2019年河北省中考数学模拟试题(三)含详细答案最新精选
2019河北省中考数学试卷(含解析)
2019年河北省中考数学试卷一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形为正多边形的是()A.B.C.D.2.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3 B.﹣3 C.﹣D.+3.如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.语句“x的与x的和不超过5”可以表示为()A.+x≤5 B.+x≥5 C.≤5 D.+x=55.如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°6.小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.47.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4 B.5×10﹣5C.2×10﹣4D.2×10﹣5 9.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.210.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.11.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①12.如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q13.如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④14.图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x15.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根16.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.若7﹣2×7﹣1×70=7p,则p的值为.18.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.19.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B 两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:n2﹣1 2n B直角三角形三边勾股数组Ⅰ/ 8勾股数组Ⅱ35 /22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿23.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P(不与点B,C 重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan ∠DAB=.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.2019年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:正五边形五个角相等,五条边都相等,故选:D.2.【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.故选:B.3.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.4.【解答】解:“x的与x的和不超过5”用不等式表示为x+x ≤5.故选:A.5.【解答】解:∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°;故选:D.6.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.7.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.8.【解答】解:=0.00002=2×10﹣5.故选:D.9.【解答】解:如图所示,n的最小值为3,故选:C.10.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.11.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.12.【解答】解:由已知可知函数y=关于y轴对称,所以点M是原点;故选:A.13.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,---∴≤x<1故表示﹣的值的点落在②故选:B.14.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.15.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.16.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;丙的思路错误,图示情况不是最长;故选:B.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.【解答】解:∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为:﹣3.18.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.19.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x 轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.21.【解答】解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=15;当n2﹣1=35时,n2+1=37.故答案为:15;3722.【解答】解:(1)∵P(一次拿到8元球)=,∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为.23.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD 的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠PAC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠PAC,∠PCA,∴∠IAC=∠PAC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠PAC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.24.【解答】解:(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600 m甲返回时间为:(t﹣150)s∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.(2)T=t追及+t返回=+=,在甲这次往返队伍的过程中队伍行进的路程为:v×(T﹣150)=v×(﹣﹣150)=400﹣150v;因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为(400﹣150v)m.25.【解答】解:(1)如图1,AP经过圆心O,∵CP与⊙O相切于P,∴∠APC=90°,∵▱ABCD,∴AD∥BC,∴∠PBC=∠DAB∴=tan∠PBC=tan∠DAB=,设CP=4k,BP=3k,由CP2+BP2=BC2,得(4k)2+(3k)2=152,解得k1=﹣3(舍去),k2=3,∴x=BP=3×3=9,故当x=9时,圆心O落在AP上;∵AP是⊙O的直径,∴∠AEP=90°,∴PE⊥AD,∵▱ABCD,∴BC∥AD∴PE⊥BC(2)如图2,过点C作CG⊥AP于G,∵▱ABCD,∴BC∥AD,∴∠CBG=∠DAB∴=tan∠CBG=tan∠DAB=,设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,∴CG=4×3=12,BG=3×3=9,PG=BG﹣BP=9﹣4=5,AP=AB+BP=3+4=7,∴AG=AB+BG=3+9=12∴tan∠CAP===1,∴∠CAP=45°;连接OP,OQ,过点O作OH⊥AP于H,则∠POQ=2∠CAP =2×45°=90°,PH=AP=,在Rt△CPG中,==13,∵CP是⊙O的切线,∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°∴∠OPH=∠PCG∴△OPH∽△PCG∴,即PH×CP=CG×OP,×13=12OP,∴OP=∴劣弧长度==,∵<2π<7∴弦AP的长度>劣弧长度.(3)如图3,⊙O与线段AD只有一个公共点,即圆心O位于直线AB下方,且∠OAD≥90°,当∠OAD=90°,∠CPM=∠DAB时,此时BP取得最小值,过点C作CM⊥AB于M,∵∠DAB=∠CBP,∴∠CPM=∠CBP∴CB=CP,∵CM⊥AB∴BP=2BM=2×9=18,∴x≥1826.【解答】解:(1)当x=0吋,y=x﹣b=﹣b,∴B (0,﹣b),∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4.∴L:y=﹣x2+4x,∴L的对称轴x=2,当x=2吋,y=x﹣4=﹣2,∴L的对称轴与a的交点为(2,﹣2 );(2)y=﹣(x﹣)2+,∴L的顶点C()∵点C在l下方,∴C与l的距离b﹣=﹣(b﹣2)2+1≤1,∴点C与1距离的最大值为1;(3)由題意得,即y1+y2=2y3,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0#0,取x0=b﹣,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b﹣)=(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x 直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点∴总计4042个点,∵这两段图象交点有2个点重复重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0;在二次函数y=﹣x2+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1010个偶数,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.欢迎您的光临,Word文档下载后可修改编辑.双击可删除页眉页脚.谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。
2019年河北省中考真题数学试题(附答案解析)
2019年河北省中考数学试题考试时间:120分钟满分:120分(附详细答案解析)一、选择题:本大题共16小题,1-10题每小题3分,11-16题每小题2分,合计42分.1.(2019年河北)下列图形为正多边形的是()AB C D2.(2019年河北)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作的个数为()A .+3B .-3C .13-D .+133.(2019年河北)如图1,从点C 观测点D 的仰角是()A .∠DABB .∠DCEC .∠DCAD .∠ADC4.(2019年河北)语句“x 的18与x 的和不超过5”可以表示为()A .8x+x ≤5B .8x+x ≥5C .8+5x +x ≤5D .8x+x =55.(2019年河北)如图2,菱形ABCD 中,∠D =150°,则∠1=()A .30︒B .25︒C .20︒D .15︒6.(2019年河北)小明总结了以下结论:①a(b+c)=ab+ac ;②a(b–c)=ab–ac ;③(b–c)÷a =b÷a–c÷a (a≠0);④a÷(b+c)=a÷b+a÷c (a≠0).其中一定成立的个数是()A .1B .2C .3D .47.(2019年河北)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容已知:如图,∠BEC=∠B+∠C求证:AB∥CD.证明:延长BE交※于点F,则∠BEC=◎+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=▲,故AB∥CD(@相等,两直线平行).则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(2019年河北)一次抽奖活动特等奖的中奖率为15000,把15000用科学记数法表示为()A.5×10–4B.5×10–5C.2×10–4D.2×10–59.(2019年河北)如图3,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.210.(2019年河北)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A B C D11.(2019年河北)某同学要统计本校图书馆最受学生欢迎的图书种类.以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的各类;②去图书馆收集学生借阅图书的记录;③绘制扇形图来表示各个各类所占的百分比;④整理借阅图书记录并绘制频数分布表.正确统计步骤的顺序是()。
