《正弦函数的图像》教学案

合集下载

1.4.1《正弦函数余弦函数的图像》教案

1.4.1《正弦函数余弦函数的图像》教案

1.4.1《正弦函数余弦函数的图像》教案篇一:正弦函数余弦函数的图像一、教学目标1. 知识与能力能够正确理解正弦函数和余弦函数的定义,并能够绘制它们的图像。

2. 过程与方法学会利用函数的性质和特点绘制函数的图像。

3. 情感态度价值观通过绘制正弦函数和余弦函数的图像,培养学生对数学的兴趣,提高他们的数学解决问题的能力。

二、教学重难点1. 教学重点正弦函数和余弦函数的定义,以及它们的图像特点。

2. 教学难点学生可能对正弦函数和余弦函数的周期性特点理解困难,需要适当的引导和解释。

三、教学过程1. 导入通过展示一张正弦函数和余弦函数的图像,并向学生提问:“这是什么图像?它们有什么特点?”引导学生思考,激发他们的兴趣。

3. 练习让学生通过例题练习,掌握正弦函数和余弦函数的图像特点。

指导学生如何根据函数的性质绘制出函数的图像。

4. 拓展让学生利用计算机绘制正弦函数和余弦函数的图像,并与手绘的图像进行比较,加深对函数图像的理解。

6. 反思让学生总结本节课的学习收获和问题,激发他们对数学学习的兴趣。

四、教学资源1. PPT课件2. 正弦函数和余弦函数的图像3. 计算机绘图软件五、教学评价1. 提问通过提问考察学生对正弦函数和余弦函数的理解程度。

2. 练习布置练习题,检验学生对函数图像的掌握情况。

3. 课堂表现评价学生在课堂上的表现,包括学习态度和参与程度。

六、教学反思1. 教学方法在本节课的教学过程中,需要充分引导学生自主学习,培养他们的解决问题的能力。

2. 教学内容应该注重对正弦函数和余弦函数图像特点的深入讲解,让学生掌握绘制函数图像的方法。

七、教学改进在后续的教学中,可以增加案例分析和实际应用的讲解,让学生更好地理解正弦函数和余弦函数的图像特点。

注重对学生自主学习和实践能力的培养。

正弦函数图像教案

正弦函数图像教案

正弦函数图像教案第一章:正弦函数的定义与性质1.1 教学目标了解正弦函数的定义与基本性质学会用图像表示正弦函数掌握正弦函数的周期性与对称性1.2 教学内容正弦函数的定义:正弦函数是直角三角形中的一个角的正弦值,用符号sin 表示正弦函数的图像:正弦函数的图像是一条波浪形的曲线,称为正弦波正弦函数的周期性:正弦函数的图像每隔一个周期就会重复一次,周期为2π正弦函数的对称性:正弦函数是奇函数,具有轴对称和中心对称的性质1.3 教学活动引入正弦函数的定义,通过实际问题引入正弦函数的图像利用图形计算器或者软件绘制正弦函数的图像,观察其波浪形的特征引导学生通过观察图像,发现正弦函数的周期性和对称性进行小组讨论,让学生分享自己的观察和发现,进行互动交流1.4 作业与评估布置一些有关正弦函数定义与性质的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数定义与性质的理解程度第二章:正弦函数的图像2.1 教学目标学会绘制正弦函数的图像了解正弦函数图像的各个部分掌握正弦函数图像的平移与伸缩变换2.2 教学内容正弦函数图像的绘制:通过图形计算器或者软件,绘制正弦函数的图像正弦函数图像的各个部分:包括最大值、最小值、零点和周期正弦函数图像的平移与伸缩变换:通过改变函数中的参数,实现图像的平移与伸缩2.3 教学活动利用图形计算器或者软件,引导学生自己绘制正弦函数的图像引导学生观察正弦函数图像的各个部分,理解其含义讲解正弦函数图像的平移与伸缩变换,通过实际操作进行演示进行小组讨论,让学生分享自己的绘制经验和发现,进行互动交流2.4 作业与评估布置一些有关正弦函数图像的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数图像的理解程度第三章:正弦函数的应用3.1 教学目标学会应用正弦函数解决实际问题了解正弦函数在生活中的应用场景掌握正弦函数在数学、物理等领域的应用方法3.2 教学内容正弦函数的实际问题:通过实际问题引入正弦函数的应用正弦函数的应用场景:包括波动、振动、音乐等正弦函数在其他领域的应用:包括数学、物理、工程等3.3 教学活动引入正弦函数的实际问题,引导学生运用正弦函数解决通过实例讲解正弦函数在生活中的应用场景,让学生了解其应用广泛性讲解正弦函数在其他领域的应用方法,引导学生进行思考与探索进行小组讨论,让学生分享自己的应用经验和发现,进行互动交流3.4 作业与评估布置一些有关正弦函数应用的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数应用的理解程度第四章:正弦函数图像的综合分析4.1 教学目标学会综合分析正弦函数图像掌握正弦函数图像的变换规律了解正弦函数图像在实际问题中的应用4.2 教学内容正弦函数图像的变换规律:包括平移、伸缩、反转等正弦函数图像在实际问题中的应用:通过实例分析正弦函数图像的实际意义综合分析正弦函数图像:通过观察图像,得出正弦函数的性质和规律4.3 教学活动引导学生通过观察正弦函数图像,发现图像的变换规律利用实例讲解正弦函数图像在实际问题中的应用,引导学生进行思考与探索进行小组讨论,让学生分享自己的分析和发现,进行互动交流4.4 作业与评估布置一些有关正弦函数图像综合分析的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数图像综合分析的理解程度5.1 教学目标了解正弦函数图像在各个领域的应用探索正弦函数图像的拓展问题5.2 教学内容正弦函数图像的拓展问题:探索正弦函数图像在其他领域的应用和拓展问题5.3 教学活动利用实例讲解正弦函数图像在各个领域的应用,引导学生进行思考与探索提出正弦函数图像的拓展问题,引导学生进行思考与讨论5.4 作业与评估第六章:正弦函数图像的绘制与应用6.1 教学目标学会使用图形计算器或者软件绘制正弦函数图像能够应用正弦函数图像解决实际问题6.2 教学内容正弦函数图像的绘制:学习如何使用图形计算器或者软件绘制正弦函数图像正弦函数图像的应用:通过实际问题,学习如何利用正弦函数图像解决问题6.3 教学活动讲解如何使用图形计算器或者软件绘制正弦函数图像,并进行演示学生分组进行实验,自行绘制正弦函数图像,并尝试解决实际问题6.4 作业与评估布置一些有关正弦函数图像绘制与应用的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数图像绘制与应用的理解程度第七章:正弦函数图像的变换7.1 教学目标学会正弦函数图像的平移、伸缩和反转等变换方法能够理解和应用这些变换方法解决实际问题7.2 教学内容正弦函数图像的平移:学习如何通过改变函数中的参数实现图像的平移正弦函数图像的伸缩:学习如何通过改变函数中的参数实现图像的伸缩正弦函数图像的反转:学习如何通过改变函数中的参数实现图像的反转7.3 教学活动讲解正弦函数图像的平移、伸缩和反转等变换方法,并进行演示学生分组进行实验,尝试对正弦函数图像进行各种变换,并解决实际问题7.4 作业与评估布置一些有关正弦函数图像变换的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数图像变换的理解程度第八章:正弦函数图像在实际问题中的应用8.1 教学目标学会如何将正弦函数图像应用于实际问题中能够利用正弦函数图像解决实际问题8.2 教学内容正弦函数图像在物理中的应用:例如振动、波动等正弦函数图像在工程中的应用:例如信号处理、电路设计等正弦函数图像在数学中的应用:例如证明、分析等8.3 教学活动讲解正弦函数图像在实际问题中的应用,并进行演示学生分组进行实验,尝试利用正弦函数图像解决实际问题8.4 作业与评估布置一些有关正弦函数图像在实际问题中应用的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数图像在实际问题中应用的理解程度第九章:正弦函数图像的进一步探索9.1 教学目标学会如何探索正弦函数图像的更深层次的性质和规律能够利用这些性质和规律解决更复杂的问题9.2 教学内容正弦函数图像的周期性:学习正弦函数图像的周期性及其应用正弦函数图像的对称性:学习正弦函数图像的对称性及其应用正弦函数图像的奇偶性:学习正弦函数图像的奇偶性及其应用9.3 教学活动讲解正弦函数图像的周期性、对称性和奇偶性等更深层次的性质和规律,并进行演示学生分组进行实验,尝试探索正弦函数图像的重点和难点解析1. 正弦函数的定义与性质重点:正弦函数的定义与基本性质的理解难点:正弦函数的周期性与对称性的深入理解2. 正弦函数的图像重点:正弦函数图像的绘制与观察难点:正弦函数图像的平移与伸缩变换的掌握3. 正弦函数的应用重点:正弦函数在实际问题中的应用场景的发现难点:正弦函数在数学、物理等领域的应用方法的探索4. 正弦函数图像的综合分析重点:正弦函数图像的综合分析方法的掌握难点:正弦函数图像的变换规律的应用难点:正弦函数图像在各个领域的应用的拓展6. 正弦函数图像的绘制与应用重点:图形计算器或者软件的使用方法难点:正弦函数图像在实际问题中的应用7. 正弦函数图像的变换重点:正弦函数图像的平移、伸缩和反转等变换方法的掌握难点:变换方法在实际问题中的应用8. 正弦函数图像在实际问题中的应用重点:实际问题中正弦函数图像的应用方法的发现难点:复杂实际问题的解决9. 正弦函数图像的进一步探索重点:正弦函数图像的更深层次的性质和规律的探索难点:性质和规律在更复杂问题中的运用本文主要分析了正弦函数图像的教学内容,从正弦函数的定义与性质,到正弦函数的图像,再到正弦函数的应用,是正弦函数图像的综合分析,接着是正弦函数图像的绘制与应用,之后是正弦函数图像的变换,再之后是正弦函数图像在实际问题中的应用,是正弦函数图像的进一步探索。

