传热学第四章非稳态导热例题

合集下载

非稳态导热例题

非稳态导热例题

“非稳态导热”例题例题1:一温度为20℃的圆钢,长度为0.3m ,直径为60mm ,在一温度为1250℃的加热炉内被加热。

已知圆钢的导热系数为35 W/(m ∙K),密度为7800kg/m 3,比热容为0.460J/(kg ∙K),加热炉长为6m ,圆钢在其中匀速通过,其表面和炉内烟气间的表面传热系数为100 W/(m 2∙K)。

现欲将该圆钢加热到850℃,试求该圆钢在加热炉内的通过速度。

解 特征尺寸A V /为m 0136.0)1060(14.3413.0)1060(14.33.0)1060(14.3414124133322=⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯=⨯+=---d dL L d A V πππ 则毕渥数v Bi 为05.0211.01.0039.0350136.0100)/(v =⨯=<=⨯==M A V h Bi λ 因此可以采用集总参数法求解。

θθρτ0ln hA cV= 即s548.14 1250850125020ln 100)10460.0(78003=--⨯⨯=τ则该圆钢在加热炉内的通过速度为m /s 0109.014.5486===τL v例题2:两块厚度均为30mm 的无限大平板,初始温度为20℃,分别用铜和钢制成。

平板两侧表面的温度突然上升至60℃,计算使两板中心温度均达到56℃时两板所需时间之比。

已知铜和钢的热扩散率分别为610103-⨯m 2/s 和6109.12-⨯m 2/s 。

(125.0==铜钢钢铜a a ττ)例题3:无内热源、常物性的二维导热物体在某一瞬时的温度分布为x y t cos 22=。

试说明该导热物体在x =0,y =1处的温度是随时间增加而逐渐升高,还是逐渐降低?例题4:一初始温度为20℃的钢板,厚度为10cm ,密度为为7800kg/m 3,比热容为460.5 J/(kg ∙K),导热系数为53.5W/(m ∙K),放置到温度为1200℃的加热炉中加热,钢板与烟气间的表面传热系数为407 W/(m 2∙K)。

第四章传热学

第四章传热学

4. 非稳态导热4.1 知识结构1. 非稳态导热的特点;2. (恒温介质、第三类边界条件)一维分析解求解方法(分离变量,特解叠加)及解的形式(无穷级数求和);3. 解的准则方程形式,各准则(无量纲过余温度、无量纲尺度、傅里叶准则、毕渥准则)的定义式及其物理涵义; 4. 查诺谟图求解方法;5. 多维问题的解(几个一维问题解(无量纲过余温度)的乘积);6. 集总参数法应用的条件和解的形式;7. 半无限大物体的非稳态导热。

4.2 重点内容剖析4.2.1 概述在设备启动、停车、或间歇运行等过程中,温度场随时间发生变化,热流也随时间发生变化,这样的过程称为非稳态导热。

一.过程特点分类1. 周期性非稳态导热(比较复杂,本书不做研究) 如地球表面受日照的情况 (周期为24小时)对于内燃机气缸壁受燃气冲刷的情况,周期为几分之一秒,温度波动只在很浅的表层,一般作为稳态处理。

2. 非周期性非稳态导热:(趋于稳态的过程,非稳态 稳态) 例子:如图4-1,一个无限大平板,初始温度均匀,某一时刻左壁面突然受到一恒温热源的加热,分析平壁内非稳态温度场的变化过程: (1) 存在两个阶段初始阶段:温度变化到达右壁面之前(如曲线A-C-D ),右侧不参与换热,此时物体内分为两个区间,非稳态导热规律控制区A-C 和初始温度区C-D 。

正规状况阶段:温度变化到达右壁面之后,右侧参与换热,初始温度分布的tx1t 0t ABCDEF图4-1 非稳态导热过程的温度变化影响逐渐消失。

(2) 热流方向上热流量处处不等因为物体各处温度随时间变化而引起内能的变化,在热量传递路径中,一部分热量要用于(或来源于)这些内能,所以热流方向上的热流量处处不等。

二. 研究任务1. 确定物体内部某点达到预定温度所需时间以及该期间所需供给或取走的热量,以便合理拟定加热和冷却的工艺条件,正确选择传热工质;2. 计算某一时刻物体内的温度场及温度场随时间和空间的变化率,以便校核部件所承受的热应力,并根据它制定热工设备的快速启动与安全操作规程。

传热学-第四章22

传热学-第四章22

50 × 0.02 Bi1 = = = 0.01 λ 100

400 × 0.02 Bi 2 = = =1 λ 8

第四章 热传导问题数值解法
(i ) N
式中 Fo∆ =
a∆τ 网格傅里叶数 ∆x 2
h∆τ λ ∆τ h∆x = = Fo∆ ⋅ Bi∆ 2 ρc∆x ρc ∆x λ
( ( ( ) t Ni +1) = t Ni ) (1 − 2 Fo∆ ⋅ Bi∆ − 2 Fo∆ ) + 2 Fo∆ t Ni −1 + 2 Fo∆ ⋅ Bi∆ t f
∆τ
从第二式得出
∂t ∂τ
=
n ,i
( ( t ni ) − t ni −1)
∆τ
+ O ( ∆τ ) ≈
( ( t ni ) − t ni −1)
∆τ
difference。 向后差分 back difference。
∂t 二级数相减: 二级数相减: ∂τ
( ( ( ( t ni +1) − t ni −1) t ni +1) − t ni −1) 2 = + O(∆τ ) ≈ 2∆τ 2∆τ
n ,i
( 显式格式
explicit finite difference scheme )
如扩散项用( +1)时层的值来表示 如扩散项用(i+1)时层的值来表示
( ( ( ( ( tni +1) − tni ) tni++1) − 2tni +1) + tni−+1) 1 =a 1 ∆τ ∆x 2
(隐式格式 implicit finite difference scheme) )