2019学年河北省唐山市中考三模数学试卷【含答案及解析】
2019学年河北省唐山市中考三模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 某市一天的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A.-10℃ B.-6℃ C.10℃ D.6℃2. 计算-(-3a2b3)4的结果是()A.81a8b12 B.12a6b7 C.-12a6b7 D.-81a8b123. 如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=2,则CF的长为()A.4 B.4.5 C.5 D.64. 在平面直角坐标系中,已知点A(m,3)与点B(4,n)关于y轴对称,那么(m+n)2015的值为()A.-1 B.1 C.-72015 D.720155. 下列四个点中,有三个点在同一反比例函数的图象上,则不在这个函数图象上的点是()A.(5,1) B.(-1,5) C.(,3) D.(-3,-)6. 如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是-1,则顶点A的坐标是()A.(2,-1) B.(1,-2) C.(1,2) D.(2,1)7. 用一个平面去截一个几何体,不能截得三角形截面的几何体是()A.圆柱 B.圆锥 C.三棱柱 D.正方体8. 二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是()A.m≥-2 B.m≥5 C.m≥0 D.m>49. 小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A. B. C.1 D.10. 下列说法中,完全正确是()A.从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性较大B.抛掷一枚均匀的硬币,正面一定朝上C.三条任意长的线段都可以组成一个三角形D.打开电视机,正在转播足球比赛11. 如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为()A.1 B.2 C.3 D.312. 十堰市五堰商场为了增加销售额,推出“五月销售大酬宾”活动,其活动内容为:“凡五月份在该商场一次性购物超过50元以上者,超过50元的部分按9折优惠”.在大酬宾活动中,李明到该商场为单位购买单价为30元的办公用品x件(x>2),则应付货款y(元)与商品件数x的函数关系式是()A.y=27x(x>2) B.y=27x+5(x>2)C.y=27x+50(x>2) D.y=27x+45(x>2)13. 如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90° B.180° C.210° D.270°14. 已知有一根长为10的铁丝,折成了一个矩形框.则这个矩形相邻两边a,b之间函数的图象大致为()15. 如图,矩形纸片ABCD,M为AD边的中点,将纸片沿BM、CM折叠,使A点落在A1处,D点落在D1处,若∠1=40°,则∠BMC=()A.135° B.120° C.100° D.110°16. 如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36二、填空题17. 计算(+1)(-1)= .18. 如图所示,在平面直角坐标系中,△OAB三个顶点的坐标O(0,0)、A(3,4)、B (5,2).将△OAB绕原点O按逆时针方向旋转90°后得到△OA1B1,则点A1的坐标是.19. 如图,原点O是△ABC和△A′B′C′的位似中心,点A(1,0)与点A′(-2,0)是对应点,△ABC的面积是,则△A′B′C′的面积是.20. 如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为cm.三、解答题21. 小明同学在解一元二次方程时,他是这样做的:(1)小明的解法从第步开始出现错误;此题的正确结果是.(2)用因式分解法解方程:x(2x-1)=3(2x-1)22. 实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,则所选两位同学恰好是一位男同学和一位女同学的概率是.23. 如图,已知A(-4,0.5),B(-1,2)是一次函数y=ax+b与反比例函数(m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.24. 如图,将边长为8的正方形纸片ABCD折叠,使点B落在CD边的中点E上,压平后得到折痕MN,EF与AD边交于点G.(1)求CN的长;(2)求DG的长;(3)AM= .(直接填结果)25. 如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=30°,求图中阴影部分的面积.26. 如图,抛物线与x轴交于点A、B两点,与y轴交于点C,且A点坐标(-3,0),连接BC、AC.(1)求该抛物线解析式;(2)求AB和OC的长;(3)点E从点B出发,沿x轴向点A运动(点E与点A、B不重合),过点E作直线l平行AC,交BC于点D,设BE的长为m,△BDE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(4)在(3)的条件下,连接CE,求△CDE面积的最大值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。
河北省唐山市路南区2019年中考数学三模试卷(解析版)
2019年河北省唐山市路南区中考数学三模试卷一、选择题(本大题共16小题,共42分1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m2.(3分)全民阅读已成为一种良好风尚,现在的图书是人们阅读的好地方.下列图书馆标志的图形中不是轴对称图形的是()A.B.C.D.3.(3分)计算5.2×107﹣5.1×107,结果用科学记数法表示为()A.1×107B.1×106C.0.1×107D.0.1×1064.(3分)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.5.(3分)如图所示,用量角器度量几个角的度数,下列结论正确的是()A.∠BOC=60°B.∠AOD与∠COE互补C.∠AOC=∠BOD D.∠COA是∠EOD的余角6.(3分)九年级某班在一次考试中对某道单选题的答题情况进行统计,结果如图所示:根据以上统计图,下列判断错误的是()A.选A的有8人B.选B的有4人C.选C的有28人D.该班共有40人参加考试7.(3分)与算式32+32+32的运算结果相等的是()A.33B.23C.36D.388.(3分)书店、学校、食堂在平面上分别用A、B、C来表示,书店在学校的北偏西30°,食堂在学校的南偏东15°,则平面图上的∠ABC的度数应该是()A.65°B.35°C.165°D.135°9.(3分)一个正方形的面积是19,则它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间10.(3分)如图,矩形纸片ABCD,M为AD边的中点将纸片沿BM、CM折叠,使A点落在A1处,D点落在D1处,若∠1=30°,则∠BMC=()A.75°B.150°C.120°D.105°11.(2分)若a+b=5,则代数式(﹣a)÷()的值为()A.5B.﹣5C.﹣D.12.(2分)如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A.B.C.D.13.(2分)关于x的一元二次方程x2+3x﹣1=0的根的情况()A.无实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定14.(2分)已知点P是△ABC的内心,若∠BAP=50°,则∠BPC的度数为()A.100°B.110°C.140°D.130°15.(2分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示,则下列结论错误的是()A.甲车间每小时加工服装80件B.这批服装的总件数为1140件C.乙车间每小时加工服装为60件D.乙车间维修设备用了4小时16.(2分)如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述不正确的是()A.O是△AEB的外心,O不是△AED的外心B.O是△BEC的外心,O不是△BCD的外心C.O是△AEC的外心,O不是△BCD的外心D.O是△ADB的外心,O不是△ADC的外心二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.(3分)在函数y=中,自变量x的取值范围是.18.(3分)如图,一个正n边形纸片被撕掉了一部分,已知它的中心角是40°,那么n =.19.(4分)如图,正方形ABCD的边长为3,点E,F分别在边BCCD上,BE=CF=1,小球P从点E出发沿直线向点F运动,完成第1次与边的碰撞,每当碰到正方形的边时反弹,反弹时反射角等于入射角,则小球P与正方形的边第2次碰撞到边上,小球P与正方形的边完成第5次碰撞所经过的路程为.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.(9分)在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC =1,如图所示,设点A,B,D,C所对应数的和是p.(1)①若以B为原点.写出点A,D,C所对应的数,并计算p的值;②若以D为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.21.(9分)现有4个质地和大小完全相同的小球,分别标有数字2,3,4,6.将标有2,3的小球放入不透明的甲袋中,标有4,6的小球放入不透明的乙袋中.从甲袋中随机摸出一个球,将球上的数字当作一个分数的分子:再从乙袋中随机摸出一个球,将球上的数字当作这个分数的分母,从而得到一个分数,如图(1)用列表法(或画树状图)表示所有的可能结果;(2)小亮说:“得到的分数大于和小于的概率相同”请通过计算说明小亮的说法是否正确.22.(9分)如图,∠CAB=∠ABD=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.连接MB,NA.(1)求证:四边形MBNA为平行四边形;(2)当α=°时,四边形MBNA为矩形;(3)当α=°时,四边形MBNA为菱形;(4)四边形MBNA可能是正方形吗?(回答“可能”或“不可能”)23.(9分)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3),反比例函数的图象经过点D,点P是一次函数y=kx+3﹣3k(k≠0)的图象与该反比例函数图象的一个公共点.①求反比例函数解析式;②通过计算,说明一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;③对于一次函数y=kx+3﹣k(k≠0)当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写过程)24.(10分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经了解得到以下信息(如表):工程队每天修路的长度(米)单独完成所需天数(天)每天所需费用(元)甲队30n600乙队m n﹣141160(1)甲队单独完成这项工程所需天数n=,乙队每天修路的长度m=(米);(2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y 为正整数).①当x=90时,求出乙队修路的天数;②求y与x之间的函数关系式(不用写出x的取值范围);③若总费用不超过22800元,求甲队至少先修了多少米.25.(11分)在锐角△ABC中,AB=6,BC=11,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA上时,∠CC1A1=°;(2)如图2,连接AA1,CC1.若△ABA1的面积为24,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是P1,求在旋转过程中,线段EP1长度的最大值与最小值的差.26.(11分)已知如图,A(1,9),动点M(x,y)从点A出发向右下方运动,碰到x轴时停止.运动过程中,M、A的水平距离m与运动时间t成正比例,M、A的垂直距离h与t的平方成正比例.