大学物理II练习册答案4
大学物理(二)练习册答案
1 大学物理(二)练习册参考解答第12章真空中的静电场一、选择题1(D),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B),二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aaò×==00d /(U 0=0). (2). ()042e /q q+,q 1、q 2、q 3、q 4 ;(3). 0,l / (2e 0);(4). s R / (2e 0) ;(5). 0 ;(6). ÷÷øöççèæ-p 00114r r qe ;(7). -2³103 V ;(8). ÷÷øöççèæ-p a br r q q 11400e (9). 0,pE sin a ;(10). ()i a x A2+-.三、计算题1. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为l =q / L ,在x 处取一电荷元d q = l d x = q d x / L ,它在P 点的场强:()204d d x d L qE -+p =e ()204d x d L L xq -+p =e 总场强为ò+p =Lx d L x Lq E 020)(d 4-e ()d L d q +p =04e 方向沿x 轴,即杆的延长线方向.2.一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在q 处取微小电荷d q = l d l = 2Q d q / p 它在O 处产生场强Ldq P +Q-QROxyPLdd qx (L+d -x ) d ExOq e e d 24d d 20220RQRq E p =p =按q 角变化,将d E 分解成二个分量:分解成二个分量:q q e q d sin 2sin d d 202RQE E x p ==q q e q d cos 2cos d d 202RQE E y p -=-=对各分量分别积分,积分时考虑到一半是负电荷对各分量分别积分,积分时考虑到一半是负电荷úûùêëé-p =òòpp p q q q q e 2/2/0202d sin d sin 2R QE x =0 2022/2/0202d cos d cos 2R Q R QE y e q q q q e pp p p -=úûùêëé-p -=òò所以所以j R Q j E i E E y x202e p -=+=3. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为l ,试求轴线上一点的电场强度.,试求轴线上一点的电场强度.解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为荷线密度为q l l l d d d p=p =l R取q 位置处的一条,它在轴线上一点产生的场强为位置处的一条,它在轴线上一点产生的场强为q e l e l d 22d d 020RR E p =p =如图所示. 它在x 、y 轴上的二个分量为:轴上的二个分量为:d E x =d E sin q , d E y =-d E cos q 对各分量分别积分对各分量分别积分 R R E x 02002d sin 2e lq q e l pp =p =ò 0d c o s 202=p -=òp q q e lRE y场强场强 i Rj E i E E y x02e lp =+=4. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100 N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C . (1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;体密度;(2) 假设地表面内电场强度为零,假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0e =8.85³10-12 C 2²N -1²m -2) d qR Oxyqd qqq d E y y d l d q R q O d E xx d EOR’O'解:(1) 设电荷的平均体密度为r ,取圆柱形高斯面如图(1)(侧面垂直底面,底面D S 平行地面)上下底面处的上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:,则通过高斯面的电场强度通量为:òòE²S d =E 2D S -E 1D S =(E 2-E 1) D S 高斯面S 包围的电荷∑q i =h D S r由高斯定理(E 2-E 1) D S =h D S r /e∴ () E Eh121-=er =4.43³10-13 C/m 3(2) 设地面面电荷密度为s .由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 由高斯定理由高斯定理òòE ²S d =åi 01q e-E D S =SD se1∴ s=-e 0 E =-8.9³10-10 C/m 35. 一半径为R 的带电球体,其电荷体密度分布为的带电球体,其电荷体密度分布为r =Ar (r ≤R ) , r =0 (r >R ), A 为一常量.试求球体内外的场强分布.为一常量.试求球体内外的场强分布.解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为的薄球壳,该壳内所包含的电荷为 r r Ar V q d 4d d 2p ×==r在半径为r 的球面内包含的总电荷为的球面内包含的总电荷为 403d 4Ar r Ar dV q rV p =p ==òòr (r ≤R) 以该球面为高斯面,按高斯定理有以该球面为高斯面,按高斯定理有 0421/4e Ar r E p =p ×得到得到 ()0214/e ArE =, (r ≤R ) 方向沿径向,A >0时向外, A <0时向里.时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有的同心高斯球面,按高斯定理有0422/4e AR r E p =p ×得到得到 ()20424/rAR E e =, (r >R ) 方向沿径向,A >0时向外,A <0时向里.时向里.6. 如图所示,一厚为b 的“无限大”带电平板的“无限大”带电平板 , 其电荷体密度分布为r =kx (0≤x ≤b ),式中,式中k 为一正的常量.求:为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;处的电场强度大小;(2) 平板内任一点P 处的电场强度;处的电场强度; (3) 场强为零的点在何处?场强为零的点在何处?解:解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.,如图所示.E(2)xbP 1 P 2Px OSE 2D SE 1(1) h按高斯定理åò=×0e /d q S E S ,即,即 020002d d 12e e r e kSbx x kSxS SEb b ===òò得到得到 E = k b kb 2 / (4e 0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ¢,如图所示.按高斯定理有定理有()022ee k S bx d x kSSE Ex==+¢ò得到得到 ÷÷øöççèæ-=¢22220b x k E e (0≤x ≤b ) (3) E ¢=0,必须是0222=-bx , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为s .