第五章数控机床的进给伺服系统h-解析
数控机床的进给传动系统文档资料

图7-39滚珠丝杠螺母副
3
1-反向器 2-螺母 3-丝杠 4-滚珠
(2)滚珠丝杆螺母副的工作原理与特点 • 滚珠丝杠螺母副的结构形式
a)滚珠丝杠副轴向剖面图 滚珠丝杠螺母副
b)滚珠丝杠副法向剖面图
4
• (3)滚珠丝杠副的结构和轴向间隙的调整方法
•
1)螺纹滚道型面的形状及其主要尺寸。
21
(3) ①密封圈。密封圈装在滚珠螺母的两端。接触式的弹性密
封圈是用耐油橡皮或尼龙等材料制成的,其内孔制成与丝杠 螺纹滚道相配合的形状。接触式密封圈的防尘效果好,但因
非接触式的密封圈是用聚氯乙烯等材料制成的,其内孔形 状与丝杠螺纹滚道相反,并略有间隙。非接触式密封圈又称 为迷宫式密封圈。
②防护罩。对于暴露在外面的丝杠,一般采用螺旋钢带、伸缩 套筒以及折叠式塑料或人造革等形式的防护罩,以防止尘埃 和磨粒粘附到丝杠表面。这几种防护罩与导轨的防护罩有相 似之处,其一端连接在滚珠螺母的端面上,另一端固定在滚 珠丝杠的支撑座上。
3.齿差调隙式 在两个螺母1、5的端面法兰上分别加工出外齿Z1和Z2,并各自装入
对应的内齿圈6中。内齿圈通过螺钉固定在螺母外的套筒3端面。通常两个外齿 轮相差1齿(如Z1=100,Z2=99)。当调整间隙时,将两个外齿轮从内齿圈中抽出 并相对内齿圈分别同向转动一个齿,然后插回原内齿圈中。此时,两个螺母间产 生的相对位移为:
滚珠丝杠制动示意图
19
• 3)滚珠丝杆的防护 • 一般采用螺纹钢带、伸缩套筒、锥形套
筒以及折叠式塑料或人造革等形式的防护 罩。
20
滚珠丝杠的防护
(1)支撑轴承的定期检查。应定期检查丝杠与床 身的连接是否有松动以及支撑轴承是否损坏 等。如有以上问题,要及时紧固松动部位并
《数控机床故障诊断与维护》课程标准

《数控机床故障诊断与维护》课程标准课程代码:学时:64 学分:4一、课程的地位与任务《数控机床故障诊断与维护》是一门专业课程,先修课程有机械制造、气动液压、电控及PLC 技术应用等。
本课程是机电技术的综合应用,对学习机、电技术综合能力的培养有明显的促进作用。
同时也是数控的一门专业主干核心课程,具有实践性强、应用面广的特点。
通过《数控机床故障诊断与维护》的教学,使学生能够获得数控机床的基本理论和基本知识,初步掌握数控机床故障诊断与维护的基本思路、基本方法和基本原则,具有分析并排除数控机床常见故障的能力。
为今后学习后续课程和从事相关工作打下扎实的基础。
二、课程的主要内容和学时分配1.课程的主要内容第一章数控机床维修与维护基础第一节数控机床概述(1)数控机床的产生背景(2)数控机床的基本概念(3)数控机床的组成(4)数控机床的工作过程(5)数控机床的种类(6)数控机床的常用数控系统简介第二节数控机床的故障维修基础(1)数控机床的故障定义(2)数控机床常见故障的特点与规律(3)数控机床常见故障的种类(4)数控机床发生故障时的诊断方法第三节数控机床的日常维修维护与保养(1)数控机床日常维修维护工作的内容(2)数控机床机体的维护与保养(3)数控机床电气控制系统的日常维护(4)数控机床维修人员应具备的基本要求(5)数控机床的维修维护的技术资料(6)数控机床故障诊断与维护常用仪器仪表及工具第四节FANUCOi系统数控机床基本操作(1)数控机床面板介绍(2)数控机床的基本操作(3)手动进给操作第二章数控系统硬件故障诊断与维护第一节数控系统硬件概述第二节数控系统硬件的更换方法第三节数控系统硬件故障的诊断方法第四节数控机床的抗干扰措施第三章数控系统软件故障诊断与维护第一节数控系统软件的组成第二节数控系统的参数设置第三节数控系统的参数备份与恢复第四节数控系统软件故障的诊断与处理方法第四章数控机床PLC故障诊断与维护第一节数控机床PLC基础(1)数控机床中PMC的用途(2)数控机床用PLC种类(3)数控机床PLC梯形图程序(4)数控机床PLC梯形图符号第二节数控机床用PLC的操作(1)FANUCOi数控系统的PMC调试功能(2)PMC的基本操作(3)PMC编程实例第三节数控系统PMC故障诊断(1)数控系统PMC的故障类型及原因(2)通过PMC进行故障诊断的方法(3)数控机床PMC控制功能程序分析(4)典型PLC故障的分析与诊断流程第五章数控机床进给伺服系统故障诊断与维护第一节进给伺服系统的概述(1)进给伺服系统的组成(2)数控机床对进给伺服驱动系统的要求(3)进给伺服驱动系统的分类第二节步进电动机伺服系统及工作原理(1)步进进给伺服驱动系统(2)步进电动机进给伺服驱动系统的工作原理(3)步进电动机驱动系统的常见故障与维修第三节交流伺服进给驱动装置的组成及工作原理(1)交流进给伺服系统的特点(2)模拟式交流伺服控制原理(3)数字交流伺服系统控制原理(4)交流伺服系统的维护与调整第四节位置检测装置的组成及工作原理(1)位置检测装置的要求(2)位置检测方式分类(3)位置检测元件及其维护(4)位置检测故障的诊断第六章主轴驱动系统故障诊断与维护第一节数控机床主轴驱动系统基本知识(1)数控机床对主轴传动的要求(2)主轴系统分类及特点(3)主轴伺服系统故障的形式及诊断第二节交流主轴伺服系统概述(1)交流主轴伺服系统的特点(2)交流主轴调速原理(3)交流数字式主轴伺服系统(4)交流模拟式主轴伺服系统第三节交流主轴驱动系统故障诊断与维修(1)交流数字式主轴伺服系统故障的诊断与排除(2)交流模拟式主轴伺服系统故障的诊断与排除(3)主轴伺服系统故障实例及分析第七章数控机床机械结构故障诊断与维护第一节数控机床精度的检验第二节主传动机械结构的维护与维修第三节进给系统机械传动结构的维修第四节换刀装置的维护与故障诊断第五节其它辅助故障诊断与维护2.学时分配本课程在教学过程中,强调基础理论和基本概念的掌握,同时注重学生的实际动手操作,要求能把基础理论应用于实践中,让学生具备处理和排除数控机床基本故障的能力。
数控机床的进给传动系统概述