传热学:第四章 导热问题数值解法

传热学:第四章 导热问题数值解法

t m,n
1 t m 1,n t m 1,n t m ,n 1 t m ,n 1 4
•二维导热问题;网格线;
沿x、y方向的间距为x、 y;网格单元。
每个节点温度就代表了它 所在网格单元的温度。 p(m,n)
•此方法求得的温度场
在空间上不连续。
•网格越细密、节点越多,结果越接近分析解 •网格越细密,计算所花时间越长
2) 数值计算法,把原来在时间和空间连续的物理量的
场,用有限个离散点上的值的集合来代替,通过求解
按一定方法建立起来的关于这些值的代数方程,从而
获得离散点上被求物理量的值;并称之为数值解;
3) 实验法 就是在传热学基本理论的指导下,采用实
验对所研究对象的传热过程进行测量的方法。 3 三种方法的特点 1) 分析法 a 能获得所研究问题的精确解,可以为实验和数值 计算提供比较依据;
t m,n 1 2t m,n t m,n 1 2t 同理: 2 y y 2 m,n
将以上两式代入导热微分方程得到节点(m,n)的温 度离散方程: t tm,n1 2tm,n tm,n1 m 1, n 2t m , n t m 1, n 0 2 2 x y
x y 上式可简化
第三类边界条件: y x
qw h(t f tm,n )
2hx 2hx x 2 tm1,n tm,n1 2 tf 0 tm,n 2
(3) 内部角点
y t m 1,n t m ,n y y qw 2 x x 2 t m ,n 1 t m ,n x x t m ,n 1 t m ,n x qw 2 y 2 y 3xy 0 4

传热学第四章

传热学第四章

第四章 非稳态导热
第一节 概 述
a)温度分布;b)两侧表面上导热量随时间的变化
图4-1
第四章 非稳态导热
第一节 概 述
(1)温度场:【如图4-1a)所示】 ①首先,紧挨高温表面部分的温度很快上升, 而其余部分仍保持原来的温度t0,如图中曲线FBC所示; ②其次,随着时间的推移,温度变化波及的范围不断扩大, 以致在一定时间以后,右侧表面的温度也逐渐升高, 如图中曲线FC、FD所示; ③最后,达到一个新的稳态导热时,温度分布保持恒定, 如图中曲线FE所示。(λ为常数时,FE 为直线。)
t f ( x, y, z, )
dt (3)物体在非稳态导热过程中的温升速率: d
(4)某一时刻物体表面的热流量Φ(W) 或从某一时刻起经过一定时间后表面传递的总热量Q(J)。 要解决以上问题,必须首先求出: 物体在非稳态导热过程中的温度场。
第四章 非稳态导热
第一节 概 述
※求解非稳态导热过程中物体的温度场,通常可采用
第四章 非稳态导热
第一节 概 述 一、基本概念
非稳态导热即指温度场随时间而变化的导热过程 1、定义(P53)
t f ( x, y, z, )
※在自然界和工程中有许多非稳态导热问题。 例如,锅炉、蒸汽轮机和内燃机等动力机械在起动、停机和变 工况运行时的导热; 又如,在冶金、热处理和热加工等过程中,工件被加热或冷却 时的导热; 再有,大地和房屋等白天被太阳加热、夜晚被冷却时的导热。 ※由此可见,研究非稳态导热具有很大的实际意义。
l
—— 导热物体的某一尺寸,详见后述。
第四章 非稳态导热
第一节 概 述
1、毕渥数Bi (P55)
有时用引用尺寸l
e
l ——导热物体的某一尺寸

传热学-第4章-非稳态导热的计算与分析

传热学-第4章-非稳态导热的计算与分析

10
4.2 对流边界条件下的一维非稳态导热
❖ 对几何形状简单、边界条件不太复杂的情形,仍然可 以通过数学分析的方法获得分析解
❖ 这里以(无限大)平壁被流体对称加热的非稳态导热 过程为例,说明非稳态导热的基本特征、分析方法和 过程
❖ 定性地、定量两个方面
11
4.2.1 平壁内非稳态过程的基本特征
问题描述: ❖ 厚为2δ、无内热源的常物性平壁 ❖ 初始时刻温度分布均匀,为t0 ❖ 某时刻突然投入到温度为t∞的高
conduction):物体内任意位置的温度随时间持续升高 (加热过程)或连续下降(冷却过程) 边界条件或内热源不变时,过程将最终逐渐趋于某个 新的稳定温度场
6
4.1 概述
研究目的:
❖ ——确定非稳态过程中的温度场:在此基础上确定物体中
某个部位到达某个预定温度所需经历的时间,或者在预定时间 内可以达到的温度,或者物体的温度对时间的变化速率。
8
4.1 概述
研究方法与过程:与稳态导热的完全相同 (1)简化假设给出物理模型 (2)给出数学模型(方程+定解条件) (3)采用适当的数学方法求解 (4)分析讨论
9
4.1 概述
❖ 非稳态导热的控制方程:
τ
ρct
x
λ
t x
y
λ
t y
z
λ
t z
Φ
❖ t=f(x,y,z,t)
❖ 控制方程:偏微分方程,数学求解难度很大
❖ 随着时间的延续,壁面加热的波及区域将继续向平壁中
心推进
16
4.2.1 平壁内非稳态过程的基本特征
17
4.2.1 平壁内非稳态过程的基本特征
❖ 当温度扰动刚刚传到平壁对称 面的那个时刻,称为穿透时间, 记作τc

