近线方程为x±y=0,∴抛物线C2:x2=2py(p>0)的焦点到双曲线的渐近线的距离为=2,∴p=8.∴所求的抛物线方程为x2=16y.12.已知双曲线C:=1的焦距为10,P(2,1)在C的渐近线上,则C的方程为________.【答案】=1【解析】∵=1的焦距为10,∴c=5=.①又双曲线渐近线方程为y=±x,且P(2,1)在渐近线上,∴=1,即a=2b.②由①②解得a=2,b=.=113.根据下列条件,求双曲线方程.(1)与双曲线=1有共同的渐近线,且过点(-3,2);(2)与双曲线=1有公共焦点,且过点(3,2).【答案】(1)=1.(2)=1【解析】解法1:(1)设双曲线的方程为=1,由题意,得解得a2=,b2=4.所以双曲线的方程为=1.(2)设双曲线方程为=1.由题意易求得c=2.又双曲线过点(3,2),∴=1.又∵a2+b2=(2)2,∴a2=12,b2=8.故所求双曲线的方程为=1.解法2:(1)设所求双曲线方程为=λ(λ≠0),将点(-3,2)代入得λ=,所以双曲线方程为=.(2)设双曲线方程为=1,将点(3,2)代入得k=4,所以双曲线方程为=1.14.已知双曲线-=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为()A.2B.2C.4D.4【答案】B【解析】双曲线左顶点为A(-a,0),1渐近线为y=±x,抛物线y2=2px(p>0)焦点为F(,0),准线为直线x=-.由题意知-=-2,∴p=4,由题意知2+a=4,∴a=2.∴双曲线渐近线y=±x中与准线x=-交于(-2,-1)的渐近线为y=x,∴-1=×(-2),∴b=1.∴c2=a2+b2=5,∴c=,∴2c=2.故选B.15.已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点与抛物线y2=16x的焦点相同,则双曲线的方程为 .【答案】 -=1【解析】由双曲线-=1(a>0,b>0)的一条渐近线方程为y=x得=,∴b= a.∵抛物线y2=16x的焦点为F(4,0),∴c=4.又∵c2=a2+b2,∴16=a2+(a)2,∴a2=4,b2=12.∴所求双曲线的方程为-=1.16.已知抛物线y2=8x的准线过双曲线-=1(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为.【答案】x2-=1【解析】由y2=8x准线为x=-2.则双曲线中c=2,==2,a=1,b=.所以双曲线方程为x2-=1.17.已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A、B两点,且AB的中点为N(-12,-15),则E的方程为()(A)-=1 (B)-=1(C)-=1 (D)-=1【答案】B==1,【解析】∵kAB∴直线AB的方程为y=x-3.由于双曲线的焦点为F(3,0),∴c=3,c2=9.设双曲线的标准方程为-=1(a>0,b>0), 则-=1.整理,得(b2-a2)x2+6a2x-9a2-a2b2=0.设A(x1,y1),B(x2,y2),则x1+x2==2×(-12),∴a2=-4a2+4b2,∴5a2=4b2.又a2+b2=9,∴a2=4,b2=5.∴双曲线E的方程为-=1.故选B.18.若双曲线-=1(a>b>0)的左、右焦点分别为F1,F2,线段F1F2被抛物线x=y2的焦点分成3∶2的两段,则此双曲线的离心率为()A.B.C.D.【答案】D【解析】由已知得F1(-c,0),F2(c,0),抛物线x=y2,即y2=2bx的焦点F(,0),依题意=.即=,得:5b=2c⇒25b2=4c2,又b2=c2-a2,∴25(c2-a2)=4c2,解得c= a.故双曲线的离心率为=.19.若双曲线-=1的左焦点与抛物线y2=-8x的焦点重合,则m的值为()A.3B.4C.5D.6【答案】A【解析】【思路点拨】实数m(m-2)>0还不足以确定m的值,还要确定抛物线的焦点(双曲线的左焦点).解:抛物线y2=-8x的焦点(-2,0)也是双曲线-=1的左焦点,则c=2,a2=m,b2=m-2,m+m-2=4即m=3.20.如图,中心均为原点O的双曲线与椭圆有公共焦点,M, N是双曲线的两顶点,若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是()A.3B.2C.D.