并且,当t=1时,m与h的值均为1;已知直线l的解析式为y=x+2.(1)①用t表示x和y;②求出y与x的关系式并直接写出自变量x的取值范围;③说出点M的运行轨迹.(2)求当t为何值时,点M落在直线l上;(3)求当t为何值时,点M与直线1的距离小于.2019年河北省唐山市路南区中考数学三模试卷参考答案与试题解析一、选择题(本大题共16小题,共42分1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m【分析】根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:若向东走2m记作+2m,则向西走3m记作﹣3m,故选:C.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.2.(3分)全民阅读已成为一种良好风尚,现在的图书是人们阅读的好地方.下列图书馆标志的图形中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:B.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)计算5.2×107﹣5.1×107,结果用科学记数法表示为()A.1×107B.1×106C.0.1×107D.0.1×106【分析】根据乘法分配律计算即可求解.【解答】解:5.2×107﹣5.1×107=(5.2﹣5.1)×107=0.1×107=1×106.故选:B.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.4.(3分)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.【分析】根据过直线外一点向直线作垂线即可.【解答】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.【点评】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.5.(3分)如图所示,用量角器度量几个角的度数,下列结论正确的是()A.∠BOC=60°B.∠AOD与∠COE互补C.∠AOC=∠BOD D.∠COA是∠EOD的余角【分析】由图形,根据角的度量和互余、互补的定义求解即可.【解答】解:A、∠BOC=120°,故选项错误;B、∠AOD+∠COE=150°+30°=180°,它们互补,故选项正确;C、∠AOC=60°,∠BOD=30°,它们的大小不相等,故选项错误;D、∠COA=60°,∠EOD=60°,它们相等,但不是互余关系,故选项错误.故选:B.【点评】本题主要考查了余角和补角,角的度量,量角器的使用方法,正确使用量角器是解题的关键.6.(3分)九年级某班在一次考试中对某道单选题的答题情况进行统计,结果如图所示:根据以上统计图,下列判断错误的是()A.选A的有8人B.选B的有4人C.选C的有28人D.该班共有40人参加考试【分析】先求出九年级某班参加考试的人数,再分别求出选A、选B、选C的人数即可.【解答】解:∵九年级某班参加考试的人数是8+4+28+10=50人,∴选A的人有50×16%=8人,选B的人有50×8%=4人,选C的人有50×56%=28人,故选:D.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.7.(3分)与算式32+32+32的运算结果相等的是()A.33B.23C.36D.38【分析】32+32+32表示3个32相加.【解答】解:32+32+32=3×32=33.故选:A.【点评】本题根据乘法的意义可知32+32+32=3×32,根据乘方的意义可知3×32=33.8.(3分)书店、学校、食堂在平面上分别用A、B、C来表示,书店在学校的北偏西30°,食堂在学校的南偏东15°,则平面图上的∠ABC的度数应该是()A.65°B.35°C.165°D.135°【分析】首先根据叙述作出A、B、C的相对位置,然后根据角度的和差计算即可.【解答】解:∠ABD=90°﹣30°=60°,则∠ABC=60°+90°+15°=165°.故选:C.【点评】本题考查了方向角的定义,理解方向角的定义,作出A、B、C的相对位置是解决本题的关键.9.(3分)一个正方形的面积是19,则它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】根据无理数的估计解答即可.【解答】解:∵16<19<25,∴,故选:C.【点评】本题主要考查的是估算无理数的大小,熟练掌握算术平方根的性质是解题的关键.10.(3分)如图,矩形纸片ABCD,M为AD边的中点将纸片沿BM、CM折叠,使A点落在A1处,D点落在D1处,若∠1=30°,则∠BMC=()A.75°B.150°C.120°D.105°【分析】利用折叠的性质,相重合的角相等,然后利用平角定理求出角的度数.【解答】解:ɛ∠1=30°,∴∠AMA1+∠DMD1=180﹣30=150°.∴∠BMA1+∠CMD1=75°.∴∠BMC=∠BMA1+∠CMD1+∠1=105°.故选:D.【点评】本题考查了轴对称的性质,矩形的性质,角的计算.解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.11.(2分)若a+b=5,则代数式(﹣a)÷()的值为()A.5B.﹣5C.﹣D.【分析】根据a+b=5,可以求得题目中所求式子的值,本题得以解决.【解答】解:∵a+b=5,∴(﹣a)÷()===﹣(a+b)=﹣5,故选:B.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.12.(2分)如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A.B.C.D.【分析】根据全等三角形的判定定理进行判断.【解答】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选:C.【点评】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.13.(2分)关于x的一元二次方程x2+3x﹣1=0的根的情况()A.无实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定【分析】先根据根的判别式求出△的值,再判断即可.【解答】解:x2+3x﹣1=0,△=32﹣4×1×(﹣1)=13>0,所以一元二次方程有两个不相等的实数根,故选:C.【点评】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键.14.(2分)已知点P是△ABC的内心,若∠BAP=50°,则∠BPC的度数为()A.100°B.110°C.140°D.130°【分析】由点P是△ABC的内心,∠BAP=50°,得到∠BAC=2∠BAP=100°,根据三角形的内角和得到∠ABC+∠ACB=80°,根据角平分线的定义得到∠PBC+∠PCB=80°=40°,于是得到结论.【解答】解:∵点P是△ABC的内心,∠BAP=50°,∴∠BAC=2∠BAP=100°,∴∠ABC+∠ACB=80°,∴∠PBC+∠PCB=80°=40°,∴∠BPC=180°﹣40°=140°,故选:C.【点评】此题主要考查了三角形的内切圆和内心,正确理解∠PBC+∠PCB=(∠ABC+∠ACB)是关键.15.(2分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示,则下列结论错误的是()A.甲车间每小时加工服装80件B.这批服装的总件数为1140件C.乙车间每小时加工服装为60件D.乙车间维修设备用了4小时【分析】根据图象确定两个车间的生产速度,再由乙车间剩余工作量推得复工后生产时间,得到乙车间加工零件数量y与x之间的函数关系式即可.【解答】解:由图象可知,甲车间每小时加工零件个数为720÷9=80个,则A正确;由题意总零件个数为720+420=1140个,则B正确;乙车间生产速度为120÷2=60个/时,则C正确;乙车间复工后生产时间为(420﹣120)÷60=5小时,故乙车间维修设备时间为9﹣5﹣2=2小时,则D错误.故选:D.【点评】本题为一次函数实际应用问题,考查了一次函数图象的实际意义和根据图象确定一次函数关系式.16.(2分)如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述不正确的是()A.O是△AEB的外心,O不是△AED的外心B.O是△BEC的外心,O不是△BCD的外心C.O是△AEC的外心,O不是△BCD的外心D.O是△ADB的外心,O不是△ADC的外心【分析】根据三角形的外心得出OA=OC=OA,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【解答】解:连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OA,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OE≠OD,即O不是△AED的外心,OA=OE=OB,即O是△AEB的外心,OA=OC=OE,即O是△ACE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:C.【点评】本题考查了正方形的性质和三角形的外心与外接圆,能熟记知识点的内容是解此题的关键,注意:三角形的外心到三个顶点的距离相等,正方形的四边都相等.二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.(3分)在函数y=中,自变量x的取值范围是x≠1.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.18.(3分)如图,一个正n边形纸片被撕掉了一部分,已知它的中心角是40°,那么n=9.【分析】利用360度除以中心角的度数即可求得.【解答】解:∵正n边形的中心角==40°,n==9.故答案为:9.【点评】本题考查了多边形的计算,正多边形的中心角相等,理解中心角的度数和正多边形的边数之间的关系是关键.19.(4分)如图,正方形ABCD的边长为3,点E,F分别在边BCCD上,BE=CF=1,小球P从点E出发沿直线向点F运动,完成第1次与边的碰撞,每当碰到正方形的边时反弹,反弹时反射角等于入射角,则小球P与正方形的边第2次碰撞到AB边上,小球P与正方形的边完成第5次碰撞所经过的路程为.【分析】由题意可以画出小球每次碰撞后反弹的路线,求出反射角和入射角的正切值,找到小球路径最终循环的规律,因此可求问题.【解答】解:∵正方形ABCD的边长为3,点E,F分别在边BCCD上,BE=CF=1∴Rt△ECF中,tan∠EFC=∵每当碰到正方形的边时反弹,反弹时反射角等于入射角∴每次反弹的反射角正切值为2依此类推,画出小球的反弹路线∴可知小球在正方形ABCD边上反弹6次后回到原位则小球与正方形的边第2次碰撞到AB边上.由勾股定理计算小球五次碰撞经过的路径为故答案为:AB,【点评】本题是几何动点探究题,考查了锐角三角函数(三角形相似)、勾股定理,解答关键是数形结合.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.(9分)在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC =1,如图所示,设点A,B,D,C所对应数的和是p.(1)①若以B为原点.写出点A,D,C所对应的数,并计算p的值;②若以D为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.【分析】(1)①根据以B为原点,则A,D,C所对应的数分别为:﹣2,3,4,进而得到p的值;②以D为原点,A,D,C所对应的数分别为:﹣5,﹣3,1,进而得到p的值;(2)用x的代数式分别表示A,D,C所对应的数,根据题意列方程解答即可.【解答】解:(1)①点A,D,C所对应的数分别为:﹣2,3,4;p=﹣2+3+4=5;②若以D为原点,P=﹣3﹣5+1=﹣7;(2)由题意,A,B,C,D表示的数分别为:﹣6﹣x,﹣4﹣x,﹣1﹣x,﹣x,﹣6﹣x﹣4﹣x﹣1﹣x﹣x=﹣71,﹣4x=﹣60,x=15.【点评】本题主要考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.21.(9分)现有4个质地和大小完全相同的小球,分别标有数字2,3,4,6.将标有2,3的小球放入不透明的甲袋中,标有4,6的小球放入不透明的乙袋中.从甲袋中随机摸出一个球,将球上的数字当作一个分数的分子:再从乙袋中随机摸出一个球,将球上的数字当作这个分数的分母,从而得到一个分数,如图(1)用列表法(或画树状图)表示所有的可能结果;(2)小亮说:“得到的分数大于和小于的概率相同”请通过计算说明小亮的说法是否正确.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图求得得到的分数大于和小于的情况,再利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有4种等可能的结果;(2)小亮的说法正确,∵得到的分数大于的概率为,得到的分数小于的概率为,∴得到的分数大于和小于的概率相同.