《正弦函数的图像》教学案

《正弦函数的图像》教学案

《正弦函数的图像》教学案一、教学目标:1、知识与技能(1)进一步熟悉单位圆中的正弦线;(2)理解正弦诱导公式的推导过程;(3)掌握正弦诱导公式的运用;(4)能了解诱导公式之间的关系,能相互推导;(5)理解并掌握正弦函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性;(6)能熟练运用正弦函数的性质解题。

2、过程与方法通过正弦线表示α,-α,π-α,π+α,2π-α,从而体会各正弦线之间的关系;或从正弦函数的图像中找出α,-α,π-α,π+α,2π-α,让学生从中发现正弦函数的诱导公式;通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

3、情感态度与价值观通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

二、教学重、难点重点: 正弦函数的诱导公式,正弦函数的性质。

难点: 诱导公式的灵活运用,正弦函数的性质应用。

三、学法与教学用具在上一节课的基础上,运用单位圆中正弦线或正弦函数图像中角的关系,引发学生探索出正弦函数的诱导公式;通过例题和练习掌握诱导公式在解题中的作用;在正弦函数的图像中,直观判断出正弦函数的性质,并能上升到理性认识;理解掌握正弦函数的性质;以学生的自主学习和合作探究式学习为主。

教学用具:投影机、三角板第一课时正弦函数诱导公式一、教学思路【创设情境,揭示课题】在上一节课中,我们已经学习了任意角的正弦函数定义,以及终边相同的角的正弦函数值也相等,即sin(2kπ+α)=sinα (k ∈Z),这一公式体现了求任意角的正弦函数值转化为求0°~360°的角的正弦函数值。