【答案】B【解析】设双曲线的方程为-=1(a1>0,b1>0),椭圆的方程为+=1(a2>0,b2>0),由于M,O,N将椭圆长轴四等分,所以a2=2a1,又e1=,e2=,所以==2.21.P(x0,y)(x≠±a)是双曲线E:-=1(a>0,b>0)上一点,M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率.(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足=λ+,求λ的值.【答案】(1)(2) λ=0或λ=-4【解析】【思路点拨】(1)代入P点坐标,利用斜率之积为列方程求解.(2)联立方程,设出A,B,的坐标,代入=λ+求解.解:(1)由点P(x0,y)(x≠±a)在双曲线-=1上,有-=1.由题意又有·=,可得a2=5b2,c2=a2+b2=6b2,则e==.(2)联立方程得得4x2-10cx+35b2=0,设A(x1,y1),B(x2,y2),则设=(x3,y3),=λ+,即又C为双曲线E上一点,即-5=5b2,有(λx1+x2)2-5(λy1+y2)2=5b2,化简得:λ2(-5)+(-5)+2λ(x1x2-5y1y2)=5b2,又A(x1,y1),B(x2,y2)在双曲线E上,所以-5=5b2,-5=5b2.又x1x2-5y1y2=x1x2-5(x1-c)(x2-c)=-4x1x2+5c(x1+x2)-5c2=10b2,得:λ2+4λ=0,解出λ=0或λ=-4.22.双曲线的离心率为()A.B.C.D.【答案】B.【解析】把双曲线的方程化为标准形式:.故选B.【考点】双曲线的简单的几何性质.23.已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则的最小值为________.【答案】-2【解析】由题可知A1(-1,0),F2(2,0),设P(x,y)(x≥1),则=(-1-x,-y),=(2-x,-y),=(-1-x)(2-x)+y2=x2-x-2+y2=x2-x-2+3(x2-1)=4x2-x-5,∵x≥1,函数f(x)=4x2-x-5的图象的对称轴为x=,∴当x=1时,取最小值-2.24.点到双曲线的渐近线的距离为______________.【答案】【解析】双曲线的渐近线方程为:,点到渐近线的距离.【考点】双曲线的标准方程.25.已知双曲线=1(a>0,b>0)的渐近线方程为y=±x,则它的离心率为________.【答案】2【解析】由题意,得e====226.若双曲线=1(a>0,b>0)与直线y=x无交点,则离心率e的取值范围是________.【答案】(1,2]【解析】因为双曲线的渐近线为y=±x,要使直线y=x与双曲线无交点,则直线y=x应在两渐近线之间,所以有≤,即b≤a,所以b2≤3a2,c2-a2≤3a2,即c2≤4a2,e2≤4,所以1<e≤2.27.P为双曲线=1的右支上一点,M、N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则PM-PN的最大值为________.【答案】9【解析】设双曲线的两个焦点分别是F1(-5,0)与F2(5,0),则这两点正好是两圆的圆心,当且仅当点P与M、F1三点共线以及P与N、F2三点共线时所求的值最大,此时PM-PN=(PF1+2)-(PF2-1)=6+3=928.双曲线=1(a>0,b>0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(1,2)在“上”区域内,则双曲线离心率e的取值范围是________.【答案】(1,)【解析】双曲线=1的一条渐近线为y=x,点(1,2)在该直线的上方,由线性规划知识,知:2>,所以e2=1+2<5,故e∈(1,).29.已知双曲线C:=1(a>0,b>0)的右顶点、右焦点分别为A、F,它的左准线与x轴的交点为B,若A是线段BF的中点,则双曲线C的离心率为________.【答案】+1【解析】由题意知:B,A(a,0),F(c,0),则2a=c-,即e2-2e-1=0,解得e=+1.30.若双曲线=1(a>0,b>0)与直线y=x无交点,则离心率e的取值范围是().A.(1,2)B.(1,2]C.(1,)D.