如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为s 的大平面和面密度为-s 的圆盘叠加的的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为处产生的场强为 i xx E012e σ=圆盘在该处的场强为圆盘在该处的场强为i x R x x E÷÷øöççèæ+--=2202112e σ ∴ i xR xE E E 220212+=+=e σ 该点电势为该点电势为()22222d 2xRR xR xx U x+-=+=òe se s8. 一半径为R 的“无限长”圆柱形带电体,其电荷体密度为r =Ar (r ≤R ),式中A 为常量.试求:求:(1) 圆柱体内、外各点场强大小分布;圆柱体内、外各点场强大小分布; (2) 选与圆柱轴线的距离为l (l >R ) 处为电势零点,计算圆柱体内、外各点的电势分布.解:(1) 取半径为r 、高为h 的高斯圆柱面(如图所示).面上各点场强大小为E 并垂直于柱面.则穿过该柱面的电场强度通量为:面.则穿过该柱面的电场强度通量为:xS P SE ESSEd xb E ¢sOROxPòp =×SrhE S E2d 为求高斯面内的电荷,r <R 时,取一半径为r ¢,厚d r ¢、高h 的圆筒,其电荷为的圆筒,其电荷为r r Ah V ¢¢p =d 2d 2r则包围在高斯面内的总电荷为则包围在高斯面内的总电荷为3/2d 2d 32Ahrr r Ah V rVp =¢¢p =òòr由高斯定理得由高斯定理得 ()033/22e Ahr rhE p =p 解出解出 ()023/e Ar E = (r ≤R ) r >R 时,包围在高斯面内总电荷为:时,包围在高斯面内总电荷为:3/2d 2d 32AhRrrAh VRVp=¢¢p=òòr由高斯定理由高斯定理 ()033/22e A h R r h E p =p 解出解出 ()r AR E 033/e = (r >R ) (2) 计算电势分布计算电势分布r ≤R 时 òòò×+==lRRrlrrr AR r r A r E U d 3d 3d 0320e e()Rl AR rR A ln 3903330e e +-=r >R 时 rl AR rr AR rE Ulrl rln3d 3d 033e e =×==òò9.一真空二极管,其主要构件是一个半径R 1=5³10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5³10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 300 VV ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6³10-19 C) 解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为l .按高斯定理有.按高斯定理有 2p rE = l / e 0 得到得到 E = l / (2p e 0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差方向沿半径指向轴线.两极之间电势差òòp -=×=-21d 2d 0R R BAB A rr r E U U el120ln 2R R elp -=得到得到()120/ln 2R R UUAB-=p e l, 所以所以 ()rR R UUE AB1/ln 12×-=在阴极表面处电子受电场力的大小为在阴极表面处电子受电场力的大小为 ()()11211/c R RR UUeReE F AB×-===4.37³10-14 N 方向沿半径指向阳极.方向沿半径指向阳极.RrhABR 2 R 1四 研讨题1. 真空中点电荷q 的静电场场强大小为的静电场场强大小为 241rq E pe=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?何解释?参考解答:参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而同)而路径相等.因而d d d ¹×¢-×=×òòòc ba d l E l E l E 按静电场环路定理应有0d =×òl E , 此场不满足静电场环路定理,所以不可能是静电场.此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?能否求出该点的场强?为什么?参考解答:参考解答:由电势的定义:由电势的定义: ò×=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
大学物理第二版答案(北京邮电大学出版社)
习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r ⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a (6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t xtt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααxytg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V(4) 质点的速度与加速度分别为i t Va j i tr V8d d ,28d d ==+==故t =1s 时的速度和加速度分别为 2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯ 即该星云是101009.2⨯年前和我们银河系分离的. 1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -= 代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---= 所以184.1)184.1(8.92111)(2121121120--⨯⨯+=∆-∆-+=t t t t g h v m /s 2.17=同理.122.1)122.1(8.92111)(2121121120--⨯⨯+=-'-'+='t t t t g h v ∆∆ m/s)(1.51=(2) 由于'>=123.1t s t ∆,所以第二石块不可能在第一块上升时与第一块相碰.对应于t 1时刻相碰,第二块的初速度为3.184.1)3.184.1(8.92111)(2122122120--⨯⨯+=--+="t t t t g h v ∆∆ m/s)(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为02222d d d d v s h s t l h l lts v +-=-==负号表示船在水面上向岸靠近. 