数值传热学作业-第四章

数值传热学作业-第四章

4-1解:采用区域离散方法A 时;内点采用中心差分123278.87769.9T T T ===22d T T=0dx - 有 i+1i 122+T 0i i T T T x---=∆ 将2点,3点带入 321222+T 0T T T x --=∆ 即321209T T -+= 432322+T 0T T T x --=∆4321322+T 0T T T x --=∆ 即4321209T T T -+-= 边界点4(1)一阶截差 由x=1 1dT dx =,得 4313T T -=(2)二阶截差 11B M M q x x xT T S δδλλ-=++V所以 434111. 1.36311T T T =++即 43122293T T -=采用区域离散方法B22d TT=0dx - 由控制容积法 0w edT dT T x dT dT ⎛⎫⎛⎫--∆= ⎪ ⎪⎝⎭⎝⎭ 所以代入2点4点有322121011336T T T T T ----= 即 239028T T -=544431011363T T T T T ----= 即3459902828T T T -+= 对3点采用中心差分有432322+T 013T T T --=⎛⎫⎪⎝⎭即2349901919T T T -+= 对于点5 由x=11dT dx =,得 5416T T -= (1)精确解求左端点的热流密度由 ()21x x eT e e e -=-+所以有 ()2220.64806911x xx x dT e e q e e dxe e λ-====-+=-=++ (2)由A 的一阶截差公式210.247730.743113x T T dT q dxλ=-=-==⨯= (3)由B 的一阶截差公式0.216400.649213x dTq dxλ=-=-== (4)由区域离散方法B 中的一阶截差公式:210.108460.6504()B BT T dT dx x δ-⎛⎫==⨯= ⎪⎝⎭ 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当!4-3解: 对平板最如下处理:1 2 3 4由左向右点分别表述为1、2、3、4点,x 的正方向为由左向右; 控制方程为λd 2tdx +S =0 (1)边界条件为X=0,T=75℃;X=0.1,λdTdx +ℎ(T −T f )=0;则2、3点采用二阶截差格式,有 则有以下两式:λT3−2T2+T1∆x+S=0(2)λT4−2T3+T2∆x2+S=0(3)一阶截差公式可由λdTdx+ℎ(T−T f)=0变形得到λ(T4−T3∆x)=h(T4−T f)再变形得到T4=[T3+h×∆xλT f]/(1+h×∆xλ)(4)二阶截差公式可以联立λT5−2T4+T3∆x2+S=0和λ(T5−T32∆x)=h(T4−T f),可得以下公式T4=[T3+∆x2S2λ+h×∆xλ]/(1+h×∆xλ)(5)分别联立2、3、4式与2、3、5式,把S=50×103W/m3,λ=10W/m∙℃,h=50 W/m∙℃,T f=25℃,T1=75℃,∆x= 1/30带入到式子中,则有联立2、3、4式的解为:T2=78.58℃,T3=76.59℃,T4=69.03℃联立3、4、5式的解为:T2=80.42℃,T3=80.28℃,T4=74.58℃对控制方程进行积分,并将边界条件带入,则有关于T的方程T=−2500x2+250x+75(6)把x2=130,x3=230,x3=0.1代入上述6式则有:T2=80.56℃,T3=80.56℃,T4=75.1℃相比之下,对右端点采用二阶截差的离散更接近真实值4-4解:对平板作如下分析:1 2 3 4 5 由左向右分别对点编号为1、2、3、4、5 控制方程与4-3相同,为λd 2tdx +S =0 (1)边界条件为X=0,T=75℃;X=0.1,λdTdx +ℎ(T −T f )=0;设1点和2点的距离为∆x ,另1点对2点进行泰勒展开,有d 2t dx =(T 1−T 2+dT dx ∆x )2∆x其中dT dx=T 3−T 22∆x,则有λ2T 1−3T 2+T 3∆x 2+S =0 (2)对3点进行离散有λT 4−2T 3+T 2∆x 2+S =0 (3)对右端点有: [a p +A 1ℎ+(δx )5λ]T 4=a w T 3+[S/∆x +AT f 1ℎ+(δx )5λ]代入数据有T 3−3T 2+155.56=0 T 4−2T 3+T 2=−5.56342.85T4-300T3=1681解得:T2=78.1℃,T3=78.7℃,T4=73.8℃由导热定律有T4−T3∆x =2T5−T4∆x则有T5=71.35℃4—12编写程序:M=rand(10,3)A=M(:,1);B=M(:,2);C=M(:,3);B(10)=0;C(1)=0;T=12:21;D(1)=A(1)*T(1)-B(1)*T(2)for i=2:9;D(i)= A(i)*T(i)-B(i)*T(i+1)-C(i)*T(i-1)endD(10)= A(10)*T(10)-C(10)*T(9);P(1)=B(1)/A(1);Q(1)= D(1)/A(1);for i=2:10;P(i)=B(i)/(A(i)-C(i)*P(i-1));Q(i)=(D(i)+C(i)*Q(i-1))/(A(i)-C(i)*P(i-1)); endfor i=10:-1:2;t(10)=Q(10);t(i-1)=P(i-1)*t(i)+Q(i-1);enddisp(D(1:10))disp(T(1:10))disp(t(1:10))运行结果:由运行结果可知:无论系数怎样变化,T与t都是一致的。

传热学思考题参考答案(陶文铨第四版)

