人教版七年级上册数学-期末综合检测试卷
人教版七年级数学上册 期末试卷综合测试卷(word含答案)
人教版七年级数学上册期末试卷综合测试卷(word含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.3.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+3|+(b+3a)2=0.(1)求点C表示的数;(2)点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动,若AP+BQ=2PQ,求时间t;(3)若点P从A向右运动,点M为AP中点,在P点到达点B之前:① 的值不变;②2BM﹣BP的值不变,其中只有一个正确,请你找出正确的结论并求出其值.【答案】(1)解:∵|a+3|+(b+3a)2=0,∴a+3=0,b+3a=0,解得a=﹣3,b=9,∴=3,∴点C表示的数是3(2)解:∵AB=9-(-3)=12,点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动,∴AP=3t,BQ=2t,PQ=12﹣5t.∵AP+BQ=2PQ,∴3t+2t=24﹣10t,解得t=;还有一种情况,当P运动到Q的左边时,PQ=5t﹣12,方程变为2t+3t=2(5t﹣12),求得t=(3)解:∵PA+PB=AB为定值,PC先变小后变大,∴的值是变化的,∴①错误,②正确;∵BM=PB+,∴2BM=2PB+AP,∴2BM﹣BP=PB+AP=AB=12【解析】【分析】(1)根据非负数之和为,则每一个数都是0,建立关于a、b的二元一次方程组,解方程组求出a、b的值,再根据点C是AB的中点,因此点C表示的数为,列式计算可求出点C表示的数。
人教版七年级上册数学期末考试试卷带答案
人教版七年级上册数学期末考试试题一、单选题1.13-的相反数是()A .13B .13-C .3D .-32.将数据“2684亿”用科学记数法表示()A .32.68410⨯B .112.68410⨯C .122.68410⨯D .72.68410⨯3.根据等式的性质,下列变形正确的是()A .如果23x =,那么23x a a =B .如果x y =,那么55x y-=-C .如果x y =,那么22x y-=-D .如果162x =,那么3x =4.已知单项式3122m xy +与133n x y +是同类项,则m+n 的值是()A .3B .−3C .6D .−65.下列说法不正确的是()A .两点之间,线段最短B .两点确定一条直线C .连结两点的线段叫做这两点的距离D .同角的补角相等6.如图是一个正方体的展开图,把展开图折叠成小正方体后,有“祝”字一面的相对面上的字是()A .新B .年C .快D .乐7.在解方程123123x x -+-=时,去分母正确的是()A .3(1)431x x --+=B .31436x x --+=C .31431x x --+=D .3(1)2(23)6x x --+=8.一件夹克衫先按成本价提高70%标价,再将标价打7折出售,结果获利38元.设这件夹克衫的成本价是x 元,那么依题意所列方程正确的是()A .70%(1+70%)x =x+38B .70%(1+70%)x =x ﹣38C .70%(1+70%x )=x ﹣38D .70%(1+70%x )=x+389.已知线段AB =6cm ,在直线AB 上画线段BC ,使BC =2cm ,则线段AC 的长为()A .4cmB .8cmC .6cmD .8cm 或4cm10.用同样大小的黑色棋子按如图所示的规律摆放,第1个图形有6颗棋子,第2个图形有9颗棋子,第3个图形有12颗棋子,第4个图形有15颗棋子……,以此类推,第()个图形有2022颗棋子.A .672B .673C .674D .675二、填空题11.单项式323x y z π-的系数是____________,次数是_______________.12.计算:15°37′+42°51′=__________.13.若方程(a ﹣4)x |a |﹣3﹣7=0是一个一元一次方程,则a 等于______.14.已知,a -b=2,那么2a -2b+5=_________.15.上午9点30分,时钟的时针和分针成的角为_________.16.为鼓励节约用电某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a 元收费;如果超过100度,那么超过部分每度电价按b 元收费.若某户居民在一个月内用电180度,则这个月应缴纳电费________元.(用含a ,b 的代数式表示)17.按照下图操作,若输入x 的值是9,则输出的值是____.18.如图,OA 的方向是北偏东15°,OB 的方向是北偏西40°,若AOC AOB ∠=∠,则OC 的方向是______________.三、解答题19.计算:(1)(﹣12)×(﹣3754126-+)(2)()3233524-+---÷;20.解方程:(1)2(3x ﹣5)﹣3(4x ﹣3)=0(2)321123x x -+-=21.先化简,在求值:22113122323a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中2a =-,23b =.22.如图,已知A 、B 、C 、D 四点,根据下列语句画图:(1)画直线AB .(2)画射线AD 、BC ,交于点P .(3)在平面内找到一点O ,使点O 到A 、B 、C 、D 四点距离最短.23.整理一批图书,由一个人做要40h 完成,现计划由一部分人先做4h ,然后增加2人与他们一起做8h ,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?24.如图,已知AOE ∠是平角,20DOE ∠=︒,OB 平分AOC ∠,且:2:3COD BOC ∠∠=,求BOC ∠的度数.25.如图,已知线段AB =40厘米,E 为AB 的中点,C 在EB 上,F 为CB 的中点,且FB =6厘米,求CE 的长.26.有理数a 、b 、c 在数轴上的位置如图所示,化简:|a+c|﹣|c ﹣2b|+|a+2b|27.已知点O 是直线AB 上一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.①若60AOC ∠=︒,求DOE ∠的度数.②若AOC α∠=,则DOE ∠=_________(用含α的式子表示).(2)将图1中的DOC ∠绕点O 顺时针旋转至图2的位置,直接写出DOE ∠和AOC ∠的度数之间的关系.参考答案1.A【分析】根据相反数的定义即可解答.【详解】解:13-的相反数为13.故选:A .【点睛】本题考查了相反数,熟记相关定义是解答本题的关键.2.B【分析】根据科学记数法的表示方法写出即可.【详解】解:2684亿=268400000000=112.68410⨯.故选:B.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C【分析】根据等式的基本性质解决此题.【详解】解:A 、如果23x =,且a 0≠,那么23x a a=,故该选项不符合题意;B 、如果x y =,那么55x y -=-,故该选项不符合题意;C 、如果x y =,那么22x y -=-,故该选项符合题意;D 、如果162x =,那么12x =,故该选项不符合题意;故选:C .【点睛】本题主要考查等式的基本性质,熟练掌握等式的基本性质是解决本题的关键.性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.4.A【分析】由同类项的定义可求得m 和n 的值,再代入计算即可求解.【详解】解:∵3122m x y +与133n x y +是同类项,∴n+1=3,1+2m=3,∴m=1,n=2,∴m+n=1+2=3.