(1,]【答案】B【解析】因为双曲线的渐近线为y=±x,要使直线y=x与双曲线无交点,则直线y=x应在两渐近线之间,所以有≤,即b≤a,所以b2≤3a2,c2-a2≤3a2,即c2≤4a2,e2≤4,所以1<e≤2.31.已知双曲线=1(a>0,b>0)的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为().A.5x2-y2=1B.=1C.=1D.5x2-y2=1【答案】D【解析】由于抛物线y2=4x的焦点为F(1,0),即c=1,又e==,可得a=,结合条件有a2+b2=c2=1,可得b2=,又焦点在x轴上,则所求的双曲线的方程为5x2-y2=132.抛物线C1:y=x2(p>0)的焦点与双曲线C2:-y2=1的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=().A.B.C.D.【答案】D【解析】抛物线C1:y=x2的标准方程为x2=2py,其焦点为F;双曲线C2:-y2=1的右焦点F′为(2,0),其渐近线方程为y=±x.由y′=x,所以x=,得x=p,所以点M的坐标为.由点F,F′,M三点共线可求p=.33.双曲线=1(m>0)的离心率为,则m等于________.【答案】9【解析】由题意得c=,所以=,解得m=9.34.分别是双曲线的左右焦点,是虚轴的端点,直线与双曲线的两条渐近线分别交于两点,线段的垂直平分线与轴交于点,若,则双曲线的离心率为_________.【答案】【解析】直线的方程为,由得:;由得:,的中点为.据题意得,所以.【考点】直线与圆锥曲线.35.已知双曲线的渐近线方程为y=±x,焦点坐标为(-4,0),(4,0),则双曲线方程为().A.=1B.=1C.=1D.=1【答案】D【解析】双曲线的渐近线方程为y=±x,焦点在x轴上.设双曲线方程为x2-=λ(λ≠0),即=1,则a2=λ,b2=3λ,∵焦点坐标为(-4,0),(4,0),∴c=4,∴c2=a2+b2=4λ=16,解得λ=4,∴双曲线方程为=136.已知双曲线的一条渐近线方程为,则该双曲线的离心率为.【答案】【解析】根据双曲线的渐近线的方程知即,所以此双曲线的离心率.【考点】双曲线的标准方程、渐近线方程和离心率.37.已知双曲线,过其右焦点作圆的两条切线,切点记作,双曲线的右顶点为,,则双曲线的离心率为 .【答案】【解析】∵,∴,而∵,∴,∴,∴,∴,在中,,,,即.【考点】1.平面几何中角度的换算;2.双曲线的离心率.38.点P是双曲线左支上的一点,其右焦点为,若为线段的中点, 且到坐标原点的距离为,则双曲线的离心率的取值范围是 ( )A.B.C.D.【答案】B【解析】设左焦点为,则,设,则有,即,由定义有:,∴,由得.【考点】1.双曲线的定义;2.焦点三角形求离心率的方法.39.设双曲线的左、右焦点分别为是双曲线渐近线上的一点,,原点到直线的距离为,则渐近线的斜率为()A.或B.或C.1或D.或【答案】D【解析】如图所示,,又即,即,所以渐近线的斜率为或.【考点】双曲线的定义、渐近线等基础知识.40.若抛物线的焦点与双曲线的右焦点重合,则的值为.【答案】6【解析】双曲线的右焦点是抛物线的焦点,所以,,.【考点】双曲线的焦点.41.已知实数,,构成一个等比数列,则圆锥曲线的离心率为( ) A.B.C.D.【答案】B【解析】,,构成一个等比数列,双曲线为,【考点】等比数列及双曲线性质点评:若成等比数列,则,在双曲线中有,离心率42.设双曲线的焦点为,则该双曲线的渐近线方程是()A.B.C.D.【答案】A【解析】因为双曲线双曲线的焦点为,所以,又,所以,由得所求选A.【考点】双曲线的性质点评:主要是考查了双曲线的渐近线方程的求解,属于基础题。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.由曲线y和直线,以及所围成的图形面积是__________________.【答案】【解析】根据题意画出草图如下如图中的阴影部分面积为.【考点】定积分在几何中的应用.2.设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为A.B.C.D.【答案】C【解析】根据题意,由于双曲线的虚轴长为2,焦距为,则可知b=1,c= ,而焦点在x轴上,故其渐近线方程为即为,故选C.【考点】双曲线的几何性质点评:本题主要考查了双曲线的几何性质和运用.考查了同学们的运算能力和推理能力3.双曲线的渐近线为( )A.B.C.D.【答案】D【解析】由双曲线方程知:双曲线的焦点在x轴上,且a=1,b=1,所以渐近线方程为。