进给传动系统
• 4.4 齿轮齿条副与双导程蜗杆副传动
• 4)双导程蜗杆副的蜗杆支承直接安置在支座上,只需保 证支承中心线与蜗轮中截面重合,中心距公差可略微放宽 ,装配时,用调整环来获得合适的啮合侧隙,这是普通蜗 杆副无法办到的。 • 5)双导程螺杆副不足之处是制造困难。
图4-14 滚珠丝杠副的结构原理
进给传动系统
• 4.3 数控机床用丝杠传动副
• 2.特点 • 1)摩擦损失小,传动效率高,可达90%~96%,功率消 耗只相当于常规丝杠螺母副的1/4~1/3。 • 2)采用双螺母预紧后,可消除丝杠和螺母的螺纹间隙, 提高了传动刚度。 • 3)摩擦阻力小,动、静摩擦力之差极小,能保证运动平 稳,不易产生低速爬行现象。 • 4)不能自锁,有可逆性,既能将旋转运动转换为直线运 动,又能将直线运动转换为旋转运动。 • 5)运动速度受到一定限制,传动速度过高时,滚珠在其 回路管道内易产生卡珠现象。 • 6)制造工艺复杂。
进给传动系统
• 4.1 概述
• 3.弹性联轴器
无键联接;
依靠弹性钢片 组对角联接传 递转矩。
图4-4 直接联接电动机轴和丝杠的弹性联• 4.安全联轴器 防止过载造成整个运动传动机构零件损坏。
图4-5 安全联轴器工作原理
进给传动系统
• 4.1 概述
• TND360型数控车床的安全联轴器
图4-6 TND360型数控车床的纵向滑板的传动系统图 1—旋转变压器和测速发电机 10—滚珠丝杠 2—直流伺服电动机 3—锥环 11—垫圈 12、13、14—滚针轴承
4、6—半联轴器
5—滑环 7—钢片 8—碟形弹簧 9—套
15—堵头
16—压紧螺钉 17—压紧外环 18—压紧内环 19—压紧套
数控机床进给伺服系统的组成和分类

机床加工,大多是低速时进行切削,即在低速时进给驱动要有大的转矩输出。
二、进给伺服系统的组成如图所示为数控机床进给伺服系统的组成。
从图中可以看出,它是一个双闭环系统,内环是速度环,外环是位置环。
位置环的输入信号是计算机给出的指令信号和位置检测装置反馈的位置信号,这个反馈是一个负反馈,即与指令信号的相位相反。
指令信号是向位置环送去加数,而反馈信号向位置环送去减数。
位置检测装置通常有光电编码器、旋转变压器、光栅尺、感应同步器或磁栅尺等。
它们或者直接对位移进行检测,或者间接对位移进行检测。
开环伺服系统开环伺服系统是最简单的进给伺服系统,无位置反馈环节。
如图所示,这种系统的伺服驱动装置主要是步进电动机、功率步进电动机、电液脉冲电动机等。
由数控系统发出的指令脉冲,经驱动电路控制和功率放大后,使步进电动机转动,通过齿轮副与滚珠丝杠螺母副驱动执行部件。
闭环伺服系统闭环伺服系统原理图如图所示。
系统所用的伺服驱动装置主要是直流或交流伺服电动机以及电液伺服阀—液压马达。
与开环进给系统最主要的区别是:安装在执行部件上的位置检测装置,测量执行部件的实际位移量并转换成电脉冲,反馈到输入端并与输人位置指令信号进行比较,求得误差,依此构成闭环位置控制。
由于采用了位置检测反馈装置,所以闭环伺服系统的位移精度主要取决于检测装置的精度。
闭环伺服系统的定位精度一般可达±0.01mm~±0.005 mm。
半闭环伺服系统半闭环伺服系统如图所示。
将检测元件安装在中间传动件上,间接测量执行部件位置的系统称为半闭环系统。
闭坏系统可以消除机械传动机构的全部误差,而半闭环系统只能补偿系统环路内部分元件的误差,因此,半闭环系统的精度比闭环系统的精度要低一些,但是它的结构与凋试都比较简单。
全数字伺服系统随着微电子技术、计算机技术和伺服控制技术的发展,数控机床的伺服系统已经开始采用高速度、高精度的全数字伺服系统。
使伺服控制技术从模拟方式、混合方式走向全数字方式。
5数控机床伺服驱动和检测