船的加速度为3202022d d d d d d s v h tl v h l ll t v a -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动.1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωg r n g r1-9 物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s 3='t 时的切向加速度,即)m/s (2.02='t a在s 3='t 时的法向加速度为)m/s (36.00.1)32.0()(2222=⨯='='=R t a R v a t n1-10 2m /s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m/s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h +=电梯下降的距离为习题1-9图 习题1-10图2021at t v h +='又20)(21t a g h h h -='-= 由此得s 59.02.18.95.1220=-⨯=-=a g h t而小球相对地面下落的距离为2021gt t v h += 259.08.92159.06.0⨯⨯+⨯= m 06.2= 1-11 人地风人风地v v v+=画出速度矢量合成图(a)又人地风人风地02v v v +'=,速度矢量合成如图(b )两图中风地v应是同一矢量.可知(a )图必是底角为︒45的等腰直角三角形,所以,风向应为西北风,风速为人地人地风地00245cos v v v =︒=)s m (23.41-⋅=1-12 (1) v LvL t 22==(2) 22212u v vLu v L u v L t t t -=++-=+= 1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v Lv L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v +=',则22u v V -='.习题1-12图习题1-11图2221222⎪⎭⎫⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V 而1212sin sin =⨯=='αβu V 船达到B 点所需时间)s (1000sin =='='=D V DV OB t βAB 两点之距βββsin cos D Dctg S == 将式(1)、(2)代入可得m)(1268)33(=-=D S(2) 由αβsin 101sin 3u V D t ⨯='=船到对岸所需最短时间由极值条件决定0cos sin 11d d 2=⎪⎭⎫⎝⎛-=αααu t 即 2/,0c o s παα==故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333m in=⨯=⨯=⨯=s u t π (3) 设l OB =,则ααββsin cos 2sin sin 22u uV V u D V D V D l -+=''==欲使l 最短,应满足极值条件.习题1-13图a a uV V u u D l '⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα 0cos 2sin sin 2222=⎥⎦⎤'-+''+αuV V u a a uV 简化后可得01cos cos 222=+'+-'αuVV u a即 01cos 613cos 2=+'-'αa 解此方程得32cos ='α︒=='-2.4832cos 1α 故船头与岸成︒2.48,则航距最短.将α'值代入(4)式得最小航程为222222m in 321232322321000cos 1cos 2⎪⎭⎫ ⎝⎛-⨯⨯⨯-+='-'-+-=ααu uv v u D lkm)(5.1m 105.13=⨯= AB 两点最短距离为km)(12.115.122min min =-=-=D l S第二章 质点动力学2-1 (1)对木箱,由牛顿第二定律,在木箱将要被推动的情况下如图所示,x 向:0cos m ax m in =-f F θ y 向:0sin m in =--Mg F N θ 还有 N f s m ax μ=解以上三式可得要推动木箱所需力F 的最小值为θμθμsin cos s s min -=MgF习题2-1图在木箱做匀速运动情况下,如上类似分析可得所需力F 的大小为θμθμsin cos k k min -=MgF(2)在上面m in F 的表示式中,如果0sin cos s →-θμθ,则∞→m in F ,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是0sin cos s ≤-θμθ由此得θ的最小值为s1arctanμθ=2-2 (1)对小球,由牛顿第二定律x 向:ma N T =-θθsin cosy 向:0cos sin =-+mg N T θθ 联立解此二式,可得N)(32.3)30sin 8.930cos 2(5.0)sin cos (=︒+︒⨯⨯=+=ααg a m T N)(74.3)30sin 230cos 8.9(5.0)sin cos (=︒-︒⨯⨯=+=ααa g m N由牛顿第三定律,小球对斜面的压力N)(74.3=='N N(2)小球刚要脱离斜面时N =0,则上面牛顿第二定律方程为mg T ma T ==θθsin ,cos由此二式可解得2m/s 0.1730tan /8.9tan /=︒==θg a2-3 要使物体A 与小车间无相对滑动,三物体必有同一加速度a ,且挂吊B 的绳应向后倾斜。
大学物理练习册习题及答案4
习题及参考答案第3章 刚体力学参考答案思考题3-1刚体角动量守恒的充分而必要的条件是 (A )刚体不受外力矩的作用。
(B )刚体所受合外力矩为零。
(C)刚体所受的合外力和合外力矩均为零。
(D)刚体的转动惯量和角速度均保持不变。
答:(B )。
3-2如图所示,A 、B 为两个相同的绕着轻 绳的定滑轮。
A 滑轮挂一质量为M 的物体, B 滑轮受拉力F ,而且F =Mg 。
设A 、B 两 滑轮的角加速度分别为βA 和βB ,不计滑轮 轴的摩擦,则有(A )βA = βB (B )βA > βB(C )βA < βB (D )开始时βA = βB ,以后βA < βB 答:(C )。
3-3关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C )取决于刚体的质量、质量的空间分布和轴的位置。
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无 答:(C )。
3-4一水平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,初始时整个系统处于静止状态,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统(A)动量守恒; (B)机械能守恒; (C)对转轴的角动量守恒;(D)动量、机械能和角动量都守恒; (E)动量、机械能和角动量都不守恒。
答:(C )。
3-5光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点o 且垂直于杆的竖直光滑固定轴自由转动,其转动惯量为213mL,起初杆静止,桌面上有两个质量均为m 的小球,各自在 垂直于杆的方向上,正对着杆的一端,以相同速率v 相向 运动,如图所示,当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为AMF思考题3-2图v思考题3-5图(A)23L v (B)45L v (C)67L v (D)89L v (E)127L v答:(C )。
大学物理II练习册答案
大学物理练习 十五一.选择题:1.如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2 ,n 2>n 3,1λ为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的位相差为 [ C ](A) )/(2112λπn e n (B) πλπ+)/(4121n e n (C) πλπ+)/(4112n e n (D) )/(4112λπn e n解: n 1<n 2 ,n 2>n 3 有半波损失.2.在双缝干涉实验中,屏幕E 上的P 点处是明条纹。