如果还能把0°~360°间的角转化为锐角的正弦函数,那么任意角的正弦函数就可以查表求出。

这就是我们这一节课要解决的问题。

教案正弦型函数的图像和性质

教案正弦型函数的图像和性质

教案:正弦型函数的图像和性质第一章:正弦函数的定义与图像1.1 引入正弦函数的概念解释正弦函数的定义:y = sin(x)说明正弦函数的单位圆定义:在一个单位圆上,正弦函数表示的是圆上一点的y 坐标值1.2 绘制正弦函数的图像利用图形计算器或绘图软件,绘制y = sin(x)的图像观察图像的特性:周期性、振幅、相位、对称性等1.3 分析正弦函数的性质周期性:正弦函数的图像每隔2π重复一次振幅:正弦函数的最大值为1,最小值为-1相位:正弦函数的图像向左或向右平移,但不改变其形状第二章:余弦函数的定义与图像2.1 引入余弦函数的概念解释余弦函数的定义:y = cos(x)说明余弦函数的单位圆定义:在一个单位圆上,余弦函数表示的是圆上一点的x 坐标值2.2 绘制余弦函数的图像利用图形计算器或绘图软件,绘制y = cos(x)的图像观察图像的特性:周期性、振幅、相位、对称性等2.3 分析余弦函数的性质周期性:余弦函数的图像每隔2π重复一次振幅:余弦函数的最大值为1,最小值为-1相位:余弦函数的图像向左或向右平移,但不改变其形状第三章:正切函数的定义与图像3.1 引入正切函数的概念解释正切函数的定义:y = tan(x)说明正切函数的定义域:正切函数在除原点以外的所有实数上都有定义3.2 绘制正切函数的图像利用图形计算器或绘图软件,绘制y = tan(x)的图像观察图像的特性:周期性、振幅、相位、对称性等3.3 分析正切函数的性质周期性:正切函数的图像每隔π重复一次振幅:正切函数没有振幅限制,可以无限增大或减小相位:正切函数的图像向左或向右平移,但不改变其形状第四章:正弦型函数的图像与性质4.1 引入正弦型函数的概念解释正弦型函数的定义:y = A sin(Bx C) + D说明正弦型函数的参数:A表示振幅,B表示周期,C表示相位,D表示垂直平移4.2 绘制正弦型函数的图像利用图形计算器或绘图软件,绘制y = A sin(Bx C) + D的图像观察图像的特性:振幅、周期、相位、对称性等4.3 分析正弦型函数的性质振幅:正弦型函数的最大值为A,最小值为-A周期:正弦型函数的图像每隔B个单位重复一次相位:正弦型函数的图像向左或向右平移C个单位垂直平移:正弦型函数的图像向上或向下平移D个单位第五章:正弦型函数的实例分析5.1 分析y = sin(x)的图像和性质利用图形计算器或绘图软件,绘制y = sin(x)的图像分析其振幅、周期、相位、对称性等性质5.2 分析y = cos(x)的图像和性质利用图形计算器或绘图软件,绘制y = cos(x)的图像分析其振幅、周期、相位、对称性等性质5.3 分析y = tan(x)的图像和性质利用图形计算器或绘图软件,绘制y = tan(x)的图像分析其振幅、周期、相位、对称性等性质第六章:正弦型函数的应用6.1 简谐运动解释简谐运动的定义和特点利用正弦函数表示简谐运动的位移、速度、加速度等物理量6.2 电磁波解释电磁波的产生和传播利用正弦函数表示电磁波的振荡电流或电压6.3 音乐信号处理解释音乐信号的振幅和频率特性利用正弦函数表示音乐信号的波形和频谱第七章:正弦型函数的积分与微分7.1 积分讲解正弦型函数的不定积分和定积分利用积分公式计算正弦型函数的定积分值7.2 微分讲解正弦型函数的导数利用导数公式求解正弦型函数的导数值7.3 应用案例利用积分和微分方法解决实际问题,如计算物体的位移、速度、加速度等第八章:正弦型函数的复合与变换8.1 复合函数讲解正弦型函数的复合方法利用复合函数的性质分析复合后的函数图像和性质8.2 函数变换讲解正弦型函数的平移、缩放、反转等变换利用变换公式分析变换后的函数图像和性质8.3 应用案例利用复合和变换方法解决实际问题,如设计电子电路的滤波器、振荡器等第九章:正弦型函数的极限与连续性9.1 极限讲解正弦型函数的极限概念和性质利用极限公式求解正弦型函数的极限值9.2 连续性讲解正弦型函数的连续性概念和性质利用连续性定理判断正弦型函数的连续性9.3 应用案例利用极限和连续性方法解决实际问题,如信号处理、物理现象分析等第十章:正弦型函数的综合应用10.1 正弦型函数在数学领域的应用讲解正弦型函数在几何、代数、微积分等数学领域的应用10.2 正弦型函数在自然科学领域的应用讲解正弦型函数在物理学、生物学、地球科学等领域的应用10.3 正弦型函数在工程与技术领域的应用讲解正弦型函数在电子工程、通信技术、机械工程等领域的应用重点和难点解析重点环节一:正弦函数的定义与图像重点关注内容:正弦函数的单位圆定义,正弦函数的图像特点,如周期性、振幅、相位、对称性等。

正弦函数图像教案

正弦函数图像教案

正弦函数图像教案第一章:正弦函数的定义与性质1.1 教学目标了解正弦函数的定义掌握正弦函数的性质1.2 教学内容正弦函数的定义:正弦函数是直角三角形中的锐角对边与斜边的比值,用符号sin 表示。

正弦函数的性质:正弦函数是周期函数,周期为2π;正弦函数的值域在[-1,1]之间;正弦函数在对称轴上对称。

1.3 教学活动教师通过实物或图形展示正弦函数的定义。

学生通过例题掌握正弦函数的性质。

教师引导学生进行小组讨论,探索正弦函数的其他性质。

1.4 作业与评估布置练习题,让学生巩固正弦函数的定义与性质。

在下一节课前进行小测验,评估学生对正弦函数的理解程度。

第二章:正弦函数图像的绘制2.1 教学目标学会绘制正弦函数的图像2.2 教学内容学习正弦函数图像的特点:振幅、周期、相位、对称性学习使用函数图像绘制工具绘制正弦函数图像2.3 教学活动教师演示如何使用函数图像绘制工具绘制正弦函数图像。

学生跟随教师的步骤,自行绘制正弦函数图像。

教师引导学生观察图像的特点,并与正弦函数的性质进行联系。

2.4 作业与评估布置练习题,让学生绘制其他函数的图像。

在下一节课前进行小测验,评估学生对绘制正弦函数图像的掌握程度。

第三章:正弦函数图像的应用3.1 教学目标学会使用正弦函数图像解决实际问题3.2 教学内容学习如何通过正弦函数图像找到函数的极值点学习如何通过正弦函数图像解决周期性问题3.3 教学活动教师通过示例讲解如何使用正弦函数图像找到极值点。

学生尝试解决实际问题,例如计算正弦函数在特定区间内的值。

教师引导学生讨论解决过程中遇到的问题,并提供帮助。

3.4 作业与评估布置练习题,让学生应用正弦函数图像解决实际问题。

在下一节课前进行小测验,评估学生对正弦函数图像应用的掌握程度。

第四章:正弦函数图像的综合应用4.1 教学目标能够综合运用正弦函数图像解决复杂的实际问题4.2 教学内容学习如何综合运用正弦函数图像解决多个变量的问题学习如何利用正弦函数图像进行优化问题4.3 教学活动教师通过示例讲解如何综合运用正弦函数图像解决复杂问题。

正弦函数的图像与性质教案

正弦函数的图像与性质教案

正弦函数的图像与性质教案教学目标:1. 了解正弦函数的定义和图像特点。

2. 掌握正弦函数的周期性和对称性。

3. 理解正弦函数的增减性和奇偶性。

4. 能够应用正弦函数的性质解决实际问题。

教学内容:第一章:正弦函数的定义与图像1.1 正弦函数的定义1.2 正弦函数的图像第二章:正弦函数的周期性2.1 周期性的定义2.2 周期性的图像表现第三章:正弦函数的对称性3.1 对称性的定义3.2 对称性的图像表现第四章:正弦函数的增减性4.1 增减性的定义4.2 增减性的图像表现第五章:正弦函数的奇偶性5.1 奇偶性的定义5.2 奇偶性的图像表现教学步骤:第一章:正弦函数的定义与图像1.1 正弦函数的定义1. 引入正弦函数的概念,让学生回顾三角函数的定义。