10
第一节 概述
但直流电机有电刷,限制了转速的提高,而且结构复杂,价格 也高。进入80年代后,由于交流电机调速技术的突破,交流伺服 驱动系统进入电气传动调速控制的各个领域。交流伺服电机,转 子惯量比直流电机小,动态响应好。而且容易维修,制造简单, 适合于在较恶劣环境中使用,易于向大容量、高速度方向发展, 其性能更加优异,已达到或超过直流伺服系统,交流伺服电机已 在数控机床中得到广泛应用。 直线电动机的实质是把旋转电动机沿径向剖开,然后拉直演 变而成,利用电磁作用原理,将电能直接转换成直线运动动能的 一种推力装置,是一种较为理想的驱动装置。在机床进给系统中, 采用直线电动机直接驱动与旋转电动机的最大区别是取消了从电 动机到工作台之间的机械传动环节,把机床进给传动链的长度缩 短为零。正由于这种传动方式,带来了旋转电动机驱动方式无法 达到的性能指标和优点。由于直线电动机在机床中的应用目前还 处于初级阶段,还有待进一步研究和改进。随着各相关配套技术 的发展和直线电动机制造工艺的完善,相信用直线电动机作进给 驱动的机床会得到广泛应用。
选择:①伺服系统要求的分辨率; ②考虑机械传动系统的参数。
分辨率(分辨角)α
设增量式码盘的规格为 n 线/转:
18
二、脉冲编码器
第 五 章 数 控 机 床 的 驱 动 装 置
19
二、脉冲编码器
第 五 章 数 控 机 床 的 驱 动 装 置
20
二、脉冲编码器
第 五 章 数 控 机 床 的 驱 动 装 置
2
第一节 概述
数控机床闭环进给系统的一般结构如图所示,这是一个双闭环系统,内环 为速度环,外环为位置环。速度环由速度控制单元、速度检测装置等构成。速 度控制单元是一个独立的单元部件,它是用来控制电机转速的,是速度控制系 统的核心。速度检测装置有测速发电机、脉冲编码器等。位置环是由CNC装置 中的位置控制模块、速度控制单元、位置检测及反馈控制等部分组成。由速度 检测装置提供速度反馈值的速度环控制在进给驱动装置内完成,而装在电动机 轴上或机床工作台上的位置反馈装置提供位置反馈值构成的位置环由数控装置 来完成。伺服系统从外部来看,是一个以位置指令输入和位置控制为输出的位 置闭环控制系统。但从内部的实际工作来看,它是先把位置控制指令转换成相 应的速度信号后,通过调速系统驱动伺服电机,才实现实际位移的。
《进给伺服系统》课件

进给伺服系统的分类
总结词
进给伺服系统可以根据不同的分类标准进行分类,如 按照控制方式、电机类型、反馈方式等。
详细描述
根据不同的分类标准,进给伺服系统可以分为多种类 型。按照控制方式,可以分为开环控制和闭环控制; 按照电机类型,可以分为直流电机伺服系统和交流电 机伺服系统;按照反馈方式,可以分为模拟反馈和数 字反馈。此外,还可以根据应用领域、功率大小等进 行分类。不同类型的进给伺服系统具有不同的特点和 应用范围,选择合适的类型对于实现高精度制造和加 工至关重要。
位置检测器通常由传感器和信号处理电路组成。
传感器将物体的位置转换为电信号,信号处理电路将电信号转换为可处理的数字或模拟信号,以便控制 器进行处理。
控制器的工作原理
控制器是一种用于控制系统的装置, 它根据输入的信号和设定的参数来控 制系统的输出。
在进给伺服系统中,控制器根据输入 的指令和位置检测器的反馈信号来控 制伺服电机的输出,以实现精确的位 置控制。
VS
详细描述
智能伺服系统集成了传感器、控制器、执 行器等多种技术,能够实现自适应控制、 自主学习和自主决策等功能。未来,智能 伺服系统将进一步拓展应用领域,提高系 统的智能化水平和自适应性,满足不断变 化的市场需求。
网络化伺服系统的发展趋势
总结词
网络化伺服系统是实现设备间高效通信和协 同工作的关键技术。
机器人
机器人是进给伺服系统的另一个重要应用领域。
机器人的运动轨迹需要精确控制,进给伺服系统能够实 现高精度的轨迹跟踪和定位。
在机器人中,进给伺服系统主要用于控制机器人的关节 运动和末端执行器的位置。
此外,进给伺服系统还可以提高机器人的稳定性和动态 性能,使其能够更好地适应复杂的工作环境。
第五章 数控机床的伺服驱动系统

(7)惯性匹配 移动部件加速和降速时都有较大的惯量,由于要求系统
的快速响应性能好,因而电动机的惯量要与移动部件的惯量 匹配。通常要求电动机的惯量不小于移动部件惯量。
数控机床的伺服驱动系统
5.2 位置控制
D/A 转换器
伺服放大器
伺服 电动机
Pf 反馈脉冲
位置检测
脉冲处理
图 5-2 脉冲比较伺服系统结构框图
工作台
光栅或光 电编码器
数控机床的伺服驱动系统
(1) 由计算机数控制装置提供指令的脉冲。 (2) 反映机床工作台实际位置的位置检测器。 (3) 完成指令信号与反馈信号相比较的比较器。 (4) 将比较器输出数字信号转变成伺服电动机模拟控制 信号的数/模转换器。 (5) 执行元件(伺服电动机)。
数控机床的伺服驱动系统
(1)指令脉冲PC=0,这时反馈脉冲Pf=0,则Pe=0,则伺
服电动机的速度给定为零,工作台继续保持静止不动。
(2)现有正向指令PC+=2,可逆计数器加2,在工作台尚 未移动之前,反馈脉冲Pf+=0,可逆计数器输出Pe=Pc+-Pf+=2
-0=2,经转换,速度指令为正,伺服电动机正转,工作台 正向进给。
CP A9 ≥1
CP
RC
+Vcc B
A A10 RD Q +Vcc
A3
DS
A4
Q CP
≥1
A7
DS
CPQ
A8 ≥1
RC
+Vcc BQ
A A11 RD +Vcc
D Q7 A12
数控机床的进给传动系统