故选:A.【点睛】本题考查了同类项,解决本题的关键是明确同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.注意只有同类项才能合并使它们的和是单项式.5.C【分析】利用线段公理、两点间的距离的定义、确定直线的条件及补交的性质分别判断,即可确定正确的选项.【详解】解:A.两点之间,线段最短,正确;B.两点确定一条直线,正确;C.连接两点的线段的长度叫做这两点之间的距离,故不正确;D.同角的补交相等,正确;故选:C.【点睛】本题考查的是线段公理、两点间的距离的定义、确定直线的条件及补角的性质等的理解.6.B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:“祝”与“年”是相对面,“快”与“新”是相对面,“您”与“乐”是相对面.故选B.7.D【分析】方程两边乘以6去分母得到结果,即可作出判断.【详解】去分母得:3(x−1)−2(2x+3)=6,故选:D.【点睛】此题考查了解一元一次方程,解方程去分母时注意右边的1不要忘了乘以6.8.A【分析】设这件夹克衫的成本价是x元,根据售价=成本+利润,即可得出关于x的一元一次方程,此题得解.【详解】解:设这件夹克衫的成本价是x元,依题意,得:70%(1+70%)x=x+38,故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.D【分析】分情况讨论,点C 在线段AB 上或点C 在线段AB 的延长线上.【详解】解:当点C 在线段AB 上,∵AB=6cm ,BC=2cm ,∴AC=AB-BC=6-2=4(cm );当点C 在线段AB 的延长线上,∵AB=6cm ,BC=2cm ,∴AC=AB+BC=6+2=8(cm );综上,线段AC 的长为4cm 或8cm .故选:D .【点睛】本题考查两点间的距离,注意根据题意,分情况讨论,要画出正确的图形,结合图形进行计算.10.B【分析】观察图形,根据给定图形中棋子颗数的变化,找出变化规律:第n 个图形有(3n +3)颗棋子,然后计算即可.【详解】解:观察图形,可知:第1个图形有6=3×2颗棋子,第2个图形有9=3×3颗棋子,第3个图形有12=3×4颗棋子,第4个图形有15=3×5颗棋子,……,∴第n 个图形有3×(n +1)=(3n +3)颗棋子,当3n +3=2022时,解得:n =673,故选:B .【点睛】本题考查了规律型:图形的变化类,根据给定图形中棋子颗数的变化情况,找出变化规律是解题的关键.11.3π-六【分析】根据单项式系数及次数的定义进行解答即可.【详解】∵单项式323x y zπ-的数字因数是3π-,所有字母指数的和3216=++=,∴此单项式的系数是3π-,次数是六.故答案为(1).3π-(2).六【点睛】考查单项式的系数以及次数,单项式中的数字因数就是单项式的系数,单项式中所有字母的指数的和就是单项式的次数.12.58°28′【分析】根据角度的计算规则进行计算即可.【详解】∵37′+51′=88′=1°28′∴15°37′+42°51′=58°28′.故答案为:58°28′.【点睛】本题考查对角的认识,重点考查60′=1°需要注意进位.13.-4【分析】根据一元一次方程的定义进行计算即可.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a≠0)【详解】解:由题意得:|a|-3=1且a-4≠0,∴a=±4且a≠4,∴a=-4,故答案为:-4.【点睛】本题考查了一元一次方程的定义,绝对值,熟练掌握一元一次方程的定义是解题的关键.14.9【详解】解:∵a -b=2,∴2a -2b+5=2(a -b )+5=2×2+5=9.故答案为:9.15.105°【详解】解:9:30,时针和分针中间相差35.个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴9:30分针与时针的夹角是35.×30°=105°.故答案为:105°.16.100a+80b【分析】因为180>100,所以其中100度是每度电价按a元收费,多出来的80度是每度电价按b元收费.【详解】解:100a+(180-100)b=100a+80b.故答案为(100a+80b).【点睛】本题考查了列代数式,解决问题的关键是读懂题意,理解收费标准.17.193【详解】根据题意得,(9+5)2-3=196-3=193,故答案为193.18.北偏东70°.【分析】根据角的和差,方向角的表示方法,可得答案.【详解】解:如图,由题意可知∵∠BOD=40°,∠AOD=15°,∴∠AOC=∠AOB=∠AOD+BOD=55°,∴∠COD=∠AOC+∠AOD=15+55=70°,故答案为:北偏东70°.【点睛】本题考查了方向角,利用角的和差得出∠COD是解题关键.19.(1)6(2)5-【解析】(1)解:原式375 1212124126 =⨯+⨯-⨯9710 =+-6=;(2)解:原式9284=-++÷922=-++5=-.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.20.(1)16x =-(2)17x =-【分析】(1)方程去括号,移项,合并同类项,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.(1)解:去括号得:6x-10-12x+9=0,移项得:6x-12x=10-9,合并得:-6x=1,解得:16x =-;(2)去分母得:3(x-3)-2(2x+1)=6,去括号得:3x-9-4x-2=6,移项得:3x-4x=6+9+2,合并得:-x=17,解得:17x =-.【点睛】此题考查了解一元一次方程,掌握解题步骤是解题的关键,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.21.23a b -+;469【分析】通过去括号,合并同类项,化简代数式,后代入计算.【详解】解:原式22123122323a ab a b =-+-+2221321232233a a a b b a b ⎛⎫⎛⎫=--++=-+ ⎪ ⎪⎝⎭⎝⎭当2a =-,23b =,原式()22432639⎛⎫=-⨯-+= ⎪⎝⎭.【点睛】本题考查了整式的加减中化简求值,熟练去括号,正确合并同类项是解题的关键.22.(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线的定义得出答案;(2)利用射线的定义得出答案;(3)连接AC 、BD ,其交点即为点O .【详解】解:(1)如图所示,直线AB 即为所求.(2)如图所示,射线AD 、BC 即为所求.(3)如图所示,点O 即为所求.【点睛】考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知:直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.23.应安排2人先做4h .【分析】设安排x 人先做4h ,然后根据先后两个时段的工作量之和等于总工作量,可列方程求解.【详解】解:设安排x 人先做4h ,由题意得:48(2)14040x x ++=解得2x =,∴应安排2人先做4h ,答:应安排2人先做4h .【点睛】本题主要考查了一元一次方程的应用,解题的关键在于准确理解题意列出方程求解.24.BOC ∠=60︒【分析】由角平分线解得12BOC AOC ∠=∠,设=23COD x BOC x ∠∠=,,根据平角为180°列一元一次方程,解此方程即可解答.【详解】解:OB Q 平分AOC∠12AOB BOC AOC ∴∠=∠=∠由:2:3COD BOC ∠∠=,设=23COD x BOC x∠∠=,180AOC COD DOE ∠+∠+∠=︒Q 6220180x x ∴++︒=︒解得20x ∴=︒360BOC x ∴∠==︒.