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.(9分)如图,∠CAB=∠ABD=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.连接MB,NA.(1)求证:四边形MBNA为平行四边形;(2)当α=80°时,四边形MBNA为矩形;(3)当α=90°时,四边形MBNA为菱形;(4)四边形MBNA可能是正方形吗?不可能(回答“可能”或“不可能”)【分析】(1)由“AAS”可证△APM≌△BPN,可得AM=BN,即可得结论;(2)由矩形的性质和三角形的内角和定理可求解;(3)由菱形的性质可求解;(4)由正方形的性质可求解.【解答】证明:(1)∵P为AB中点,∴AP=BP∵∠CAB=∠ABD=50°,∴AM∥BN∴∠AMP=∠BNP,且AP=BP,∠CAB=∠ABD=50°,∴△APM≌△BPN(AAS)∴AM=BN,且AM∥BN∴四边形MBNA为平行四边形;(2)若四边形MBNA为矩形∴BP=AP=MP=NP∴∠ABN=∠MNB=50°∴α=180°﹣50°﹣50°=80°故答案为:80(3)若四边形MBNA为菱形∴AB⊥MN∴α=90°故答案为:90(4)若四边形MBNA为正方形∴∠ABD=45°≠50°∴四边形MBNA不可能为正方形故答案为:不可能【点评】本题考查了正方形的性质,矩形的性质和判定,菱形的性质和判定,平行四边形的判定和性质,灵活运用这些性质是本题的关键.23.(9分)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3),反比例函数的图象经过点D,点P是一次函数y=kx+3﹣3k(k≠0)的图象与该反比例函数图象的一个公共点.①求反比例函数解析式;②通过计算,说明一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;③对于一次函数y=kx+3﹣k(k≠0)当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写过程)【分析】(1)由B(3,1),C(3,3)得到BC⊥x轴,BC=2,根据平行四边形的性质得AD=BC=2,而A点坐标为(1,0),可得到点D的坐标为(1,2),然后把D(1,2)代入y=即可得到m=2,从而可确定反比例函数的解析式;(2)把x=3代入y=kx+3﹣3k(k≠0)得到y=3,即可说明一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,由于一次函数y=kx+3﹣3k(k≠0)过C点,并且y随x的增大而增大时,则P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,由y=得到a>,于是得到a的取值范围.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,∵B(3,1),C(3,3),∴BC⊥x轴,AD=BC=2,而A点坐标为(1,0),∴点D的坐标为(1,2).∵反比例函数y=(x>0)的函数图象经过点D(1,2),∴2=,∴m=2,∴反比例函数的解析式为y=;(2)当x=3时,y=kx+3﹣3k=3k+3﹣3k=3,∴一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,∵一次函数y=kx+3﹣3k(k≠0)过C点,并且y随x的增大而增大时,∴k>0,P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,∵y=,∴<3,解得:a>,则a的范围为<a<3.【点评】本题考查了反比例函数综合题:点在函数图象上,则点的横纵坐标满足图象的解析式;利用平行四边形的性质确定点的坐标;掌握一次函数的增减性.24.(10分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经了解得到以下信息(如表):工程队每天修路的长度(米)单独完成所需天数(天)每天所需费用(元)甲队30n600乙队m n﹣141160(1)甲队单独完成这项工程所需天数n=35,乙队每天修路的长度m=50(米);(2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y 为正整数).①当x=90时,求出乙队修路的天数;②求y与x之间的函数关系式(不用写出x的取值范围);③若总费用不超过22800元,求甲队至少先修了多少米.【分析】(1)用总长度÷每天修路的长度可得n的值,继而可得乙队单独完成时间,再用总长度÷乙单独完成所需时间可得乙队每天修路的长度m;(2)①根据:甲队先修建的长度+(甲队每天修建长度+乙队每天修建长度)×两队合作时间=总长度,列式计算可得;②由①中的相等关系可得y与x之间的函数关系式;③根据:甲队先修x米的费用+甲、乙两队每天费用×合作时间≤22800,列不等式求解可得.【解答】解:(1)甲队单独完成这项工程所需天数n=1050÷30=35(天),则乙单独完成所需天数为21天,∴乙队每天修路的长度m=1050÷21=50(米),故答案为:35,50;(2)①乙队修路的天数为=12(天);②由题意,得:x+(30+50)y=1050,∴y与x之间的函数关系式为:y=﹣x+;③由题意,得:600×+(600+1160)(﹣x+)≤22800,解得:x≥150,∵x,y均为正整数,∴当x=170时,y=11,符合题意;答:若总费用不超过22800元,甲队至少先修了170米.【点评】本题主要考查由实际问题抽象出一次函数解析式、一元一次不等式的应用,根据题意完成表格是解题的根本,理解题意得到相等关系或不等关系是解题的关键.25.(11分)在锐角△ABC中,AB=6,BC=11,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA上时,∠CC1A1=60°;(2)如图2,连接AA1,CC1.若△ABA1的面积为24,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是P1,求在旋转过程中,线段EP1长度的最大值与最小值的差.【分析】(1)根据旋转的性质可知:∠A1C1B=30°,再由等边对等角得∠BC1C=30°,则∠CC1A1=60°;(2)由△ABC≌△A1BC1得比例式,证明△ABA1∽△CBC1,根据面积比等于相似比的平方求出△CBC1的面积;(3)作辅助线,当点P在D处时BP最小,则BP1最小,EP1最小;当点P在点C处时,BP最大,则BP1最大,EP1最大,代入计算.【解答】解:(1)如图1,由旋转得:∠A1C1B=∠C=30°,BC=BC1,∴∠C=∠BC1C=30°,∴∠CC1A1=60°,故答案为:60°;(2)如图2,∵△ABC≌△A1BC1,∴BA=BA1,BC=BC1,∠ABC=∠A1BC1,∴,。
2019年河北省十二县市区中考数学三模试卷(含2019河北省中考试题)
2019年河北省十二县市区中考数学三模试卷含2019河北省中考试题一.选择题1.下列运算结果是﹣3的是()A.(﹣3)0B.3﹣1C.﹣|﹣3|D.﹣(﹣3)2.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1B.2C.3D.43.下列运算正确的是()A.a3+a3=a6B.(﹣a2)3=a6C.a5÷a﹣2=a7D.(a+1)0=1 4.△ABC的三个内角∠A,∠B,∠C满足∠A:∠B:∠C=1:2:3,则这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形5.若y<0,则x,x﹣y,x+y中最大的是()A.x B.x﹣y C.x+y D.不确定6.半径为4的圆的内接正三角形的面积为()A.8B.12C.12D.6π7.地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B.5.1×108C.5.1×109D.51×1078.在平面直角坐标系中,四边形OBCD与四边形OEFG位似,位似中心是原点,已知C与F是对应点,且C,F的坐标分别是(1,)、(4,4),则四边形OBCD与四边形OEFG的位似比是()A.1:B.1:3C.1:4D.1:89.若x=﹣4,则x的取值范围是()A.2<x<3B.3<x<4C.4<x<5D.5<x<610.如图所示的是一个小正方体的展开图,把展开图折叠成小正方体,有“粤”字一面的相对面上的字是()A.澳B.大C.湾D.区11.如果x2+x+1=0,那么x2016+x2015+x2014+…+x3+x2+x()A.3B.2C.1D.012.如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=6,DF=4,则菱形ABCD的边长为()A.4B.3C.5D.713.计算a÷×的结果是()A.a B.a2C.D.14.如图,点A、B、C、D、E、F是⊙O的等分点,分别以点B、D、F为圆心,AF的长为半径画弧,形成美丽的“三叶轮”图案.已知⊙O的半径为1,那么“三叶轮”图案的面积为()A.B.C.D.15.若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.16.如图,正方形硬纸片ABCD的边长是8,点E、F分别是AB、BC的中点,若沿图中的虚线剪开,拼成如图的一座“小房子”,则图中阴影部分的面积是()A.4B.8C.16D.32二.填空题17.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.18.如图,已知△ABC中,AB=AC,BE=BC=AE,则∠A=.19.把直线y=2x﹣1向上平移2个单位再向左平移3个单位,所得直线解析式为.三.解答题20.(8分)点A,B,C,D对应的数在数轴上的位置如图所示,其中点A对应的数为a,点B对应的数为3,点C对应的数为c,点D对应的数为t.(1)若原点在AD的中点上,且t=﹣1,CD=AB,求c的值;(2)若CD=4,将CD沿数轴向右平移,使得点B恰好是CD的中点,求此时t的值.21.(9分)如图,在直角坐标系中,四边形OACB为矩形,C点的坐标为(3,6),若点P 从O点沿OA向点A以1cm/s的速度运动,点Q从A点沿AC以2cm/s的速度向C点运动,如果P、Q分别从O、A同时出发,问:(1)从开始经过多少时间P、Q的距离为6cm?(2)经过多少时间△P AQ面积为2cm2?△P AQ的面积能否达到3cm2?试说明理由.22.(9分)新能源汽车由于采用清洁动力能源或者混合动力能源等,能减少尾气排放,甚至达到零排放,对节约能源和改善空气质量有重大作用.据前瞻产业研究院发布的《中国新能源汽车行业市场前瞻与投资战略规划分析报告》统计数据显示:2018年我国新能源汽车产销再创历史新高.下面是2013﹣2018年我国新能源汽车产销量统计条形图和2018年我国新能源汽车销量占比统计图.(1)请根据上面信息,回答下列问题:(注:所有结果精确到0.1万辆)①2013年~2018年我国新能源汽车的年平均销量为万辆,销量的中位数是万辆;②2018年我国新能源乘用车的销量为万辆.(2)小明家想买一辆长度大于10米的新能源客车搞旅游运输,国家对于长度大于10米的新能源客车的补贴政策是:非快充类新能源客车按汽车电池容量每度电补贴550元,再加单车补贴8.5万元.快充类新能源客车按电池容量每度电补贴950元,再加单车补贴6.5万元.请帮助小明计算:如何根据客车的电池容量,选择哪类型新能源客车能够获得国家更高的补贴?23.(9分)如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF.(1)求证:△ACD≌△CBF;(2)以AD为边作等边三角形△ADE,点D在线段BC上的何处时,四边形CDEF是平行四边形.24.(10分)中国是世界上13个贫水国家之一.某校有800名在校学生,学校为鼓励学生节约用水,展开“珍惜水资源,节约每一滴水”系列教育活动.为响应学校号召,数学小组做了如下调查:小亮为了解一个拧不紧的水龙头的滴水情况,记录了滴水时间和烧杯中的水面高度,如图1.小明设计了调查问卷,在学校随机抽取一部分学生进行了问卷调查,并制作出统计图.如图2和图3.经结合图2和图3回答下列问题:(1)参加问卷调查的学生人数为人,其中选C的人数占调查人数的百分比为.(2)在这所学校中选“比较注意,偶尔水龙头滴水”的大概有人.若在该校随机抽取一名学生,这名学生选B的概率为.请结合图1解答下列问题:(3)在“水龙头滴水情况”图中,水龙头滴水量(毫升)与时间(分)可以用我们学过的哪种函数表示?请求出函数关系式.(4)为了维持生命,每人每天需要约2400毫升水,该校选C的学生因没有拧紧水龙头,2小时浪费的水可维持多少人一天的生命需要?25.(11分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,tan∠BAC=,BC=3,点D为线段AC上一动点,过点D作AB的垂线交⊙O于点E,交AB于点F,连结BD,CF,并延长BD交⊙O于点H.(1)求⊙O的半径;(2)当DE经过圆心O时,求AD的长;(3)求证:=;(4)求CF •DH 的最大值.26.(12分)如图1,在平面直角坐标系xOy 中,直线l :与x 轴、y 轴分别交于点A 和点B (0,﹣1),抛物线经过点B ,且与直线l 的另一个交点为C (4,n ).