详细描述
刚度是指数控机床在受到外力作用时,进给 传动系统抵抗变形的能力。高刚度的数控机 床能够减小受力变形对加工精度的影响,提 高加工质量。
速度与加速度
总结词
速度与加速度是衡量数控机床进给传动系统 动态性能的指标。
详细描述
速度与加速度是指数控机床在加工过程中, 进给传动系统能够达到的最大移动速度和加 速度。高速度和高加速度的数控机床能够缩
更换磨损件
对磨损严重的部件进行更 换,保证进给传动系统的 正常运行。
调整参数
根据实际运行情况,对进 给传动系统的参数进行调 整,优化其性能。
常见故ቤተ መጻሕፍቲ ባይዱ诊断与排除
噪音异常
温度过高
检查进给传动系统是否有异常噪音, 判断是否需要更换轴承或齿轮。
检测进给传动系统的温度,如温度过 高,需检查润滑系统是否正常工作。
03
数控机床进给传动系统的分 类
滚珠丝杠螺母副传动
总结词
滚珠丝杠螺母副传动是数控机床中最常用的进给传动方式之一,具有高精度、 高刚度、高可靠性的特点。
详细描述
滚珠丝杠螺母副传动通过将旋转运动转换为直线运动,实现工作台的进给运动。 其优点在于传动效率高、传动精度稳定、使用寿命长,且具有较高的刚度,能 够满足大多数数控机床的进给传动需求。
运行抖动
观察进给传动系统的运行情况,如有 抖动现象,需检查传动轴是否松动或 损坏。
06
数控机床进给传动系统的未 来发展
高精度化
总结词
随着制造业对产品精度要求的不断提高,数控机床的进给传动系统需要实现更高程度的 精度控制。
详细描述
高精度化是数控机床进给传动系统未来的重要发展方向。通过采用先进的控制系统、高 性能的传动元件和精密加工技术,可以提高数控机床的定位精度、重复定位精度和加工
数控机床进给系统

• 幅值比较伺服系统工作原理 是以位置检 测信号的幅值大小来反映机械位移的数值
Image ,并以此作为位置反馈信号与指令信号进
行比较构成的闭环控制系统。该系统的特 点是所用的位置检测元件(感应同步器和 旋转变压器)应工作在幅值工作方式。
数控典型进给传动系统及系统图
数控机床进给模块
No • 数控机床的典型进给传动系统图
• 系统图的主要结构和功用
Image • 数控机床对进给系统的要求
• 进给系统的装配方法 • 进给系统的装配过程
数控典型进给传动系统及系统图
1.由步进电机构成的开环控制系统
No • 基本控制原理 由数控装置送来的—定频率和数量的 指令脉冲,经步进电机环形分配器分配和功率放大器 放大后驱动步进电机旋转。 • 步进电机的使用 步进电机的角位移或线位移与脉冲
信号PA(θ)。PA(θ)和PB(θ)为两个同频的脉冲信 号的相位差Δθ反映了指令位置与实际位置的偏差,由 鉴相器判别检测。伺服放大器和伺服电机构成的调速 系统,接受相位差Δθ信号以驱动工作台朝指令位置进 给,实现位置跟踪。
数控典型进给传动系统及系统图
相位比较伺服系统原理框图
No
Image
数控典型进给传动系统及系统图
数控典型进给传动系统及系统图
半闭环进给伺服系统原理图
No
Image
半闭环进给伺服传动系统组成
No Image
滚珠丝杠螺母副+滚动导轨副
双螺母
半闭环进给伺服传动系统组成
伺服电机
滚珠 丝杠 螺母
No
Image 丝杠
伺服 电机
支承
轴承
全数字伺服系统
No – 随着微电子技术、计算机技术和伺服控制技术 的发展,数控机床的伺服系统已经开始采用高 速度、高精度的全数字伺服系统。使伺服控制 Image 技术从模拟方式、混合方式走向全数字方式。 由位置、速度和电流构成的三环反馈全部数字 化,应用数字PID算法,用PID程序来代替PID 调节器的硬件,使用灵活,柔性好。数字伺服 系统采用了许多新的控制技术和改进伺服性能 的措施,使控制精度和品质大大提高。
数控机床习题有答案

数控机床习题(第一章)1填空题(1)数控机床一般由控制介质、数控系统、伺服系统、机床本体、反馈装置和各种辅助装置组成。
(2)数控机床采用数字控制技术对机床的加工过程进行自动控制的一类机床。
(3)突破传统机床结构的最新一代的数控机床是并联机床。
(4)自适应控制技术的目的是要求在随机变化的加工过程中,通过自动调节加工过程中所测得的工作状态、特性,按照给定的评价指标自动校正自身的工作参数,以达到或接近最佳工作状态。
2选择题(1)一般数控钻、镗床属于( C )(A)直线控制数控机床(B)轮廓控制数控机床(C)点位控制数控机床(D)曲面控制数控机床(2)( D )是数控系统和机床本体之间的电传动联系环节(A)控制介质(B)数控装置(C)输出装置(D)伺服系统(3)适合于加工形状特别复杂(曲面叶轮)、精度要求较高的零件的数控机床是( A )(A)加工中心(B)数控铣床(C)数控车床(D)数控线切割机床(4)闭环控制系统的位置检测装置装在( D )(A)传动丝杠上(B)伺服电动机轴上(C)数控装置上(D)机床移动部件上(5)根据控制运动方式的不同,数控机床可分为(B )(A)开环控制数控机床、闭环控制数控机床和半闭环控制数控机床(B)点位控制数控机床、直线控制数控机床和轮廓控制数控机床(C)经济型数控机床、普及型数控机床和高档型数控机床(D)NC机床和CNC机床3 判断题(1)通常一台数控机床的联动轴数一般会大于或等于可控轴数。
(×)(2)数控机床是通过程序来控制的。
(√)(3)数控机床只用于金属切削类加工。
(×)(4)数控系统是机床实现自动加工的核心,是整个数控机床的灵魂所在。
(√)(5)机床本体是数控机床的机械结构实体,是用于完成各种切割加工的机械部分。
(√)4 简答题(1)简述数控机床的发展趋势。
P91、高速度与高精度化2、多功能化3、智能化4、高的可靠性(2)简述数控机床各基本组成部分的作用。
进给伺服系统概述