【点睛】本题考查角的和差,涉及角平分线的性质、平角定义、一元一次方程的应用等知识,是基础考点,掌握相关知识是解题关键.25.8厘米【详解】解:∵E 为AB 的中点,线段AB =40厘米,∴EB=20厘米,∵F 为CB 的中点,且FB =6厘米,∴CB=2FB=12厘米,∴CE=EB-CB=20-12=8厘米.答:CE 的长为8厘米.26.0【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:由数轴上点的位置得:b <a <0<c ,且|b|>|c|>|a|,∴a+c >0,c-2b >0,a+2b <0,则原式=a+c-(c-2b )-a-2b=a+c-c+2b-a-2b=0.【点睛】此题考查了整式的加减,以及数轴,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.27.(1)①30°;②12α(2)12DOE AOC ∠=∠【分析】(1)①首先求得∠COB 的度数,然后根据角平分线的定义求得∠COE 的度数,再根据∠DOE=∠COD-∠COE 即可求解;②解法与①相同,把①中的60°改成α即可;(2)把∠AOC 的度数作为已知量,求得∠BOC 的度数,然后根据角的平分线的定义求得∠COE 的度数,再根据∠DOE=∠COD-∠COE 求得∠DOE ,即可解决.(1)解:①∵60AOC ∠=︒,∴180BOC AOC∠=︒-∠18060=︒-︒120=︒∵OE 平分BOC ∠,∴1602COE BOC ∠=∠=︒,又∵90COD ∠=︒,∴30DOE COD COE ∠=∠-∠=︒.②同①∠DOE=∠COD-∠COE=∠COD-12COB∠=90°-12(180°-α)=90°-90°+12α=12α即:12DOE α∠=.故答案为:12α.(2)解:12DOE AOC ∠=∠.理由如下:∵OE 平分BOC ∠,∴12COE BOC∠=()11802AOC =︒-∠1902AOC=︒-∠∴DOE COD COE∠=∠-∠90COE=︒-∠190902AOC ⎛=︒⎫ ⎪⎝︒-∠⎭-12AOC =∠。
人教版七年级数学上册期末综合检测卷(附带参考答案)
人教版七年级数学上册期末考试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .ab >0B .a ﹣b >0C .|a |﹣|b |>0D .a +b >02.一名同学画了四条数轴,只有一个正确,你认为正确的是( ).A .B .C .D .3.某电影院第一排有20个座位,往后每一排比前一排多3个座位,则第n 排的座位用含n 的代数式表示为( )A .203n +B .202n +C .19n +D .173n +4.在过去的184天里,我们走过了一段成功、精彩、难忘的世博之旅,73080000位参观者流连忘返,则这个数用科学记数法表示为( ) (保留3位有效数字)A .B .C .D . 5.2017年,我国网络购物市场交易规模达61000亿元,较2016年增长29.6%.61000亿用科学记数法表示为( )A .6.1×1012B .6.1×1011C .6.1×108D .6.1×1046.观察下列现象:①133=;②239=;③3327=;④4381=;⑤53243=;⑥63729= (20233)个位数字是()A.3 B.9 C.1 D.77.有一大捆粗细均匀的钢筋,现要确定其长度,先称出这捆钢筋的总质量为千克,再从中截出5米长的钢筋,称出它的质量为千克,那么这捆钢筋的总长度为()A.米B.米C.米D.米9.下列式子中不是同类项的是()A.xy-和2yx B.mn和mnp C.23a和2a-D.255和-10.某班有学生35人,参加文学社的人数是参加科学社的人数的3倍,既参加文学社又参加科学社的人数是3人,既不参加文学社也不参加科学社的有2人,则参加科学社但不参加文学社的人数是()A.3 B.4 C.5 D.611.下列运算中,正确的是()A.a3·a2=a6B.b5·b5=2b5C.x4+x4=x8D.y·y5=y612.有理数m,n在数轴上的位置如图所示,则化简│n│-│m-n│的结果是()A.m B.2n-m C.-m D.m-2n二、填空题15.如图,,C D 是线段AB 上的两点,若4CB cm =,7DB cm =且D 是AC 的中点,则线段AC 的长等于 cm .16.单项式234x y π-的次数是 .(π为圆周率) 17.已知,点M 在数轴上表示的数是9(1)若将点N 先向左移动4个单位长度,再向右移动6个单位长度,得到点M ,则点N 表示的数为 .(2)若将点M 在数轴上移动4个单位长度,这时点M 表示的数是 .18.定义一种新的运算“*”,并且规定:a*b =a 2-2b .则(-3)*(-1)= .19.众所周知,公元纪年中没有公元零年.历史的长河就像一条如图的“缺零数轴”一样.比如阿基米德出生于公元前287年,公元前287年就可以用“缺零数轴”中的﹣287表示,那么,公元a 年和公元前b 相差的年数为 .20.下面是用棋子摆成的“上”字型图案:按照以上规律继续摆下去,通过观察,可以发现:(1)第五个“上”字需用枚棋子;(2)第n 个“上”字需用枚棋子.21.若a 2=(-2)2, 则a=22.把两张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为x ,宽为y )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长之和是:三、解答题和几条凳子?27.2022年10月,重庆市巴南区“云篆猕香”生态园喜获丰收,猕猴桃总产量为32000千克.为了更好地销售,生态园决定将这批猕猴桃分为三部分,分别采取三种不同的销售方案出售完这批猕猴桃.方案一:将其中的16000千克猕猴桃直接运往市区销售.若送往市区销售,每千克售价为x 元,平均每天售出800千克,需要请6名工人,每人每天付工资600元.农用车运费及其他各项税费平均每天400元.方案二:将其中10000千克猕猴桃交给某直播团队直播带货,猕猴桃单价是方案一中每千克售价x元的1.2倍再降8元,并用销售额的10%作为整个直播团队的费用和其他各项支出费用.方案三:将剩下的猕猴桃由市民亲自到生态园采摘,采摘购买的猕猴桃每千克售价比方案一中的售价少2元.(1)若采用方案一,这批猕猴桃全部送往市区销售,需要______天;(2)请用x的式子表示生态园出售完这批猕猴桃的总收入;x时,请计算出售完这批猕猴桃的总收入.(3)当2028.观察下列算式:3384856-=⨯与33-=⨯……4287-=⨯,3362826(1)这一周星期生产的景观灯最多,是盏;(2)若生产一盏景观灯的材料成本是20元,求该灯具厂这周生产景观灯的材料总成本;(3)该灯具厂实行每日计件工资制,每生产一盏景观灯工人可得10元,若超额完成任务,则超过部分每盏另奖12元;若未能完成任务,则少生产一盏扣1元,则该厂工人这周的工资总额是多少?参考答案1.【答案】D2.【答案】C3.【答案】D4.【答案】C5.【答案】A6.【答案】D7.【答案】C8.【答案】D9.【答案】B10.【答案】D11.【答案】D12.【答案】C13.【答案】0.8a14.【答案】215.【答案】616.【答案】317.【答案】7 5或1318.【答案】1119.【答案】1a b +-.20.【答案】22 4n +221.【答案】2或2-22.【答案】4x23.【答案】(1)45-(2)17-(3)10-(4)824.【答案】(1)37(2)-6025.【答案】2194元26.【答案】每个比赛场地有4张桌子和8条凳子27.【答案】(1)20;(2)生态园出售完这批猕猴桃的总收入为(32800164000)x-元;(3)售完这批猕猴桃的总收入为492000元28.【答案】33-=⨯(2)两个正偶数的立方差是8的倍数;(3)8286329.【答案】(1)六,312(2)36280(元)(3)该厂工人这周的工资总额是18418元。