传热学思考题参考答案(陶文铨第四版)
9、物质的变化一般分为物理变化和化学变化。化学变化伴随的现象很多,最重要的特点是产生了新物质。物质发生化学变化的过程中一定发生了物理变化。
答:放大镜的中间厚,边缘薄,光线在透过放大镜时会产生折射,因此会把物图像放大。要点: 值越大则温度变化率越小,在图上标示出来就是斜率越小(具体可参考换热器原理一书)。当相等时,顺流为对称的两曲线,而逆流时则为平行线。
答:在圆管外敷设保温层和设置肋片都使表面换热热阻降低而导热热阻增加,而一般情况下保温使导热热阻增加较多,使换热热阻降低较少,使总热阻增加,起到削弱传热的效果;设置肋片使导热热阻增加较少,而换热热阻降低较多,使总热阻下降,起到强化传热的作用。但当外径小于临界直径时,增加保温层厚度反而会强化传热。理论上只有当肋化系数与肋面总效率的乘积小于1时,肋化才会削弱传热。
答:条件:(1)材料的导热系数,表面传热系数以及沿肋高方向的横截面积均各自为常数(2)肋片温度在垂直纸面方向(即长度方向)不发生变化,因此可取一个截面(即单位长度)来分析(3)表面上的换热热阻远远大于肋片中的导热热阻,因而在任一截面上肋片温度可认为是均匀的(4)肋片顶端可视为绝热。并不是扩展表面细长就可以按一维问题处理,必须满足上述四个假设才可视为一维问题。
第八章:
1、选择太阳能集热器的表面涂层时,该涂层表面吸收率随波长的变化最佳曲线是什么?有人认为取暖用的辐射采暖片也需要涂上这种材料,你认为合适吗?
分析:太阳辐射的主要能量集中在0.2~2μm,该涂层表面吸收率随波长的变化最佳曲线是当波长小于2μm时,吸收率大,当波长大于2μm时,吸收率要小。
不合适。因为如果暖片在高温(波长小)时有很大的吸收比,那么暖片将有很大的辐射换热量,减小了对流换热量,因此不适合。
答:虽然黑体表面与重辐射面均具有J=Eb的特点,但二者具有不同的性质。黑体表面的温度不依赖于其他参与辐射的表面,相当于源热势。而重辐射面的温度则是浮动的,取决于参与辐射的其他表面。

传热学第四章非稳态导热例题

传热学第四章非稳态导热例题


(V / A)
3

85 K) 3.885 10 39.63 W/(m2· 0.025 / 3
BiV FoV 3.885 10 2.07945
3
535.25
2013-9-10
9
由式(4-6)计算换热量:
hA Q cV(t 0 t f)1 exp( ) cV


a 6
D(t 0 t f)1 e (
3
BiV FoV
)
85 3 2.07945 0.05 ( 60 (1 e 300 ) ) 5 6 2.95 10
=39.6 kJ
返回
2013-9-10 10
【例4-3】一根直径为1m,壁厚40mm 的钢管,初温为-20℃,后将温度为60℃的 热油泵入管中,油与管壁的换热系数为 500 W/(m2· K),管子外表面可近似认为是绝 热的。管壁的物性参数ρ=7823kg/m3, c=434J/(kg·K),λ=63.9 W/(m· K)。
1.882 10 8 60 Fo 2 5.646 2 0.04
a
5
2013-9-10
14
(2) 由于Bi>0.1, 故不能采用集总参
数法,需用线算图求解。
管子外表面, 1 3.195
Bi
查图4-7得
m 0.24 0
管子外表面温度为:
t m m t f 0.24 0 t f 0.24 20 60 60 40.8 ( )
V 准则中的特征尺寸是用 LV 确定的, A
而不是 R/2 ,所以,是否可采用集总参 数法的判别用BiV<0.1M。

传热学-第4章-非稳态导热的计算与分析

传热学-第4章-非稳态导热的计算与分析
34
‹# ›
4.2.2 平壁内温度分布的分析解
Q0 cV t0 t
这是该非稳态导热过程所吸收的总热量 从初始时刻起到某一时刻τ的这段时间内,平壁所吸
收的热量为:
Q V c t x, t0 dV
35
‹# ›
4.2.3 Fo数和Bi数对非稳态过程的影响
• 平壁内温度分布表达式中含有Fo数和Bi数,这说明非稳 态导热的物理过程和特征要受到这两个无量纲量的影响 • 传热学中,通常将表示某一物理现象或物理过程特征的 量纲一的量,称为特征数或准则数
22
‹# ›
4.2.2 平壁内温度分布的分析解
• 为了定量计算平壁内的温度场, 需要建立描述平壁内温度分布 的数学模型 • 由于平壁两侧受流体对称加热, 中心面为对称面
23
‹# ›
4.2.2 平壁内温度分布的分析解
• 由于温度场对称,只需研究 厚为δ的半块平壁即可 • 将坐标原点置于平壁中心面, 建立如图所示的坐标系
到达某个预定温度所需经历的时间,或者在预定时间内可以达到 的温度,或者物体的温度对时间的变化速率。 ——确定非稳态过程的热流量或热量:确定物体在某一瞬间每一位 置处的热流密度、从某一时刻起经过一段时间后的总传热量。
7
‹# ›
4.1 概述
关键:确定温度场t=f(x,y,z,t) 非稳态导热问题的温度场不仅与空间坐标有关,而且还随 时间τ变化,使物体内任位置处的热流量和热流密度也随 时间变化 非稳态导热问题的分析和研究过程更复杂
37
‹# ›
4.2.3 Fo数和Bi数对非稳态过程的影响
将Fo数的定义式改写为:
Fo a 2 2 a
式中,τ和δ2/a都具有时间的量纲 ——分子τ表示:边界上发生热扰动时刻算起到计算时刻 为止的时间 ——分母δ2/a表示:热扰动经过一定厚度的固体层传播到 面积δ2上所需要的时间

第4章-非稳态导热的分析与计算-简化

第4章-非稳态导热的分析与计算-简化

h

第4章 非稳态导热的分析与计算
4.2 对流边界条件下的一维非稳态导热/分析解
x, x 2 a Cn exp n 2 cos n 0 n 1
4sin n Cn 2n sin 2n
t |x h t |x t x
第4章 非稳态导热的分析与计算
4.2 对流边界条件下的一维非稳态导热/数学模型

完整的数学模型:
t 2t 控制方程: a 2 x
0 x , 0
初始条件: cV t t0
非稳态导热过程所传递的最大热量
第4章 非稳态导热的分析与计算
4.2 对流边界条件下的一维非稳态导热/吸热量
从初始时刻开始的某时间段的吸热量:
Q c t x, t0 dV cA t x, t0 dx V V
第4章 非稳态导热的分析与计算
4.2 对流边界条件下的一维非稳态导热/分析解
x, 0
x x 2 f Fo, Bi, Cn exp n Fo cos n n1
当Fo>0.2时,取Cn= Fo>0.2:

当Fo>0.2后:
x, x cos 1 0,
——θ(x,τ)与θ(0,τ) 的比值却与τ无关,仅取决于平壁的几
何位置(x/δ)和Bi数 ——初始条件的影响已经消失:正规状况阶段
第4章 非稳态导热的分析与计算
4.2 对流边界条件下的一维非稳态导热/分析解


几何上:平壁
物理上:沿高度和宽度方向的换 热均匀一致

传热学基础(第二版)第四章教学课件非稳态导热

传热学基础(第二版)第四章教学课件非稳态导热
Lctptw
23/250291/4/16
0~τ范围内积分,得凝固层厚度的表达式
2 b L t w c ttp 0tw K
此式称为平方根定律,即凝固层厚度与凝固时 间的平方根成正比。式中
K2 b L t w c ttp 0tw
ms12
K 称为 凝固系数
24/250291/4/16
几种材质在不同冷却条件下的K值
由于砂型的导热系数较小,型壁较厚,所以平面 砂型壁可按半无限大平壁处理。本节得到的公式 应用于铸造工艺,可以计算砂型中特定地点在τ 时刻达到的温度和0~τ时间内传入砂型的累积热量。 瞬时热流密度qw和累计热量Q w都与蓄热系数成正 比,所以选择不同造型材料,即改变蓄热系数, 就成为控制凝固进程和铸件质量的重要手段。
物性的这种组合可表成: a c
cb W /m (2Cs1/2)
a b称为蓄热系数。它完全由材料的热物性构 成,它综合地反映了材料的蓄热能力,也是个热 物性。
15/250291/4/16
铸铁和铸型蓄热系数b的参考值。
热物性 材料
铸铁
导热系数 比热容 密度 热扩散率 蓄热系数
λ
c
ρ
a
b
46.5 753.6 7000 8.82×10-6 15600
5 /59 2021/4/16
积蓄(或放出)热 量随时间而变化是过 程的又一个特点。于 是在工程计算中,确 定瞬时热流密度和累 计热量也是非稳态导 热问题求解的任务。 在图中,累计热量由 指定时间τ与纵坐标 间曲线下的面积表示。
6/59 2021/4/16
4-2 第一类边界条件下的一维非稳态导热
式:
qw ' Lctptw
d d
与式

传热学第四版课后题答案第四章

传热学第四版课后题答案第四章

第四章复习题1、 试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。

2、 试说明用热平衡法建立节点温度离散方程的基本思想。

3、 推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似,为什么前者得到的是精确描述,而后者解出的确实近似解。

4、 第三类边界条件边界节点的离散那方程, 也可用将第三类边界条件表达式中的一阶导数用差分公式表示来建立。

试比较这样建立起来的离散方程与用热平衡建立起来的离散方程的异同与优劣。

5.对绝热边界条件的数值处理本章采用了哪些方法?试分析比较之.6.什么是非稳态导热问题的显示格式?什么是显示格式计算中的稳定性问题?7.用高斯-塞德尔迭代法求解代数方程时是否一定可以得到收敛德解?不能得出收敛的解时是否因为初场的假设不合适而造成?t3t n i 5t n i 1 t n i 28.有人对一阶导数xn,i2 x 2你能否判断这一表达式是否正确,为什么? 一般性数值计算4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验公式及用无穷级数表示的分析解,也常用计算机来获得数值结果。

试用数值方法对Bi=0.1,1,10 的三种情况计算下列特征方程的根n (n1,2,6) :tan nBi , n1,2,3nFoa0.22并用计算机查明,当时用式( 3-19)表示的级数的第一项代替整个级数(计算中用前六项之和来替代)可能引起 的误差。

解:ntannBi,不同 Bi 下前六个根如下表所示:Bi μ 1μ 2μ 3 μ 4 μ 5 μ 6 0.1 0.31113.1731 6.2991 9.4354 12.5743 15.7143 1.0 0.8603 3.4256 6.4373 9.5293 12.6453 15.7713 101.42894.30587.228110.200313.214216.2594Fo=0.2 及 0.24时计算结果的对比列于下表:Fo=0.2 xBi=0.1 Bi=1Bi=10 第一项的值 0.94879 0.62945 0.11866前六和的值0.95142 0.64339 0.12248比值0.997240.978330.96881Fo=0.2 x 0Bi=0.1 Bi=1Bi=10 第一项的值 0.99662 0.96514 0.83889前六项和的值0.994 0.95064 0.82925比值1.0021.015251.01163Fo=0.24 xBi=0.1Bi=1Bi=10第一项的值 0.94513 0.61108 0.10935 前六项的值0.94688 0.6198 0.11117 比值0.998140.986940.98364Fo=0.24 x 0Bi=0.1Bi=1 Bi=10 第一项的值 0.99277 0.93698 0.77311 前六项和的值0.99101 0.92791 0.76851 比值1.001771.009781.005984-2、试用数值计算证实,对方程组x 1 2x 2 2x 3 1 x 1 x 2 x 332x 1 2x 2 x 3 5用高斯 -赛德尔迭代法求解,其结果是发散的,并分析其原因。