2. 解释正弦函数的定义,即在直角坐标系中,正弦函数表示对边与斜边的比值。

1.2 正弦函数的图像1. 利用计算机软件或板书,绘制正弦函数的图像。

2. 解释正弦函数图像的波动特点,如周期性和振幅。

第二章:正弦函数的周期性2.1 周期性的定义1. 引入周期性的概念,让学生理解周期函数的定义。

2. 解释正弦函数的周期性,即每隔一个周期,函数值重复出现。

2.2 周期性的图像表现1. 利用计算机软件或板书,展示正弦函数周期性的图像。

2. 引导学生观察图像,理解周期性的特点。

第三章:正弦函数的对称性3.1 对称性的定义1. 引入对称性的概念,让学生理解对称函数的定义。

2. 解释正弦函数的对称性,即函数图像关于y轴对称。

3.2 对称性的图像表现1. 利用计算机软件或板书,展示正弦函数对称性的图像。

2. 引导学生观察图像,理解对称性的特点。

第四章:正弦函数的增减性4.1 增减性的定义1. 引入增减性的概念,让学生理解函数的增减性质。

2. 解释正弦函数的增减性,即在一定区间内,函数值的增减规律。

4.2 增减性的图像表现1. 利用计算机软件或板书,展示正弦函数增减性的图像。

2. 引导学生观察图像,理解增减性的特点。

正弦函数图像教案

正弦函数图像教案

正弦函数图像教案教案标题:探索正弦函数图像教案目标:1. 了解正弦函数的定义和性质。

2. 掌握正弦函数图像的基本特征。

3. 能够根据函数表达式绘制正弦函数图像。

4. 学会利用正弦函数图像解决实际问题。

教案步骤:一、导入(5分钟)1. 引入正弦函数的概念,简单解释正弦函数的定义和性质。

2. 引发学生对正弦函数图像的兴趣,例如通过展示一些真实世界中的周期性现象(如海浪、摆动等)。

二、理论讲解(15分钟)1. 讲解正弦函数的定义:y = A*sin(Bx + C) + D,解释各参数的含义。

2. 解释正弦函数的周期性和振幅的概念。

3. 介绍正弦函数图像的基本特征,如对称轴、最大值和最小值等。

三、图像绘制实践(20分钟)1. 分发绘图纸和铅笔,让学生根据给定的函数表达式绘制正弦函数图像。

2. 引导学生观察函数表达式中各参数对图像的影响,例如振幅变化、周期变化等。

3. 让学生互相交流和比较自己绘制的图像,讨论不同参数取值对图像的影响。

四、实际问题应用(15分钟)1. 提供一些实际问题,例如通过正弦函数图像解决声音波动、天体运动等问题。

2. 引导学生分析问题,根据问题的特点确定合适的正弦函数表达式。

3. 让学生利用自己绘制的正弦函数图像解决实际问题,并讨论解决过程和结果。

五、总结与拓展(10分钟)1. 总结正弦函数的基本特征和图像绘制方法。

2. 引导学生思考其他函数图像的特征和应用领域。

3. 鼓励学生进一步探索正弦函数的性质和应用,拓展他们的数学思维。

教学资源:1. 绘图纸和铅笔。

2. 正弦函数图像的实例和实际问题。

3. 相关的教学演示工具和软件(如Geogebra)。

评估方式:1. 观察学生在课堂上的参与度和绘图的准确性。

2. 提问学生关于正弦函数图像的理解和应用问题。

3. 布置练习题,检验学生对正弦函数图像的掌握程度。

教案扩展:1. 探索余弦函数和正切函数的图像特征。

2. 引导学生应用正弦函数图像解决更复杂的实际问题,如振动系统、电磁波等。

教案正弦型函数的图像和性质

教案正弦型函数的图像和性质

教案:正弦型函数的图像和性质第一章:正弦函数的定义与图像1.1 教学目标了解正弦函数的定义能够绘制正弦函数的图像1.2 教学内容正弦函数的定义:y = sin(x)正弦函数的图像特点:周期性、振幅、相位、对称性1.3 教学步骤1. 引入正弦函数的概念,解释正弦函数的定义2. 利用数学软件或图形计算器,绘制正弦函数的图像3. 分析正弦函数的图像特点,引导学生理解周期性、振幅、相位、对称性1.4 练习与作业练习绘制不同振幅和相位的正弦函数图像完成课后练习题,巩固对正弦函数图像的理解第二章:正弦函数的性质2.1 教学目标了解正弦函数的性质能够应用正弦函数的性质解决问题2.2 教学内容正弦函数的单调性:增减区间正弦函数的奇偶性:奇函数与偶函数正弦函数的周期性:周期为2π正弦函数的值域:[-1, 1]2.3 教学步骤1. 介绍正弦函数的单调性,利用图像进行解释2. 解释正弦函数的奇偶性,利用数学公式进行证明3. 强调正弦函数的周期性,引导学生理解周期为2π4. 分析正弦函数的值域,解释正弦函数的取值范围2.4 练习与作业练习判断正弦函数的单调性、奇偶性和周期性完成课后练习题,应用正弦函数的性质解决问题第三章:余弦函数的定义与图像3.1 教学目标了解余弦函数的定义能够绘制余弦函数的图像3.2 教学内容余弦函数的定义:y = cos(x)余弦函数的图像特点:周期性、振幅、相位、对称性3.3 教学步骤1. 引入余弦函数的概念,解释余弦函数的定义2. 利用数学软件或图形计算器,绘制余弦函数的图像3. 分析余弦函数的图像特点,引导学生理解周期性、振幅、相位、对称性3.4 练习与作业练习绘制不同振幅和相位的余弦函数图像完成课后练习题,巩固对余弦函数图像的理解第四章:正切函数的定义与图像4.1 教学目标了解正切函数的定义能够绘制正切函数的图像4.2 教学内容正切函数的定义:y = tan(x)正切函数的图像特点:周期性、振幅、相位、对称性4.3 教学步骤1. 引入正切函数的概念,解释正切函数的定义2. 利用数学软件或图形计算器,绘制正切函数的图像3. 分析正切函数的图像特点,引导学生理解周期性、振幅、相位、对称性4.4 练习与作业练习绘制不同振幅和相位的正切函数图像完成课后练习题,巩固对正切函数图像的理解第五章:正弦型函数的应用5.1 教学目标了解正弦型函数的应用能够解决与正弦型函数相关的问题5.2 教学内容正弦型函数在物理、工程等领域的应用解决与正弦型函数相关的问题:如振动、波动、音乐等5.3 教学步骤1. 介绍正弦型函数在物理、工程等领域的应用实例2. 解释正弦型函数在振动、波动、音乐等方面的作用3. 示例解决与正弦型函数相关的问题,引导学生应用正弦型函数的性质和图像5.4 练习与作业练习解决与正弦型函数相关的问题完成课后练习题,应用正弦型函数解决实际问题第六章:正弦型函数的积分与微分6.1 教学目标理解正弦型函数的不定积分和定积分学会计算正弦型函数的导数6.2 教学内容正弦型函数的不定积分:基本积分公式正弦型函数的定积分:利用积分公式计算面积正弦型函数的导数:求导法则6.3 教学步骤1. 介绍正弦型函数的不定积分,讲解基本积分公式2. 通过例题演示如何计算正弦型函数的定积分3. 讲解正弦型函数的导数,引导学生理解求导法则6.4 练习与作业练习计算正弦型函数的不定积分和定积分完成课后练习题,巩固对正弦型函数积分和导数的理解第七章:正弦型函数在坐标系中的应用7.1 教学目标学会在直角坐标系中绘制正弦型函数的图像能够利用正弦型函数解决实际问题7.2 教学内容利用直角坐标系绘制正弦型函数的图像解决实际问题:如测量角度、计算物理振动等7.3 教学步骤1. 