2024年最新人教版初一数学(上册)期末考卷及答案(各版本)
2024年最新人教版初一数学(上册)期末考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式成立的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列各数中,是有理数的是()A. √3B. √2C. √5D. √94. 已知2x3=0,则x的值是()A. 0B. 1C. 2D. 35. 下列式子中,计算结果为0的是()A. 5x 5xB. 5x + 5xC. 5x 5xD. 5x / 5x二、判断题5道(每题1分,共5分)1. 任何两个有理数的和仍然是有理数。
()2. 任何两个有理数的积仍然是有理数。
()3. 任何两个整数的商仍然是有理数。
()4. 任何两个整数的和仍然是有理数。
()5. 任何两个整数的差仍然是有理数。
()三、填空题5道(每题1分,共5分)1. 已知a > b,且c > d,则a + c ______ b + d。
2. 若x为正数,则x为______数。
3. 任何数与0相乘,结果都为______。
4. 任何数与1相乘,结果都为______。
5. 任何数与1相乘,结果都为______。
四、简答题5道(每题2分,共10分)1. 简述有理数的定义。
2. 简述整数的定义。
3. 简述分数的定义。
4. 简述正数和负数的定义。
5. 简述相反数的定义。
五、应用题:5道(每题2分,共10分)1. 已知a > b,且c < d,求证:a + c > b + d。
2. 已知a > b,且c > d,求证:a c < b d。
3. 已知a > b,且c < d,求证:a c > b d。
4. 已知a > b,且c > d,求证:a c > b d。
2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)
2024年最新人教版七年级数学(上册)期末试卷一、选择题(每小题2分,共20分)1. 下列数中,最小的正整数是()A. 1B. 2C. 3D. 42. 下列数中,最大的负整数是()A. 1B. 2C. 3D. 43. 下列数中,是正分数的是()A. 3/4B. 3/4C. 3/2D. 3/24. 下列数中,是负分数的是()A. 3/4B. 3/4C. 3/25. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/26. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/27. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/28. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/29. 下列数中,是正整数的是()A. 3/4B. 3/4D. 3/210. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/2二、填空题(每小题2分,共20分)11. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/212. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/213. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/214. 下列数中,是分数的是()B. 3/4C. 3/2D. 3/215. 下列数中,是正整数的是()A. 3/4B. 3/4C. 3/2D. 3/216. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/217. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/218. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/219. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/220. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/2三、解答题(每小题5分,共25分)21. 解答:请计算下列各式的值。
人教版数学七年级上册 期末试卷综合测试(Word版 含答案)
人教版数学七年级上册期末试卷综合测试(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。
(2)① 利用绝对值等于7的数是±7,就可得出a-3=±7,解方程即可;② 由已知数轴上表示数a的点位于﹣4与3之间,可得出a+4>0,a-3<0,先去掉绝对值,再合并同类项即可;③ 根据线段上的点到线段两端的距离的和最短,可得出答案。
人教版七年级数学上册期末综合复习测试题(含答案)精选全文完整版
可编辑修改精选全文完整版人教版七年级数学上册期末综合复习测试题(含答案)(考试时间:90分钟试卷满分:100分)第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项符合题目要求。
1.在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示()A.支出50元B.收入50元C.支出100元D.收入100元2.下列数中:56,,,,0,,,25中,是负数的有()A.2个B.3个C.4个D.5个3.第七次全国人口普查结果显示,台州市常住人口约为万人.用科学记数法表示这个数正确的是()A.B.C.D.4.下列说法错误的是()A.是二次三项式B.的次数是6C.的系数是D.不是单项式5.如图,将图中长方形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.6.如图是正方体表面的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,如果“未”字在正方体的底部,那么正方体的上面是()A .一B .起C .向D .来7.时钟的分针从8点整转到8点20分,分针旋转了( )度. A .20B .120C .90D .1508.直线、线段、射线的位置如图所示,下图中能相交的是( )A .B .C .D .9.将多项式5x ³y ﹣y 4+2xy 2﹣x 4按x 的降幕排列是( ) A .﹣y 4+5x 3y +2xy 2﹣x 4 B .﹣x 4+5x 3y +2xy 2﹣y 4 C .﹣x 4+5x 3y ﹣y 4+2xy 2D .2xy 2+5x 3y ﹣y 4﹣x 410.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低元后,又降低,现售价为元,那么该电脑的原售价为( )A .元B .元C .元D .元11.下列等式的变形中,正确的是( ) A .如果同,那么B .如果,那么C .如果,那么24m c -=24nc - D .如果,那么12.在锐角内部由O 点引出3种射线,第1种是将分成10等份;第2种是将分成12等份;第3种是将分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .666第Ⅱ卷二、填空题(本题共6小题,每题3分,共18分。
2024-2025学年人教版七年级数学上册期末测试卷