(1)求n 的值和抛物线的解析式;(2)点D 在抛物线上,且点D 的横坐标为t (0<t <4).DE ∥y 轴交直线l 于点E ,点F 在直线l 上,且四边形DFEG 为矩形(如图2).若矩形DFEG 的周长为p ,求p 与t 的函数关系式以及p 的最大值;(3)M 是平面内一点,将△AOB 绕点M 沿逆时针方向旋转90°后,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,请直接写出点A 1的横坐标.参考答案一.选择题1.解:(A)原式=1,故结果不是﹣3(B)原式=,故结果不是﹣3(C)原式=﹣3,故结果是﹣3(D)原式=3,故结果不是﹣3故选:C.2.解:如图所示,共有4条线段.故选:D.3.解:A、a3+a3=2a3,故此选项错误;B、(﹣a2)3=﹣a6,故此选项错误;C、a5÷a﹣2=a7,故此选项正确;D、(a+1)0=1(a≠﹣1),故此选项错误.故选:C.4.解:∵∠A:∠B:∠C=1:2:3,∴设∠A、∠B、∠C分别为k、2k、3k,由题意得,k+2k+3k=180°,解得k=30°,∠C=3×30°=90°,∴这个三角形是直角三角形.故选:C.5.解:∵y<0,∴x﹣y>x,x+y<x,即x+y<x<x﹣y,最大是x﹣y,故选:B.6.解:如图所示:∵半径为4的圆的内接正三角形,∴在Rt△BOD中,OB=4,∠OBD=30°,∴BD=cos30°×OB=×4=2,∵BD=CD,∴BC=2BD=4,故它的内接正三角形的边长为4,OD=OB=2,即AD=4+2=6,所以△ABC的面积为×4×6=12,故选:B.7.解:510000000=5.1×108,故选:B.8.解:∵四边形OBCD与四边形OEFG位似,位似中心是原点O,C与F的坐标分别是(1,)、(4,4),∴对应点坐标扩大到原来的4倍,故四边形OBCD与四边形OEFG的相似比是:1:4.故选:C.9.解:∵36<37<49,∴6<<7,∴2<﹣4<3,故x的取值范围是2<x<3.故选:A.10.解:根据正方体展开图可知:港、澳、湾、区四个字所在的面与奥所在的面都有公共点,故他们不可能是对面,∴有“粤”字一面的相对面上的字是“大”.故选:B.11.解:∵x2+x+1=0,∴x2016+x2015+x2014+…+x3+x2+x=x2014(x2+x+1)+…+x(x2+x+1)=0.故选:D.12.解:连接OM,∵BD=6,DF=4,∴OD=3,OF=OM=3+4=7,由勾股定理得:OA=MD==2,∵菱形ABCD,∴AC⊥BD,由勾股定理得:AD===7.故选:D.13.解:a÷×=a××=.故选:C.14.解:连接OA、OB、AB,作OH⊥AB于H,∵点A、B、C、D、E、F是⊙O的等分点,∴∠AOB=60°,又OA=OB,∴△AOB是等边三角形,∴AB=OB=1,∠ABO=60°,∴OH==,∴“三叶轮”图案的面积=(﹣×1×)×6=π﹣,故选:B.15.解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,D错误;∵B(1,m),C(2,m﹣1),∴当x>0时,y随x的增大而减小,故B正确,C错误.故选:B.16.解:阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一,正方形的面积=8×8=64,∴图中阴影部分的面积是64÷4=16.故选:C.二.填空题17.解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案为:22°18.解:设∠A=x.∵AE=BE,∴∠ABE=∠A=x,∴∠BEC=∠ABE+∠A=2x,∵BE=BC,AB=AC,∴∠BEC=∠C=∠ABC=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°,解得x=36°.故答案为36°.19.解:把直线y=2x﹣1向上平移2个单位再向左平移3个单位,所得直线解析式为y=2(x+3)﹣1+2=2x+7.故答案为:y=2x+7.三.解答题20.解:(1)∵原点在AD的中点上,∴a=﹣t=1,∴AB=3﹣1=2.∵CD=AB,t=﹣1,∴c=﹣1﹣2=﹣3.(2)∵CD=4,移动后点B恰好是CD的中点,∴BD=BD=CD=2,∴t=3+2=5.21.解:(1)设x秒后PQ的距离为6cm,P A2+AQ2=PQ2(3﹣x)2+(2x)2=62x=3或x=﹣(舍去).经过3秒时距离为6厘米.(2)设经过y秒时面积为2平方厘米.•P A•AQ=2•(3﹣y)•2y=2y=1或y=2.当运动1秒或2秒时面积为2平方厘米.•P A•AQ=3(3﹣y)•2y=3y2﹣3y+3=0△=9﹣12<0.故方程无解.22.解:(1)①2013年~2018年我国新能源汽车的年平均销量为(1.8+6.1+30.2+50.7+77.7+126.5)÷6≈48.8(万辆),销量的中位数≈40.5(万辆),故答案为48.8,40.5;②2018年我国新能源乘用车的销量126.5×84%≈106.3(万辆),故答案为106.3;(2)设新能源客车的电池容量为x度,则非快充类新能源客车补贴的总费用为550x+85000(元),快充类新能源客车补贴的总费用为950x+65000(元),①当550x+85000<950x+65000,即x<50时,选择快充类新能源客车补贴较高;②当550x+85000=950x+65000,即x=50时,选择快充类与非快充类新能源客车补贴费用一样;③当550x+85000>950x+65000,即x>50时,选择非快充类新能源客车补贴较高.23.(1)证明:∵△ABC为等边三角形,∴∠B=∠ACD=60°,AC=BC,在△ACD和△CBF中,∴△ACD≌△CBF(SAS);(2)解:D点在任意位置,四边形CDEF是平行四边形,∵△ACD≌△CBF,∴∠BCF=∠DAC,AD=CF,∵AD=DE,∴DE=CF,∵∠ACD=∠ADE=60°,∠ADB=∠ADE+∠BDE=∠ACD+∠DAC,∴60°+∠DAC=60°+∠BDE,∴∠DAC=∠BDE,∵∠BCF=∠DAC,∴∠B DE=∠BCF,∴DE∥CF,∵DE=CF,∴四边形CDEF的形状是平行四边形.24.解:(1)根据题意得:21÷35%=60(人),选C的人数占调查人数的百分比为×100%=10%;(2)根据题意得:选“比较注意,偶尔水龙头滴水”的大概有800×(1﹣35%﹣10%)=440(人);若在该校随机抽取一名学生,这名学生选B的概率为=;(3)水龙头滴水量(毫升)与时间(分)可以近似地用一次函数表示,设水龙头滴水量y(毫升)与时间t(分)满足关系式y=kt+b,依题意得:,解得:,∴y=6t,经检验其余各点也在函数图象上,∴水龙头滴水量y(毫升)与时间t(分)满足关系式为y=6t;(4)设可维持x人一天的生命需要,依题意得:800×10%×2×60×6=2400x,解得:x=24,则可维持24人一天的生命需要.故答案为:(1)60;10%;(2)440;25.解:(1)∵AB为直径,∴∠ACB=90°,∴tan∠BAC=,∴AC=4,由勾股定理:,所以⊙O的半径为;(2)∵AB⊥DE,∴∠AFD=∠ACB=90°,∵∠A为△ADF和△ABC的公共角,∴△ADF∽△ABC,∴,∴;(3)由(2)可得△ADF∽△ABC,∴=,即=,又∵∠A为△ACF和△ABD的公共角,∴△ACF∽△ABD,∴;(4)连结CH,由(3)知△ACF∽△ABD,∴∠ABD=∠ACF,∵∠ABD=∠ACH,∴∠ACH=∠ACF,又∵∠CAF=∠H,∴△ACF∽△HCD,∴=,即CF•DH=CD•AF,设AD=x,则CD=4﹣x,AF=,∴CF•DH=(4﹣x)==﹣(x﹣2)2+,∴当x=2时,CF•DH=为最大值.26.解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.2019年河北省中考数学试卷一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A.B.C.D.2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3 B.﹣3 C.﹣D.+3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.(3分)语句“x的与x的和不超过5”可以表示为()A.+x≤5 B.+x≥5 C.≤5 D.+x=5 5.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°6.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.47.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5 9.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.210.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①12.(2分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q13.(2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x 15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p的值为.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣1 2n B勾股数组Ⅰ/ 8勾股数组Ⅱ35 /22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿23.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S(m).头(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB 延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y 轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y的平均数,求点(x0,0)与点D间的距离;2(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.2019年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:正五边形五个角相等,五条边都相等,故选:D.2.【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.故选:B.3.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.4.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.故选:A.5.【解答】解:∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°;故选:D.6.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.7.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.8.【解答】解:=0.00002=2×10﹣5.故选:D.9.【解答】解:如图所示,n的最小值为3,故选:C.10.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.11.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.12.【解答】解:由已知可知函数y=关于y轴对称,所以点M是原点;故选:A.13.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤x<1故表示﹣的值的点落在②故选:B.14.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.15.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b =4,解出其中一个根是x=﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.16.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;乙的思路与计算都错误,图示情况不是最长;故选:B.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.【解答】解:∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为:﹣3.18.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.19.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.21.