若将缝S 2盖住,并在S 1S 2连线的垂直平分面处放一反射镜M ,如图所示,则此时 (A) P 点处仍为明条纹。
(B) P 点处为暗条纹。
(C) 不能确定P 点处是明条纹还是暗条纹。
(D) 无干涉条纹。
[B ]解: 反射镜M 有半波损失. (屏幕E 上的P 点处原是明条纹。
)3.如图所示,用波长为λ的单色光照射双缝干涉实验装置,若将一折射率为n 、劈角为α的透明劈尖b 插入光线2中,则当劈尖b 缓慢地向上移动时(只遮住S 2),屏C 上的干涉条纹 (A) 间隔变大,向下移动。
(B) 间隔变小,向上移动。
(C) 间隔不变,向下移动。
(D) 间隔不变,向上移动.。
[C ]解:当劈尖b 缓慢地向上移动时,改n 13λ1S屏λ4.如图,用单色光垂直照射在观察牛顿环的装置上。
当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹 [B ](A) 向右平移. (B) 向中心收缩. (C) 向外扩张. (D) 静止不动. (E) 向左平移.解: 当平凸透镜垂直向上缓慢平移,薄膜厚增加. 环状干涉条纹向中心收缩.5. 在迈克尔逊干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是 [ D ] (A) 2λ (B) ()n 2λ (C) n λ (D) )1(2-n λ解: λ=-=-=∆d n d nd )1(2226.如图所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L ,夹在两块平晶的中间,形成空气劈尖,当单色光垂直入射时,产生等厚干涉条纹。
大学物理2习题参考答案
题1-3图第一章 流体力学1.概念(3)理想流体:完全不可压缩又无黏性的流体。
(4)连续性原理:理想流体在管道中定常流动时,根据质量守恒定律,流体在管道内既不能增 多,也不能减少,因此单位时间内流入管道的质量应恒等于流出管道的质量。
(6)伯努利方程:C gh v P =++ρρ221(7)泊肃叶公式:LPR Q ηπ84∆=2、从水龙头徐徐流出的水流,下落时逐渐变细,其原因是( A )。
A. 压强不变,速度变大; B. 压强不变,速度变小;C. 压强变小,流速变大;D. 压强变大,速度变大。
3、 如图所示,土壤中的悬着水,其上下两个液面都与大气相同,如果两个页面的曲率半径分别为R A 和R B (R A <R B ),水的表面张力系数为α,密度为ρ,则悬着水的高度h 为___)11(2BA R R g -ρα__。
(解题:BB A A A B R P P R P P gh P P ααρ2,2,00-=-==-) 4、已知动物的某根动脉的半径为R, 血管中通过的血液流量为Q , 单位长度血管两端的压强差为ΔP ,则在单位长度的血管中维持上述流量需要的功率为____ΔPQ ___。
5、城市自来水管网的供水方式为:自来水从主管道到片区支管道再到居民家的进户管道。
一般说来,进户管道的总横截面积大于片区支管的总横截面积,主水管道的横截面积最小。
不考虑各类管道的海拔高差(即假设所有管道处于同水平面),假设所有管道均有水流,则主水管道中的水流速度 大 ,进户管道中的水流速度 小 。
10、如图所示,虹吸管的粗细均匀,略去水的粘滞性,求水流速度及A 、B 、C 三处的压强。
221.2 理想流体的定常流动'2gh v C =∴222121'CC D D v P v gh P ρρρ+=++0,0≈==D C D v P P P 练习5:如图,虹吸管粗细均匀,略去水的粘滞性,求管中水流流速及A 、B 、C 三处的压强。
大学物理2课后习题答案.docx
解:回路磁通=BS = Bn r 2感应电动势大小:£— = — (B TI r 2) = B2n r — = 0A0 V At dr dr10-2^-Bcosa2同理,半圆形ddc 法向为7,则0”2鸟与亍夹角和另与7夹角相等,a = 45°①和=Bn R 2 cos a10-6解:0/z? =BS = 5—cos(^ + 久)叫一加&sin (血+久)dr _2Bit r~O) Bn r~2 _ 2 2 2Bf2n f =兀 2『BfR R 解:取半圆形"a 法向为Z ,dt — HR? ABcos a —— dt -8.89 xlO'2V方向与cbadc 相反,即顺时针方向. 题10-6图(1)在Ob 上取尸T 尸+ dr 一小段71 同理•• • r 1 9 % - 3 ca^BAr = 一 Bco, °"」) 18 1 2 1 , £ab - £aO +% =(一花' + 石)广=(2)・・・£ah >0即U a -U h <0 :.b 点电势高.10-11在金属杆上取dr 距左边直导线为r ,则(2) |nj 理, £dc = 碇・d7>0U d -U c v0即 / >U d10-15 设长直电流为/ ,其磁场通过正方形线圈的互感磁通为%蓄绘/警5210-16Q)见题10-16图Q),设长直电流为/,它产生的磁场通过矩形线圈的磁通为丛(丄+丄)d- I 2龙 r 2a-r •:实际上感应电动势方向从g T A , 即从图中从右向左,71 a-b10-14•d5 知, 此吋E 旋以。
为中心沿逆时针方向.(1) V ab 是直径,在〃上处处E 旋与ab m§E 旋• d7 = 0• • £亦也 U Q =Ub心 2n r 2TI 由样旋• M -/z 0/v a + b71 a-b(a (b12-4解:⑴由0 =—,务=£_知,各级条纹向棱边方 2/ 2向移动,条纹间距不变;(2)各级条纹向棱边方向移动,H.条纹变密. 12 5解:工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲・按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹2向棱边移动了一条,故相应的空气隙厚度差为Ae = -,这也是工件缺陷的程度.2 12-6 ・・・ A/ = ^^- = A^^ln2 = 2.8xlO~6 H1 2JI(b)・・•长直电流磁场通过矩形线圈的磁通*2 = 0,见题10-16图(b)・・・ M = O10-17如图10-17图所示,取dS = /dr①二U(如+ ^_炖=做 广「丄)做(In 厶-In 丄) 2〃r 2兀(d-r)2兀 “ r r-d 2K a d-a = ^Il_Xn d-a_7i a:.L / =如1门上£I TI a10-18•・•顺串时厶=厶+厶2 +2M反串联时//二厶+厶2-2M・•・ L_L f = 4MM = --------- = 0.15 H 412-1 y 不变,为波源的振动频率;A,n =— 变小;u = A n v 变小. n 12- 2由心=三久知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零 a级明纹向下移动.12- 3解:不同媒质若光程相等,则其儿何路程定不相冋其所需吋间相同,为&€・因为△中已经将光在介质中的路程折算为光在真空中所走的路程。
大学物理2习题答案汇总上课讲义
一、 单项选择题:1. 北京正负电子对撞机中电子在周长为L 的储存环中作轨道运动。
已知电子的动量是P ,则偏转磁场的磁感应强度为: ( C )(A) eL P π; (B) eL P π4; (C) eLP π2; (D) 0。