2024-2025学年人教版七年级数学上册期末测试卷一、单选题1.有理数−2的倒数是()A.2B.12-C.12D.−22.篆刻是中华传统艺术之一,雕刻印章是篆刻基本功.如图是一块雕刻印章的材料,其俯视图为()A.B.C.D.3.单项式24πr表示球的表面积,其中π表示圆周率,r表示球的半径.下列说法中,正确的是()A.系数是4,次数是2B.系数是4,次数是3C.系数是4π,次数是3D.系数是4π,次数是24.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km⨯.下列正确的是()A.12119.4610109.4610⨯-=⨯B.12129.46100.46910⨯-=⨯C.129.4610⨯是一个12位数D.129.4610⨯是一个13位数5.《九章算术》中有这样一道题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注步为长度单位).设走路快的人要走x步才能追上,则正确的是()A.依题意10010060x x=-B.依题意60100100x x=+C.走路快的人要走200步才能追上D.走路快的人要走300步才能追上6.一个正两位数M,它的个位数字是a,十位数字是1a+,把M十位上的数字与个位上的+的值总能()数字交换位置得到新两位数N,则M NA.被3整除B.被9整除C.被10整除D.被11整除二、填空题7.已知整数m同时满足下列两个条件,写出一个符合条件的m的值:.①在数轴上位于原点左侧;②绝对值大于2且小于68.用代数式表示“x的2倍与y的差”为.∠的9.如图,点A在点O的北偏东60︒方向上,点B在点O的南偏西30︒方向上,则AOB 度数为.10.将长度相同的木棒按如图所示的方式摆放,图1中有5根木棒,图2中有9根木棒,图3中有13根木棒,…,按此规律摆放下去,则图9中木棒的根数是.11.某市居民每月用水收费标准如下:用水量/立方米单价/元x≤a10a+超过10的部分0.6李阿姨家11月份用水5立方米,交水费11元.若李阿姨12月份交水费38.8元,则李阿姨12月份的用水量是.12.科技创新小组为测试新款机器人的性能,令机器人在一个长25m的笔直测试道上来回运动,当机器人到达起点或终点时立即按当前运行速度折返,每次运动时间为4s,运动过程如下:第1次从起点出发以m/s v 的速度运动到记录点1P ;第2次从1P 出发以2m/s v 的速度运动到记录点2P ;第3次从2P 出发以3m/s v 的速度运动到记录点3P ;第4次从3P 出发以4m/s v 的速度运动到记录点4P ,到达4P 后停止.若机器人的运动速度不超过8m/s ,记录点恰好为终点,则v 的值为.三、解答题13.(1)计算:()()1817718+-++-.(2)若单项式223m a b -与2n ab 是同类项,求23m n -的值.14.阅读下面解题过程并解答问题:计算:()125115236⎛⎫-÷-⨯÷ ⎪⎝⎭.解:原式()251566⎛⎫=-÷-⨯ ⎪⎝⎭(第一步)()()1525=-÷-(第二步)35=-(第三步).(1)上面解题过程有两处错误:第一处是第步,错误原因是;第二处是第步,错误原因是.(2)请写出正确的计算过程.15.解方程:(1)()56342x x -=-+;(2)2135234x x ---=16.春节快到了,小明同学准备了一份礼物送给自己的好朋友.他设计了一个正方体盒子进行包装,如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有___________种弥补方法;(2)任意画出一种成功的设计图(在图中补充),并将123123---,,,,,这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0(直接在图中填上即可).17.已知整式22M x x =-.(1)当1x =-,求整式M 的值;(2)若整式M 比整式N 大21x -+,求整式N .18.某仓库5月份前6天,每天粮食相对于前一天(单位:袋)变化如图10,增加粮食记作“+”,减少粮食记作“-”.(1)通过计算说明前6天,仓库粮食总共的变化情况;(2)在1~7号中,如果前四天的仓库粮食变化情况是后三天变化情况的一半,求7号这天仓库粮食变化情况.19.如图,为了方便学生停放自行车,学校建了一块长边靠墙的长方形停车场,其他三面用护栏围起,其中停车场的长为()3a b +米,宽比长少()2a b -米.(1)用含a 、b 的代数式表示护栏的总长度;(2)若30a =,5b =,每米护栏造价80元,求建此停车场所需护栏的费用.20.追本溯源题(1)来自于课本中的定义,请你完成解答,利用定义完成题(2).(1)如图1,点M 把线段A 分成相等的两条线段AM 与MB ,点M 叫做线段A 的,AM MB ==A .拓展延伸(2)如图2,线段AC 上依次有D ,B ,E 三点,12AD DB =,E 是BC 的中点,125BE AC ==.①求线段A 的长;②求线段D 的长.21.根据表中的素材,完成下面的任务:如何设计奖品购买及兑换方案?素材1文具店销售某种钢笔与笔记本,已知钢笔每支10元,笔记本每本5元.素材2学校用1100元购买这种钢笔和笔记本,其数量之比为4:3.素材3文具店开展“满送”优惠活动,每满130元送1张兑换券,满260元送2张兑换券,以此类推.学校花费1100元后,将兑换券全部用于商品兑换.最终,笔记本与钢笔数量相同.问题解决任务1探究购买方案分别求出兑换前购买钢笔和笔记本的数量.任务确定兑换方式求出用于兑换钢笔的兑换券的张数.222.数轴上两点A 、B ,A 在B 左边,原点O 是线段AB 上的一点,已知4AB =,且3OB OA =.点A 、B 对应的数分别是a 、b ,点P 为数轴上的一动点,其对应的数为x .(1)a =_____,b =_____;(2)若2PA PB =,求x 的值;(3)若点P 以每秒2个单位长度的速度从原点O 向右运动,同时点A 以每秒1个单位长度的速度向左运动,点B 以每秒3个单位长度的速度向右运动,设运动时间为t 秒.请问在运动过程中,3PB PA -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.23.【实践操作】在数学实践活动课上,同学们准备研究如下问题:如图,点A ,O ,B 在同一条直线上,将一直角三角尺如图①放置,COD ∠是直角,直角顶点与点O 重合,OE 平分BOC ∠.【问题发现】(1)若20DOE ∠=︒,求AOC ∠的度数;(2)猜想图①中AOC ∠和DOE ∠的度数之间的关系,写出你的结论,并说明理由.【变式探究】将这一直角三角尺如图②放置,其他条件不变,试探究AOC ∠和DOE ∠的度数之间的关系,写出你的结论,并说明理由.。
2024年最新人教版七年级数学(上册)期末考卷及答案(各版本)
2024年最新人教版七年级数学(上册)期末考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.54. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/25. 下列哪个数是负数?A. 3B. 0C. 2D. 1/26. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零7. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.58. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/29. 下列哪个数是负数?A. 3B. 0C. 2D. 1/210. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零二、填空题(每题3分,共30分)1. 5的绝对值是______。
2. 2的绝对值是______。
