上海市华东师范大学第二附属中学2019-2020学年高一下学期(4月份)月考数学试卷(PDF版))

合集下载

2019-2020学年上海市华东师范大学第二附属中学高一下学期4月月考数学试题(解析版)

2019-2020学年上海市华东师范大学第二附属中学高一下学期4月月考数学试题(解析版)
时, .即所求减区间为 .
故答案为 .
【点睛】
本题考查三角函数的单调性,解题时需把函数化为一个角一个三角函数形式,然后结合正弦函数的单调性求解.
8.已知函数 的图象的一条对称轴是 ,若 表示一个简谐运动,则其初相是________.
【答案】
【解析】由对称性先求出 ,再利用辅助角公式即可得到答案.
【详解】
所以 ,所以 ;
(2)将函数 的图像向左平移 个单位长度后,
得到 的图像,
再将所得图像上所有点的横坐标伸长到原来的 倍(纵坐标不变),
得到 的图像,故 ,
因为 ,
时,函数 取最小值, ;
当 ,函数 取最大值, ,
故 .
函数 在区间 上存在零点,
所以 有解,
所以实数k的取值范围为 .
【点睛】
本题考查三角函数解析式以及三角函数的值域的求法,考查三角恒等变换以及三角函数图像的变化,考查化归与转化思想,属于简单题目..
18.已知 满足 ,若其图像向左平移 个单位后得到的函数为奇函数.
(1)求 的解析式;
(2)在锐角 中,角A、B、C的对边分别为a、b、c,且满足 ,求 的取值范围.
【答案】(1) ;(2) .
【解析】(1)根据周期求出 ,利用图象变换求出 ,即可求 的解析式;
(2)由正弦定理得: ,进而求出 ,用 表示出 ,代入已知的等式,利用诱导公式及两角和的正弦函数公式化为一个角的正弦函数,根据 的范围求出这个角的范围,由正弦函数的值域即可得到所求式子的取值范围.
2019-2020学年上海市华东师范大学第二附属中学高一下学期4月月考数学试题
一、单选题
1.函数 在 上是减函数,则 的取值范围是( )
A. B.

2020届上海华东师大二附中高一数学下学期线上月考试题

2020届上海华东师大二附中高一数学下学期线上月考试题

)

2
2
5.若扇形的圆心角是 60 ,则该扇形面积与其内切圆面积的比值是

6.已知 4sec tan 8 ,则 sin

7. cos1 cos 2 cos3 L cos180

8.若 8cos(
) cos(
)
1 ,则 sin4
cos4
44
9.已知 tan 2 2
2,
4
2
20.在 △ABC 中, a,b,c 分别为角 A, B, C 的对边,且
3(b
sin
C
c cos B tan C
)
a

(1)求角 A ;
(2)若 △ABC 的内切圆面积为 4 ,求 △ABC 面积 S 的最小值.
21. △ABC 的三个角为 A, B, C ,三边为 a,b,c ,求证: (1) sin3 A sin(B C) sin3 B sin(C A) sin3 C sin(A B) 0 ; (2) sin3 A cos(B C) sin3 B cos(C A) sin3 C cos(A B) 3sin A sin Bsin C .
的速度为 130 m/min,山路 AC 长为 1260 m,经测量, cos A 12 , cos C 3 .
13
5
(1)求索道 AB 的长;
(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在 C 处互相等待的时间不超过 3 分钟,
乙步行的速度应控制在什么范围内?
第 3 页 共 10 页
(3)若 sin2 A sin2 B sin2 C 2 ,则 △ABC 是钝角三角形;
2020.03

上海市华师大二附中2019-2020学年高一下4月份期中数学卷(无答案)

上海市华师大二附中2019-2020学年高一下4月份期中数学卷(无答案)

华东师大二附中高一数学期中卷考试时间:120分钟满分150分一:填空题(共12小题,1-6题每题4分,7-12题每题5分) 1.函数tan y x =的对称中心是 2.函数[]cos(),0,223x y x ππ=-∈上的值域是3.函数sin y x x =在上的递减区间为4.已知函数()sin cos f x x a x =+的图象的一条对称轴是53x π=,若()sin cos g x a x x =+ sin()(0,0,0)A x A ϖϑϖϑπ+>><<表示一个简谐运动,则其初相是5.已知函数()3()sin tan ,1,12xf x x x x =++∈-,则满足不等式(1)(21)0f a f a -+-<的实数a 的取值范围是6.设函数,若函数恰有三个零点,则123x x x ++的取值范围是7.函数2sin 2cos y x x =+在区间,上的最小值为14-,则ϑ的取值范围是 8.已知将函数()sin()(06,)22f x x ππϖϑϖϑ=+<<-<<的图象向右平移3π个单位长度得 到画()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ϖϑ+=9.已知函数()2sin(2)3f x x π=+在区间上是单调函数,则实数a 的最大值为10.已知函数()cos sin f x x x =,下列说法正确的是 ①()f x 图象关于4x π=对称: ②()f x 的最小正周期为2π③()f x 在区间上单调减: ④()f x 图象关于(,0)2π中心对称:⑤()f x 的最小正周期为2π. 11.在ABC ∆中,角,,A B C 的对边分別为,,a b c ,设ABC ∆的面积为S ,若22232a b c =+,则222Sb c+的最大值为12.函数()sin (0)f x x ϖϖ=>的图象与其对称轴在y 轴右侧的交点从左到右依次记为123,,n A A A A ⋅⋅⋅⋅⋅⋅⋅⋅⋅在点列,中存在三个不同的点,,k t p A A A ,使得k t p A A A ∆,是等腰直角三角形将满足上述条件的ϖ值从小到大组成的数列记为{}n ϖ,则2019ϖ=二.选择题(共4小题,每题5分)13.函数()sin f x x x =在上是减函数,则t 的取值范国是( )A. B. C. D.14.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把擦铁饼者张开的双臂近似看成一“张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽約为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为(参考数据:) ( )A.1.012米B.1.768米C.2.043米D.2.945米15,已知A 是函数的最大值,若存在实数12,x x 使得对任意实数x 总有12()()()f x f x f x ≤≤成立,则12A x x ⋅-的最小值为( )A. B. C.505π D.16.已知函数,若函数()()3F x f x =-的所有零点依次记 为123,,n x x x x ⋅⋅⋅⋅⋅⋅,且123n x x x x <<<⋅⋅⋅⋅⋅⋅<,则( ) A.503πB.21πC.D.42π 三.解答题(共5小题)17.(14分=6+8)已知函数的两条相邻对称轴之间的距离为2π.(1)求ϖ的值;(2)将函数()f x 的图象向左平移6π个单位,再将所得函数的图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图象,若函数()y g x k =-在区间 上存在零点,求实数k 的取值范围。