【考点】双曲线的简单性质:渐近线方程。
点评:双曲线的渐近线方程为;双曲线的渐近线方程为。
4.已知点、,直线与相交于点,且它们的斜率之积为,则点的轨迹方程为()A.B.C.D.【答案】B【解析】设M(x,y),则,所以.5.已知双曲线,其右焦点为,为其上一点,点满足=1,,则的最小值为()A.3B.C.2D.【答案】B【解析】解:双曲线的右焦点F(5,0),∵M满足| MF |=1,∴点M在以F为圆心1为半径的圆上∵ MF • MP =0,即圆的半径FM⊥PM,即| MP |为圆F的切线长由圆的几何性质,要使| MP |最小,只需圆心F到P的距离|FP|最小∵P是双曲线上一点,∴|FP|最小为c-a=5-3=2∴此时| MP |= 故选B6.若方程表示双曲线,则实数k的取值范围是()A.2<k<5 ;B.k>5 ;C.k<2或k>5;D.以上答案均不对【答案】C【解析】若方程表示双曲线,7.与双曲线有相同焦点,且离心率为0.6的椭圆方程为。
【答案】;【解析】双曲线有相同焦点是(3,0)(-3,0),c="3," 离心率为0.68.(14分)直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A、B.(1)求实数k的取值范围;(2)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.【答案】(1)-2<k<-.(2) k=-.【解析】(1)直线与双曲线方程联立消y得关于x的一元二次方程,根据判别式大于零,可求出k的取值范围.(2)解本题的突破口是假设存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F(c,0),则由FA⊥FB得(x1-c)(x2-c)+y1y2=0,即(x1-c)(x2-c)+(kx1+1)(kx2+1)=0,整理得:(k2+1)x1x2+(k-c)(x1+x2)+c2+1=0再根据韦达定理解决即可.(1)将直线l的方程y=kx+1代入双曲线方程2x2-y2=1后,整理得:(k2-2)x2+2kx+2=0①解:依题意,直线l与双曲线C的右支交于不同两点,故,解得-2<k<-.(2)设A、B两点的坐标分别为(x1,y1),(x2,y2),则由①式得②,假设存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F(c,0),则由FA⊥FB得(x1-c)(x2-c)+y1y2=0,即(x1-c)(x2-c)+(kx1+1)(kx2+1)=0,整理得:(k2+1)x1x2+(k-c)(x1+x2)+c2+1=0③把②式及c=代入③式化简得5k2+2k-6=0,解得k=-或k=∉(-2,-)(舍去).可得k=-使得以线段AB为直径的圆经过双曲线C的右焦点.9.设F1,F2是双曲线的两个焦点,P在双曲线上,当的面积为2时的值为()A.2B.3C.4D.6【答案】B【解析】解:由题意可得 a=,b=1,c=2,故 F1(-2,0)、F2(2,0)则根据面积公式可知,| PF1 - PF2|="|" F2F1|=2c=4,利用向量的数量积公式可知的值为3,选B10.若方程表示双曲线,则实数k的取值范围是A.B.C.或D.以上答案均不对【答案】C【解析】解:因为方程表示双曲线,所以(k-2)(5-k)>0,解得未选项C11.已知双曲线C:的离心率为,且过点P(,1)(1)求双曲线C的方程;(2)若直线与双曲线恒有两个不同的交点A和B,且(O为坐标原点),求k的取值范围.【答案】(1);(2)(-1,-)(,1).【解析】(1)由题意得,又,解得,故双曲线方程为;(2)直线方程与双曲线方程联立消去得,根据题意需满足得.由,即>2,由韦达定理和直线方程把用表示,得关于的不等式,求出,取交集得的取值范围是(-1,-)(,1).解:(1)由已知:双曲线过点P(,1),解得,,故所求的双曲线方程为---------------------------------4分(2)将代入得由直线与双曲线C交于不同的两点得,即①---------------------------------6分设A(),B(),由得>2而===,于是②---------------------------------8分由①②得故所求的的取值范围是(-1,-)(,1)---------------------------------10分12.