2. 在磁感应强度为B ρ的均匀磁场中,取一边长为a 的立方形闭合面,则通过该闭合面的磁通量的大小为: ( D )(A) B a 2; (B) B a 22; (C) B a 26; (D) 0。
3.半径为R 的长直圆柱体载流为I , 电流I 均匀分布在横截面上,则圆柱体内(R r 〈)的一点P 的磁感应强度的大小为 ( B )(A) r I B πμ20=; (B) 202R Ir B πμ=; (C) 202r I B πμ=; (D) 202RI B πμ=。
4.单色光从空气射入水中,下面哪种说法是正确的 ( A )(A) 频率不变,光速变小; (B) 波长不变,频率变大;(C) 波长变短,光速不变; (D) 波长不变,频率不变.5.如图,在C 点放置点电荷q 1,在A 点放置点电荷q 2,S 是包围点电荷q 1的封闭曲面,P 点是S 曲面上的任意一点.现在把q 2从A 点移到B 点,则 (D )(A) 通过S 面的电通量改变,但P 点的电场强度不变;(B) 通过S 面的电通量和P 点的电场强度都改变;(C) 通过S 面的电通量和P 点的电场强度都不变;(D) 通过S 面的电通量不变,但P 点的电场强度改变。
6.如图所示,两平面玻璃板OA 和OB 构成一空气劈尖,一平面单色光垂A C直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将 ( C )(A) 干涉条纹间距增大,并向O 方向移动;(B) 干涉条纹间距减小,并向B 方向移动;(C) 干涉条纹间距减小,并向O 方向移动;(D) 干涉条纹间距增大,并向O 方向移动.7.在均匀磁场中有一电子枪,它可发射出速率分别为v 和2v 的两个电子,这两个电子的速度方向相同,且均与磁感应强度B 垂直,则这两个电子绕行一周所需的时间之比为 ( A )(A) 1:1; (B) 1:2; (C) 2:1; (D) 4:1.8.如图所示,均匀磁场的磁感强度为B ,方向沿y 轴正向,欲要使电量为Q的正离子沿x 轴正向作匀速直线运动,则必须加一个均匀电场E u r ,其大小和方向为 ( D )(A) E = B ,E u r 沿z 轴正向; (B) E =v B ,E u r 沿y 轴正向; (C) E =B ν,E u r 沿z 轴正向; (D) E =B ν,E u r 沿z 轴负向。
大学物理2练习册答案
大学物理2练习册答案问题1:简谐振子的周期公式是什么?答案:简谐振子的周期 \( T \) 可以通过公式 \( T =2\pi\sqrt{\frac{m}{k}} \) 来计算,其中 \( m \) 是振子的质量,\( k \) 是弹簧的劲度系数。
问题2:描述牛顿第二定律的表达式,并给出一个应用实例。
答案:牛顿第二定律的表达式是 \( F = ma \),其中 \( F \) 是作用在物体上的合力,\( m \) 是物体的质量,\( a \) 是物体的加速度。
应用实例:当一个质量为2kg的物体受到10N的力作用时,它的加速度将是 \( 5 m/s^2 \)。
问题3:解释什么是角动量守恒定律,并给出一个例子。
答案:角动量守恒定律指的是,如果没有外力矩作用于一个系统,那么这个系统的总角动量保持不变。
例如,一个旋转的冰上舞者在收缩手臂时,由于半径减小,角速度会增加,以保持角动量守恒。
问题4:解释什么是电场强度,并给出其计算公式。
答案:电场强度是一个矢量量,表示在电场中某一点单位正电荷所受到的电场力。
其计算公式是 \( E = \frac{F}{q} \),其中 \( E \) 是电场强度,\( F \) 是电荷 \( q \) 所受的电场力。
问题5:什么是电流的微观表达式?答案:电流的微观表达式是 \( I = nqAv \),其中 \( I \) 是电流,\( n \) 是单位体积内的电荷数,\( q \) 是单个电荷的电荷量,\( A \) 是导体的横截面积,\( v \) 是电荷的漂移速度。
问题6:解释什么是磁感应强度,并给出其单位。
答案:磁感应强度是一个矢量量,表示磁场在空间某点的强度和方向。
其单位是特斯拉(T)。
问题7:什么是电磁波?描述其基本特性。
答案:电磁波是由变化的电场和磁场相互作用产生的波动现象。
电磁波的基本特性包括:它们可以在真空中传播,具有波长、频率和速度,且电磁波的速度在真空中等于光速 \( c \)。
大学物理2习题册(含答案)
题1第⼀一章流体⼒力力学1、基本概念(3)理理想流体:完全不不可压缩,没有粘滞性的流体。
(4)连续性原理理:流管上⼀一节流速与截⾯面积的乘积是⼀一个常量量,截⾯面⼤大的流速⼩小,反之⼤大(6)伯努利利⽅方程:P 1+12ρv 12+ρg h 1=P 2+12ρv 22+ρg h 2=c(7)泊肃叶公式:2、从⽔水⻰龙头徐徐流出的⽔水流,下落时逐渐变细,其原因是(A )。
A.压强不不变,速度变⼤大; B.压强不不变,速度变⼩小;C.压强变⼩小,流速变⼤大;D.压强变⼤大,速度变⼤大。
3、如图所示,⼟土壤中的悬着⽔水,其上下两个液⾯面都与⼤大⽓气相同,如果两个⻚页⾯面的曲率半径分别为R A 和R B (R A <R B ),⽔水的表⾯面张⼒力力系数为α,密度为ρ,则悬着⽔水的⾼高度h 为_____。
4、已知动物的某根动脉的半径为R,⾎血管中通过的⾎血液流量量为Q ,单位⻓长度⾎血管两端的压强差为ΔP ,则在单位⻓长度的⾎血管中维持上述流量量需要的功率为ΔPQ 。
5、城市⾃自来⽔水管⽹网的供⽔水⽅方式为:⾃自来⽔水从主管道到⽚片区⽀支管道再到居⺠民家的进户管道。
⼀一般说来,进户管道的总横截⾯面积⼤大于⽚片区⽀支管的总横截⾯面积,主⽔水管道的横截⾯面积最⼩小。
不不考虑各类管道的海海拔⾼高差(即假设所有管道处于同⽔水平⾯面),假设所有管道均有⽔水流,则主⽔水管道中的⽔水流速度⼤大,进户管道中的⽔水流速度⼩小。
6、如图所示,虹吸管的粗细均匀,略略去⽔水的粘滞性,求⽔水流速度及A 、B 、C 三处的压强。
题1-10图解:在管外液⾯面上任选⼀一点D ,CD 两点:BC两点:AC两点:7、⼀一开⼝口容器器截⾯面积为S1,底部开⼀一截⾯面积为S2的孔。
当容器器内装的液体⾼高度为h时,液体从孔中喷出的速度为多⼤大?设液体为理理想流体且作定常流动。
解:由于液体为理理想流体且作定常流动,根据连续性原理理,有根据伯努利利⽅方程,有从上两式联⽴立解得8、⼀一圆筒中的⽔水深为H=0.70m,底⾯面积S1=0.06m2,桶底部有⼀一⾯面积为1.0×10-4m2的⼩小孔。
大学物理课后习题答案,大学物理第二版课后习题答案
解:vx?vx0?
?adt??3sint
z
t
vy?vy0??aydt?4?4cost0?4cost
t
t
则x?x0?
?
t
?3sintdt?3?3cost0?3cost
t
同理y?4sint
x2y2
所以有2?2?1质点的轨迹为一椭圆。
34
4、一质点沿着半径为R的圆周运动,在t=0时经过P点,此后的速率按
解:dvdt?0,即?0质点做匀速直线运动(包括静止)
?
?
dvdt?0,即at?0质点做匀速率运动(包括上一种及匀速圆周运动)
4、物体在某一时刻开始运动,在?t时间后,经任一路径回到出发点,此时的速度大小与开始时相同,但方向不同,试问:在?t时间内,平均速度是否为零?平均速率是否为零?平均加速度是否为零?
cos??cos??
?v2(sin??
L
cos?)H
车速至少如上时,货物刚好不会被雨水淋着。
6、如图1.5所示,在倾角为??30?的斜坡上,以初速度v0发射炮弹,设v0与斜坡的夹角为
??
??60?。求炮弹落地点离发射点的距离L。
解:
图1.5
12t2
12t
2
由上图可知?0t?方法一:由右图
12t2
?x?v0cos300t??y?vsin300t?1gt2
Bt2
?
?