讲解如何在直角坐标系中绘制正弦型函数的图像2. 通过实例演示如何利用正弦型函数解决实际问题7.4 练习与作业练习绘制不同类型的正弦型函数图像完成课后练习题,应用正弦型函数解决实际问题第八章:正弦型函数在三角变换中的应用8.1 教学目标理解三角恒等式及其应用学会利用正弦型函数进行三角变换8.2 教学内容三角恒等式:sin^2(x) + cos^2(x) = 1 等正弦型函数的三角变换:和差化积、积化和差等8.3 教学步骤1. 讲解三角恒等式的含义和应用2. 讲解如何利用正弦型函数进行三角变换8.4 练习与作业练习运用三角恒等式进行计算完成课后练习题,巩固对正弦型函数在三角变换中应用的理解第九章:正弦型函数在工程和技术中的应用9.1 教学目标了解正弦型函数在工程和技术领域的应用学会解决与正弦型函数相关的工程问题9.2 教学内容正弦型函数在信号处理、电子工程等领域的应用解决与正弦型函数相关的工程问题:如信号分析、电路设计等9.3 教学步骤1. 讲解正弦型函数在信号处理、电子工程等领域的应用实例2. 示例解决与正弦型函数相关的工程问题,引导学生应用正弦型函数的性质和图像9.4 练习与作业练习解决与正弦型函数相关的工程问题完成课后练习题,应用正弦型函数解决实际工程问题第十章:总结与拓展10.1 教学目标总结正弦型函数的图像和性质的主要内容了解正弦型函数在其他领域的拓展应用10.2 教学内容总结正弦型函数的图像和性质的关键点介绍正弦型函数在其他领域的拓展应用:如地球物理学、天文学等10.3 教学步骤1. 回顾正弦型函数的图像和性质的主要内容,强调重点和难点2. 介绍正弦型函数在其他领域的拓展应用,提供相关实例10.4 练习与作业复习正弦型函数的图像和性质的主要内容,巩固所学知识完成课后练习题,探索正弦型函数在其他领域的拓展应用重点和难点解析重点环节一:正弦函数的定义与图像理解正弦函数的定义:y = sin(x)掌握正弦函数图像的特点:周期性、振幅、相位、对称性重点环节二:正弦函数的性质掌握正弦函数的单调性:增减区间理解正弦函数的奇偶性:奇函数与偶函数认识正弦函数的周期性:周期为2π了解正弦函数的值域:[-1, 1]重点环节三:余弦函数的定义与图像理解余弦函数的定义:y = cos(x)掌握余弦函数图像的特点:周期性、振幅、相位、对称性重点环节四:正切函数的定义与图像理解正切函数的定义:y = tan(x)掌握正切函数图像的特点:周期性、振幅、相位、对称性重点环节五:正弦型函数的应用了解正弦型函数在物理、工程等领域的应用实例学会解决与正弦型函数相关的问题:如振动、波动、音乐等重点环节六:正弦型函数的积分与微分理解正弦型函数的不定积分和定积分学会计算正弦型函数的导数重点环节七:正弦型函数在坐标系中的应用学会在直角坐标系中绘制正弦型函数的图像学会利用正弦型函数解决实际问题重点环节八:正弦型函数在三角变换中的应用理解三角恒等式及其应用学会利用正弦型函数进行三角变换重点环节九:正弦型函数在工程和技术中的应用了解正弦型函数在信号处理、电子工程等领域的应用实例学会解决与正弦型函数相关的工程问题重点环节十:总结与拓展总结正弦型函数的图像和性质的关键点了解正弦型函数在其他领域的拓展应用全文总结和概括:本教案涵盖了正弦型函数的图像和性质的各个方面,从基本定义到图像特点,再到性质和应用,每个环节都进行了深入的讲解和演示。

正弦函数的图像教案

正弦函数的图像教案

正弦函数的图像教案一、教学目标:1. 了解正弦函数的定义和性质。

2. 掌握正弦函数的图像的特点和绘制方法。

3. 理解正弦函数的周期性和对称性。

4. 发现正弦函数与实际问题的联系。

二、教学重点:1. 正弦函数的图像特点和绘制方法。

2. 正弦函数的周期性和对称性。

三、教学难点:1. 正弦函数的周期性和对称性的理解。

2. 正弦函数与实际问题的应用。

四、教学过程:步骤一:导入新课教师通过问学生如何描述周期性波动现象的特点以引出正弦函数的概念,并告诉学生正弦函数是描述周期性波动的数学模型。

步骤二:引出正弦函数的定义教师给出正弦函数的定义:y = A*sin(B(x-C))+D,A、B、C、D是常数。

解释A、B、C、D分别代表什么意义。

步骤三:正弦函数图像特点和绘制方法1. 教师通过白板上的示意图向学生展示正弦函数的图像特点:周期性、对称性、振幅、周期、相位。

2. 教师给出正弦函数图像的绘制方法:(1)找出一个周期内的特征点;(2)根据特征点的坐标信息绘制图像。

步骤四:周期性和对称性的理解教师通过实例向学生解释正弦函数的周期性和对称性的概念和特点,并与实物、实际问题相联系,帮助学生深入理解。

步骤五:习题训练教师出示一些正弦函数的函数式,让学生根据函数式绘制函数的图像,并解释图像的特点和性质。

五、课堂小结教师总结本节课的重点内容,强调正弦函数的图像特点和绘制方法,以及周期性和对称性的理解。

六、作业布置1. 完成课堂上未完成的练习题。

2. 进一步探究正弦函数的性质和应用,写一篇短文,总结正弦函数的特点和实际应用。

七、教学反思本节课通过引出问题、展示实例、练习训练等多种教学方法,使学生对正弦函数的图像有了更深入的理解。

但在教学过程中,应注意让学生动手实践,提高学生的参与度,使学生更好地理解和掌握正弦函数的概念、性质和应用。

正弦函数的图像教学设计

正弦函数的图像教学设计
班级凝聚力。
03
培养学生的科学素养和 探索精神,提高解决问
题的能力。
02 教学内容
正弦函数的定义
总结词
理解正弦函数的定义
详细描述
正弦函数是三角函数的一种,定义为直角三角形中锐角的对边与斜边的比值。 在直角坐标系中,正弦函数表示为 y = sin(x),其中 x 是自变量,y 是因变量。
正弦函数的图像
能力目标
培养学生观察、分析和归纳正弦函数图像的能力,提高数学思维能力。 培养学生利用正弦函数解决实际问题的能力,提高数学应用能力。 培养学生自主学习和合作学习的能力,提高数学交流能力。
情感目标
01
激发学生对数学的兴趣 和热情,培养积极向上
的学习态度。
02
培养学生的团队合作精 神和集体荣誉感,增强
03 教学 方法,通过教师对正弦函数的定义、 性质和图像特点进行详细讲解,帮助 学生理解正弦函数的本质和特点。
讲授法适用于正弦函数图像教学的基 础知识传授,如正弦函数的定义、性 质等,能够帮助学生建立扎实的知识 基础。
讨论法
讨论法是一种以学生为主体,通过讨论、交流、互动来学习 的教学方法。在正弦函数图像教学中,教师可以引导学生进 行小组讨论,探讨正弦函数的图像特点、变化规律等。
习效果。
问卷调查法
通过问卷调查了解学生对正弦函 数图像教学的满意度和意见反馈