3. 3/4的绝对值是______。
4. 0的绝对值是______。
5. 1/2的绝对值是______。
6. 1/2的绝对值是______。
7. 3的绝对值是______。
8. 3的绝对值是______。
9. 2/3的绝对值是______。
10. 0.25的绝对值是______。
三、解答题(每题10分,共50分)1. 计算:| 5 | | 3 | + | 2 | | 1 |2. 计算:| 4 | + | 6 | | 2 | + | 3 |3. 计算:| 7 | | 5 | + | 3 | | 2 |4. 计算:| 8 | + | 7 | | 4 | + | 3 |5. 计算:| 9 | | 6 | + | 5 | | 4 |四、应用题(每题10分,共30分)1. 小明有5个苹果,小红有3个苹果,小刚有2个苹果。
小明比小红多几个苹果?小红比小刚多几个苹果?2. 一辆汽车从A地开往B地,速度是每小时60公里。
人教版数学七年级上册 期末试卷综合测试卷(word含答案)
人教版数学七年级上册期末试卷综合测试卷(word含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知:O是直线AB上的一点,是直角,OE平分.(1)如图1.若.求的度数;(2)在图1中,,直接写出的度数(用含a的代数式表示);(3)将图1中的绕顶点O顺时针旋转至图2的位置,探究和的度数之间的关系.写出你的结论,并说明理由.【答案】(1)解:∵是直角,,,,∵OE平分,,.(2)解:是直角,,,,∵OE平分,,(3)解:,理由是:,OE平分,,,,,即【解析】【分析】(1)根据平角的定义得出∠BOD,∠COB的度数,根据角平分线的定义得出∠BOE=∠BOC=75°,根据角的和差,由∠DOE=∠BOE−∠BOD即可算出答案;(2)根据平角的定义得出∠BOD90°−a ,∠COB180°−a ,根据角平分线的定义得出∠BOE=∠BOC=90°−a,根据角的和差,由∠DOE=∠BOE−∠BOD即可算出答案;(3)∠AOC=2∠DOE ,根据平角的定义得出∠BOC=180°−∠AOC,根据角平分线的定义得出∠BOE=∠BOC=90°−∠AOC ,根据角的和差得出∠BOD=90°−∠BOC=90°−(180°−∠AOC)=∠AOC−90° ,∠DOE=∠BOD+∠BOE,再整体替换即可得出答案。
2.一副三角板OAC、OBD如图(1)放置,(∠BDO=30°、∠CAO=45°)(1)若OM、ON分别平分∠BOA、∠DOC,求∠MON的度数;(2)将三角板OBD从图(1)绕O点顺时针旋转如图(2),若OM、ON分别平分∠BOA、∠DOC,则在旋转过程中∠MON如何变化?(3)若三角板OBD从图(1)绕O点逆时针旋转如图(3),若其它条件不变,则(2)的结论是否成立?(4)若三角板OBD从图(1)绕O点逆时针旋转,其它条件不变,在旋转过程中,∠MON是否一直不变,在备用图中画图说明.【答案】(1)解:∵OM、ON分别平分∠BOA、∠DOC∴∠AOM=∠BOA,∠AON=∠AOC∵∠MON=∠AOM+∠AON=(∠BOA+∠AOC)∵∠BDO=30°、∠CAO=45°∴∠AOB=90°,∠AOC=45°∴∠MON= (90°+45°)=67.5°答:∠MON的度数为67.5°.(2)解:设∠AOM=∠BOM=x,∠CON=∠DON=y,∠AOD=α则:2x+α=90°,2y+α=45°,∴2x+2y+2α=135°,∴∠MON=x+y+α=67.5°(3)解:(2)的结论成立理由:设∠AOM=∠BOM=x,∠CON=∠DON=y,∠AOD=α则:2x-α=90°,2y-α=45°,∴2x+2y-2α=135°,∴∠MON=x+y-α=67.5°∠MON=x+y-α=67.5°(4)解:在变化,有时∠MON=112.5°。
人教版七年级上册数学 期末试卷综合测试卷(word含答案)
人教版七年级上册数学期末试卷综合测试卷(word含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.2.如图(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【答案】(1)解:∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段(2)解:,理由:设线段上有m个点,该线段上共有线段x条,则x=(m-1)+(m-2)+(m-3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m-3)+(m-2)+(m-1),∴2x= =m(m-1),∴x=(3)解:把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行场比赛【解析】【分析】(1)线段AB上共有4个点A、B、C、D,得到线段共有4×(4-1)÷2条;(2)根据规律得到该线段上共有m(m-1)÷2条线段;(3)由每两位同学之间进行一场比赛,得到要进行8×(8-1)÷2场比赛.3.科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射出去,若b镜反射出的光线n平行于m,且∠1=30 ,则∠2=________,∠3=________;(2)在(1)中,若∠1=70 ,则∠3=________;若∠1=a,则∠3=________;(3)由(1)(2)请你猜想:当∠3=________时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行的?请说明理由.(提示:三角形的内角和等于180 )【答案】(1)60°;90°(2)90°;90°(3)90°【解析】【解答】(1)∵入射角与反射角相等,即∠1=∠4,∠5=∠2,根据邻补角的定义可得根据m∥n,所以所以根据三角形内角和为所以故答案为:( 2 )由(1)可得∠3的度数都是( 3 )理由:因为所以又由题意知∠1=∠4,∠5=∠2,所以由同旁内角互补,两直线平行,可知:m∥n.【分析】(1)由入射角等于反射角可得∠1=∠4,∠5=∠2;由邻补角的定义可求得∠6的度数;于是由两直线平行,同旁内角互补可得∠6+∠7=则∠7的度数可求解,由图知∠5+∠7+∠2=所以∠5和∠2的度数可求解;再根据三角形的内角和等于可求得∠3的度数;(2)由(1)可知∠3=;(3)由(1)和(2)可得∠3=4.如图1,已知∠AOB=120°,∠COD=60°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,∠MON=________°;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<120且n≠60),求∠MON的度数;(3)∠COD从图2中的位置绕点O顺时针旋转n°(0<n<120),则n=________时,∠MON=2∠BOC.【答案】(1)100(2)解:①当0<n<60°时,∠AOC=∠AOB-∠BOC=120°-n,∠BOD=60°-n,∴∠MON=∠MOC+∠COB+∠BON= ∠AOC+n+ ∠BOD= (120°-n)+n+ (60°-n)=100°;②当60°<n<120°时,∠AOC=120°-n,∠COD=60°,∠BOD=n-60°,∠MOC= ∠AOC,∠DON= ∠BOD,∴∠MON=∠MOC+∠COD+∠DON= (120°-n)+60°+ (n-60°)=100°.综上所述:∠MON的度数恒为100°(3)解:①当0<n<60°时,∠BOC=n,∠MON=2n,∴∠MON= (120°+n)+60°-(60°+n)=100°;解得:n=50°;②当60°<n<120°时,∠AOC=360°-(120°+n)=240°-n,∠BOD=60°+n,∴∠MON=360°-∠AOM-∠AOB-∠BON=360°-(240°-n)-120°-(60°+n)=140°,解得:n=70°.