上海市华东师范大学第二附属中学2021-2022学年高一下学期3月月考数学试题(解析版)

上海市华东师范大学第二附属中学2021-2022学年高一下学期3月月考数学试题(解析版)
【详解】解:因为 ,所以点 在单位圆 上,
由于 , ,
所以, 是其与 轴正方向的有向角为 ,
,则 ,
记点 , ,所以,点 的轨迹是劣弧 ,
所以,动线段 所形成图形为阴影部分区域,
因为 ,因此,阴影部分区域的面积为 .
故选:D.
三、解答题(本大题满分44分,本大题共有4题,解答下列各题必须写出必要的步骤)
15.已知 , .
(1)求 的值;
(2)求 的值.
【15~16题答案】
【答案】(1)
(2)
【解析】
【分析】(1)由题知 ,进而结合范围解方程即可得答案;
(2)结合(1)得 , ,再根据降幂公式整理求解即可.
【小问1详解】
解:因为
所以 ,解得 或 ,
又 ,所以
所以 .
【小问2详解】
解:由(1) , ,
∴cosC ,化简得x= ,②
由①②可得 ,又 =2 ,
联立可得 = ,即 = ,
两边同时除以 ,得 = +6,令 ,则12 ,解得t= 或 ,
又由题意 ,∴t=cosC = ,
故答案为 .
【点睛】本题主要考查余弦定理的应用,考查了运算化简的技巧,考查利用几何图形解决问题的能力,属于难题.
二、选择题(本大题满分16分,本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,每题答对得4分,否则一律得零分.)
【详解】解: 的终边与 的终边关于直线 对称,
所以 的终边与角 的终边相同,
所以 的取值集合为
故答案为:
2. 已知扇形的圆心角为1,半径为2,则该扇形的面积为______.
【2题答案】
【答案】 .

华二附中高一月考(2019.12)

华二附中高一月考(2019.12)

华二附中高一月考数学卷2019.12一. 填空题 1. 已知函数()1f x x =-,()1g x x =-,则()()f x g x =2. 一个命题的逆命题是“若0a =或0b =,则0ab =”,则这个命题的否命题是3. 已知函数()f x 是定义在R 上的奇函数,且当0x >时,2()21f x x x =+-,则()f x =4. 若函数2()4||f x x x a =--的零点个数为2,则a 的范围是5. 已知函数(2)y f x =的定义域为[3,3]-,则函数(1)(1)y f x f x =++-的定义域为6. 函数2()(1)3f x ax b x =+-+,2[2,]x a a ∈-是偶函数,则ab =7. 若函数2(21)10()(2)0b x b x f x x b x x -+->⎧=⎨-+-≤⎩在R 上为增函数,则实数b 的取值范围是 8. 已知函数2()(3)1f x mx m x =+-+的值域是[0,)+∞,则m 的范围是 9. 已知集合2{|()(1)0}M x x a x ax a =--+-=各元素之和等于3,则实数a 的值为 10. 已知二次函数()f x 满足(1)()2f x f x x +-=且(0)1f =,若函数()()2h x f x x m =++ 的图像始终在x 轴上方,则实数m 的取值范围为:11. 已知定义在R 上的函数()f x 的图像关于点3(,0)4-对称,且满足3()()2f x f x =-+,又(1)1f -=,(0)2f =-,则(1)(2)(3)(2019)f f f f +++⋅⋅⋅+=12. 设函数2()||||f x x a x b =+++(,)a b ∈R ,当[2,2]x ∈-时,记()f x 的最大值为(,)M a b ,则(,)M a b 的最小值为二. 选择题13. 下列给出的四个图形中,是函数图像的是( )(1) (2) (3) (4) A.(1) B.(1)(3) C.(1)(4) D. (2)(4) 14. 已知实数x 、y 满足221x y +=,则(1)(1)xy xy -+( ) A. 有最小值12,也有最大值1 B. 有最小值34,也有最大值1C. 有最小值34,但无最大值 D. 有最大值1,但无最小值 15. 设集合21={|10}P x x ax ++>,22{|20}P x x ax =++>,21{|0}Q x x x b =++>,22={|20}Q x x x b ++>,其中,a b ∈R ,下列说法正确的是( )A. 对任意a ,1P 是2P 的子集;对任意b ,1Q 不是2Q 的子集B. 对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C. 存在a ,使得1P 不是2P 的子集;对任意b ,1Q 不是2Q 的子集D. 存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集16. 定义在R 上的函数()f x 满足()()f x f x -=,当0x ≥时,2101()221xx x f x x ⎧-+≤<=⎨-≥⎩, 若对任意的[1,]x m m ∈-,不等式(2)()f x f x m -≤+恒成立,则实数m 的最大值是( )A. 1-B. 2-C. 23D. 2三. 解答题17. 已知集合221{|0}32x A x x x -=≥++,2{|(5)50}B x x a x a =+--<,(1,2)C =-. (1)若1{|5}2A B x x =≤<I ,求a 的取值范围; (2)设函数()2f x ax =+,不等式|()|6f x <的解集为C ,求不等式1()xf x ≤的解集.18. 已知函数()52f x ax a =+-,a 为常数,24()1x g x x =+.(1)若常数a ∈R ,试判断()f x 的奇偶性并说明理由;(2)若常数0a >,{()|()52,11}A f x f x ax a x ==+--≤≤,24{()|(),02}1x B g x g x x x ==≤≤+,A B ⊆,求实数a 的取值范围.19. 已知函数2()25f x x ax =-+,1a >.(1)若()f x 的定义域和值域均为[1,]a ,求实数a 的值;(2)若()f x 在区间(,2]-∞上是减函数,且对任意的12,[1,1]x x a ∈+,总有12|()()|4f x f x -≤,求实数a 的取值范围.20. 某市环保部门对市中心每天的环境污染情况进行调查研究后,发现一天中环境综合污染 指数()f x 与时刻x (时)的关系为23()||214x f x a a x =-+++,[0,24)x ∈,其中a 是与气 象有关的参数,且1[0,]2a ∈,若用每天()f x 的最大值为当天的综合污染指数,并记做()M a . (1)令21xt x =+,[0,24)x ∈,求t 的取值范围; (2)求()M a 的表达式,并规定当()2M a ≤时为综合污染指数不超标,求当a 在什么范围内时,该市市中心的综合污染指数不超标.21. 已知函数2()(2)3f x x a x a =--+-.(1)若函数()y f x =在区间[1,2]上的最小值为5a -,求实数a 的取值范围; (2)当|()|f x 在[1,0]-时单调递减,求a 的取值范围;(3)是否存在整数m 、n 使得关于x 的不等式()m f x n ≤≤的解集恰好为[,]m n ,若存在,求出m 、n 的值,若不存在,请说明理由.参考答案一. 填空题1. 0(1)x =2. 若0ab ≠,则0a ≠且0b ≠3. 2221,0()0,021,0x x x f x x x x x ⎧+->⎪==⎨⎪-++<⎩4. (,0){4}-∞U5. [5,5]-6. 17. [1,2]8. [0,1][9,)+∞U9. 2或32 10. 3(,)4-+∞ 11. 0 12. 258二. 选择题13. C 14. B 15. B 16. C三. 解答题17.(1)1(,1]2-;(2)1{|2x x >或2}5x ≤.18.(1)0a =,偶函数;52a =,奇函数;0a ≠,52a ≠,非奇非偶函数;(2)15[,]93-.19.(1)2a =;(2)23a ≤≤. 20.(1)1[0,]2;(2)当5[0,]12a ∈时,该市市中心的综合污染指数不超标. 21.(1)[6,)+∞;(2)(,0][3,)-∞+∞U ;(3)1m =-,2n =.。