第五版传热学第四章

第五版传热学第四章

3.C++ —— C plus plus,C语言的增强版,目前最常用的应用程序设计 语言,数值计算软件主要使用的语言。
二、常用计算软件
1.MATLAB——矩阵计算软件
matlab软件主界面
2.FLUENT——流体流动通用数值计算软件
3. FLUENT AIRPAK ——人工环境系统分析软件,暖通空调专业和传热学领域必备软件
第四章 导热数值解法基础
本章研究的目的 ——利用计算机求解难以用 分析解求解的导热问题 基本思想 ——把原来在时间、空间坐 标系中连续的物理量的场, 用有限个离散点的值的集合 来代替,通过求解按一定方 法建立起来的关于这些值的 代数方程,来获得离散点 上被求物理量的值。 研究手段——有限差分法
物理问题的数值求解过程
优点——无条件稳定 缺点——不可根据kΔ τ 时刻温度分布直接计算 (k+1)Δ τ 时刻温度分布
ቤተ መጻሕፍቲ ባይዱ
第四节 常用算法语言和计算软件简介
一、常用算法语言
1.FORTRAN语言 ——Formula Translation,数值计算领域所使用的主要语言。
2.C语言 ——将高级语言的基本结构和语句与低级语言的对地址操作结合 起来的应用程序设计语言。


k k k k ti Fo ti 1 ti 1 1 2 Foti


优点——可根据kΔ τ 时刻温度分布直接计算(k+1)Δ τ 时刻温度分布 缺点——选择Δ x和 Δ τ 时必须满足稳定性条件 a a 1 或 1 2 0 2 2 x x 2
第三节 非稳态导热的数值计算
研究对象——一维非稳态导热问题 一、显式差分格式
t 2t a x 2

热工基础传热学

热工基础传热学
λ——导热系数(热导率 ),
w/(m·k),与物体性质、 温度有关,各向同性与各向异 性之别。 热流密度:
q=Φ/A= λΔt /δ
二、热对流
1、特征:(1)物体相互接触; (2)各部分之间发生相对位移;
(3)依靠微观离子热运动。 (4)固体—流体、 流体—流体 2、热流量与热流密度 热流量:牛顿冷却公式
第四章 热量传递的基本原理
第一节 热量传递的三种基本方式
传热的三种不同形式:热传导、热对流、 热辐射。 一、热传导
1、特征:(1)物体相互接触; (2)各部分之间不发生相对位移; (3)依靠微观离子热运动。
(4)固体—固体、固体—流体、 流 体—流体
2、热流量与热流密度 热流量: Φ= λ AΔt /δ
φ
y
x
c t
1 r t
r r r
1 r2
t
t
.
z z
球坐标系里导热微分方程:
z
t(r,φ,θ) θ
φ
y
x
c t
1 r2
r 2
r
t r
1
r 2 sin 2
t
r
2
1
sin
sin
t
.
2、求解导热微分方程的定解条件
(1)第一类边界条件:已知边界上的温度
例如:tw=const tw=f1(τ)
一维稳态温度场
τ≠const t=f (x,y,z,τ) 非稳态温度场
等温线和等温面
2、温度梯度
t-Δt t t+Δt
lim t t
gradt n
n
n0 n n
q
n
3、傅立叶定律——导热基本定律

《传热学》2版 辅导资料 思考题参考答案

《传热学》2版 辅导资料 思考题参考答案
2.参见附图,圆筒壁内侧t1<t2,请判断壁内温度分布应该是两图中哪一个?并说明理由,设导热系数等于常数。
回答:导热系数等于常数的一维导热方程是(3-1-15),于是温度梯度可以写作(dt/dr) =c/r。可见,温度梯度与径向坐标成反比,即半径小的圆筒壁内侧的温度梯度一定大于外侧的温度梯度。所以附图(b)是正确的。
回答:非稳态导热问题遵循两个基本规律,一个是能量守恒定律,一个是傅里叶定律。在对物体内的任意微元体积做热平衡分析时,切记傅里叶定律中的热流密度和温度梯度均代表瞬时值,傅里叶定律的规律仍成立。
3.应用傅里叶定律时有哪些限制?
回答:限制条件是:(1)纯导热物体(非纯导热物体以当量或表观导热系数描述之);(2)各向同性(各向异性物体须在导热主轴坐标系中运用傅里叶定律);(3)非超短时间、超大热流密度或超低温度的导热问题。
3.凸状轴呈对称图形,如果侧面绝热且导热系数为常数,其一维稳态温度分布呈什么?
回答:在一维、稳态、无内热源且常物性条件下,热流量为常数,即A(x)dt/dx=常数。这表明导热的截面积A与温度梯度成反比。只有在等截面情况下,温度梯度才是常量。
回答:导热系数随温度变化时,函数关系一般是写作=0(1+b t)的形式。但是一般来说0却并不代表0℃时该材料的导热系数。参见附图,这是因为0实际上是该式适用温度区间内近似线性关系的延长线与纵轴的交点。它一般不会正好与=f(t)曲线在0℃时的数值相等。
写为=0+bt时,0未变,而b相当于原式中的0b。
8.已知某个确定的热流场q=f(x, y),能否由此唯一地确定物体的温度场?或者还需要补充什么条件?反过来,从温度场能否唯一地确定热流场?
回答:导热问题中若全部边界条件都是第二类(包括绝热),将无法唯一地得到温度场的确定解。而对给定的温度场,却可以根据傅里叶定律唯一地确定热流场。因为一个物体若均匀地提升相同温度,其热流场将不会发生任何改变。即一个热流场可以对应无穷多个温度场。所以,导热问题必须至少具有一个温度参考点,才能唯一地确定其解。