综上所述:n=50°或70°【解析】【解答】解:(1)∠MON= ∠AOB+ ∠COD=100°;【分析】(1)由∠AOM=∠AOC,∠AOC= ∠AOB,∠AOC=∠AOM+∠MOC得出∠MOC= ∠AOB,又∠BON=∠BOD,从而由∠MON= ∠AOB+ ∠COD即可算出答案;(2)需要分类讨论:①当0<n<60°时,根据旋转的性质得出∠AOC=∠AOB-∠BOC=120°-n,∠BOD=60°-n,由∠MON=∠MOC+∠COB+∠BON整体替换再化简即可得出答案;②当60°<n<120°时,根据旋转的性质得出∠AOC=120°-n,∠COD=60°,∠BOD=n-60°,∠MOC= ∠AOC,∠DON= ∠BOD,由∠MON=∠MOC+∠COD+∠DON整体替换再化简即可得出答案;(3)分类讨论:①当0<n<60°时,∠BOC=n,∠MON=2n,又∠MON=∠MOB+∠BOC-∠NOC = (120°+n)+60°- (60°+n)=100°,从而列出方程,求解得出n的值;②当60°<n<120°时,∠BOC=n,∠MON=2n,∠AOC=360°-(120°+n)=240°-n,∠BOD=60°+n,又∠MON=360°-∠AOM-∠AOB-∠BON,从而整体整体代入化简并列出方程,求解即可。
人教版七年级上册数学 期末试卷综合测试卷(word含答案)
人教版七年级上册数学期末试卷综合测试卷(word含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC= BC•h=12,S△ACF= CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.2.已知:线段AB=30cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以4厘米/秒运动,经过几秒,点P、Q两点能相遇?(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点P出发3秒后,点Q沿线段BA自B点向A点以4厘米/秒运动,问再经过几秒后点P、Q两点相距6cm?(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若P、Q两点能相遇,直接写出点Q运动的速度.【答案】(1)解:30÷(2+4)=5(秒),答:经过5秒,点P、Q两点能相遇.(2)解:设再经过x秒后点P、Q两点相距6cm.当点P在点Q左边时,2(x+3)+4x+6=30解得x=3;当点P在点Q右边时,2(x+3)+4x-6=30解得x=5,所以再经过3或5秒后点P、Q两点相距6cm;(3)解:设点Q运动的速度为每秒xcm.当P、Q两点在点O左边相遇时,120÷60x=30-2,解得x=14;当P、Q两点在点O右边相遇时,240÷60x=30-6,解得x=6,所以若P、Q两点能相遇点Q运动的速度为每秒14cm或6cm.【解析】【分析】(1)根据点P、Q运动路程和等于AB求解;(2)分点P在点Q左右两边两种可能来解答;(3)分情况讨论,P、Q在点O左右两边相遇来解答.3.点 O 是直线 AB上一点,∠COD 是直角,OE平分∠BOC.(1)①如图1,若∠DOE=25°,求∠AOC 的度数;②如图2,若∠DOE=α,直接写出∠AOC的度数(用含α的式子表示);(2)将图1中的∠COD 绕点O按顺时针方向旋转至图2 所示位置.探究∠DOE 与∠AOC 的度数之间的关系,写出你的结论,并说明理由.【答案】(1)解:①∵∠COD=90°,∠DOE=25°,∴∠COE=∠COD﹣∠DOE=90°﹣25°=65°,又∵OE平分∠BOC,∴∠BOC=2∠COE=130°,∴∠AOC=180°﹣∠BOC=180°﹣130°=50°;②∵∠COD=90°,∠DOE=α,∴∠COE=∠COD﹣∠DOE=90°﹣α,又∵OE平分∠BOC,∴∠BOC=2∠COE=180°﹣2α,∴∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α(2)解:∠DOE=∠AOC,理由如下:∵∠BOC=180°﹣∠AOC,又∵OE平分∠BOC∴∠COE=∠BOC=(180°﹣∠AOC)=90°﹣∠AOC,又∵∠COD=90°,∴∠DOE=90°﹣∠COE=90°﹣(90°﹣∠AOC)=∠AOC【解析】【分析】(1)①由图可知∠COE=-∠DOE,而OE平分∠BOC,由角平分线的定义可得∠BOC=2∠COE,根据平角的意义可求得∠AOC的度数;②结合①的结论可得∠BOC=2∠COE=2(-),所以∠AOC=-∠BOC,把∠BOC 代入计算即可求解;(2)由互为余角的定义可得∠COE=-∠DOE,而OE平分∠BOC,由角平分线的定义可得∠BOC=2∠COE=2(-∠DOE),再由平角的意义可得∠AOC=-∠BOC,把∠BOC 代入计算即可求解。
2023-2024学年全国初中七年级上数学人教版期末试卷(含答案解析)
20232024学年全国初中七年级上数学人教版期末试卷一、选择题(每题3分,共30分)1. 下列数中,最小的数是()A. 0B. 2C. 3D. 1/22. 下列四个数中,最大的数是()A. 1B. 0C. 1/2D. 3/43. 若a > b,则下列不等式中正确的是()A. a + 3 > b + 3B. a 3 > b 3C. a/3 > b/3D. 3a > 3b4. 下列等式中,正确的是()A. 2x + 3 = 5x 7B. 3x 4 = 2x + 4C. 4x + 5 = 6x 1D. 5x 6 = 7x + 25. 下列函数中,y随x的增大而增大的是()A. y = 2x + 1B. y = 3x 2C. y = x + 3D. y = 4 2x6. 下列图形中,是轴对称图形的是()A. 矩形B. 梯形C. 圆D. 正方形7. 下列关于角的说法,正确的是()A. 直角是90度B. 钝角是大于90度小于180度的角C. 锐角是小于90度的角D. 平角是180度8. 下列关于三角形的说法,正确的是()边 C. 三角形的任意两边之差小于第三边 D. 三角形的任意两边之和等于第三边9. 下列关于平行线的说法,正确的是()A. 平行线在同一平面内,永不相交B. 平行线可以在同一平面内相交C. 平行线不在同一平面内,也可以相交D. 平行线不在同一平面内,一定不相交10. 下列关于四边形的说法,正确的是()A. 四边形的内角和是360度B. 四边形的任意两边之和大于第三边C. 四边形的任意两边之差小于第三边D. 四边形的任意两边之和等于第三边二、填空题(每题3分,共30分)1. 若a = 2,b = 3,则a + b = _______。
2. 若a = 5,b = 7,则a b = _______。
3. 若a = 4,b = 3,则a b = _______。
4. 若a = 6,b = 2,则a / b = _______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末综合检测试卷
(满分:120分)
一、选择题(每小题3分,共30分)
1.药品的说明书上标明保存温度是(20±2) ℃,则该药品在__范围内保存才合适(D) A.18 ℃~20 ℃B.20 ℃~22 ℃
C.18 ℃~21 ℃D.18 ℃~22 ℃
2.【2018·贵州毕节中考】-2018的倒数是(D)
A.2018 B.1
2018
C.-2018 D.-1
2018
3.数轴上三个点表示的数分别为p、r、s.若p-r=5,s-p=2,则s-r等于(C) A.3 B.-3
C.7 D.-7
解析:∵p-r=5,s-p=2,∴p-r+s-p=s-r=5+2=7.