2019-2020学年上海市华东师范大学第二附属中学高一上学期9月月考数学试卷含详解

2019-2020学年上海市华东师范大学第二附属中学高一上学期9月月考数学试卷含详解

华二附中高一月考数学卷一、填空题1.集合{}|23,x x x Z -<<∈可用列举法表示为______.2.设集合6|5A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,则集合A 的子集的个数是______.3.设集合{}1,9,A x =,{}21,B x =,且A B B = ,则实数x 的取值范围是______.4.已知,a b R ∈,命题“2200a b a b +=⇒==”的逆否命题是______.5.关于x 的方程2100x x k -+=有两个异号根的充要条件是______.6.设,x y R ∈,则“1x y +<”是“1x <且1y <”的______条件.7.已知{}1,3,5A a =+,{}22221,,21a B a a a a +=++-,若{}2,3A B ⋂=,则A B ⋃=______.8.已知集合{}|221A x x k =-≤<-,{}|0B x x k =-≤,且A B ⊆,则实数k 的取值范围是______.9.若关于x 的不等式20ax bx c ++<的解集是()(),31,-∞-⋃+∞,则关于x 的不等式20cx bx a ++>的解集是______.10.设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,则称k 是A 的一个“孤立元”,已知{}1,2,3,4S =,所有由S 的2个元素构成的集合中,含有“孤立元”的集合个数是______.11.已知m R ∈,集合{}|31A x m x m =≤≤-,若A Z 恰有一个元素,则m 的取值范围是______.12.已知()f x x x=,若对任意[]2,2x a a ∈-+,()()2f x a f x +<恒成立,则实数a 的取值范围是______.二、选择题13.若M 、P 都是全集U 的子集,则图中阴影部分可以表示为()A.M P ⋃B.()U C M PC.()U C M P D.U U C M C P14.若,,a b c ∈R ,且a b >,则下列不等式中,一定成立的是()A.a b b c+>- B.ac bc≥ C.2c a b>- D.2()0a b c -≥15.有下列三个命题:①“4x y +≠”是“1x ≠且3y ≠”的必要非充分条件;②0xy <是x y x y -=+的充要条件;③已知,m n Z ∈,则225m n +<是2m n +≤的充分非必要条件;其中的真命题有()A.0个B.1个C.2个D.3个16.已知函数()()222f x x a x a =-+++,若集合(){}|0A x N f x =∈<中恰有一个元素,则实数a ()A.有最大值,无最小值B.有最小值,无最大值C.既无最大值,也无最小值D.既有最大值,也有最小值三、解答题17.已知集合{}*|9,U x x x N=<∈,{}1,2,3,7A =,{}1,3,4,5,6B =,求UCA 和()U C AB .18.若抛物线()22211y x a x a =--+-与x 轴的两个交点在y 轴的同侧,求实数a 的取值范围.19.已知,a b R ∈,关于x 的函数()2f x x ax b =++,集合(){}|,A x f x x x R ==∈,()(){}|,B x f f x x x R ==∈.(1)若{}A a =,求a 、b 的值;(2)若a N ∈,0b =且A B =,求集合A .20.已知U R ⊆为一个数集,集合{}223|,A s t s t U =+∈.(1)设{}1,3,5U =,求集合A 的元素个数;(2)设U Z =,证明:若x A ∈,则7x A ∈;(3)设U =R ,,x y A ∈,且223x m n =+,223y p q =+,若3mp nq -=x y mq np +++的最小值.华二附中高一月考数学卷一、填空题1.集合{}|23,x x x Z -<<∈可用列举法表示为______.【答案】{}1,0,1,2-【分析】直接利用列举法的定义解答即可.【详解】集合{}|23,x x x Z -<<∈可用列举法表示为{}1,0,1,2-.故答案为{}1,0,1,2-【点睛】本题主要考查集合的表示,意在考查学生对这些知识的理解掌握水平.2.设集合6|5A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,则集合A 的子集的个数是______.【答案】8【分析】先化简集合A={2,3,4},再求集合A 的子集的个数.【详解】令51,2,3,6,4,3,2,1x x -=∴=-,因为x ∈N ,所以2,3,4,{2,3,4}x A =∴=.所以集合A 的子集的个数是32=8.故答案为8【点睛】本题主要考查集合的表示和集合的子集的个数的计算,意在考查学生对这些知识的理解掌握水平.3.设集合{}1,9,A x =,{}21,B x =,且A B B = ,则实数x 的取值范围是______.【答案】{}3,3,0-【分析】根据A B B = 得到关于x 的方程,解方程即得解.【详解】因为A B B = ,所以29x =或2x x =,所以3,3,0,1x =-,当1x =时,与集合元素的互异性矛盾,所以1x =舍去.所以3,3,0.x =-故答案为{}3,3,0-【点睛】本题主要考查集合的关系运算,意在考查学生对这些知识的理解掌握水平.4.已知,a b R ∈,命题“2200a b a b +=⇒==”的逆否命题是______.【答案】已知,a b R ∈,若0a ≠或0b ≠,则220a b +≠【分析】直接利用逆否命题的定义解答即可.