大倍数。 调速单元输出的量是速度量,这一速度量经过积分环节 1/s 后成为角 位移量。
2-1、进给伺服系统的数学模型
对控制系统的数学描述, 实际上就是首先建立系统中各环节的传 递函数,然后求出整个系统的传递函数。有速度内环的闭环系统如 图 8-4 所示:
位置检测环节是指位置传感器(光电编码器,旋转变压器等)和后置 处理电路。作用是把位置信号转换为电信号。这个环节也可以看做是 一个比例环节,比例系数是 K f 。 将各环节的传递函数置换 8-4 的框图, 就得到了动态结构图, 如图 8-5 所示:
1.静态性能分析
控制系统中,最重要的是稳定性问题。如果一台数控机床的伺服 控制系统是不稳加工的。因此,任何控制系统首先必须是稳定的。 2、稳态性能指标 位置伺服系统的稳态性能指标主要是定位精度,指的是系 统过度过程终了时实际状态与期望状态之间的偏差程度。 一般数控机 床的定位精度应不低于 0.01mm,而高性能数控机床定位精度将达到 0.001mm 以上。 影响伺服系统稳态精度的原因主要有两类, 一类是位置测量装置
伺服控制系统

伺服系统的概念伺服系统是一种反馈控制系统,以指令脉冲为输入给定值,与输出量进行比较,利用偏差值对系统进行自动调节,以消除误差,使输出量紧密跟踪给定值.cnc装置放大转换速度控制伺服电机工作台检测单元51. 伺服系统的概念(续)伺服系统一般由驱动控制单元,驱动元件,机械传动部件,执行件和检测反馈环节等组成.伺服控制系统与一般机床进给系统有着本质的区别:进给系统的作用在于保证切削过程能够继续进行,不能控制执行件的位移和轨迹;伺服系统将指令信息加以转换和放大,不仅能控制执行件的速度,方向,而且能精确控制其位置,以及几个执行件按一定的运动规律合成的轨迹.伺服系统的性能直接关系到数控机床执行部件的静态和动态特性,工作精度,负载能力,响应快慢和稳定程度等.62. 数控机床对伺服系统的要求调速范围宽调速范围是指最高进给速度和最低进给速度之比.由于加工所用的刀具,被加工零件材质以及零件加工要求的变化范围很广,为了保证在所有的加工情况下都能得到最佳的切削条件和加工质量,要求进给速度能在很大的范围内变化,即有很大的调速范围.同时要求在调速范围内,速度均匀,稳定,低速时无爬行,在零速时伺服电机处于电磁锁住状态,以保证定位精度不变.72. 数控机床对伺服系统的要求(续)精度高数控机床是按预定的程序自动进行加工的,不可能像普通机床那样用手动操作来调整和补偿各种因素对加工精度的影响,故要求数控机床的实际位移和指令位移之差要小.现代数控机床的位移精度一般为0.01-0.001mm,甚至可高达0.1 m.以保证加工质量的一致性,保证复杂曲线,曲面零件的加工精度.82. 数控机床对伺服系统的要求(续)响应快要求伺服系统跟踪指令信号的响应要快,即灵敏度要高,达到最大稳定速度的时间要短,这种过渡过程一般都在200ms以内,甚至几十毫秒,即过渡过程的前沿要陡,斜率要大.响应的快慢反映了系统跟踪精度的高低,且直接影响轮廓加工精度的高低和加工表面质量的好坏.92. 数控机床对伺服系统的要求(续)低速大扭矩数控机床的进给系统常在相对较低的速度下进行切削,故要求伺服系统能够输出大的转矩.普通加工直径400mm的车床,纵向和横向的驱动力矩都在10n.m以上.为此数控机床的进给传动链应尽量短,传动的摩擦系数尽量小,并减少间隙,提高刚度,减少惯量,提高效率.第二节伺服系统的驱动元件111. 对伺服驱动元件的要求驱动元件(即伺服电机)是伺服系统的关键部件,它接受控制系统发来的进给指令信号,并将其转变为角位移或直线位移,以驱动数控机床的进给部件实现所要求的运动.而这种运动要能进,能退,能快,能慢,既精确又灵敏.它应满足下列要求:调速范围宽精度高电机的负载特性好电机的结构简单2. 直流伺服电机2.1 直流电机的工作原理直流伺服电机与一般直流电机的工作原理完全相同,他励直流电机转子上的载流导体(即电枢绕组),在定子磁场中受到电磁转矩m的作用,使电机转子旋转.frfufiaraiu+电磁转矩:atikm=式中:)电机的转矩系数(φ= mttckk电机电枢电流ai电枢转动后,因导体切割磁力线而产生反电动势,其值为:nkeea=电势系数电枢的转速2. 直流伺服电机(续)作用在电枢的电压u应等于反电势与电枢电压降之和,即frfufiaraiu+aaarieu+=电枢电阻上式就是电机的电压平衡方程式,且eaakriun=改变电机转速有三种方法:(1)改变电枢电压u;(2)改变磁通量φ(即改变ke的值),改变激磁回路的电阻rf以改变激磁电流if,可以达到改变磁通量的目的;(3)在电枢回路中串联调节电阻.2.2 直流电机的静态特性frfufiaraiau+atmikt φ =式中:电枢回路的电压平衡方程式为:直流电机的工作原理建立在电磁定律基础上,即直流切割磁力线产生电磁转矩,电磁力的大小正比于电机中气隙的磁场.电磁转矩表示为-电磁转矩.-电枢电流;磁场磁通;转矩系数;mattik φaaaaeriu+=式中:-电枢上的外加电压.电枢反电势;电枢电阻;aaauer 2.2 直流电机的静态特性(续)frfufiaraiu+ω φ =eake式中:由以上各式可得:电枢反电势与转速之间的关系为:电机转速(角速度);电势系数; ωekmteaeatkkrkuφ φ=ω2此式表示电机转速与电磁力矩的关系,称为机械特性,即静态特性.稳定运行时,电磁转矩与所带负载转矩相等.当负载转矩为零时,电磁转矩也为零,这时可得:φ =ωeaku0理想空载转速当电机带动某一负载tl时,电机转速与理想空载转速ω0会有一个差值ω, ω表明了机械特性的硬度, ω越小,机械特性越硬.2.3 直流电机的动态特性dtdjttlmω= 在数控机床的进给伺服系统中,电机经常处于过渡过程工作状态,其动态特性直接影响生产率,加工精度和表面质量.永磁直流电机有着优良的动态品质.直流电机的力矩平衡方程式为:时间.-惯量;-电机转子上总的转动电机转子的角速度;转矩;折算到电机轴上的负载电机电磁转矩;式中,t jttlm ω 该式表明动态过程中,电机由直流电能转换来的电磁转矩tm克服负载转矩后,其剩余部分用来克服机械惯量而产生加速度,以使电机由一种稳定状态过渡到另一种稳定状态.17直流电机示例18上次课内容回顾介绍了开放式数控系统的实现技术;介绍了伺服系统的概念;介绍了数控机床对伺服系统的要求;介绍了直流伺服电机的工作原理;2005-06-07第15周193. 交流伺服电机直流伺服电机具有良好的调速性能,但直流电机的电刷和换向器易磨损,需要经常维护,而且换向器换向时会产生火花,使电机的转速和应用环境受到限制.交流电机则没有上述缺点,且转子惯量比直流电机小,动态响应更好.一般在同样的体积下,交流电机的输出功率可比直流电机提高10%-70%.同时,交流电机的容量可比直流电机大些,电压和转速也更高.在数控机床上主要应用的是永磁式交流伺服电机.203.1 交流伺服电机的调速方法交流伺服电机的调速采用变频调速的方法,即改变电源的频率f.交流伺服电机变频调速的关键问题是要获得变频,调压的交流电源.变频调压常用交流-直流-交流方法.即将工频交流电整流成直流电,再将直流逆变为频率可调的交流电.21交流伺服电机示例224. 直线电机将旋转电机沿径向剖开后,拉直展开便形成了直线电机.它省去了联轴器,滚珠丝杠螺母副等传动环节,直接驱动工作台移动.目前应用较多的是交流直线电机(永磁同步和感应异步式两种),原来的定子称为"初级",原来的转子称为"次级".将"初级"和"次级"分别安装在机床的运动部件和固定部件上,初级的三项绕组通电时即可实现部件间的相对运动.23直线电机示例245. 步进电机步进电机是一种将电脉冲信号转换为机械角位移的机电执行元件.步进电机的转子上无绕组,且均匀分布若干个齿,定子上有激磁绕组.当输给激磁绕组一个电脉冲时,转子就转过一个相应的角度,称为步距角.步进电机的角位移和输入脉冲的个数严格成正比,在时间上与输入脉冲同步.步进...。
5.3数控机床的进给运动