4.下列运算正确的是(D)
A.5x-3x=2 B.2a+3b=5ab
C.-(a-b)=b+a D.2ab-ba=ab
5.如图,把弯曲的河道改直,能够缩短航程,这样做依据的道理是(C)
A.两点之间,直线最短B.两点确定一条直线
C.两点之间,线段最短D.两点确定一条线段
6.已知α是锐角,α与β互补,α与γ互余,则β-γ的值等于(C)
A.45°B.60°
C.90°D.180°
7.下列几何体中,其面既有平面又有曲面的有(B)
A.1个B.2个
C.3个D.4个
8.已知练习本比中性笔的单价少2元,小刚买了5本练习本和3支中性笔正好用去14
元.如果设中性笔的单价为x元,那么下列所列方程正确的是(A)
A.5(x-2)+3x=14 B.5(x+2)+3x=14
C.5x+3(x+2)=14 D.5x+3(x-2)=14
9.已知线段AB=12 c m,C是AB的中点,在线段AB上有一点D,且CD=2 c m,则AD的长是(C)
A.8 c m B.8 c m或2 c m
C.8 c m或4 c m D.2 c m或4 c m
10.一个正方体的六个面上分别标有-1,-2,-3,-4,-5,-6中的一个数,各个面上所标数字都不相同,如图是这个正方体的三种放置方法,则数字-3对面的数字是(B)
A.-1 B.-2
C.-5 D.-6
二、填空题(每小题3分,共18分)
11.计算:32°28′15″+15°23′48″=__47°52′3″__.
12.用式子表示“a的平方与1的差”为__a2-1__.
13.一双没有洗过的手带有各种细菌约80 000万个,80 000万用科学记数法表示为__8×108__.
14.已知x=3是关于x的方程2x-a=1的解,则a的值为__5__.
15.已知6x2n-2y m与8x2y3m-n是同类项,则m-n=__-1__.
16.将长方形纸片按如图所示的方式折叠,BC、BD为折痕,若∠ABC=35°,则∠DBE 的度数为__55°__.
三、解答题(共72分)
17.(8分)计算:
(1)(-12)-5+(-14)-(-39);
解:原式=-12-5-14+39=-31+39=8.
-4.
(2)-32÷(-3)2+3×(-2)+||
解:原式=-9÷9-6+4=-1-6+4=-3.
18.(8分)解方程:
(1)2x-3(2x-3)=x+4;
解:x =1.
(2)x -x -12=23-x +23.
解:x =-3
5
.
19.(6分)如图,已知A 、B 、C 三点,请按以下要求画出图形. (1)画线段AB ; (2)画射线AC ; (3)画直线BC ;
(4)取AB 的中点P ,连结PC .
解:如题图所示.
20.(6分)已知多项式(2m x 2+4x 2+3x +1)-(6x 2-4y 2+3x )化简后不含x 2项. (1)求m 的值;
(2)化简并求多项式2m 3-[3m 2-(5m -5)+m]的值.
解:(1)(2m x 2+4x 2+3x +1)-(6x 2-4y 2+3x )=2m x 2+4x 2+3x +1-6x 2+4y 2-3x =(2m -2)x 2+4y 2+1.因为结果不含x 2项,所以2m -2=0,解得m =1.
(2)2m 3-[3m 3-(5m -5)+m]=2m 3-[3m 3-5m +5+m]=2m 3-3m 3+5m -5-m =-m 3+4m -5.当m =1时,原式=-1+4-5=-2.
21.(6分)如图,当x =5.5,y =4时,求阴影部分的周长和面积.
解:阴影部分的周长=2(2x +2y )+2y =4x +6y .∵x =5.5,y =4,∴周长=4×5.5+6×4=22+24=46.阴影部分的面积=2x ·2y -y (2x -0.5x -x )=4xy -0.5xy =3.5xy .∵x =5.5,y =4,∴面积=3.5×5.5×4=77.
22.(8分)如图,线段AB =8,点C 是线段AB 的中点,点D 是线段BC 的中点. (1)求线段AD 的长;
(2)若在线段AB 上有一点E ,CE =1
4
BC ,求AE 的长.
解:(1)因为AB =8,C 是AB 的中点,所以AC =BC =4.因为D 是BC 的中点,所以CD =1
2
BC =2,所以AD =AC +CD =6. (2)因为BC =4,CE =14BC ,所以CE =1
4
×4
=1.当E在C的左边时,AE=AC-CE=4-1=3;当E在C的右边时,AE=AC+CE=4+1=5.所以AE的长为3或5.
23.(8分)测量员沿着一块地的周围测量,他从A向东走360 m到B,再从B向东南方向走280 m到C,再从C向西南方向走460 m到D,适当选取比例尺画图,并由图上距离求D、A两地的实际距离(精确到1 m)和DA的方向角(精确到1°).
解:取比例尺为1∶20 000,则AB=36 000×
1
20 000=1.8(c m),BC=28 000×
1
20 000=
1.4(c m),CD=46 000×1
20 000=2.3(c m).示意图如下:
经测量,得DA≈2.9 c m,∠α≈24°.故D、A两地的实际距离为2.9×20 000≈58 000(c m)=580(m).以D为观察点,DA的方向角约为北偏西24°.
24.(10分)如图1,已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.
(1)若∠COF=34°,则∠BOE=__68°__;若∠COF=m°,则∠BOE=__2m°__;∠BOE 与∠COF的数量关系为__∠BOE=2∠COF__;
(2)当射线OE绕点O逆时针旋转到如图2的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.
图1
图2
解:∠BOE和∠COF的关系仍然成立.理由:因为∠COE=90°,所以∠EOF=90°-∠COF.因为OF平分∠AOE,所以∠AOE=2∠EOF,所以∠BOE=180°-∠AOE=180°-2(90°-∠COF)=2∠COF.
25.(12分)商场计划投入一笔资金采购一批商品,经过市场调查发现,如果月初出售可获利15%,并可用本利和再投资其他商品,到月底获利10%;如果月底出售可获利30%,但
需付出仓储费700元,请问根据商场资金情况,如何购销获利较多?
解:设投入资金x元.月初销售可获利15%,再将本利和投资其他商品,此时相当于投资(x+15%x)元,到月底获利(x+15%x)·(1+10%)-x=0.265x;月底销售可获利x(1+30%)-x -700=0.3x-700.①当0.265x=0.3x-700时,解得x=20 000,此时月初和月底销售获利相等;②当x<20 000时,0.265x>0.3x-700,此时月初销售获利较多;③当x>20 000时,0.265x<0.3x -700,此时月底销售获利较多.综上所述,当投入资金小于20 000元时,月初销售获利较多;当投入资金等于20 000元时,月初和月底销售获利一样多;当投入资金大于20 000元时,月底销售获利较多.。