雨滴下落的速度v2的方向与铅直方向夹角为θ,偏向于汽
车前进的方向,今在汽车后放一长方形物体(长为L)。问,车速v1为躲大时,此物体刚好不会被雨水淋着?解:
雨相对于车的速度2?2?1由右图可得:所以
大学物理学教程第二(马文蔚)练习册答案4第四章 刚体转动
v人地 v人盘 +v盘地 1 + R
J m0 Rv人地 0
J m0 R 1 0
m0 R J m0 R
0.0952 rad/s
J m0R m0R
第 四 章 习 题 分 析
4-21 长为 L 质量为 m 的均质杆,可绕垂直于纸面的 O 4-21 轴转动,令杆至水平位置有静止下摆,在铅直位置 与质量为0.5m的物体发生完全非弹性碰撞,碰后物 体沿摩擦因数为的水平面滑动,试求此物体滑过的 距离s ? 解:细杆下摆过程机械能守恒
m1g T1 m1a1 R r R T ' 1 B : T2 m2 g m2 a2 T2 ' 轮: T1 ' R T2 ' r J1 J 2 B T1 T2 其中: T1 ' T1 T2 ' T2 B A a r a1 R 2 a2 a1
A:
3g L m 碰撞过程角动量守恒。 J J ' v ' L v L 2 12 1 2 3g 1 2 v ' m 2 gL mL mL v ' L v ' 25 3 L 3 L 2 6L 滑动过程 1 mv '2 mgs s 25 2
1 1 1 2 2 mgL mL 2 2 3
4-13 飞轮质量为60kg,直径为0.5m,转速为1000r/min, 现用一闸瓦使其在5s内停止转动,求制动力F。设闸瓦 第 与飞轮间的摩擦因数为0.4,飞轮的质量全部分布在轮 四 缘上。 章 解: 由细杆力矩平衡
习 题 分 析
FL Nl
N
F
FL 1.25F f N 2.5F l 0.5 又飞轮与闸瓦间的摩擦力 f N F
大学物理(二)习题参考答案
大学物理(二)习题参考答案14-2、 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为普适气体常量,则该理想气体的分子数为多少? 解:由理想气体状态方程 N p nkT kT V== 得理想气体的分子数 pV N kT=14-8、温度为0ºC 和100ºC 时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1e V ,气体的温度需是多少?解:(1)232111331.3810273 5.651022w kT J J --==⨯⨯⨯=⨯ (2)23212233 1.3810(273100)7.721022w kT J J --==⨯⨯⨯+=⨯(3)193323322 1.60107.73107.4610233 1.3810w w kT T K K k --⨯⨯=⇒===⨯≈⨯⨯⨯℃ 14-9、某些恒星的温度可达到约1.0×108K ,这是发生聚变反应(也称热核反应)所需的温度。
通常在此温度下恒星可视为由质子组成。
求: (1)质子的平均动能是多大? (2)质子的方均根速率是多大? 解:(1)质子的平均动能为 23815331.3810 1.0102.071022w kT J J --==⨯⨯⨯⨯=⨯ (2) 质子的方均根速率是2161121.5710rps w mv v s m s --===⋅=⨯⋅或1611.5710rpsv s m s --==⋅=⨯⋅ 14-12、解: (1)KK E E N w w N=⇒=A molMN N M =⋅ 5321234.141032108.27102.66 6.0210k mol A E M w J J MN --⨯⨯⨯∴===⨯⨯⨯(2) 21233228.2710400233 1.3810w w kT T K K k --⨯⨯=⇒==≈⨯⨯ 14-17、解:(1)253122522 6.7510 1.35105 2.010mol mol mol M M PV RT P RT M V M E E P M i iV V E RT M P Pa Pa -⎫=⇒=⎪⎪⇒==⎬⎪=⎪⎭⨯⨯==⨯⨯⨯(2)221223333 6.751027.51055 5.4102w kT E E w J J E i i N N kT N ε-⎫=⎪⨯⨯⎪⇒=⋅===⨯⎬⨯⨯⎪==⎪⎭21223227.510 3.621033 1.3810w T K K k --⨯⨯===⨯⨯⨯ 14-18、解:已知,V ,P ,i22mol mol M i E RT M i E PV M PV RT M ⎫=⎪⎪⇒=⎬⎪=⎪⎭15-2解:已知Q,E ∆由,5552.6610 4.1810 1.5210Q E W W Q E J J J =∆+⇒=-∆=⨯-⨯=-⨯,外界对系统做功。
京江学院大学物理练习一二三四答案
2 v vx v2 y 58 (m / s) vy 7 arctan 与 x 轴夹角 arctan vx 3 dv d [3i (t 3) j ] (4) a j dt dt
a 1(m / S 2 )
沿y方向
上页 下页 返回 退出 上页 下页 返回 退出
上页 下页 返回 退出 上页 下页 返回 退出
2
2
5
练习二选择题
1.质量为0.25kg的质点,受 F ti
(N)的力作用,
t=0时该质点以v0 2 j m/s的速度通过坐标原点,该
质点任意时刻的位置矢量是
练
习
二
2 (A) 2t i 2 j m 2 3 t i 2tj m (B) 3
B )
dr 2 at i 2btj v dt b x at 2 y x 2 a y bt
v风地
v风人 v风地 v人地 v风人 v人地 v人地
上页 下页 返回 退出
上页 下页 返回 退出
练习一填充题
练习一填充题
1.由坐标原点O指向质点所在位置的矢量 称为 位矢 。
上页 下页 返回 退出
2
上页 下页 返回 退出
4
练习一计算题3
dr 3i (t 3) j (3) v dt v t 4 3i 7 j
练习一计算题
4.一质点沿 x
轴作直线运动,其加速度为a=6t,
t=0s时,质点以=12m/s的速度通过坐标原点,求该质 点的运动方程。
x
ay 0
vy 2
y 2t
上页 下页 返回 退出
大学物理II练习册答案4资料讲解
大学物理I I练习册答案4大学物理练习 四一.选择题: 1.下列几种说法:(1) 所有惯性系对物理基本规律都是等价的。
(2) 在真空中,光的速度与光的频率、光源的运动状态无关。
(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同。
其中那些说法是正确的: [ ] (A) 只有(1)、(2)是正确的.(B) 只有(1)、(3)是正确的. (C) 只有(2)、(3)是正确的. (D) 三种说法都是正确的.解: [ D ]2.一火箭的固定长度为L ,相对于地面作匀速直线运动,速度为v 1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v 2的子弹。
在火箭上测得子弹从射出到击中靶的时间间隔是: [ ] (A)21v v L + (B)2v L (C)12v v L - (D)211)/(1c v v L -(c 表示真空中光速)解:[ B ] 在火箭上测得子弹从射出到击中靶的时间间隔是火箭的固定长度除以子弹相对于火箭的速度。
3.(1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的的两个事件,它们在其它惯性系中是否同时发生?关于这两个问题的正确答案是: [ ] (A)(1)同时,(2)不同时。
(B)(1)不同时,(2)同时。
(C)(1)同时,(2)同时。
(D) 不(1)同时,(2)不同时。
解:[ A ]发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是同时发生。
在某惯性系中发生于同一时刻、不同地点的的两个事件,它们在其它惯性系中不是同时发生。
4.K 系与K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿Ox 轴正方向匀速运动。
一根刚性尺静止在K '系中,与O ’x ’轴成 30°角。
大学物理二练习册答案
3. 如图所示,一电容器由两个同轴圆筒组成,内筒半径为 a,外筒半径为 b,筒长都是 L,中间充满相对介电常量为r 的各向同性均匀电介质. 内、 外筒分别带有等量异号电荷+Q 和-Q.设 (b- a) << a,L >> b,可以忽略边缘效应,求: (1) 圆柱形电容器的电容; (2) 电容器贮存的能量.
思考题 3:有一上下极板成 θ 角的非平行板电容器(长为 a ,宽为 b) ,其电 容如何计算?