5.3 数控机床的进给运动
滚动导轨常见结构类型: 滚动导轨块和直线滚动导轨。
(1)滚动导轨块
1-防护板 3-滚柱 5-保持器
2-端盖 4-导向片 6-本体
27
5.3 数控机床的进给运动 (2)直线滚动导轨
滚动导轨组件
形式、结构
28
5.3 数控机床的进给运动
直
线
滚
动
导
轨
29
5.3 数控机床的进给运动 弧 形 滚 动 导 轨
12
5.3 数控机床的进给运动 2. 滚珠丝杠螺母副的分类 (1) 外循环 滚珠在循环过程中 回珠时与丝杠脱离接 触的结构; 采用弧形铜管形成 滚珠返回通道,由弯 管的端部引导滚珠; 其工作圈数是2.5圈 或3.5圈 ,1~2列。
丝杆
13
5.3 数控机床的进给运动
(2) 内循环
滚珠在循环过程 中始终与丝杠保持接 触的结构。 采用圆柱凸键反 向器实现滚珠循环, 反向器嵌入螺母内。 工作圈数是3列。 1-丝杠 2-螺母 3-滚珠 4-反向器
41
5.3 数控机床的进给运动 (2)闭环数控回转工作台结构与工作原理
闭环回转工作台采用圆光栅或圆感应同步器,将实际 转动角度反馈至系统,与指令值进行比较,通过差值控制 回转工作台的运动,提高了圆周进给运动精度。 工作台的连续圆周进给运动。回转工作台由伺服电动 机15驱动,通过齿轮14、16及蜗杆12、蜗轮13带动工作 台1回转。工作台的转角位臵由圆光栅9测量。 工作台的定位与夹紧。当控制系统发出夹紧指令时,液 压缸5上腔进压力油,活塞6向下移动,通过钢球8推开夹紧 瓦3和4,从而将蜗轮13夹紧。
14
5.3 数控机床的进给运动 3.滚珠丝杠螺母副轴向间隙调整
数控机床的伺服驱动系统

数控机床的伺服驱动系统
伺服系统是指以机械位置或角度作为控制对象的自动控制系统,而在数控机床中,伺服系
2
统主要指各坐标轴进给驱动的位置控制系统,它由执行组件(如步进电机、交直流电动机
等)和相应的控制电路组成,包括主驱动和进给驱动。伺服系统接收来自CNC装置的进给
脉冲,经变换和放大,再驱动各加工坐标轴按指令脉冲运动。这些轴有的带动工作台,有
(4)步进电动机的主要特点
步进电动机受脉冲信号的 控制,每输入一个脉冲, 就变换一次绕组的通电状 态,电动机就相应转动一 步。因此角位移与输入脉 冲个数成严格的比例关系。
一旦停止送入控制脉冲, 只要维持控制绕组电流不 变,电动机可以保持在其 固定的位置上,不需要机 械制动装置。
输出转角精度高,虽有相 邻齿距误差;但无积累误 差。
4.3.2.2 直流伺服电动机
直流伺服电动机是数控机床伺服系统中应用最早的,也是使用最广泛的 执行组件。直流伺服电动机有永磁式和电磁式两种结构类型。随着磁性 材料的发展,用稀土材料制作的永磁式直流伺服电动机的性能超过了电 磁式直流伺服电动机,目前广泛应用于机床进给驱动。直流伺服电动机 的工作原理与普通直流电动机完全相同,但工作状态和性能差别很大。 机床进给伺服系统中使用的多为大功率直流伺服电动机,如低惯量电动 机和宽调速电动机等。
θb =
从上面的分析可以看 出,步进电动机转动 的角度取决于定子绕 组的相数、转子齿数 及供电的逻辑状态。 若以θb表示步距角, 则有
(4-12)
360
mzK 式中 m—步进电动机相数;z—转子齿数;K—由 步进电动机控制方式确定的拍数和相数的比例系 数,如三相三拍时,K=1;而三相六拍制时,K =2。 为了提高加工精度,一般要求步距角很小,数控 机床中常用的步进电动机步距角为0.36o~3o
数控机床进给伺服系统的基本结构(共7张PPT)