双曲线的渐近线方程是( )A.B.C.D.【答案】B【解析】解:因为.双曲线的方程为,则13.过双曲线的一个焦点作垂直于实轴的弦,是另一焦点,若∠,则双曲线的离心率等于()A.B.C.D.【答案】B.【解析】根据题意可知,,故应选B.14.双曲线的一个焦点坐标是,那么 _______【答案】.【解析】,.15.过双曲线的mx2-y2=m(m>1)的左焦点作直线l交双曲线于P、 Q两点,若|PQ|=2m,则这样的直线共有 _______条.【答案】3.【解析】由于双曲线方程为,当焦点弦的两端点在同支上时,最短的弦为2m,满足条件的有一条;当焦点弦的两端点在两支上时,最短的弦为2<2m,满足条件的两条;所以共有3条.16.已知双曲线的中心在原点,焦点在坐标轴上,离心率为,且过点(1)求双曲线的方程.(2)若点(3)在(2)的条件下【答案】(1);(2)见解析;(3)6.【解析】(1)由于双曲线是等轴双曲线所以可设其方程为,然后把已知点代入方程即可.(2)用向量的坐标表示出来,利用点M在双曲线上这个条件即可得证.(3)在(2)的条件下可确定高|m|的值,面积即可求出.17.已知双曲线(1)求直线L的斜率的取值范围,使L与C分别有一个交点,两个交点,没有交点.(2)若Q(1,1),试判断以Q为中点的弦是否存在,若存在,求出直线的方程;若不存在,请说明理由.【答案】(1)见解析;(2)不存在.【解析】(1)本题涉及到用方程来判断直线与双曲线的位置关系,一定要注意再利用判别式进行判断时,二次项系数不为零.(2)本题求出直线方程后,要注意验证二次方程的判别式是否大于零,如果不大于零,就不存在,否则存在.解:(1)解方程组消去得当,时当时由得由得由得或综上知:时,直线与曲线有两个交点,时,直线与曲线切于一点,时,直线与曲线交于一点.或直线与曲线C没有公共点.(2)不存在假设以Q点为中点的弦存在(1)当过Q点的直线的斜率不存在时,显然不满足题意.(2)当过Q点的直线的斜率存在时,设斜率为K联立方程两式相减得:所以过点Q的直线的斜率为K=1所以直线的方程为y=x即为双曲线的渐近线与双曲线没有公共点即所求的直线不存在.18.双曲线的两焦点为,在双曲线上且满足,则的面积为().A.B.C.D.【答案】B【解析】解:不妨设F1、F2是双曲线的左右焦点,P为右支上一点,|PF1|-|PF2|="2" ①|PF1|+|PF2|="2" ②,由①②解得:|PF1|=+,|PF2|=-,得:|PF1|2+|PF2|2=4n+4=|F1F2|2,∴PF1⊥PF2,又由①②分别平方后作差得:|PF1||PF2|=2,故选B19.设F1、F2是双曲线的左右焦点,若双曲线上存在一点A使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线的离心率为()A.B.C.D.【答案】B【解析】因为,根据双曲线的几何定义可得,,所以。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.若方程+=1所表示的曲线为C,则下面四个命题①若C为椭圆,则1<t<4 ;②若C为双曲线,则t>4或t<1;③曲线C不可能是圆;④若C为椭圆,且长轴在x轴上,则1<t<其中真命题的序号是_________.【答案】②【解析】据椭圆方程的特点列出不等式求出t的范围判断出①错,据双曲线方程的特点列出不等式求出t的范围,判断出②对;据圆方程的特点列出方程求出t的值,判断出③错;据椭圆方程的特点列出不等式求出t的范围,判断出④错.解:若C为椭圆应该满足(4-t)(t-1)>0,4-t≠t-1即1<t<4且t≠故①错,若C为双曲线应该满足(4-t)(t-1)<0即t>4或t<1故②对,当4-t=t-1即t=表示圆,故③错,若C表示椭圆,且长轴在x轴上应该满足4-t>t-1>0则1<t<,因此④错,故填写②【考点】圆锥曲线的共同特征。
点评:主要是考查了椭圆方程于双曲线方程的标准形式的运用,属于中档题。