参考解答: 设 一 平 行 板 电 容 器 是 由 长 为 a , 宽 为 b 的 两 导 体板 构 成 , 板 间 距 为 d , 则 电 容 为
ab , 若该电容器沿两极板的长度同一方向有 d x的长度增 d a (b d x ) a d x 量,则电容为 C C0 , 在此基础上推广到 d d
L b a
解:由题给条件 ( b a) a 和 L b ,忽略边缘效应, 应用高斯定理可求出两 筒之间的场强为: 两筒间的电势差 电容器的电容 电容器贮存的能量
E Q /(2 0 r Lr )
b
U
Q dr Q b ln 2 0 r L r 2 0 r L a a
3
参考解答: 由极性分子组成的电介质(极性电介质)放在外电场中时,极性分子的固有电矩将沿外 电场的方向取向而使电介质极化。 由于极性分子还有无规则热运动存在, 这种取向不可能完 全整齐。 当电介质的温度升高时,极性分子的无规则热运动更加剧烈,取向更加不整齐,极化的 pi 效果更差。此情形下,电极化强度 P 将会比温度升高前减小。 V 在电介质中的电场 E 不太强时,各向同性电介质的 P 和 E 间的关系为 P 0 ( r 1) E . 很明显,在同样的电场下,当温度升高后,相对介电常量 εr 要减小。
大学物理II练习册答案4
大学物理练习 四一.选择题:1.下列几种说法:(1) 所有惯性系对物理基本规律都是等价的。
(2) 在真空中,光的速度与光的频率、光源的运动状态无关。
(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同。
其中那些说法是正确的: [ ] (A) 只有(1)、(2)是正确的.(B) 只有(1)、(3)是正确的. (C) 只有(2)、(3)是正确的. (D) 三种说法都是正确的.解: [ D ]2.一火箭的固定长度为L ,相对于地面作匀速直线运动,速度为v 1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v 2的子弹。
在火箭上测得子弹从射出到击中靶的时间间隔是: [ ] (A)21v v L + (B)2v L (C)12v v L - (D)211)/(1c v v L -(c 表示真空中光速)解:[ B ] 在火箭上测得子弹从射出到击中靶的时间间隔是火箭的固定长度除以子弹相对于火箭的速度。
3.(1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的的两个事件,它们在其它惯性系中是否同时发生?关于这两个问题的正确答案是: [ ] (A)(1)同时,(2)不同时。
(B)(1)不同时,(2)同时。
(C)(1)同时,(2)同时。
(D) 不(1)同时,(2)不同时。
解:[ A ]发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是同时发生。
在某惯性系中发生于同一时刻、不同地点的的两个事件,它们在其它惯性系中不是同时发生。
4.K 系与K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿Ox 轴正方向匀速运动。
一根刚性尺静止在K '系中,与O’x’轴成 30°角。
大学物理习题册及解答(第二版)第四章-刚体的定轴转动
上环可以自由在纸面内外摆动。求此时圆环摆的转动惯量。 O
(*)(3)求两种小摆动的周期。哪种摆动的周期较长?
R C
解:(1)圆环放在刀口上O,以环中 心的平衡位置C点的为坐标原点。Z轴
J zc MR2
O
P
ŷ
P΄
x
指向读者。圆环绕Z轴的转动惯量为
Z
R
由平行轴定理,关于刀口的转动惯量为 J zo J zc MR 2 2MR 2
m(l a) J
杆摆动过程机械能守恒
J 1 Ml2 3
1 J 2 Mg l (1 cos )
2
2
解得小球碰前速率为 Ml
2gl sin
m(l a) 3 2
5.一轻绳绕过一半径R,质量为M/4的滑轮。质量为M的人抓住绳 子的一端,而绳子另一端系一质量为M/2的重物,如图。求当人相 对于绳匀速上爬时,重物上升的加速度是多少?
解:选人、滑轮、与重物为系统,系统所受对滑轮轴的
外力矩为
1 MgR
人
物2
设u为人相对绳的匀速度,为重物上升的
速度。则该系统对滑轮轴的角动量为
L M R M (u )R (1 M R2 ) 13 MR MRu
2
24
8
据转动定律
du 0 dt
dL dt
a
即 1 MgR d (13 MR MRu)
6. 一飞轮以角速度0绕光滑固定轴旋转,飞轮对轴的转动惯 量为J1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转 轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系
统的角速度 / 3 0
7.一长为l,质量可以忽略的直杆,可绕通过其一端的 水平光滑轴在竖直平面内作定轴转动,在杆的另一端固 定着一质量为m的小球,如图所示.现将杆由水平位置 无初转速地释放.则杆刚被释放时的角加速度a0 _ , 杆与水平方向夹角为60°时的角加速度a_
大学物理II练习册答案
大学物理练习八一、选择题:1.有两个点电荷电量都是+q ,相距为2 a 。
今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。
在球面上取两块相等的小面积S 1和S 2,其位置如图所示。
设通过S 1和S 2的电场强度通量分别为1Φ和2Φ,通过整个球面的电场强度通量为s Φ,则[D ](A)s ΦΦ>Φ,21=0/εq (B)021/2,εq s =ΦΦ<Φ(C)021/,εq s =ΦΦ=Φ(D)021/,εq s =ΦΦ<Φ解∶通过S 1的电场强度通量分别为1Φ,有穿进又有穿出;但通过S 2的电场强度通量分别为2Φ,只有穿出.故,21Φ<Φ据高斯定理通过整个球面的电场强度通量为s Φ只与面内电荷有关。
2.图示为一具有球对称性分布的静电场的E~r 关系曲线。
请指出该静电场是由下列哪种带电体产生的?[](A) 半径为R 的均匀带电球面。
(B) 半径为R 的均匀带电球体。
(C) 半径为R 、电荷体密度Ar =ρ(A 为常数)的非均匀带电球体。
(D) 半径为R 、电荷体密度r A /=ρ(A 为常数)的非均匀带电球体。
解∶(D )3.关于高斯定理的理解有下面几种说法,其中正确的是:[D ] (A)如果高斯面上E ϖ处处为零,则该面内必无电荷. (B)如果高斯面内无电荷,则高斯面上E ϖ处处为零.(面外有电荷) (C)如果高斯面上E ϖ处处不为零,则高斯面内必有电荷.(D)如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.4.在磁感应强度为B ϖ的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n ϖ与B ϖ的夹角为α,则通过半球面S 的磁通量为[D ](A).2B r π(B)2.2B r π(C)απsin 2B r -.(D)απcos 2B r -.0=∑i q5.如图示,直线MN 长为2 L ,弧OCD 是以点N 为中心,L 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理练习四
一.选择题:
1.下列几种说法:
(1)所有惯性系对物理基本规律都是等价的。
(2)在真空中,光的速度与光的频率、光源的运动状态无关。
(3)在任何惯性系中,光在真空中沿任何方向的传播速率都相同。
其中那些说法是正确的:[]
(A)只有 (1)、(2)是正确的 .