第4章-非稳态导热的计算分析

第4章-非稳态导热的计算分析

是与物体几何形状
Biv
h( V
A)
1、非稳态导热的分类
周期性非稳态导热:物体的温度随时间而作周期 性的变化 非周期性非稳态导热(瞬态导热):物体的温度 随时间不断地升高(加热过程)或降低(冷却过 程),在经历相当长时间后,物体温度逐渐趋近 于周围介质温度,最终达到热平衡,物体的温度 随时间的推移逐渐趋近于恒定的值。
❖ 300℃的铁块在冷水中的冷却
x, 0,
cos
1
x
它表明:当Fo>0.2后,虽然θ(x,τ)与θ(0,τ)各自均与τ相关, 但它们的比值却与τ无关而仅取决于平壁的几何位置(x/δ) 和Bi数
这意味着初始条件的影响已经消失,这就是正规状况阶段
❖ 计算正规状况阶段的温度需要根据Bi数确定相应 的特征值,使用时不甚方便
❖ 工程上常采用两种简化的计算方法,由海斯勒 (Heisler)提出的诺模图(nomogram)方法和由 Campo提出的近似拟合公式
数时,即 τ=τr,
=e1 0.386 0
0.386 01
τ/τr
τ=4τr,
=e4.6 0.01 工程上认为 =4τr时导热
0
体已达到热平衡状态
瞬态热流量:
Φ( ) hA(t( ) t ) hA
总热量:
hA
hA0e Vc
W
导热体在时间 0~ 内传给流体的总热量:
Q
0
Φ(
)d
一、无限大平板加热(冷却)过程分析
厚度 2 的无限大平壁,、a 为已知常数;=0时温度为 t0;
突然把两侧介质温度降低为 t 并保持不变;壁表面与介质之 间的表面传热系数为h。 两侧冷却情况相同、温度分布 对称。中心为原点。

第四章_导热问题的数值方法

第四章_导热问题的数值方法

5 热传导问题的数值方法5.1一维稳态导热一维稳态导热在直角坐标系下的控制方程可表示为:0)(=+s dxdT k dx d (5-1) 式中k 为导热系数,T 是温度,s 是单位容积的热产生率。

首先选定控制体和网格,如图5.1所示,并对方程(5-1)在所选定的控制体进行积分,即得:0)()(=+-⎰dx s dxdTk dx dT k e w w e (5-2)图5.1 控制体和网格然后进行离散化。

如果用分线段性分布来计算方程(5-2)中的微商dxdT,那么最终的方程为:0)()()()(=∆+---x s x T T k x T T k wW P w e P E e δδ (5-3)假设源项s 在任一控制体中之值可以表示为温度的线性函数,即P P c T s s s +=,则导出的离散化方程为:b T a T a T a W W E E P P ++= (5-4)式中x s b xs a a a x k a x k a c P W E P w wW ee E ∆=∆-+=δ=δ=)()( (5-5) 式(5-4)就是一维稳态导热方程的离散形式,系数a E 和a W 分别代表了节点P 与E 间及W 与P 间导热阻力的倒数,它们的大小反映了节点W 和E 处的温度对P 点的影响程度。

式中的k e 和k w 是控制容积中的e 和w 界面上的当量导热系数。

进行计算时,物理参数值存储在节点的位置上。

为了确定k e 和k w ,还需规定由节点上的物理量来计算相应界面上的量的方法。

常用的方法由两种,即算术平均法与调和平均法。

1、算术平均法假定k 与x 呈线性关系,由P 与E 点的导数系数确定e k 的公式为:eeE e e P e x x k x x k k )()()()(δδ+δδ=-+ (5-6)2、调和平均法利用传热学的基本公式可以导出确定界面上当量导热系数的调和平均公式。

控制容积中P 和E 的导热系数不相等,但界面上热流密度应该连续,则由Fourier 定律可得:()()()()EePePE EeeE PePe e k x k x T T k x T T k x T T q +-+-δ+δ-=δ-=δ-=(5-7)而()Pe PE e k x T T q δ-=则()()()Ee Pe eek x k x k x +-+=δδδ (5-8)这就是确定界面上当量导热系数的调和平均公式,它反映了串联过程热阻的迭加原则。

传热学课件第四章非稳态导热

传热学课件第四章非稳态导热


exp



hA
cV


hA
cV

h V

A

c
V

A2

hl

c

l2

hl

a
l2

BiV
FoV

0
e BiV FoV
exp
BiV FoV
下角标V表示以 l=V/A为特征长度
在0~ 时间内物体和周围环境之间交换的热量
升高到t1并保持不变,而右侧仍与温度为t0的 空气接触。这时紧挨高温表面那部分的温度
很快上升,而其余部分则仍保持初始温度t0, 如图中曲线HBD所示。随着时间的推移,经τ 1, τ 2,τ 3…平壁从左到右各部分的温度也依次 升高,从某一时刻开始平壁右侧表面温度逐
渐升高,图中曲线HCD、HE、HF示意性地表示
• 二、Bi数对导热体温度分布的影响

Bi hL L / 的大小对非稳态导热过程中导
热体内的 温1度/ h 分布有重要的影响。
• 厚为2δ的平壁突然置于流体中冷却时 ,Bi数 不同壁中温度场的变化会出现三种情形 。
思考题: 试说明毕渥数的物理意义。 毕渥数趋于
零和毕渥数趋于无穷各代表什么样的换热条件? 有人认为,毕渥数趋于零代表了绝热工况,你 是否赞同这一观点,为什么?

球 Bi hR

Fo

a 2
BiV

h
FoV

a 2
Fo

a
R2
BiV
h(R / 2)

FoV

高等传热学非稳态导热理论21

高等传热学非稳态导热理论21

高等传热学导热理论第四讲 非稳态导热描述非稳态导热问题的微分方程:pC t a t ρτΦ+∇=∂∂ 2共有四维,不好解。

最简单的情况,如果系统内部无温度差(即无导热),它的温度变化规律如何?这就是所谓的薄壁问题,此时无需考虑系统的空间坐标,所以又是0维问题。

1.薄壁问题(P 40-45)即集总参数系统 薄壁理论:如果系统内部无温度差,由热力学第一定律可得:MCdt d A d q =•⎰Ωτ 1-2-1当热流密度与边界相互垂直时,有:VCdt qAd ρτ= 1-2-2如边界上的热流密度为)(t t h q f -=VCdt d t t hA f ρτ=-)( 1-2-300t t ==τ实际情况 t 不可能相同。

什么条件下可用薄壁公式呢?工程界用得最多的判据是:1.0≤Bi 1-2-4对平壁,圆柱和球,此时内部温差小于5% 有人对此判据提出异议:在加热初期极短时间内,任何有限薄壁可看作半无限大体,温度只影响边界附近薄层中,与薄壁概念不符。