【详解】命题“2200a b a b +=⇒==”的逆否命题是“已知,a b R ∈,若0a ≠或0b ≠,则220a b +≠”.故答案为已知,a b R ∈,若0a ≠或0b ≠,则220a b +≠.【点睛】本题主要考查逆否命题的定义,意在考查学生对这些知识的理解掌握水平.5.关于x 的方程2100x x k -+=有两个异号根的充要条件是______.【答案】0k <【分析】由题得12=10040,0k x x k ∆->=<,解之即得解.【详解】设方程2100x x k -+=的两个根为12,x x ,所以12=10040,k x x k ∆->⎧⎨=<⎩所以0k <.当0k <时,方程有两个不同的实根;当方程有两个不同的实根时,0k <.所以关于x 的方程2100x x k -+=有两个异号根的充要条件是0k <.故答案为0k <【点睛】本题主要考查充要条件和零点的分布,意在考查学生对这些知识的理解掌握水平.6.设,x y R ∈,则“1x y +<”是“1x <且1y <”的______条件.【答案】充分不必要【分析】先讨论充分性,再讨论必要性得解.【详解】“1x y +<”,所以“1x <且1y <”,所以“1x y +<”是“1x <且1y <”的充分条件;当1x <且1y <时,如:34x y ==,则1x y +>,所以1x <且1y <时,1x y +<不一定成立,所以“1x y +<”是“1x <且1y <”的非必要条件;综合得“1x y +<”是“1x <且1y <”的充分不必要条件.故答案为充分不必要【点睛】本题主要考查充分必要条件的判定,意在考查学生对这些知识的理解掌握水平.7.已知{}1,3,5A a =+,{}22221,,21a B a a a a +=++-,若{}2,3A B ⋂=,则A B ⋃=______.【答案】{}1,2,3,5【分析】根据{}2,3A B ⋂=求出a 的值,再求A B ⋃得解.【详解】因为{}2,3A B ⋂=,所以|1|2,1a a +=∴=或3-.当1a =时,{}3,1,2B =,所以={2,3,1,5}A B .当3a =-时,15,,281B ⎧⎫=-⎨⎬⎩⎭,不满足{}2,3A B ⋂=.所以舍去.故答案为{}1,2,3,5【点睛】本题主要考查集合的交集和并集运算,意在考查学生对这些知识的理解掌握水平.8.已知集合{}|221A x x k =-≤<-,{}|0B x x k =-≤,且A B ⊆,则实数k 的取值范围是______.【答案】1k ≤【分析】对集合A 分两种情况讨论,得到关于k 的不等式,解不等式即得解.【详解】当212k -≤-,即12k ≤-时,,A φ=满足题意;当212k ->-,即12k >-时,11,12221k k k k ⎧>-⎪∴-<≤⎨⎪≥-⎩.综合得实数k 的取值范围是1k ≤.故答案为1k ≤【点睛】本题主要考查集合的运算,意在考查学生对这些知识的理解掌握水平.9.若关于x 的不等式20ax bx c ++<的解集是()(),31,-∞-⋃+∞,则关于x 的不等式20cx bx a ++>的解集是______.【答案】()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭【分析】由不等式20ax bx c ++<的解集求出a 、b 、c 的关系,再把不等式20cx bx a ++>化为可以解答的一元二次不等式,求出解集即可.【详解】 关于x 的不等式20ax bx c ++<的解集是()(),31,-∞-⋃+∞,∴关于x 的方程20ax bx c ++=有两个实数根是3x =-或1x =;<0a ∴且23bac a⎧-=-⎪⎪⎨⎪=-⎪⎩,所以23b ac a=⎧⎨=-⎩;∴关于x 的不等式20cx bx a ++>可化为2320ax ax a -++>,即23210x x -->;解得1x >或13x <-,故答案为()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭.【点睛】本题主要考查一元二次不等式的解法,意在考查学生对这些知识的理解掌握水平.10.设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,则称k 是A 的一个“孤立元”,已知{}1,2,3,4S =,所有由S 的2个元素构成的集合中,含有“孤立元”的集合个数是______.【答案】3【分析】先求出所有由S 的2个元素构成的集合,再利用“孤立元”的定义求解.【详解】由题得所有由S 的2个元素构成的集合有{1,2}{1,3},{1,4},{2,3},{2,4},{3,4},,其中满足“孤立元”定义的集合有{1,3},{1,4},{2,4}.故答案为3【点睛】本题主要考查新定义的理解和运用,意在考查学生对这些知识的理解掌握水平.11.已知m R ∈,集合{}|31A x m x m =≤≤-,若A Z 恰有一个元素,则m 的取值范围是______.【答案】24,11,33⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭【分析】先分析得到1322m ≤<,该区间包含的整数应为1,2,3.再对这个整数分类讨论得解.【详解】题意是,闭区间[,31]m m -上恰有一个整数,求m 的范围.所以该区间应满足①不空,②区间的长度不超过2,即3113,31222m m m m m -≥⎧∴≤<⎨--<⎩,所以当1322m ≤<有173122m ≤-<,所以该区间包含的整数应为1,2,3.(1)当仅有1∈[,31]m m -时,21312,13m m m ≤≤-<∴≤<.