。
速度控制模块
一进给伺服系统的结构
步进伺服系统原理图
伺服电机、速度检测装置、速度反馈比较环节、速度控制模块 数控机床常见故障诊断与排除 位置指令、位置检测装置、位置反馈比较环节、位置控制模块、速度控制环、机械传动装置 位置指令、位置检测装置、位置反馈比较环节、位置控制模块、速度控制环、机械传动装置 伺服电机、速度检测装置、速度反馈比较环节、速度控制模块 伺服系统的结构通常由位置控制环和速度控制环组成。 伺服电机、速度检测装置、速度反馈比较环节、速度控制模块 数控机床进给伺服系统的基本结构 驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行部件组成机械传动系统,检测元件和反馈电路组成检测装置(或称作检测系统) 。 驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行部件组成机械传动系统,检测元件和反馈电路组成检测装置(或称作检测系统) 。 伺服系统的结构通常由位置控制环和速度控制环组成。 位置指令、位置检测装置、位置反馈比较环节、位置控制模块、速度控制环、机械传动装置 驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行部件组成机械传动系统,检测元件和反馈电路组成检测装置(或称作检测系统) 。
数控机床常见故障诊断与排除 数控机床进给伺服系统的基本结构
一进给伺服系统的结构
数控机床的伺服系统一般由驱动元件、机械传动部件、执行部件和检测反馈环 节等组成。驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行部
件组成机械传动系统,检测元件和反馈电路组成检测装置(或称作检测系
统)。)。
一进给伺服系统的结构
制环 数控机床的伺服系统一般由驱动元件、机械传动部件、执行部件和检测反馈环节等组成。
伺服电机、速度检测装置、速度反馈比较环节、速度控制模块
数控机床进给系统..