(B)只有 (1)、 (3)是正确的 .
(C)只有 (2)、 (3)是正确的 .
(D)三种说法都是正确的 .
解:[D]
2.一火箭的固定长度为L,相对于地面作匀速直线运动,速度为v1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v2的子弹。
在火箭上测得子弹从射出到击中靶的时间间隔是:[]
(A)L L L(D)L
(B)(C)v2 v1
v1v2v2
v1 1(v1 / c)2
(c 表示真空中光速 )
解: [ B ]在火箭上测得子弹从射出到击中靶的时间间隔是火箭的固定长度
除以子弹相对于火箭的速度。
3.(1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,
对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?( 2)在某惯性系中发生于同一时刻、不同地点的的两个事件,它们在其
它惯性系中是否同时发生?关于这两个问题的正确答案是:[]
(A)(1)同时,(2)不同时。
(B) (1)不同时,(2)同时。
(C)(1)同时,( 2)同时。
(D) 不( 1)同时,( 2)不同时。
解:[A]
发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速
直线运动的其它惯性系中的观察者来说,它们是同时发生。
在某惯性系中发生于同一时刻、不同地点的的两个事件,它们在其它惯性系中
不是同时发生。
4.K系与K'系是坐标轴相互平行的两个惯性系,K '系相对于 K 系沿 Ox 轴正
方向匀速运动。
一根刚性尺静止在K '系中,与’ ’
O x 轴成 30°角。
今在 K 系
中观测得该尺与 Ox 轴成45°角,则 K '系相对于 K 系的速度是:[]
(A) (2/3)c(B)(1/3)c(C) (2/3)1/2c(D) (1/3)1/2c
解:tg
y, tg
y
, y y , x x
x x 1 u 2x tg11 u2u2c c2x tg3c23
5.一宇航员要到离地球为 5 光年的星球去旅行。
如果宇航员希望把这路程缩短为 3 光年,则它所乘的火箭相对于地球的速度应是:[]
(A) v = (1/2)c(B) v = (3/5)c .
(C) v = (4/5)c(D) v =( 9/10)c.
解:[C]原长
3 5 1 (u
) 2
c
ll 1
u2
l 5 光年,2
c
,
( u )21916
,
u4
c5
c2525
6.一宇宙飞船相对地球以0.8c(c表示真空中光速)的速度飞行。
一光脉冲从船尾传到船头,飞船上的观察者测得飞船长为 90m,地球上的观察者测得光脉冲从
船尾发出和到达船头两个事件的空间间隔为[]
(A) 90m(B) 54m(C) 270m(D) 150m.
解:[C]另解:
x u t900.8 90
x270m
1u210.82
c2
t
u
x
900.8c
90
c2c c2
xt c270m
u
20.6
1
c2
7.设某微观粒子的总能量是它的静止能量的K 倍,则其运动速度的大小为(c 表示真空中光速 )[ ]
(A)c
1(B)
c
1 K 2
K K
(C)c K 21(D)c
K(K 2)
K K1解:[C]
E kE0
2
km0c
2
m0c2
km0c
2 mc
v2
1
c2
.根据相对论力学,动能为1的电子,其运动速度约等于[ ] 8MeV
4
(A)0.1c(B)0.5c
(C)0.75c(D)0.85c.
(c 表示真空中光速 , 电子的静能 m0c2=0.5MeV)
E
k E E
m c2(11)
解:[C]0v2
1
c2
1
1
E k1
v
5
c0.75c m0c223
v2
1
c2
二、填空题:
1.有一速度为u的宇宙飞船沿X轴正方向飞行,飞船头尾各有一个脉冲光源
在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小。
c; c . (光速不变原理 )
2.一观察者测得一沿米尺长度方向匀速运动着的米尺的长度为0.5m。
则此米
尺以速度 v =m·s-1接近观察者。
解:LL
01
2
0.51
2
3
2
v
3 c
2.60
10
8
m/ s
2
ll
u 2
(长度收缩:
1
2
)
c
3.静止时边长为 50cm 的立方体,当它沿着与它的一个棱边平行的方向相对于
地面以匀速度
2.4×108
m/s 运动时,在地面上测得它的体积是 cm 3 。
解
:
V
0.5 0.5 L
V
0.25
L 0 1
2
0.25 0.3 0.075m 3 75000cm 3
0.075m
3
(运动方向的长度收缩)
4.一匀质矩形薄板,在它静止时测得其长为 a ,宽为 b ,质量为 m 0。
由此可算
出其面积密度为 m 0。
假定该薄板沿长度方向以接近光速的速度
v 作匀速直
/ab
线运动,此时再测算该矩形薄板的面积密度则为。
m 0 / v
2
1
m 0
解:
m c 2 v
2
S
v 2
b
ab(1
a 1
c
2
c 2
)
5. + 介子是不稳定的粒子,在它自己的参照系中测得平均寿命是2.6× 10- 8
s ,如果它相对
于实验室以 0.8 c (c 为真空中光速 )的速率运动,那么实验室坐标系中测得的
+
介子的寿命
是 ____________s 。
解:
/ 1 v 2
2.6 10
8
4.3 10 8
s
c 2
0.6
6.一宇宙飞船以 c/2(c 为真空中的光速)的速率相对地面运动。
从飞船中以相对飞船为 c/2 的速率向前方发射一枚火箭。
假设发射火箭不影响飞船原有速率,则地面上的观察者测得火箭的速率为 __________________。
v x
u
0.5c
0.5c
解:
v
x
v x u
1
0.25
0.8c
1
c
2
7.(1)在速度 v=
情况下粒子的动量等于非相对论动量的两倍。
(2)在速度 v=
情况下粒子的动能等于它的静止能量。
mv
2m 0v
m 0v
2m 0v
解:( 1)
1
v
2
c
2
E k
mc
2
2
2
m 0c
2
2m 0c
2
m 0c m 0c
( 2)
v 2
1
c
2
.设电子静止质量为
e ,将一个电子从静止加速到速率为
0.6c(c 表示真空中
8
m
光速 ),需作功。
解:
W E k
mc
2
2
m 0c
2
2
1
m 0c
2
m 0c
2 m 0c
v
4
1
c 2
9.一电子以 0.99c 的速率运动(电子静止质量为 9.11 10 31 kg ),则电子的总能
量是
J ,电子的经典力学的动能与相对论动能之比是。
解:
E
mc
2
m 0c
2
9.11
10
31
(0.99c)2
5.81 10 13
j
1
v 2
1
(0.99)2
c 2
1
m0 v210.992
220.0804 mc2m0 c211
10.992。