2.已知双曲线的一个焦点与抛物线的焦点相同,则双曲线的渐近线方程是()A.B.C.D.【答案】C【解析】根据题意,由于双曲线的一个焦点与抛物线的焦点相同(),那么可知,则可知双曲线的渐近线方程是,故选C.【考点】双曲线的性质,抛物线点评:解决的关键是对于双曲线和抛物线性质的熟练表示,属于基础题。
3.若双曲线(b>0)的离心率为2,则实数b等于()A.1B.2C.D.3【答案】C【解析】由双曲线方程可知【考点】双曲线的性质离心率点评:本题涉及到的性质:4.过双曲线的左焦点作圆的切线,切点为E,延长FE交抛物线于点P,若E为线段FP的中点,则双曲线的离心率为( )A.B.C.D.【答案】D【解析】画图。
抛物线的焦点,准线。
连接和EO,则,即有,所以点P到准线的距离等于2a,所以点P的横坐标为,由点P在抛物线上,得点。
又OP=OF=c,所以,解得。
《双曲线》练习试题经典(含答案)
《双曲线》练习题一、选择题:1.已知焦点在x轴上的双曲线的渐近线方程是y=±4x,则该双曲线的离心率是( A )A.17B.15C.174D.1542.中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为( B )A.x2﹣y2=1 B.x2﹣y2=2 C.x2﹣y2=D.x2﹣y2=3.在平面直角坐标系中,双曲线C过点P(1,1),且其两条渐近线的方程分别为2x+y=0和2x﹣y=0,则双曲线C的标准方程为( B )A.B.C.或D.4.1(a>b>0)1有相同的焦点,则椭圆的离心率为( A )A B C D5.已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( A )A.(﹣1,3)B.(﹣1,) C.(0,3) D.(0,)6.设双曲线=1(0<a<b)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为( A )A.2 B.C.D.7.、的圆相切,则双曲线的离心率为(A )A B C D 8.双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为( B )A.3 B.62 C.63 D.339.已知双曲线221(0,0)x y m n m n-=>>的一个焦点到一条渐近线的距离是2,一个顶点到它的一条渐近线的,则m 等于( D ) A .9 B .4 C .2 D .,3 10.已知双曲线的两个焦点为F 1(-10,0)、F 2(10,0),M 是此双曲线上的一点,且满足12120,||||2,MF MF MF MF ==则该双曲线的方程是( A )A.x 29-y 2=1 B .x 2-y 29=1 C.x 23-y 27=1D.x 27-y 23=111.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( C )A .42 B .83 C .24 D .4812.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是( C )A .28B .14-8 2C .14+82D .8213.已知双曲线﹣=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( D ) A .﹣=1B .﹣=1 C .﹣=1 D .﹣=114.设双曲线﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 2为圆心,|F 1F 2|为半径的圆与双曲线在第一、二象限内依次交于A ,B 两点,若3|F 1B|=|F 2A|,则该双曲线的离心率是( C )A .B .C .D .215.过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若|AB|=4,则这样的直线共有( C )条。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为()
A. B. C. D.
7.设双曲线 (0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点,已知原点到直线l的距离为 c,则双曲线的离心率为()
A.2B. C. D.
(1)求Q点的轨迹方程;
(2)设(1)中所求轨迹为C2,C1、C2
的离心率分别为e1、e2,当 时,e2的取值范围.