【解答】解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=15;当n2﹣1=35时,n2+1=37.故答案为:15;3722.【解答】解:(1)∵P(一次拿到8元球)=,∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为.23.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠PAC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠PAC,∠PCA,∴∠IAC=∠PAC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠PAC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.24.【解答】解:(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600 m甲返回时间为:(t﹣150)s∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.(2)T=t追及+t返回=+=,在甲这次往返队伍的过程中队伍行进的路程为:v×(T﹣150)=v×(﹣﹣150)=400﹣150v;因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为(400﹣150v)m.25.【解答】解:(1)如图1,AP经过圆心O,∵CP与⊙O相切于P,∴∠APC=90°,∵▱ABCD,∴AD∥BC,∴∠PBC=∠DAB∴=tan∠PBC=tan∠DAB=,设CP=4k,BP=3k,由CP2+BP2=BC2,得(4k)2+(3k)2=152,解得k1=﹣3(舍去),k2=3,∴x=BP=3×3=9,故当x=9时,圆心O落在AP上;∵AP是⊙O的直径,∴∠AEP=90°,∴PE⊥AD,∵▱ABCD,∴BC∥AD∴PE⊥BC(2)如图2,过点C作CG⊥AP于G,∵▱ABCD,∴BC∥AD,∴∠CBG=∠DAB∴=tan∠CBG=tan∠DAB=,设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,∴CG=4×3=12,BG=3×3=9,PG=BG﹣BP=9﹣4=5,AP=AB+BP=3+4=7,∴AG=AB+BG=3+9=12∴tan∠CAP===1,∴∠CAP=45°;连接OP,OQ,过点O作OH⊥AP于H,则∠POQ=2∠CAP=2×45°=90°,PH =AP=,在Rt△CPG中,==13,∵CP是⊙O的切线,∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°∴∠OPH=∠PCG∴△OPH∽△PCG∴,即PH×CP=CG×OP,×13=12OP,∴OP=∴劣弧长度==,∵<2π<7∴弦AP的长度>劣弧长度.(3)如图3,⊙O与线段AD只有一个公共点,即圆心O位于直线AB下方,且∠OAD ≥90°,当∠OAD=90°,∠CPM=∠DAB时,此时BP取得最小值,过点C作CM⊥AB于M,∵∠DAB=∠CBP,∴∠CPM=∠CBP∴CB=CP,∵CM⊥AB∴BP=2BM=2×9=18,∴x≥1826.【解答】解:(1)当x=0吋,y=x﹣b=﹣b,∴B(0,﹣b),∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4.∴L:y=﹣x2+4x,∴L的对称轴x=2,当x=2吋,y=x﹣4=﹣2,∴L的对称轴与a的交点为(2,﹣2 );(2)y=﹣(x﹣)2+,∴L的顶点C()∵点C在l下方,∴C与l的距离b﹣=﹣(b﹣2)2+1≤1,∴点C与1距离的最大值为1;(3)由題意得,即y1+y2=2y3,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0#0,取x0=b﹣,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b﹣)=(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点∴总计4042个点,∵这两段图象交点有2个点重复重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1009个偶数,并且在﹣1和2019.5之间还有整数0,验证后可知0也符合条件,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.。
2019年最新河北省中考数学模拟试题(三)及答案解析
湖南省中考数学模拟试卷(三)一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2的相反数的倒数是()A.B.C.﹣2 D.22.下列计算正确的是()A.a2•a3=a6 B.(x3)2=x6C.3m+2n=5mn D.y3•y3=y3.在坐标平面内,若点P(x﹣2,x+1)在第二象限,则x的取值范围是()A.x>2 B.x<2 C.x>﹣1 D.﹣1<x<24.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为()A.B.C.D.5.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ 的最小值为()A.B.2 C.3 D.26.如图,AB为⊙O的直径,CD为⊙O的弦,∠ABD=53°,则∠BCD为()A.37°B.47°C.45°D.53°7.如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱 D.三棱柱8.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A.B.C. D.二、填空题(本大题共6小题,每小题3分,共18分)9.温家宝总理强调,“十二五”期间,将新建保障性住房36000000套,用于解决中低收入和新参加工作的大学生住房的需求.把36000000用科学记数法表示应是.10.在函数y=中,自变量x的取值范围是.11.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为.12.如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是cm3.13.如图,AB是⊙O的弦,OC⊥AB于点C,若AB=8cm,OC=3cm,则⊙O的半径为cm.14.如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n= .(用含n的式子表示)三、解答题(本大题共10小题,共58分,解答时应写出文字说明、证明过程或演算步骤)15.(5分)计算:(﹣2016)0+|﹣2|+()﹣2+3tan30°.16.÷(x﹣),再从1、0、中选一个你所喜欢的数代入求值.17.某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.18.某小学三年级到六年级的全体学生参加“礼仪”知识测试,试题共有10题,每题10分.从中随机抽取了部分学生的成绩进行统计,发现抽测的学生每人至少答对了6题,现将有关数据整理后绘制成如下“年级人数统计图”和尚未全部完成的“成绩情况统计表”.成绩情况统计表(1)测试学生中,成绩为80分的学生人数有名;众数是分;中位数是分;(2)若该小学三年级到六年级共有1800名学生,则可估计出成绩为70分的学生人数约有名.19.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).20.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2m,台阶AC的倾斜角∠ACB为30°,且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).21.如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF=∠BAE.(1)求证:四边形AEFD是平行四边形;(2)若DF=3,DE=4,AD=5,求CD的长度.22.如图,已知AB是⊙O的直径,直线CD与⊙O相切于C点,AC平分∠DAB.(1)求证:AD⊥CD;(2)若AD=2,,求⊙O的半径R的长.23.使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0,可得x=1,我们就说1是函数y=x﹣1的零点.已知y=x2+kx﹣4(k为常数).(1)当k=0时,求该函数的零点;(2)证明:无论k取何值,该函数总有两个零点.24.已知抛物线y=﹣x2+bx+c的图象经过点A(m,0)、B(0,n),其中m、n是方程x2﹣6x+5=0的两个实数根,且m<n.(1)求抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,求C、D点的坐标和△BCD的面积;(3)P是线段OC上一点,过点P作PH⊥x轴,交抛物线于点H,若直线BC把△PCH分成面积相等的两部分,求P点的坐标.参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2的相反数的倒数是()A.B.C.﹣2 D.2【考点】倒数;相反数.【专题】存在型.【分析】先根据相反数的定义求出﹣2的相反数,再根据倒数的定义进行解答即可.【解答】解:∵﹣2<0,∴﹣2的相反数是2;∵2×=1,∴2的相反数是,即﹣2的相反数的倒数是.故选B.【点评】本题考查的是相反数及倒数的定义,熟练掌握相反数及倒数的定义是解答此题的关键.2.下列计算正确的是()A.a2•a3=a6 B.(x3)2=x6C.3m+2n=5mn D.y3•y3=y【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】利用同底数幂的乘法,幂的乘方与合并同类项的知识求解,即可求得答案.注意排除法在解选择题中的应用.【解答】解:A、a2•a3=a5,故本选项错误;B、(x3)2=x6,故本选项正确;C、3m+2n≠5mn,故本选项错误;D、y3•y3=y6,故本选项错误.故选B.【点评】此题考查了同底数幂的乘法,幂的乘方与合并同类项的知识.此题比较简单,注意掌握指数的变化是解此题的关键.3.在坐标平面内,若点P(x﹣2,x+1)在第二象限,则x的取值范围是()A.x>2 B.x<2 C.x>﹣1 D.﹣1<x<2【考点】点的坐标.【分析】根据点的坐标满足第二象限的条件是横坐标<0,纵坐标>0可得到一个关于x的不等式组,求解即可.【解答】解:因为点P(x﹣2,x+1)在第二象限,所以x﹣2<0,x+1>0,解得﹣1<x<2.故选D.【点评】解答此题的关键是熟记平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为()A.B.C.D.【考点】概率公式.【分析】由一个不透明的口袋中装有3个红球和12个黄球,直接利用概率公式求解即可求得答案.【解答】解:∵一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外无其他差别,∴从中随机摸出一个小球,恰好是红球的概率为:=.故选C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ 的最小值为()A.B.2 C.3 D.2【考点】角平分线的性质;垂线段最短.【分析】首先过点P作PB⊥OM于B,由OP平分∠MON,PA⊥ON,PA=3,根据角平分线的性质,即可求得PB的值,又由垂线段最短,可求得PQ的最小值.【解答】解:过点P作PB⊥OM于B,∵OP平分∠MON,PA⊥ON,PA=3,∴PB=PA=3,∴PQ的最小值为3.故选:C.【点评】此题考查了角平分线的性质与垂线段最短的知识.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.6.如图,AB为⊙O的直径,CD为⊙O的弦,∠ABD=53°,则∠BCD为()A.37°B.47°C.45°D.53°【考点】圆周角定理.【分析】连接AC,由AB是直径,可得直角,根据同弧所对的圆周角相等,可得∠ACD的度数,利用两角差可得答案.【解答】解:连接AC,∵AB是圆的直径,∴∠BCA=90°,又∠ACD=∠ABD=53°,∴∠BCD=∠ACB﹣∠ACD=90°﹣53°=37°.故选A.【点评】本题考查了圆周角定理;直径在题目已知中出现时,往往要利用其所对的圆周角是直角这一结论,做题时注意应用,连接AC是正确解答本题的关键.7.如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱 D.三棱柱【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选:D.【点评】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.8.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A.B.C. D.