人教版初中数学勾股定理知识点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七章 勾股定理
17.1 勾股定理
1、勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222a b c += 勾股定理的证明: 方法一:4EFGH S S S ∆+=正方形正方形ABCD ,221
4()2
ab b a c ⨯+-=,化简可证.
方法二:
四个直角三角形的面积与小正方形面积的和等于大正方形的面积.
四个直角三角形的面积与小正方形面积的和为221
422
S ab c ab c =⨯+=+
大正方形面积为222()2S a b a ab b =+=++ ∴222
a b c +=
方法三:1()()2S a b a b =+⋅+梯形,211
2S 222
ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证
17.2 勾股定理的逆定理
2、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足222a b c +=,那么这个三角形是直
角三角形. 3、互逆命题的概念
如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.
4、勾股数:能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称
a ,
b ,
c 为一组勾股数
常见的勾股数有:3、4、5;6、8、10;5、12、13;7、24、25等 例、在Rt △ABC 中,a=3,b=4,求c . 错解
由勾股定理,得
诊断 这里默认了∠C 为直角.其实,题目中没有明确哪个角为直角,当b >a 时,∠B 可以为直角,故本题解答遗漏了这一种情况.
当∠B 为直角时,
例、已知Rt △ABC 中,∠B=RT ∠,
,
c= b. 错解 由勾股定理,得
b
a c
b
a
c c
a
b
c
a
b
c
b
a H
G F E
D
C
B A
a b
c
c
b
a
E
D C
B
A
诊断 这里错在盲目地套用勾股定理“a 2+b 2=c 2”.殊不知,只有当∠C=Rt ∠时,a 2+b 2=c 2才能成立,而当∠B=Rt ∠时,则勾股定理的表达式应为a 2+c 2=b 2.
正确解答 ∵∠B=Rt ∠, 由勾股定理知a 2+c 2=b 2.
∴b=22
c a +=22(22)(2)+=10
例、若直角三角形的两条边长为6cm 、8cm ,则第三边长为________. 错解 设第三边长为xcm .由勾股定理,得x 2=62+82.
x=22
68+=3664+=10
即第三边长为10cm .
诊断 这里在利用勾股定理计算时,误认为第三边为斜边,其实题设中并没有说明已知的两边为直角边,∴第三边可能是斜边,也可能是直角边.
正确解法 设第三边长为xcm . 若第三边长为斜边,由勾股定理,得
x=22
68+=3664+=10(cm)
若第三边长为直角边,则8cm 长的边必为斜边,由勾股定理,得
x=22
86-=28=27(cm)
因此,第三边的长度是10cm 或者27cm.
例、如图,已知Rt △ABC 中,∠BAC=90°,AD 是高,AM 是中线,且AM=
1
2
BC=23AD.又RT △ABC 的
周长是(6+23)cm.求AD .
错解 ∵△ABC 是直角三角形,
∴AC:AB:BC=3:4:5
∴AC ∶AB ∶BC=3∶4∶5. ∴AC=
312(6+23)=33+,AB=412(6+23)=6233+,BC=5
12
(6+23)=
1553
6
+ 又∵
12AC AB •=1
2
BC AD • ∴AD=AC AB BC •=33623
231553
++⨯
+ =
(33)2(33)5(33)
+•++=2
5(3+3)(cm) 诊断 我们知道,“勾三股四弦五”是直角三角形中三边关系的一种特殊情形,并不能代表一般的直角三角形
的三边关系.上述解法犯了以特殊代替一般的错误.
正确解法∵AM=
23
3
AD ∴MD=222(
3)3AD AD =3AD 又∵MC=MA ,∴CD=MD .
∵点C 与点M 关于AD 成轴对称. ∴AC=AM ,∴∠AMD=60°=∠C . ∴∠B=30°,AC=
1
2
BC ,AB=3BC
∴AC+AB+BC=1
2
BC+3BC+BC=6+23.
∴BC=4.
∵1
2BC=233AD , ∴AD=1
2233
BC
=3(cm)
例、在△ABC 中,a ∶b ∶c=9∶15∶12, 试判定△ABC 是不是直角三角形.
错解 依题意,设a=9k ,b=15k ,c=12k(k >0). ∵a 2+b 2=(9k)2+(15k)2=306k 2,c2=(12k)2=144k 2, ∴a 2+b 2≠c 2.∴△ABC 不是直角三角形.
诊断 我们知道“如果一个三角形最长边的平方等于另外两边的平方和,那么这个三角形是直角三角形”.而上面解答错在没有分辨清楚最长边的情况下,就盲目套用勾股定理的逆定理.
正确解法 由题意知b 是最长边.设a=9k ,b=15k ,c=12k(k >0). ∵a 2+c 2=(9k)2+(12k)2=81k 2+144k 2=225k 2. b2=(15k)2=225k 2,∴a 2+c 2=b 2. ∴△ABC 是直角三角形.
例、已知在△ABC 中,AB >AC ,AD 是中线,AE 是高.求证:AB 2-AC 2=2BC·DE 错证 如图. ∵AE ⊥BC 于E , ∴AB 2=BE 2+AE 2, AC 2=EC 2+AE 2.
∴AB 2-AC 2=BE 2-EC 2 =(BE +EC)·(BE -EC) =BC·(BE -EC).
∵BD=DC , ∴BE=BC -EC=2DC -EC . ∴AB 2-AC 2=BC·(2DC -EC -EC)=2BC·DE .
诊断 题设中既没明确指出△ABC 的形状,又没给出图形,因此,这个三角形有可能是锐角三角形,也可能是直角三角形或钝角三角形.∴高AE 既可以在形内,也可以与一边重合,还可以在形外,这三种情况都符合题意.而这里仅只证明了其中的一种情况,这就犯了以偏概全的错误.剩下的两种情况如图所示.
,