小组讨论法
组织学生进行小组讨论,让他们 分享学习心得和体会,以便教师
了解学生的学习状况。
评价标准
知识理解
评估学生对正弦函数图像的基本概念、性质和 特点的掌握程度。
应用能力
评估学生能否运用正弦函数图像解决实际问题 或进行相关推理的能力。

正弦函数的图像与性质教案

正弦函数的图像与性质教案

正弦函数的图像与性质教案一、教学目标知识与技能目标:1. 理解正弦函数的定义和基本概念;2. 学会绘制正弦函数的图像;3. 掌握正弦函数的性质,并能应用于实际问题。

过程与方法目标:1. 通过观察和分析正弦函数的图像,探索其性质;2. 利用数形结合的方法,理解正弦函数的周期性、奇偶性、单调性等性质;3. 培养学生的逻辑思维能力和解决问题的能力。

情感态度与价值观目标:1. 激发学生对数学学习的兴趣;2. 培养学生的团队合作意识和交流能力;3. 使学生认识到数学在生活中的重要性。

二、教学重点与难点重点:1. 正弦函数的定义和图像;2. 正弦函数的性质。

难点:1. 正弦函数图像的绘制;2. 正弦函数性质的理解和应用。

三、教学准备教师准备:1. 正弦函数的图像和性质的相关资料;2. 教学多媒体设备。

学生准备:1. 预习正弦函数的相关知识;2. 准备笔记本和笔。

四、教学过程1. 导入:a. 引导学生回顾之前学过的函数图像和性质;b. 提问:你们认为正弦函数的图像和性质会是什么样的呢?2. 讲解:a. 讲解正弦函数的定义和基本概念;b. 利用多媒体展示正弦函数的图像;c. 引导学生观察和分析正弦函数的图像,探索其性质;d. 讲解正弦函数的周期性、奇偶性、单调性等性质;e. 举例说明正弦函数性质的应用。

3. 实践:a. 让学生独立绘制正弦函数的图像;b. 让学生分组讨论正弦函数的性质,并完成相关练习题;c. 让学生应用正弦函数的性质解决实际问题。

4. 总结:a. 回顾本节课所学的正弦函数的图像和性质;b. 强调正弦函数在实际中的应用价值。

五、作业布置1. 绘制正弦函数的图像,并标注出其周期性、奇偶性、单调性等性质;2. 运用正弦函数的性质解决实际问题,如测量角度、计算波浪高度等;3. 预习下一节课的内容。

六、教学反馈与评估1. 在课后,教师应收集学生的作业,评估学生对正弦函数图像和性质的理解程度;2. 教师可以通过课后交流或提问的方式,了解学生对课堂内容的掌握情况;3. 根据学生的反馈,教师应及时调整教学方法和策略,以便更好地帮助学生理解和掌握正弦函数的知识。

《正弦函数的图像》说课学习教案稿文本正式版本

《正弦函数的图像》说课学习教案稿文本正式版本

《正弦函数的图像》讲课稿一、教材剖析1.地位作用:三角函数是中学数学重要内容之一,也是学习高等数学基础,更是研究自然界周期变化规律最强有力的数学工具,而本节是全章要点之一,既有助于理解函数观点,又能为后边学正弦、余弦、正切函数图像性质打下基础,所以本节起着承前启后的重要作用。

再是利用已有知识剖析、研究图像生成,领会正弦函数的图像与生活联系,即完美知识联系,又能成立图像直观,培育学生数形联合的思想。

2.重难点:要点:“五点法”画函数图像难点:利用单位圆中正弦线生成图像二、目标与方法前方已学习了随意角观点及弧度制,三角函数定义等内容,对三角函数有了初步认识,在此基础上研究它的图像性质,学生也充满期望与信心,但学生对知识联系及新图像很陌生。

1.目标(1)知识目标:认识正弦函数曲线,会用“五点法”画函数 y sinx的图像2)过程与方法:体验图像生成过程,领会数形联合的思想方法3)感情目标:经过图像生成过程,领会美学价值,加强学习数学的兴趣2.教法:从学情出发,采纳侧重学生研究的启迪式教课方法,联合师生共同议论,归纳总结三、教课过程1.问题引入:(1)回首正弦线观点,并画出的正弦线4(2)问题:怎样在座标系中描点,sin ?4 4设计企图:经过(1)(2)复习三角函数线及角的两种表示,即图、点表示方式,这是做图的要点。

2.图像生成:作ysinx,x0,2图像(1)让学生睁开议论,怎样使sinx“竖”在x处?(2)经过议论,师生总结,边示范边达成图像①在y轴上确定“1”,以此为准在x 轴上确定,再以为准,标出/2,3/2,2等②平移使"sinx"竖在x处③用光滑曲线连结设计企图:这是本节难点,让学生相互议论,思虑,培育学生剖析问题,解决问题的能力,最后教师演示纠正,澄清学生疑问。

图象研究教师提出问题让学生思虑:( 1)公式()sinx 对ysinxxR的影响是什么?sin2k x(2)图象上的要点点是哪些?(3)你认识的生活中的正弦曲线是什么?设计企图:这是本节要点。