判据1-2-4的缺点是没有F o 的影响。

R o s e n o w 提出另一个判据,该判据含F o ,但存在B i 越小,薄壁区越小的缺点,与判据1-2-4不相容。

俞佐平提出了含F o 的新判据,可与判据1-2-4相容。

本人从理论上证明了判据1-2-4的合理性,发现异议者的误区在于当B i 很小时,无论时间如何短,与该薄壁相应的半无限大体中的最大温差也不会超过我们限定的温差。

这就是问题的实质。

2.薄壁加热理论:由式1-2-2,得:()H C VC qA d dt ==ρτ//叫升温速度。

由此式可以清楚地看到形状和密度对升温速度的影响。

()V A C q C H ρ//⨯=()球圆柱=平壁32/13/2//===⎪⎩⎪⎨⎧=k k k R k R R RA V ρρρρρ()R k C q C H ρ//⨯=在R 相同时,球的升温速度最快,是厚为2R 平壁的3倍,平壁最慢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-9-10

15
(3)管子内表面, 查图4-8得:

x
1
w 0.86 m
管子内表面温度为:
t w w t f 0.86 m t f 0.86 40.8 60 60 43.5 ( )

2013-9-10
16
Q0 cV(t f t 0)
tf=60 ℃
h=500 W/(m2· K)
平壁中心表面,管子内
表面对流换热相当于平 壁x/δ=1的位置。
2013-9-10
δ=40mm
x
13Leabharlann 500 0.04 0.313 (1) Bi 63.9
h
63.9 5 m2 /s a 1.882 10 c 7823 434
热油已传给管壁的热量:
J/m
返回
17
1.882 10 8 60 Fo 2 5.646 2 0.04
a
5
2013-9-10
14
(2) 由于Bi>0.1, 故不能采用集总参
数法,需用线算图求解。
管子外表面, 1 3.195
Bi
查图4-7得
m 0.24 0
管子外表面温度为:
t m m t f 0.24 0 t f 0.24 20 60 60 40.8 ( )
2013-9-10 6
解:本题换热系数未知,即BiV
数未知,所以无法判断是否满足集总 参数法的条件。为此,先假定可采用 集总参数法,然后验算。 a FoV (V / A) 2
2.95 10 21 60 535.25 2 (0.025 / 3)
2013-9-10 7
5
Bi 由 e 0
V FoV
1 BiV 1n FoV 0
1 90 60 ln 3.885 10 3 535.25 300 60
显然, V 3.885 10 3 0.03333 故满 Bi 足集总参数法的适用条件
2013-9-10 8
由 BiV
h BiV
h(V / A)
V 准则中的特征尺寸是用 LV 确定的, A
而不是 R/2 ,所以,是否可采用集总参 数法的判别用BiV<0.1M。
返回
2013-9-10 5
【例4-2】为了测定铜球与空气之间
的对流换热系数,把一个直径D=50mm,
导热系数λ=85 W/(m· K),热扩散率 α=2.95×10-5 m2/s,初始温度t0=300℃的 铜球移置于60℃的大气中,经过21min后, 测得铜球表面温度为90℃,试求铜球与 空气间的对流换热系数及在此时间内的 换热量。
ρ=8954kg/m3,c=383.1 J/(kg· K)。
2013-9-10 2
解: 先求出BiV准则,判别是否可采用
集总参数法。
D 2
V A 4 D 2 2 Dl 4 l

2

4
0.05 2 0.06
4 0.0088235m
2013-9-10
0.05 2 0.05 0.06
=7823×434×π ×1×0.04[60-(-20)] = 3.41×107 J/m ,Bi 2 Fo 0.553 据 Bi 0.313 查图4-11得
Q Q Q0 Q0 0.77 3.41 10 7 2.626 10 7
2013-9-10
Q Q0
=0.77
第四章 非稳态导热例题
【例4-1】 【例4-2】 【例4-3】
2013-9-10
1
【例4-1】直径50mm,高60mm的铜 柱,开始时具有均匀温度150℃。突然将 其浸入温度保持50℃的流体中,流体与 铜柱表面间的换热系数 h=20 W/(m2· K), 试计算铜柱温度降到100℃,需要多长时 间?铜柱的物性为λ=386 W/(m· K),
2013-9-10
11
试求开始流过油8min时
(1)所对应的Bi数和Fo数 。 (2) 管子外表面的温度。
(3) 管子内表面的温度。
(4) 热油已传给管壁的热量。
2013-9-10
12
解: 如图,由于管
壁厚度相对于管径小得
多,故可近似看作厚为
δ=40mm的大平壁。管
子外表面绝热,相当于
绝 热 面

(V / A)
3

85 K) 3.885 10 39.63 W/(m2· 0.025 / 3
BiV FoV 3.885 10 2.07945
3
535.25
2013-9-10
9
由式(4-6)计算换热量:
hA Q cV(t 0 t f)1 exp( ) cV


a 6
D(t 0 t f)1 e (
3
BiV FoV
)
85 3 2.07945 0.05 ( 60 (1 e 300 ) ) 5 6 2.95 10
=39.6 kJ
返回
2013-9-10 10
【例4-3】一根直径为1m,壁厚40mm 的钢管,初温为-20℃,后将温度为60℃的 热油泵入管中,油与管壁的换热系数为 500 W/(m2· K),管子外表面可近似认为是绝 热的。管壁的物性参数ρ=7823kg/m3, c=434J/(kg·K),λ=63.9 W/(m· K)。
3
Bi v
h(V / A)

20 0.0088235 386
0.000457 0.05
故可用集总参数法。
0 ln hA cV
8954 383.1 0.0088235 150 50 1n 1049s 20 100 50
2013-9-10 4
【讨论】 本题为一个短圆柱体,BiV
相关文档
最新文档