(2)当仅有2∈[,31]m m -时,42313,13m m m ≤≤-<∴≤<,而m=1时,[,31]=[1,2]m m -有两个整数,故413m <<.(3)当仅有3∈[,31]m m -时,453314,33m m m ≤≤-<∴≤<,与1322m ≤<矛盾,所以舍去.综上,所以m 的取值范围是24,11,33⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭.故答案为24,11,33⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭【点睛】本题主要考查集合的元素的个数问题,意在考查学生对这些知识的理解掌握水平.12.已知()f x x x =,若对任意[]2,2x a a ∈-+,()()2f x a f x +<恒成立,则实数a 的取值范围是______.【答案】a <【分析】通过分类讨论分析得到1)a x <恒成立,再求函数()1)g x x =-,[]2,2x a a ∈-+的最值得解.【详解】(1)当0x ≥时,2()f x x =,222()2))f x x f ===;当0x <时,222(),2()2))f x x f x x f =-=-=-=,所以在R 上,2()),())f x f f x a f =∴+<,因为在R 上,函数()f x 单调递增,,1)x a a x ∴+<∴<-恒成立,(2)记()1)g x x =-,[]2,2x a a ∈-+,min ()(2)1)(2),1)(2),g x g a a a a a ∴=-=--∴<--∴<.故答案为a <【点睛】本题主要考查函数的单调性和应用,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.二、选择题13.若M 、P 都是全集U 的子集,则图中阴影部分可以表示为()A.M P ⋃B.()U C M PC.()U C M PD.U U C M C P【答案】C【分析】观察维恩图得解.【详解】由维恩图可知,空白部分表示的是M P ⋃,所以阴影部分表示的是()U C M P .故选C【点睛】本题主要考查维恩图,考查集合的运算,意在考查学生对这些知识的理解掌握水平.14.若,,a b c ∈R ,且a b >,则下列不等式中,一定成立的是()A.a b b c +>-B.ac bc≥ C.2c a b>- D.2()0a b c -≥【答案】D 【分析】由不等式的基本性质逐一判断即可.【详解】解:取2a =,1b =,3c =-,可判断选项A 不一定成立;取0c <,ac bc <,可判断选项B 不一定成立;取0c =,则20c a b=-,可判断选项C 不一定成立;因为a b >,所以0a b ->,所以2()0a b c -,故D 一定成立.故选:D .【点睛】本题考查不等式的性质的应用,解答的关键是利用特殊值法排除一些错误的选项,再利用作差法比较大小;15.有下列三个命题:①“4x y +≠”是“1x ≠且3y ≠”的必要非充分条件;②0xy <是x y x y -=+的充要条件;③已知,m n Z ∈,则225m n +<是2m n +≤的充分非必要条件;其中的真命题有()A.0个B.1个C.2个D.3个【答案】B【分析】①可以利用逆否命题分析判断;②利用举例和充要条件定义分析判断;③先求出225m n +<的解,再利用充要条件的定义分析判断.【详解】①可以考虑逆否命题,即考虑“1x =或=3y ”是“4x y +=”的什么条件,“1x =或=3y ”是“4x y +=”非充分非必要条件,所以“4x y +≠”是“1x ≠且3y ≠”的非充分非必要条件,所以该命题是假命题;②0xy <是x y x y -=+的充分条件,但是当0,0x y >=时,x y x y -=+成立,但是不满足0xy <,所以0xy <不是x y x y -=+的必要条件,所以该命题是假命题;③已知,m n Z ∈,225m n +<,所以2m =-时,0n =;1m =-时,01n =±,;0m =时,012n =±±,,;1m =时,0,1n =±;2m =时,0n =.所以2m n +≤,所以225m n +<是2m n +≤的充分条件.当2m n +≤时,如2m n ==-,但是不满足225m n +<,所以225m n +<是2m n +≤的非必要条件.所以该命题是真命题.故选B【点睛】本题主要考查充要条件的判定,意在考查学生对这些知识的理解掌握水平.16.已知函数()()222f x x a x a =-+++,若集合(){}|0A x N f x =∈<中恰有一个元素,则实数a ()A.有最大值,无最小值B.有最小值,无最大值C.既无最大值,也无最小值D.既有最大值,也有最小值【答案】D【分析】由题得2a >或2a <-,再对a 分两种情况讨论,利用零点存在性定理得解.【详解】由条件知,()222=0x a x a -+++有两个不同的实根,所以2=(a+2)4(2)0a ∆-+>,所以2a >或2a <-.(1)当2a <-时,(1)0,(0)20,f f a >=+>必有(1)0,f -≥512(2)0,2a a ∴++≥∴≥-所以522a -≤<-.(2)当2a >时,20,(1)10,(2)20,a f f a ->=>=-<所以55(3)92(2)0,,222f a a a =-+≥∴≤∴<≤所以min 52a =-,max 52a =.故选:D【点睛】本题主要考查方程的零点,考查一元二次不等式和零点存在性定理,意在考查学生对这些知识的理解掌握水平.三、解答题17.已知集合{}*|9,U x x x N=<∈,{}1,2,3,7A =,{}1,3,4,5,6B =,求UCA 和()U C AB .【答案】{}4,5,6,8U C A =,(){}2,4,5,6,7,8U C A B = .