正弦函数的图像教案

正弦函数的图像教案

正弦函数的图像教案【篇一:正弦函数的图像与性质教案】《正弦函数的图像与性质》(第一课时)(教案)神木职教中心数学组刘伟教学目标:1、理解正弦函数的周期性;2、掌握用“五点法”作正弦函数的简图;3、掌握利用正弦函数的图像观察其性质;4、掌握求简单正弦函数的定义域、值域和单调区间;5、初步理解“数形结合”的思想;6、培养学生的观察能力、分析能力、归纳能力和表达能力等教学重点:1、用“五点法”画正弦函数在一个周期上的图像;2、利用函数图像观察正弦函数的性质;3、给学生逐渐渗透“数形结合”的思想教学难点:正弦函数性质的理解和应用教学方法:多媒体辅助教学、讨论式教学、讲议结合教学、分层教学教学过程:Ⅰ知识回顾终边相同角的诱导公式:Ⅱ新知识1、用描点法作出正弦函数在最小正周期上的图象(1)、列表(2)、描点(3)、连线因为终边相同的角的三角函数值相同,所以y=sinx的图像在?,同2、正弦函数的奇偶性由诱导公式sin(-x)=-sinx,x∈r得:①定义域关于原点对称②满足f(-x)=-f(x)所以,正弦函数为奇函数(观察上图,图像关于原点对称) 3、正弦函数单调性、值域由图像观察可得:正弦函数在??-?2得到最大值为1,最小值为-1,所以值域为[-1,1]Ⅲ知识巩固例1 作下列函数的简图(1)解:(1)①列表②描点③连线(2)①列表②描点③连线例2 求下列函数的单调区间(1)y=sin(-x) (2)y=sin(x-解:(1)因4)y=sin(-x)=-sinx2所以函数在??-?2(2)由题知:-4≤24324≤所以函数在??-44?4??4?练习(师生互动,分层次提问)1.课本第120页练习第1题 2.求函数y=sin(x+解:由题知: -4)的单调性24≤224≤所以函数在??-44?4??4?Ⅳ小结本节课我们学习了用“五点法”作正弦函数的图像,利用正弦函数的简图可以观察到正弦函数的一些基本性质,如奇偶性、单调性、周期性等。

正弦函数的图像与性质教案

正弦函数的图像与性质教案

一、教案简介本教案旨在帮助学生理解正弦函数的图像与性质,掌握正弦函数的图像特点和基本性质,并能够运用正弦函数解决相关问题。

本节课的教学重点是正弦函数的图像和性质,教学难点是理解和掌握正弦函数的周期性、奇偶性和对称性。

二、教学目标1. 了解正弦函数的图像特点,掌握正弦函数的增减性和凹凸性。

2. 掌握正弦函数的周期性、奇偶性和对称性,并能够运用这些性质解决相关问题。

3. 培养学生的数学思维能力和图形直观感知能力,提高学生的数学综合素质。

三、教学内容1. 正弦函数的图像特点:正弦函数的图像是一条波浪形的曲线,它的取值在-1和1之间波动,周期为2π。

2. 正弦函数的增减性:当x从0增加到π/2时,正弦函数的值从0增加到1;当x 从π/2增加到π时,正弦函数的值从1减少到0。

3. 正弦函数的凹凸性:当x从0增加到π/2时,正弦函数的图像从下凹增加到上凸;当x从π/2增加到π时,正弦函数的图像从上凸减少到下凹。

4. 正弦函数的周期性:正弦函数的周期为2π,即sin(x+2π)=sinx。

5. 正弦函数的奇偶性:正弦函数是奇函数,即sin(-x)=-sinx。

6. 正弦函数的对称性:正弦函数的图像关于y轴和原点对称。

四、教学方法采用讲解法、演示法、例题法和互动法等多种教学方法,引导学生通过观察、思考、实践和交流,全面理解和掌握正弦函数的图像与性质。

五、教学环境教室环境舒适、安静,教学设备齐全,黑板、粉笔、投影仪等教学工具准备充分。

六、教学步骤1. 引入:通过回顾初中阶段学习的三角函数知识,引导学生思考正弦函数的图像和性质。

2. 讲解:详细讲解正弦函数的图像特点,包括波浪形的曲线、取值范围、周期性等。

3. 演示:利用投影仪展示正弦函数的图像,让学生直观地感受正弦函数的波动特点。

4. 例题:选取一些典型例题,让学生运用正弦函数的性质解决问题,巩固所学知识。

5. 互动:鼓励学生提问、讨论,解答学生在学习过程中遇到的困惑。

《正弦函数的图像》教学设计

《正弦函数的图像》教学设计

《正弦函数的图像》教学设计方案教学阶段教学内容师生活动设计意图及时间引入课题一、首先让学生观看动画单摆的简谐运动形成的曲线,然后告诉学生这条美妙的曲线就是本节课我们将要研究的正弦函数的图像,引出课题。

教师用多媒体呈现教学内容,学生观看多媒体课件展示的动画。

3分钟这样引出课题的过程既让学生感知正弦函数来源于生活,同时激发了学生学习的兴趣。

讲授新课合作探究一:正弦函数的周期性的探讨环节一:完成表格x…ππ46-ππ26-6πππ26+ππ46+…xsin……环节二:回答问题串问题1:口答当时Rx∈,()?2sin=+κπx若设(),sin xxf=则上式还可以写成其它的什么形式?问题2:对比()()0,2≠∈=+κκκπ且Zxfxf与()()x fTxf=+的形式上的相似之处。

问题3:回答问题串:函数xy sin=是周期函数吗?周期T有哪些?最小正周期T是多少?合作探究二:“五点法”作正弦函数[]π2,0,sin∈=xxy的图像的探究活动1:多媒体演示描点法作图。

①借助 excel软件演示作出正弦函数图像的过程;②用多媒体演示描点法作出正弦函数[]π2,0,sin∈=xxy的图像的过程。

列表学生通过计算特殊角的正弦值完成下面的表格。

学生小组合作探究,根据小组讨论结果回答问题,教师补充说明。

学生观看多媒体演示图像形成过程。

回答观察后的想法,思考如果动手画函数图像会出现哪些困20分钟完成表格的过程唤起了学生对诱导公式的回忆。

通过对问题串的梳理,使学生对正弦函数的周期有了比较清晰的认识,为研究正弦函数的图像埋下伏笔。

通过比较多媒体演示的两种作图法导学案附后正弦函数x的图像导学案y sin班级:__________ 小组:___________姓名:_____________学习目标:一.【三维目标】知识目标:通过引导反复观察正弦函数[]π2,0,sin ∈=x x y 的图像直观找到“五个关键点”,并会使用“五点法”作正弦函数在[]π2,0 上的简图。

正弦函数的图像教案

正弦函数的图像教案

正弦函数的图像教案
成都市工程职业技术学校李丹
【课题】正弦函数的图像
【课时】一课时(40分钟)
【教学目标】
〖知识目标〗
1、使学生掌握用“五点法”作出正弦函数的图像;
2、使学生了解正弦函数的图像及特点;
3、根据不同函数图像之间的关系掌握上、下平移的画图方法。