数控机创进给系统数控机床的进给传动系统常用伺服进给系统来工作。
伺服进给系统的作用是根据数控系统传来的指令信息,进行放大以后控制执行部件的运动,不仅控制进给运动的速度,同时还要精确控制刀具相对于工件的移动位置和轨迹。
因此,数控机床进给系统,尤其是轮廓控制系统,必须对进给运动的位置和运动的速度两方面同时实现自动控制。
数控机床进给系统的设计要求除了具有较高的定位精度之外,还应具有良好的动态响应特性,系统跟踪指令信号的响应要快,稳定性要好。
一个典型的数控机床闭环控制的进给系统组成:位置比较、放大元件、驱动单元、机械传动装置和检测反馈元件等几部分。
机械传动装置:是指将驱动源旋运动变为工作台直线运动的整个机械传动链,包括减速装置、丝杠螺母副等中间传动机构。
第一节概述一、数控机床对进给传动系统的要求1.减少摩擦阻力:在数控机床进给系统中,普遍采用滚珠丝杠螺母副、静压丝杠螺母副,滚动导轨、静压导轨和塑料导轨。
2.减少运动惯量3.高的传动精度与定位精度设计中,通过在进给传动链中加入减速齿轮,以减小脉冲当量(即伺服系统接收一个指令脉冲驱动工作台移动的距离),预紧传动滚珠丝杠,消除齿轮、蜗轮等传动件的间隙等办法,可达到提高传动精度和定位精度的目的。
4.宽的进给调速范围:伺服进给系统在承担全部工作负载的条件下,应具有很宽的调速范围,以适应各工件材料、尺寸和刀具等变化的需要,工作进给速度范围可达3~6000mm/min(调速范围1:2000)。
5.响应速度要快:所谓快响应特性是指进给系统对指令输入信号的响应速度及瞬态过程结束的迅速程度,即跟踪指令信号的响应要快;定位速度和轮廓切削进给速度要满足要求;工作台应能在规定的速度范围内灵敏而精确地跟踪指令,进行单步或连续移动,在运行时不出现丢步或多步现象6.无间隙传动:进给系统的传动间隙一般指反向间隙,即反向死区误差,它存在于整个传动链的各传动副中,直接影响数控机床的加工精度。
因此,应尽量消除传动间隙,减小反向死区误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▢ 对伺服系统的要求包括静态和动态特性两方面; ▢ 对高精度的数控机床,对其动态性能的要求更严。
第五章数控机床的进给伺服系统h-解析
9
第二节 进给伺服驱动系统
一、概述
1. 进给伺服驱动系统由进给伺服系统中的 驱动电 机及其控制和驱动装置组成。
2. 驱动电机是进给系统的动力部件,它提供执行 部分运动所需的动力,在数控机床上常用的电 机有:
第五章数控机床的进给伺服系统h-解析
13
第五章数控机床的进给伺服系统h-解析
14
第五章数控机床的进给伺服系统h-解析
15
▢步进电机
步进电机是一种将电脉冲信号转化为机械角位移的电 磁机械装置。由于所用电源是脉冲电源,所以也称为 脉冲马达。
步进电机和一般电机不同,一般电机通电后连续 转动,而步进电机则随输入的脉冲按节拍一步一步地 转动。对步进电机施加一个电脉冲信号时,步进电机 就旋转一个固定的角度,称为一步。每一步所转过的 角度叫做步距角。
B相通电
A相通电
第五章数控机床的进给伺服系统h-解析
C相通电
19
当A、B、C三对磁极的绕组依次轮流通电,则A、B 、C三对磁极依次产生磁场吸引转子转动。
A
C1 B
4
2
B 3C
A
A
C1
B 2
4 B
3C
A
A
C
B
B
C
A
逆时针回转300
逆时针回转300
第五章数控机床的进给伺服系统h-解析
16
▢步进电机
步进电机的角位移量和输入的脉冲数成正比。在 时间上与输入的脉冲同步。
因此,只需要控制输入脉冲的数量、频率及电机 绕组通电相序,便可以获得所需要的转角、转速及转 动方向。
在无脉冲输入时,步进电机在绕组电源激励下, 气隙磁场能使转子保持原有的位置而处于定位状态。
F
的前提下,执行部件的运
动速度的建立时间 t p 应尽 可能短。
通常要求从 0→F max
(F max→0),其时间应小 于200ms,且不能有超调,
tp
t
否则对机械部件不利,有
害于加工质量。
第五章数控机床的进给伺服系统h-解析
8
5. 能可逆运行和频繁灵活启停。 6. 系统的可靠性高,维护使用方便,成本 低。
CNC 插补 指令
位置控制单元
+
位置控
制调节
-
器
速度控制单元
+
-
速度控制 调节与驱
动
机械执行部件
实际
电机
速度
反馈
检测与反
馈单元
第五章数控机床的进给伺服系统h-解析
4
二、NC机床对数控进给伺服系统的要求
1. 调速范围要宽且要有良好的稳定性 调速范围: 一般要求:
稳定性:指输出速度的波动要少,尤其是在低
即,调节、变换、功放。
第五章数控机床的进给伺服系统h-解析
11
5. 进给驱动系统的特点(与主运动(主 轴)系统比较):
功率相对较小; 控制精度要求高; 控制性能要求高,尤其是动态性能。
第五章数控机床的进给伺服系统h-解析
12
二、步进电机及其驱动装置
步进电机流行于70年代,该系统结构简 单、控制容易、维修方面,且控制为全数字 化。随着计算机技术的发展,除功率驱动电 路之外,其它部分均可由软件实现,从而进 一步简化结构。因此,这类系统目前仍有相 当的市场。目前步进电机仅用于小容量、低 速、精度要不高的场合,如经济型数控、打 印机、绘图机等计算机的外部设备。
步进电机
直流伺服电机
交流伺服电机
直线电机
第五章数控机床的进给伺服系统h-解析
Байду номын сангаас
10
3. 速度单元是上述驱动电机及其控制和驱动装置,通 常驱动电机与速度控制单元是相互配套供应的, 其性能参数都是进行了相互匹配,这样才能获得 高性能的系统指标。
4. 速度控制单元主要作用:接受来自位置控制单元的 速度指令信号,对其进行适当的调节运算(目的是 稳速),将其变换成电机转速的控制量(频率,电压 等),再经功率放大部件将其变换成电机的驱动电 量,使驱动电机按要求运行。
第五章 数控机床的进给伺服系统
内容提要
进给伺服系统的软件硬件结构; 进给伺服系统基本功能的原理及实现方法。
第五章数控机床的进给伺服系统h-解析
1
进给伺服系统是数控系统主要的子系统。如 果说CNC装置是数控系统的“大脑”,是发布 “命令”的“指挥所”,那么进给伺服系统则 是数控系统的“四肢”,是一种“执行机构”。 它忠实地执行由CNC装置发来的运动命令,精 确控制执行部件的运动方向,进给速度与位移 量。
不同的步进电机,其工作原理、驱动装置也不完
全一样。
第五章数控机床的进给伺服系统h-解析
18
▢ 步进电机的工作原理
如图所示,三相反应式步进电机工作原理图。 由转子和定子组成。定子上有A、B、C三对磁极绕组 ,分别为A相、B相、C相。 转子是硅钢片软磁材料迭
合成的带齿廓形状的铁心。
如果在定子上的 三对绕组中通直流电 流,就会产生磁场。
速时的平稳性显得特别重要。
第五章数控机床的进给伺服系统h-解析
5
2. 输出位置精度要高 ▢ 静态:定位精度和重复定位精度要高,即定
位误差和重复定位误差要小。(尺寸精度) ▢ 动态:跟随精度,这是动态性能指标,用跟
随误差表示。 (轮廓精度) ▢ 灵敏度要高,有足够高的分辩率。
第五章数控机床的进给伺服系统h-解析
第五章数控机床的进给伺服系统h-解析
2
第一节 概述
一、进给伺服系统的定义及组成
1. 定义
进给伺服系统(Feed Servo System)— —以移动部件的位置和速度作为控制量的 自动控制系统。
第五章数控机床的进给伺服系统h-解析
3
⒉ 组成: 位置控制单元;速度控制单元;驱动
元件(电机);检测与反馈单元;机械执行部件。
6
⒊ 负载特性要硬
▢ 当负载变化时,输出速
F
度应基本不变,即△F尽
可能小;
▢ 当负载突变时,要求速 度的恢复时间短且无振荡, 即△t尽可能短;
▢ 应有足够的过载能力。
即,要求伺服系统有良
好的静态与动态刚度。
第五章数控机床的进给伺服系统h-解析
△t
△F
t
7
⒋响应速度快且无超调
这是对伺服系统动态
性能的要求,即在无超调
第五章数控机床的进给伺服系统h-解析
17
▢ 步进电机的分类
➢按运动方式分: 旋转运动、直线运动式步进电机
➢按工作原理分:
反应式(磁阻式)、电磁式、永磁式;
➢按结构分:
单段式(径向式)、多段式(轴向式)
➢按使用场合分: 功率步进电机和控制步进电机;
➢按相数分: 三相、四相、五相、六相、八相等
➢按使用频率分: 高频率和低频步进电机