【分析】先求出{}1,2,3,4,5,6,7,8U =,{1,3}A B ⋂=,再求U C A 和()U C A B .【详解】由题得{}1,2,3,4,5,6,7,8U =,{1,3}A B ⋂=所以{}4,5,6,8U C A =,(){}2,4,5,6,7,8U C A B = .【点睛】本题主要考查交集补集的计算,意在考查学生对这些知识的理解掌握水平.18.若抛物线()22211y x a x a =--+-与x 轴的两个交点在y 轴的同侧,求实数a 的取值范围.【答案】()5,11,4⎛⎫-∞-⋃ ⎪⎝⎭【分析】解不等式21210x x a =->,22(21)4(1)0a a ∆=--->即得解.【详解】设()22211=0x a x a --+-的两根为12,x x ,由题得21210x x a =->,(1),22(21)4(1)0a a ∆=--->,(2),解(1)(2)得1a <-或514a <<.所以实数a 的取值范围为()5,11,4⎛⎫-∞-⋃ ⎪⎝⎭.【点睛】本题主要考查二次方程的根的分布,意在考查学生对这些知识的理解掌握水平.19.已知,a b R ∈,关于x 的函数()2f x x ax b =++,集合(){}|,A x f x x x R ==∈,()(){}|,B x f f x x x R ==∈.(1)若{}A a =,求a 、b 的值;(2)若a N ∈,0b =且A B =,求集合A .【答案】(1)13a =,19b =;(2)0a =,{}0,1A =;1a =,{}0A =;2a =,{}0,1A =-;3a =,{}0,2A =-.【分析】(1)等价于2(1)0x a x b +-+=有两个相等的实根a ,解2=(1)40a b ∆--=且2(1)0a a a b +-+=即得解;(2)先化简两个集合的方程,由题得两方程同解,再对a 分类讨论得解.【详解】(1)由题得2x ax b x ++=有两个相等的实根a ,所以2(1)0x a x b +-+=有两个相等的实根a ,所以2=(1)40a b ∆--=且2(1)0a a a b +-+=,解之得13a =,19b =.(2)当b=0时,()2f x x ax=+关于A 的方程()f x x =可以化为[(1)]0x x a --=(1)关于B 的方程()()f f x x =可以化为432222()(1)0x ax a a x a x ++++-=,因式分解为2[(1)][(1)(1)]0x x a x a x a --++++=(2)由条件A=B 可知,方程(1)和(2)同解,(1)当0a =时,两方程为(1)0-=x x 和2(1)(1)0x x x x -++=,所以0,1x x ==,所以{0,1}A =;(2)当1a =时,两方程为20x =和22(22)0x x x ++=,所以0,x =所以{0}A =;(3)当2a =时,两方程为(1)0x x +=和2(1)(33)0x x x x +++=,所以0,1x x ==-所以{0,}A =-1;(4)当3a =时,两方程为(2)0x x +=和3(2)0x x +=,所以0,2x x ==-所以{0,}A =-2;(5)当4a ≥时,方程(2)中2(1)10x a x a ++++=,(1)(3)0a a ∆=+->,有两个不同的解,此时方程(1)和(2)不同解,所以舍去.所以0a =,{}0,1A =;1a =,{}0A =;2a =,{}0,1A =-;3a =,{}0,2A =-.【点睛】本题主要考查集合和集合的关系,考查解方程,意在考查学生对这些知识的理解掌握水平.20.已知U R ⊆为一个数集,集合{}223|,A s t s t U =+∈.(1)设{}1,3,5U =,求集合A 的元素个数;(2)设U Z =,证明:若x A ∈,则7x A ∈;(3)设U =R ,,x y A ∈,且223x m n =+,223y p q =+,若3mp nq -=x y mq np +++的最小值.【答案】(1)8个;(2)证明见解析;(3.【分析】(1)对,s t 的取值分类讨论,即得集合A 的元素个数;(2)因为x A ∈,设223x s t =+,再证明7x A ∈;(3)由题得()233xy mq np =++,设mq np b +=,利用基本不等式和判别式法求最小值.【详解】(1)1s t ==时,2234s t +=;3s t ==,2239+27=36s t +=;5s t ==,22325+75=100s t +=;1,3s t ==时,2231+27=28s t +=;3,1s t ==时,2239+3=12s t +=;1,5s t ==时,2231+75=76s t +=;5,1s t ==时,22325+3=28s t +=;3,5s t ==时,2239+75=84s t +=;5,3s t ==时,22325+27=52s t +=;所以{}4,12,28,36,52,76,84,100A =,它有8个元素;(2)因为x A ∈,所以设223x s t =+,()()()222222737212332s t s t s t s t A +=+=++-∈.所以得证.(3)()()()()2222223333xy m np q mq np mp nq =++=++-=()233mq np =++,设mq np b +=,∴233b y x +=,233b x y mq np x b b x++++=++≥+,设b t =,整理得22112120b bt t ++-=,由0∆≥得t ≥即()min x y mq np +++=.【点睛】本题主要考查集合的表示,考查集合和元素的关系,考查基本不等式和最值的求法,意在考查学生对这些知识的理解掌握水平.。