【考点】二次函数图象与系数的关系;反比例函数的图象.【专题】压轴题.【分析】首先观察抛物线y=ax2+bx+c图象,由抛物线的对称轴的位置由其开口方向,即可判定﹣b的正负,由抛物线与x轴的交点个数,即可判定﹣4ac+b2的正负,则可得到一次函数y=﹣bx﹣4ac+b2的图象过第几象限,由当x=1时,y=a+b+c<0,即可得反比例函数y=过第几象限,继而求得答案.【解答】解:∵抛物线y=ax2+bx+c开口向上,∴a>0,∵抛物线y=ax2+bx+c的对称轴在y轴右侧,∴x=﹣>0,∴b<0,∴﹣b>0,∵抛物线y=ax2+bx+c的图象与x轴有两个交点,∴△=b2﹣4ac>0,∴一次函数y=﹣bx﹣4ac+b2的图象过第一、二、三象限;∵由函数图象可知,当x=1时,抛物线y=a+b+c<0,∴反比例函数y=的图象在第二、四象限.故选D.【点评】此题考查了一次函数、反比例函数与二次函数的图象与系数的关系.此题难度适中,解题的关键是注意数形结合思想的应用,注意函数的图象与系数的关系.二、填空题(本大题共6小题,每小题3分,共18分)9.温家宝总理强调,“十二五”期间,将新建保障性住房36000000套,用于解决中低收入和新参加工作的大学生住房的需求.把36000000用科学记数法表示应是 3.6×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:36000000=3.6×107.故答案为:3.6×107.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.在函数y=中,自变量x的取值范围是x≥﹣1且x≠0 .【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+1≥0且x≠0,解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠0.【点评】考查了函数自变量的取值范围,函数自变量的取值范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.11.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为3π.【考点】弧长的计算.【分析】根据弧长公式L=求解.【解答】解:L===3π.故答案为:3π.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式L=.12.如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是18 cm3.【考点】由三视图判断几何体.【分析】首先确定该几何体为立方体,并说出其尺寸,直接计算其体积即可.【解答】解:观察其视图知:该几何体为立方体,且立方体的长为3,宽为2,高为3,故其体积为:3×3×2=18,故答案为:18.【点评】本题考查了由三视图判断几何体,牢记立方体的体积计算方法是解答本题的关键.13.如图,AB是⊙O的弦,OC⊥AB于点C,若AB=8cm,OC=3cm,则⊙O的半径为 5cm.【考点】垂径定理;勾股定理.【分析】根据垂径定理可将AC的长求出,再根据勾股定理可将⊙O的半径求出.【解答】解:由垂径定理OC⊥AB,则AC=BC=AB=4cm在Rt△ACO中,AC=4,OC=3,由勾股定理可得AO==5(cm),即⊙O的半径为5cm.故答案为:5.【点评】本题综合考查了圆的垂径定理与勾股定理.14.如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n= .(用含n的式子表示)【考点】相似三角形的判定与性质.【专题】压轴题;规律型.【分析】由n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,即可求得△B1C1M n的面积,又由B n C n∥B1C1,即可得△B n C n M n∽△B1C1M n,然后利用相似三角形的面积比等于相似比的平方,求得答案.【解答】解:∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,∴S1=×B1C1×B1M1=×1×=,S△B1C1M2=×B1C1×B1M2=×1×=,S△B1C1M3=×B1C1×B1M3=×1×=,S△B1C1M4=×B1C1×B1M4=×1×=,S△B1C1Mn=×B1C1×B1M n=×1×=,∵B n C n∥B1C1,∴△B n C n M n∽△B1C1M n,∴S△BnCnMn:S△B1C1Mn=()2=()2,即S n:=,∴S n=.故答案为:.【点评】此题考查了相似三角形的判定与性质、正方形的性质以及直角三角形面积的公式.此题难度较大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.三、解答题(本大题共10小题,共58分,解答时应写出文字说明、证明过程或演算步骤)15.计算:(﹣2016)0+|﹣2|+()﹣2+3tan30°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用零指数幂的性质以及负整数指数幂的性质、特殊角的三角函数值、绝对值的性质分别化简求出答案.【解答】解:原式=1+2﹣+4+,=7.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.÷(x﹣),再从1、0、中选一个你所喜欢的数代入求值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x的值代入进行计算即可.【解答】解:原式=﹒=,当x=时,原式=+2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.【考点】分式方程的应用.【分析】设每人每小时的绿化面积为x平方米,根据施工时增加了2名工人,结果比计划提前3小时完成任务,列方程求解.【解答】解:设每人每小时的绿化面积为x平方米,根据题意得:﹣=3,解得:x=,经检验x=是原方程的解;答:每人每小时的绿化面积是平方米.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.18.某小学三年级到六年级的全体学生参加“礼仪”知识测试,试题共有10题,每题10分.从中随机抽取了部分学生的成绩进行统计,发现抽测的学生每人至少答对了6题,现将有关数据整理后绘制成如下“年级人数统计图”和尚未全部完成的“成绩情况统计表”.成绩情况统计表(1)测试学生中,成绩为80分的学生人数有36 名;众数是90 分;中位数是90 分;(2)若该小学三年级到六年级共有1800名学生,则可估计出成绩为70分的学生人数约有270名.【考点】众数;用样本估计总体;频数(率)分布表;条形统计图;中位数.【专题】数形结合.【分析】(1)先由直方图得到调查的学生总数,然后计算出各成绩的人数或频率,再根据众数、中位数的定义求解即可.(2)利用成绩为70分的学生所占百分数乘以1800即可.【解答】解:(1)学生总人数=28+30+26++36=120(人),21÷120=0.175,40÷120≈0.333,5÷120≈0.04,0.3×120=36,即成绩为80分的学生人数有36人,120﹣21﹣40﹣36﹣5=18,18÷120=0.15,90出现的次数最多,所以众数为90(分),第60和第61个数都是90分,所以中位数为90分;(2)1800×0.15=270名.估计成绩为70分的学生人数约有270名.故答案为36,18,0.175,0.333,0.15,0.04;36,90,90;270.【点评】本题考查了众数和中位数的知识,属于基础题,解答本题的关键是熟练掌握众数和中位数的定义.19.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)根据题意画出△ABC关于y轴对称的△A1B1C1即可;(2)根据题意画出△ABC绕着点B顺时针旋转90°后得到△A2BC2,线段BC旋转过程中扫过的面积为扇形BCC2的面积,求出即可.【解答】解:(1)如图所示,画出△ABC关于y轴对称的△A1B1C1;(2)如图所示,画出△ABC绕着点B顺时针旋转90°后得到△A2BC2,线段BC旋转过程中所扫过得面积S==.【点评】此题考查了作图﹣旋转变换,对称轴变换,以及扇形面积,作出正确的图形是解本题的关键.20.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2m,台阶AC的倾斜角∠ACB为30°,且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).【考点】解直角三角形的应用-仰角俯角问题.【分析】先根据直角三角形的性质得出AC的长,再由锐角三角函数的定义得出DC的长,进而可得出结论.【解答】解:∵∠B=90°,∠ACB=30°,AB=2m,∴AC=2AB=4.又∵∠DCE=60°,∴∠ACD=90°.∵AF∥BE,∴∠CAF=∠ACB=30°,∴∠DAC=60°.在Rt△ACD中,∵tan∠DAC=,∴DC=.在Rt△DCE中,∵∠DCE=60°,tan∠DCE=,∴DE=4×=6.答:树DE的高度为6米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF=∠BAE.(1)求证:四边形AEFD是平行四边形;(2)若DF=3,DE=4,AD=5,求CD的长度.【考点】平行四边形的判定;矩形的性质.【分析】(1)直接利用矩形的性质结合全等三角形的判定与性质得出BE=CF,进而得出答案;(2)利用勾股定理的逆定理得出∠EDF=90°,进而得出•ED•DF=EF•CD,求出答案即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠B=∠DCF=90°,∵∠BAE=∠CDF,在△ABE和△DCF中,,∴△ABE≌△DCF(ASA),∴BE=CF,∴BC=EF,∵BC=AD,∴EF=AD,又∵EF∥AD,∴四边形AEFD是平行四边形;(2)解:由(1)知:EF=AD=5,在△EFD中,∵DF=3,DE=4,EF=5,∴DE2+DF2=EF2,∴∠EDF=90°,∴•ED•DF=EF•CD,∴CD=.【点评】此题主要考查了矩形的性质以及勾股定理的逆定理,得出BC=EF是解题关键.22.如图,已知AB是⊙O的直径,直线CD与⊙O相切于C点,AC平分∠DAB.(1)求证:AD⊥CD;(2)若AD=2,,求⊙O的半径R的长.【考点】切线的性质;圆周角定理;相似三角形的判定与性质.【专题】证明题.【分析】(1)连接OC,由题意得OC⊥CD.又因为AC平分∠DAB,则∠1=∠2=∠DAB.即可得出AD∥OC,则AD⊥CD;(2)连接BC,则∠ACB=90°,可证明△ADC∽△ACB.则=,从而求得R.【解答】(1)证明:连接OC,∵直线CD与⊙O相切于C点,AB是⊙O的直径,∴OC⊥CD.(1分)又∵AC平分∠DAB,∴∠1=∠2=∠DAB.又∠COB=2∠1=∠DAB,∴AD∥OC,∴AD⊥CD.(4分)(2)解:连接BC,则∠ACB=90°,在△ADC和△ACB中∵∠1=∠2,∠3=∠ACB=90°,(6分)∴△ADC∽△ACB.(7分)∴=(9分)∴R==.(10分)【点评】本题考查了切线的性质、圆周角定理以及相似三角形的判定和性质,是中档题,难度不大.23.使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0,可得x=1,我们就说1是函数y=x﹣1的零点.已知y=x2+kx﹣4(k为常数).(1)当k=0时,求该函数的零点;(2)证明:无论k取何值,该函数总有两个零点.【考点】二次函数图象上点的坐标特征;根的判别式.【专题】计算题.【分析】(1)根据函数的零点的定义,令y=0,解方程即可.(2)令y=0,可得x2+kx﹣4=0.只要证明△=k2﹣4×(﹣4)=k2+16>0即可.【解答】解:(1)当k=0时,y=x2﹣4.令y=0,x2﹣4=0,解得x=2或x=﹣2∴当k=0时,该函数的零点是2和﹣2.(2)证明:因为y=x2+kx﹣4,令y=0,可得x2+kx﹣4=0.∵△=k2﹣4×(﹣4)=k2+16>0,∴无论k取何值,方程x2+kx﹣4=0总有两个不相等的实数根,∴无论k取何值,该函数总有两个零点.【点评】本题考查二次函数图象上点的特征、根的判别式、一元二次方程的解等知识,解题的关键是理解题意,用转化的思想思考问题.24.已知抛物线y=﹣x2+bx+c的图象经过点A(m,0)、B(0,n),其中m、n是方程x2﹣6x+5=0的两个实数根,且m<n.(1)求抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,求C、D点的坐标和△BCD的面积;(3)P是线段OC上一点,过点P作PH⊥x轴,交抛物线于点H,若直线BC把△PCH分成面积相等的两部分,求P点的坐标.【考点】二次函数综合题.【专题】压轴题.【分析】(1)通过解方程可求出m、n的值,也就求出了点A、B的坐标,将它们代入抛物线的解析式中,通过联立方程组即可求得待定系数的值,从而确定该抛物线的解析式.(2)抛物线的解析式中,令y=0可求得C点坐标,利用公式法可求出抛物线顶点D的坐标;由于△BCD的面积无法直接求得,可过D作x轴的垂线,设垂足为E,分别求出△CDE、梯形DEOB、△BCO的面积,那么△CDE、梯形DEOB的面积和减去△BCO的面积,即可得到△BCD的面积.(3)若直线BC平分△PCH的面积,那么直线BC必过PH的中点,因为只有这样平分所得的两个三角形才等底等高,可设出点P的坐标,根据抛物线的解析式可表示出点H的坐标,进而可求得PH中点的坐标,由于PH中点在直线BC上,可将其代入直线BC的解析式中,由此求出点P的坐标.【解答】解:(1)解方程x2﹣6x+5=0,得x1=5,x2=1,由m<n,知m=1,n=5,∴A(1,0),B(0,5),∴即;所求抛物线的解析式为y=﹣x2﹣4x+5.(2)由﹣x2﹣4x+5=0,得x1=﹣5,x2=1,故C的坐标为(﹣5,0),由顶点坐标公式,得D(﹣2,9);过D作DE⊥x轴于E,得E(﹣2,0),∴S△BCD=S△CDE+S梯形OBDE﹣S△OBC==15.(注:延长DB交x轴于F,由S△BCD=S△CFD﹣S△CFB也可求得)(3)设P(a,0),则H(a,﹣a2﹣4a+5);直线BC把△PCH分成面积相等的两部分,须且只须BC等分线段PH,亦即PH的中点,()在直线BC上,易得直线BC方程为:y=x+5;∴.解之得a1=﹣1,a2=﹣5(舍去),故所求P点坐标为(﹣1,0).【点评】此题考查了一元二次方程的解法、二次函数解析式的确定、图形面积的求法、函数图象上点的坐标意义等基础知识,难度不大.。