4、使学生了解正弦线。

〖能力目标〗
1、通过学习正弦函数图像的画法,培养学生分析、观察与概括能力;
2、提高学生合作学习和交流的能力。

〖情感目标〗
提高学生学习数学的兴趣及初步灌输数形结合解决函数问题的思想。

【教学重点难点】
〖重点〗五点法作图
〖难点〗理解弧度制到x轴上点的对应以及用五点法作出正弦函数的图象。

高中数学正弦函数图像教案

高中数学正弦函数图像教案

高中数学正弦函数图像教案
一、教学目标:
1. 理解正弦函数的定义及其基本性质。

2. 掌握正弦函数的图像特点。

3. 能够解决与正弦函数相关的数学问题。

二、教学重点:
1. 正弦函数的定义及性质。

2. 正弦函数的图像特点。

三、教学难点:
1. 正弦函数的变量与图像之间的关系。

2. 正弦函数的周期性及振幅。

四、教学内容:
1. 正弦函数的定义及性质:y = A*sin(ωx + φ)。

2. 正弦函数的图像特点:周期性、对称性、振幅。

五、教学过程:
1. 引入:通过实际问题引入正弦函数的概念。

2. 概念讲解:介绍正弦函数的定义及其性质。

3. 示例分析:通过示例分析正弦函数的图像特点。

4. 练习巩固:进行练习,加深学生对正弦函数的理解。

5. 总结提升:总结正弦函数的特点,引导学生思考更深层次的问题。

六、教学辅助手段:
1. 教材、课件等教学用具。

2. 板书、投影等教学辅助手段。

七、教学评估:
1. 课堂练习:考查学生对正弦函数的理解程度。

2. 课堂讨论:引导学生讨论与解决正弦函数相关的问题。

八、教学反思:
1. 及时调整教学方法,根据学生实际情况灵活运用各种教学手段。

2. 定期评估学生学习效果,及时对学生提出指导性意见和建议。

正弦函数的图像教案

正弦函数的图像教案

正弦函数的图像教案教案标题:正弦函数的图像教案教案目标:1. 了解正弦函数的定义和性质。

2. 掌握如何绘制正弦函数的图像。

3. 理解正弦函数在数学和实际问题中的应用。

教案步骤:引入:1. 引导学生回顾三角函数的概念和性质,特别是正弦函数的定义。

2. 提出问题:你知道正弦函数的图像是什么样的吗?为什么正弦函数在数学和实际问题中如此重要?探究:3. 向学生介绍正弦函数的图像特点:周期性、振幅、相位差等。

4. 提供一组正弦函数的表格数据,让学生通过计算得到对应的函数值。

5. 引导学生根据表格数据绘制正弦函数的图像,并观察图像的特点。

6. 指导学生总结正弦函数图像的一般规律和特点。

拓展:7. 提供一些实际问题,引导学生将问题转化为正弦函数的图像。

8. 引导学生分析实际问题中的振幅、周期和相位差的含义,并解决问题。

9. 鼓励学生思考正弦函数在其他学科和领域中的应用,如物理、音乐等。

巩固:10. 给学生提供一些练习题,让他们应用所学知识绘制正弦函数的图像。

11. 引导学生分析不同参数对正弦函数图像的影响,如振幅变化、相位差变化等。

总结:12. 总结正弦函数的定义、性质和图像特点。

13. 强调正弦函数在数学和实际问题中的重要性,并鼓励学生继续探索和应用。

评估:14. 设计一些评估题目,考察学生对正弦函数图像以及应用的理解程度。

15. 对学生的表现进行评估和反馈,指出需要加强的地方并提供进一步的指导。

延伸活动:16. 鼓励有兴趣的学生进行更深入的研究,如探究其他三角函数的图像特点、探索更复杂的正弦函数应用等。

17. 提供一些拓展阅读资源,让学生进一步了解正弦函数在不同学科和领域的应用。

希望以上教案建议和指导能够帮助您撰写《正弦函数的图像教案》。

祝您教案撰写顺利,并取得良好的教学效果!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《正弦函数的图像》教学案
一、教学目标:
1、知识与技能
(1)进一步熟悉单位圆中的正弦线;
(2)理解正弦诱导公式的推导过程;
(3)掌握正弦诱导公式的运用;
(4)能了解诱导公式之间的关系,能相互推导;
(5)理解并掌握正弦函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性;
(6)能熟练运用正弦函数的性质解题。

2、过程与方法
通过正弦线表示α,-α,π-α,π+α,2π-α,从而体会各正弦线之间的关系;或从正弦函数的图像中找出α,-α,π-α,π+α,2π-α,让学生从中发现正弦函数的诱导公式;通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

3、情感态度与价值观
通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

二、教学重、难点
重点: 正弦函数的诱导公式,正弦函数的性质。

难点: 诱导公式的灵活运用,正弦函数的性质应用。

三、学法与教学用具
在上一节课的基础上,运用单位圆中正弦线或正弦函数图像中角的关系,引发学生探索出正弦函数的诱导公式;通过例题和练习掌握诱导公式在解题中的作用;在正弦函数的图像中,直观判断出正弦函数的性质,并能上升到理性认识;理解掌握正弦函数的性质;以学生的自主学习和合作探究式学习为主。

教学用具:投影机、三角板
第一课时正弦函数诱导公式
一、教学思路
【创设情境,揭示课题】
在上一节课中,我们已经学习了任意角的正弦函数定义,以及终边相同的角的正弦函数值也相等,即sin(2kπ+α)=sinα (k ∈Z),这一公式体现了求任意角的正弦函数值转化为求0°~360°的角的正弦函数值。

如果还能把0°~360°间的角转化为锐角的正弦函数,那么任意角的正弦函数就可以查表求出。

这就是我们这一节课要解决的问题。

【探究新知】
1. 复习:(公式1)sin(360︒k +α) = sin α
2. 对于任一0︒到360︒的角,有四种可能(其中α为不大于90︒的非负角)
(以下设α为任意角)
3.公式2:
设α的终边与单位圆交于点P(x ,y ),则180︒+α终边 与单位圆交于点P’(-x ,-y ),由正弦线可知:
sin(180︒+α) = -
4.公式3:
如图:在单位圆中作出α与-α角的终边, 同样可得:
sin(-α) = -sin α, 5. 公式4:由公式2和公式3可得:
sin(180︒-α) = sin[180︒+(-α)] = -sin(-α) = sin α, 同理可得: sin(180︒-α) = sin α, 6.公式5:sin(360︒-α) = -sin α 【巩固深化,发展思维】
x
x
P (--y )
[
[[[
⎪⎪⎩
⎪⎪⎨⎧β∈βα-β∈βα+β∈βα-β∈βα=β为第四象限角
),当为第三象限角),
当为第二象限角),
当为第一象限角,当
36027036027018018018090180)
900
1.
例题讲评
例1. 求下列函数值
(1)sin(-1650︒); (2)sin(-150︒15’); (3)sin(-4
7π)
解:(1)sin(-1650︒)=-sin1650︒=-sin(4×360︒+210︒)=-sin210︒ =-sin(180︒+30︒)=sin30︒=2
1
(2) sin(-150︒15’)=-sin150︒15’=-sin(180︒-29︒45’) =-sin29︒45’=-0.4962 (3) sin(-47π)=sin(-2π+4π)=sin 4π=22
例2.化简:
()()()()()
πααπαπαπαπ---+-+-sin 3sin sin 3sin 2sin 解:(略,见教材P24) 2.
学生练习
二、归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么? 三、课后反思。

相关文档
最新文档