圆锥曲线同步测试—双曲线(答案)
一.选择题
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
D
A
C
A
C
B
A
D
D
A
B
D
二.填空题
13. 14. 15. 16.(—12,0)
三、解答题
17.[解析]:由椭圆 .
当 依题意有
对所有实数m都成立,
故 ,但
∴ ,得 .
21.[解析]:(1)设P(x0,y0), Q(x,y )
经检验点 不合题意,因此Q点的轨迹方程为:a2x2-b2y2=a4( ).
设双曲线方程为 ,则
故所求双曲线方程为
18.[解析]:以直线AB为x轴,线段AB的垂直平分线为y轴,建立直角坐标系,则A(3,0)、B(-3,0)
右支上的一点
∵P在A的东偏北60°方向,∴ .
∴线段AP所在的直线方程为
解方程组 ,
即P点的坐标为(8, )
∴A、P两地的距离为 =10(千米).
19.[解析]:如图,以AB的垂直平分线为y轴,直线AB为x轴,建立直角坐标系,
3.一动圆与两圆:x2+y2=1和x2+y2-8x+12=0都外切,则动圆心的轨迹为()
A.抛物线B.圆C.双曲线的一支D.椭圆
4.过点P(2,-2)且与 -y2=1有相同渐近线的双曲线方程是()
A. B. C. D.
5.过双曲线x2- =1的右焦点F作直线l交双曲线于A、B两点,若|AB|=4,这样的直线有()
则CD⊥Oy.
由题意可设A(-c,0),B(c,0),C( ,h), ,其中c为双曲线的半焦距, ,h是梯形的高.
由 得
设双曲线的方程为 ,由点C、E在双曲线上,得
由①得 ,代入②得 ,所以离心率
20.[解析]:联立方程组 消去y得
当
若 ,则k ;若 .
由于不论m取何实数,直线y=kx+m与双曲线 总有公共点,故不符合题意.
15.已知 是双曲线的两个焦点,PQ是过点 且垂直于实轴所在直线的双曲线的弦, ,则双曲线的离心率为___________.
16.双曲线 ,离心率 ,则 的取值范围是_______________.
三、解答题
17.已知双曲线与椭圆 共焦点,且以 为渐近线,求双曲线方程.
18.一炮弹在A处的东偏北60°的某处爆炸,在A处测到爆炸信号的时间比在B处早4秒,已知A在B的正东方、相距6千米,P为爆炸地点(该信号的传播速度为每秒1千米),求A、P两地的距离.
A.4条B.3条C.2条D.1条
12、已知双曲线的中心在原点,实轴在x轴上,实轴长为 ,且两条渐近线的夹角为 ,则双曲线方程为()
二、填空题
13.设圆过双曲线 的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是__________.
14.已知点A(5,3),F(2,0),点P在双曲线 上,则 的最小值为_________.
8.到两定点 、 的距离之差的绝对值等于6的点 的轨迹()
A.椭圆B.线段C.双曲线D.两条射线
9.若 ,双曲线 与双曲线 有()
A.相同的虚轴B.相同的实轴C.相同的渐近线D.相同的焦点
10.过双曲线 左焦点F1的弦AB长为6,则 (F2为右焦点)的周长是()
A.28 B.22C.14D.12
11.已知双曲线方程为 ,过 的直线 与双曲线只有一个公共点,则 的条数共有()
19.如图,已知梯形ABCD中|AB|=2|CD|, ,双曲线过C、D、E三点,且以A、B为焦点.求双曲线的离心率.
20.已知不论m取何实数,直线y=kx+m与双曲线 总有公共点,试求实数k的取值范围.
2P是双曲线C1上的任意一点,引QB⊥PB,QA⊥PA,AQ与BQ交于点Q.
圆锥曲线同步测试—双曲线
一、选择题
1.θ是第三象限角,方程x2+y2sinθ=cosθ表示的曲线是()
A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆
C.焦点在x轴上的双曲线D.焦点在y轴上的双曲线
2.“ab<0”是“方程ax2+by2=c表示双曲线”的()
A.必要不充分条件B.充分不必要条件C.充要条件D.非充分非必要条件