2019-2020学年华东师范大学第二附属中学高三英语月考试题及答案

2019-2020学年华东师范大学第二附属中学高三英语月考试题及答案

2019-2020学年华东师范大学第二附属中学高三英语月考试题及答案第一部分阅读(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项AThere have been many great painters in the rich history of Chinese art. Here are four of the greatest painters from China.Li Cheng (919—967, Five Dynasties and early Song Dynasty)Li Cheng contributed greatly to one of the golden ages of landscape paintings in world history. During his time, he was considered the best landscape painter ever. He is remembered especially for the winter landscapes he created and for simple compositions of tall, old evergreens set against a dry landscape. Several of his paintings are in thin ink which gives them a foggy appearance.Fan Kuan (990—1020 , Song Dynasty)Fan Kuan began his career by modeling Li Cheng's work but later created his own style, claiming that the only true teacher was nature. His finest workTravelers among Mountains and Streamsis a masterpiece of landscape painting and many future artists turned to it for inspiration.Qi Baishi (1864-1957)One of the greatest contemporary Chinese painters, Qi Baishi is known for not being influenced by Western styles like most painters of his time. He can be considered as the last great traditional painter of China. He painted almost everything from insects to landscapes. He is regarded highly in Chinese art for the freshness that he brought to the familiar types of birds and flowers, insects and grass.Wu Guanzhong (1919—2010)Widely considered as the founder of modern Chinese painting , Wu Guanzhong has painted various aspects of China, like its architecture, plants, animals, people and landscapes. Wu went on to combine Western and Chinese styles to create a unique form of modem art. In 1992, he became the first living Chinese artist whose work was exhibited at the British Museum.1.What do we know about Li Cheng?A.He loved landscape paintings.B.He copied many artists' work.C.His work gained worldwide recognition.D.He was considered as Fan Kuan's teacher.2.What is the main feature of Qi Baishi's paintings?A.They have foggy appearances.B.They lack diversity in the theme.C.They come under Western influence.D.They show advanced traditional painting skills.3.What did the four Chinese painters have in common?A.They were all modern painters.B.They all created landscape paintings.C.They were all impacted by Western art.D.They were all pioneers intraditional art history.BJack was 11 months old in the spring of 2015 when his parents, Erika and Christopher, recognized his development was not progressing as it should. The feeling was familiar to the couple. Just a few months earlier, Jack’s brother Chase, who is 16 months older, had been diagnosed with autism(自闭症) after he did not reach motion and language standards as expected.Jack’s behaviors were similarly delayed, and his parents moved quickly to seek help. Today, Jack is 5 — he celebrated his birthday on May 13 — and he can speak in full sentences and read. After two years at a preschool that specializes in services for children with developmental disabilities, he will start kindergarten in theSmithtownschool district in September. “Our family’s experience is a good example of the power and effectiveness of early intervention. The services our boys have received made all the difference,” the parents said.According to scientists, autism can be detected at 18 months or younger, and by age 2 a diagnosis can be considered “very reliable.” The parents said they were happy with Chase’s success at the learning center, but still had concerns for Jack because he was not speaking. Developing social and communication skills can be among the greatest challenge for individuals with autism, even if they are able to say a few words early on. “We didn’t know if he was ever going to talk,” Erika said. “That was my biggest fear. We just didn’t know.”Looking ahead, the parents are cautiously optimistic about Jack’s next educational move. He doesn’t handle change well, they said, and he likes to know his routine. Still, they expressed confidence that his time at the learning center has given him the skills he needs to be successful.4. How did Jack’s parents know he suffered from autism?A. They found the baby clever.B. They judged by their experience.C. They found he didn’t develop.D. They checked on him in the hospital.5. What did the parents think of the early intervention?A. It made no difference to the babies.B. It benefitted the babies greatly.C. It got their babies more disabled.D. It helped their babies speak fluently.6. What can we learn from the third paragraph?A. Autism can be confirmed at 18 months old.B. Jack’s parents were confident about his motor skills.C. Chase’s parents were doubtful about his developmentD. Jack’s parents worried about his language skills most.7. What is the text mainly talking about?A. Autism can be curedif parents take actions early.B. Parents should be confident about their children’s future.C. Early intervention in autism could improve children’s life.D. Communication skills should be developed as early as possible.CMy mother is a teacher. I often asked her, “ Why do you teach? What keeps you teaching?” The answer was always the same. “There is always that one child, that one moment that is worth it.”Now, I am a teacher, too. But different from my mother, I teach students challenging activities outdoors. And when my mother asked me the similar questions, my answer was, “It’s that one child, that one special moment.”One of those moments happened recently. I was working with a group of girls in a four-week programme. Everything went on well through the “Team” events and we were moving on to a“High” one called the Wire Walk.In the Wire Walk, each girl had to climb up the pegs in a tree to a wire, 8 meters high, and then walk across it. Of course, everything was safe for sure.When it was Susie's turn, it seemed that she didn't really want to. I asked Susie if she was ready. She answered softly, “I suppose.”Now, Susie was at the foot of the tree. She started to make the long reach. Then I found Susie was becoming nervous with every step. I realized she would not go much further.Susie was halfway up. Then she stopped and held the tree tight, looking very afraid. Her eyes were closed. With her face against the tree, she cried, “I can't.”The other girls sat in silence. I talked quietly to Susie, trying to relax her. I talked for a long time till I ran out of words.“I will still be your friend no matter what, Susie!” Mary broke the silence.To my surprise, Susie lifted her head and looked up to the wire. Then she turned to look down at Mary and smiled. Mary smiled back.Finally, Susie made it all the way across that wire. When she returned to the ground, the first hug she looked for was from Mary. We all cheered. Moments like this keep me doing what I do.8. Why did Susie stop halfway up to the wire?A. It was too high for her to reach.B. She was too afraid to move on.C. Something was wrong with it.D. The teacher asked her to do it.9. Why did Mary break the silence?A. To try again herself.B. To relax the writer.C. To encourage Susie.D. To draw Susie's attention.10. What can we learn from the story of Susie?A. Helping others is helping ourselves.B. A word of encouragement matters a lot.C. Outdoor activities bring peoplecloser than ever.D. A good method plays an important role in teaching.11. Which of the following can be the best title for the passage?A. The Wire WalkB. That One MomentC. Fear and CourageD. The Young HeartsDPeggy Whitson's job demands a daily two­hour workout in a gym where weight has no meaning and the view changes at 17,000 miles an hour.Whitson makes it look easy. At 57, she is the oldest woman to fly in space, breaking the record last November, 2016, when she began her third long­term stay at the International Space Station. After returning home in September, 2017, the NASA astronaut feltmatter­-of­-factabout the age milestone.“It wasn't a record I was seeking for,” Whitson said. “I was 42 and 48 for my first two space flights. I feel lucky that I was able to get to do another one in my 50s. I don't think people should let age discourage them, even on those jobs that require some amount of physical fitness. The oldest man is John Glenn (at 77), and we've had maleastronauts in their 60s before, so it's just a matter of time before women start flying in space at this age”.On the earth, she stays fit by weightlifting, biking, playing basketball and water skiing. She shared what it's like to live in microgravity: “It's like you're in a swimming pool, but you don't have to worry about breathing. If I push off from one side, I'm going to float to the other side. Every direction feels exactly the same, which is really hard for your brain to grasp, but it's amazing how fast you adapt.It's a big shock for the body to come back to Earth—everything is so heavy. We spend a lot of time getting used to being back in gravity again. Back pain was really the most dramatic for me this time. For me, coming home is harder than going up into space.”12. How long did Peggy Whitson spend for her third stay in the International Space Station?A. About 300 days.B. About 708 days.C. About 107 days.D. About57 days.13. What does the underlined word probably mean in the passage?A. Amazing.B. Not surprising.C. Enthusiastic.D. Unbelievable.14. According to the passage, which of the following is true?A. Peggy Whitson likes swimming most.B. Peggy Whitson is the oldest person to fly in space.C. Peggy Whitson had been in space in 2002 and 2008.D. There had been female astronauts over 60s flying in space before.15. Which of the following will Peggy Whitson probably say?A. You can still be successful and do physical things when old.B. I spent quite a lot of time getting used to the life in space.C. The moment we reached the earth, we felt so relaxed.D. I feel lucky that I am physically well after the whole journey.第二节(共5小题;每小题2分,满分10分)阅读下面短文,从短文后的选项中选出可以填入空白处的最佳选项。

华二附中高一月考(2019.03)

华二附中高一月考(2019.03)

华二附中高一月考数学试卷2019.03一. 填空题1. 已知点(5,12)P a a -在角α的终边上,且0a >,则3sec()2πα+= 2.求值:sin50(1)︒︒=3. 已知1312x π=-,则2111111csc x ---的值为4. 已知锐角α、β是钝角△ABC 的两个内角,且θ的终边过点(sin cos ,cos sin )P βαβα--,则θ是第 象限角5. 已知△ABC 中,tan sin 2A B C +=,给出以下四个结论,其中正确结论的序号是 ① tan cot 1A B ⋅=; ②0sin sin A B <+≤③ 22sin cos 1A B +=; ④ 222cos cos sin A B C +=;6. 已知1tan 20191tan θθ-=+,则sec2tan2θθ+= 7. 已知sin sin 1αβ+=,cos cos 0αβ+=,则sin()αβ+的值为8. 已知(,)αππ∈-,且tan α是关于x 的方程22sec 10x x α++=的两个根中较小的根, 则α的值为9. 在△ABC 中,cos cos 15sin sin 3A B A B +=,则tan tan 22A B ⋅= 10. 在△ABC 中,4cos b a C a b +=,1cos()6A B -=,则cos C =二. 选择题11. 若角α与角β的终边关于y 轴对称,则下列等式恒成立的是( )A. sin sin αβ=B. cos cos αβ=C. tan tan αβ=D. cot cot αβ=12. “4παβ+=”是“(1tan )(1tan )2αβ++=”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既不充分亦不必要13. △ABC中,tan tan tan A B A B +=,sin cos B B =,则( ) A. △ABC 是正三角形 B. △ABC 是直角三角形C. △ABC 是正三角形或直角三角形D. △ABC 是直角三角形或等腰三角形14. 设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A. 32παβ-=B. 32παβ+=C. 22παβ-=D. 22παβ+=三. 解答题 15. 如图,点A 、B 是单位圆O 上的两点,点C 是圆O 与x 轴的正半轴的交点,将锐角α的终边OA 按逆时针方向旋转3π到OB . (1)若点A 的坐标为34(,)55,求1sin 21cos2αα++的值; (2)用α表示||BC ,并求||BC 的取值范围.16. 在△ABC 中,已知2c =,3C π=.(1)求△ABC 周长的最大值;(2)若2sin 2sin(2)sin A B C C ++=,求△ABC 的面积.17.(1)如图,点P 在线段AB 上,直线AB 外一点O 对线段AP 、BP 的张角分别为α、β,即AOP α∠=,BOP β∠=,求证:sin()sin sin OP OB OAαβαβ+=+; (2)在△ABC 中,AB c =,DC kAD =,DBA α∠=,DBC β∠=,其中0k >,试用c 、k 、α、β表示线段BC 的长.18. 如图,边长为1的正方形ABCD 中,P 、Q 分别为边BC 、CD 上的点,且△PCQ 的周长为2.(1)求线段PQ 长度的最小值;(2)试探究PAQ ∠是否为定值,若是,给出这个定值,若不是,说明理由.参考答案一. 填空题1. 1312-2. 13. 8+4. 二5. ②④6.12019 7. 0 8. 56π- 9. 13 10. 23二. 选择题11. A 12. D 13. C 14. C三. 解答题15.(1)4918;(2)||(1,2BC ∈.16.(1)6;(217.(1)证明略;(2)sin sin ck BC αβ=.18.(1)min 2PQ =;(2)4PAQ π∠=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档