2019年河北省保定市中考数学三模试卷 含解析
2019年中考数学三模试卷一、选择题1.下列各式错误的是()A.﹣(﹣3)=3B.|2|=|﹣2|C.0>|﹣1|D.﹣2>﹣32.下列计算结果为x7的是()A.x9﹣x2B.x•x6C.x14÷x2D.(x4)33.如图,要修建一条公路,从A村沿北偏东75°方向到B村,从B村沿北偏西25°方向到C村.若要保持公路CE与AB的方向一致,则∠ECB的度数为()A.80°B.90°C.100°D.105°4.若是3﹣m的立方根,则()A.m=3B.m是小于3的实数C.m是大于3的实数D.m可以是任意实数5.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5B.左视图的面积为3C.俯视图的面积为3D.三种视图的面积都是46.设“●”“■”“▲”分别表示不同的物体,如图所示,前两架天平保持平衡,如果要第三架天平也平衡,那么“?”处应放“■”的个数为()A.5B.4C.3D.27.如图点A,B,C在正方形网格中的格点上,每个小正方形的边长为1,则下列关于△ABC边长的说法,正确的是()A.AB,BC长均为有理数,AC长为无理数B.AC长是有理数,AB,BC长均为无理数C.AB长是有理数,AC,BC长均为无理数D.三边长均为无理数8.下列式子运算结果为x+1的是()A.B.1﹣C.D.÷9.某同学以正六边形三个不相邻的顶点为圆心,边长为半径,向外作三段圆弧,设计了如图所示的图案.已知正六边形的边长为1,则该图案外围轮廓的周长为()A.2πB.3πC.4πD.6π10.由下列两个点确定的直线经过原点的是()A.(1,2)和(2,3)B.(﹣2,3)和(4,﹣6)C.(2,3)和(﹣4,6)D.(2,﹣3)和(﹣4,﹣6)11.如图,C、E是直线l两侧的点,以点C为圆心,CE长为半径作圆弧交l于A、B两点;再分别以A,B为圆心,大于AB的长为半径作圆弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥l B.点A,B关于直线CD对称C.CD平分∠ACB D.点C,D关于直线l对称12.若点(x1,y1)、(x2,y2)都是反比例函数y=﹣图象上的点,并且y1<0<y2,则下列结论中正确的是()A.x1>x2B.x1<x2C.y随x的增大而减小D.两点有可能在同一象限13.某工厂六台机床第一天和第二天生产的零件数分别如图1和图2所示,则与第一天相比,这六台机床第二天生产零件数的平均数与方差的变化是()A.平均数变大,方差不变B.平均数变小,方差变大C.平均数不变,方差变小D.平均数不变,方差变大14.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为()A.75m2B.C.48m2D.15.把两个相同的矩形按如图方式叠合起来,重叠部分为图中的阴影部分,已知AD=4,DC=3,则重叠部分的面积为()A.6B.C.D.16.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,则下面说法正确的是()A.1一定不是方程x2+bx+a=0的根B.0一定不是方程x2+bx+a=0的根C.﹣1可能是方程x2+bx+a=0的根D.1和﹣1都是方程x2+bx+a=0的根二、填空题(有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:﹣=.18.一个矩形的两边长分别为a,b,其周长为14,面积是12,则ab2+a2b的值为.19.如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4.①AB的长为;②若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE∥AC时,tan∠BCD的值为.三、解答题(共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.李华同学准备化简:(3x2﹣5x﹣3)﹣(x2+2x□6),算式中“□”是“+,一,×,÷”中的某一种运算符号(1)如果“□”是“÷”,请你化简:(3x2﹣5x﹣3)﹣(x2+2x÷6);(2)当x=1时,(3x2﹣5x﹣3)﹣(x2+2x□6)的结果是﹣2,请你通过计算说明“□”所代表的运算符号.21.某校380名学生参加了这学期的“读书伴我行”活动要求每人在这学期读书4~7本活动结束后随机抽查了20名学生每人的读书量,并分为四种等级,A:4本;B:5本;C:6本;D:7本.将各等级的人数绘制成尚不完整的扇形图(如图1)和条形图(如图2)回答下列问题:(1)补全条形图;这20名学生每人这学期读书量的众数是本,中位数是本;(2)在求这20名学生这学期每人读书量的平均数时,小亮是这样计算的:==5.5(本);小亮的计算是否正确?如果正确估计这380名学生在这学期共读书多少本;如果不正确,请你帮他计算出正确的平均数并估计这380名学生在这学期共读书多少本;(3)若A等级的四名学生中有男生、女生各两名现从中随机选出两名学生写读书感想,请用画树状图的方法求出刚好选中一名男生、一名女生的概率.22.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下我们称使等式a﹣b=ab+1成立的一对有理数“a,b”为共生有理数对”,记为(a,b)(1)通过计算判断数对“﹣2,1”,“4,”是不是“共生有理数对”;(2)若(6,a)是“共生有理数对”,求a的值;(3)若(m,n)是“共生有理数对”,则“﹣n,﹣m”“共生有理数对”(填“是”或“不是”),并说明理由;(4)如果(m,n)是“共生有理数对”(其中n≠1),直接用含n的代数式表示m.23.如图1,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,连接BD,CE将△ADE绕点A旋转,BD,CE也随之运动(1)求证:BD=CE;(2)在△ADE绕点A旋转过程中,当AE∥BC时,求∠DAC的度数;(3)如图2,当点D恰好是△ABC的外心时,连接DC,判断四边形ADCE的形状,并说明理由.24.甲、乙两车沿相同路线从A城出发前往B城已知A、B两城之间的距离是300km,甲车8:30出发,速度为60km/h;乙车9:30出发,速度为100km/h设甲、乙两车离开A 城的距离分别为y1,y2(单位km),甲车行驶x(h)(1)分别写出y1,y2与x之间的函数关系式,并直接写出x的取值范围;(2)当甲车出发1.5小时时,求甲车与乙车之间的距离;(3)在乙车行驶过程中;①求乙车没有超过甲车时x的取值范围;②直接写出甲车与乙车之间的距离是40km时x的值.25.如图,在矩形ABCD中,AB=4,BC=3,点M是AB边上一点,且∠CMB=45°.点Q是直线AB上一点且在点B的右侧,BQ=4,点P从点Q出发,沿射线QA方向以每秒1个单位长度的速度运动设运动时间为t秒以P为圆心,PC为半径作半圆P;交直线AB分别于点G,H(点G在H的左侧).(1)当t=3秒时,PC的长等于,t=秒时,半圆P与AD相切;(2)当点P与点B重合时,求半圆P被矩形ABCD的对角线AC所截得的弦长;(3)若∠MCP=15°,求扇形HPC的面积(参考数据:sin37°=,sin53°=,tan37°=);26.已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴;(2)当L经过点(4,﹣7)时,求此时L的表达式及其顶点坐标;(3)横,纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有5个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.参考答案一、选择题(共16个小题,共42分.1~10小题各3分;11~16小题各2分在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各式错误的是()A.﹣(﹣3)=3B.|2|=|﹣2|C.0>|﹣1|D.﹣2>﹣3【分析】根据正数大于零,零大于负数和绝对值、相反数的概念可得答案.解:A、﹣(﹣3)=3,正确;B、|2|=|﹣2|,正确;C、0<|﹣1|,错误;D、﹣2>﹣3,正确;故选:C.2.下列计算结果为x7的是()A.x9﹣x2B.x•x6C.x14÷x2D.(x4)3【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.解:A、x9﹣x2,无法计算,故此选项错误;B、x•x6=x7,故此选项正确;C、x14÷x2=x12,故此选项错误;D、(x4)3=x12,故此选项错误;故选:B.3.如图,要修建一条公路,从A村沿北偏东75°方向到B村,从B村沿北偏西25°方向到C村.若要保持公路CE与AB的方向一致,则∠ECB的度数为()A.80°B.90°C.100°D.105°【分析】根据题意得出∠FBD的度数以及∠FBC的度数,进而得出答案.解:由题意可得:AN∥FB,EC∥BD,故∠NAB=∠FBD=75°,∵∠CBF=25°,∴∠CBD=100°,则∠ECB=180°﹣100°=80°.故选:A.4.若是3﹣m的立方根,则()A.m=3B.m是小于3的实数C.m是大于3的实数D.m可以是任意实数【分析】依据立方根的定义回答即可.解:∵是3﹣m的立方根∴3﹣m为任意实数∴m可以是任意实数故选:D.5.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5B.左视图的面积为3C.俯视图的面积为3D.三种视图的面积都是4【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,比较即可.解:A、从正面看,可以看到4个正方形,面积为4,故A选项错误;B、从左面看,可以看到3个正方形,面积为3,故B选项正确;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、三种视图的面积不相同,故D选项错误.故选:B.6.设“●”“■”“▲”分别表示不同的物体,如图所示,前两架天平保持平衡,如果要第三架天平也平衡,那么“?”处应放“■”的个数为()A.5B.4C.3D.2【分析】设“●”“■”“▲”分别为x、y、z,由图列出方程组解答即可解决问题.解:设“●”“■”“▲”分别为x、y、z,由图(1)(2)可知,,解得x=2y,z=3y,所以x+z=2y+3y=5y,即“■”的个数为5.故选:A.7.如图点A,B,C在正方形网格中的格点上,每个小正方形的边长为1,则下列关于△ABC边长的说法,正确的是()A.AB,BC长均为有理数,AC长为无理数B.AC长是有理数,AB,BC长均为无理数C.AB长是有理数,AC,BC长均为无理数D.三边长均为无理数【分析】根据勾股定理求出三边的长度,再判断即可.解:由勾股定理得:AC==5,是有理数,不是无理数;BC==,是无理数;AB==,是无理数,即网格上的△ABC三边中,AC长是有理数,AB,BC长均为无理数,故选:B.8.下列式子运算结果为x+1的是()A.B.1﹣C.D.÷【分析】对各个选项中的式子进行化简即可解答本题.解:∵=x﹣1,故选项A不符合题意,∵,故选项B不符合题意,∵,故选项C符合题意,∵=,故选项D不符合要求,故选:C.9.某同学以正六边形三个不相邻的顶点为圆心,边长为半径,向外作三段圆弧,设计了如图所示的图案.已知正六边形的边长为1,则该图案外围轮廓的周长为()A.2πB.3πC.4πD.6π【分析】根据多边形的内角和公式得到正六边形的内角==120°,根据弧长公式即可得到结论.解:正六边形的内角==120°,∵正六边形的边长为1,∴该图案外围轮廓的周长=3×=4π,故选:C.10.由下列两个点确定的直线经过原点的是()A.(1,2)和(2,3)B.(﹣2,3)和(4,﹣6)C.(2,3)和(﹣4,6)D.(2,﹣3)和(﹣4,﹣6)【分析】设函数的解析式为y=kx,求出k=,再逐个判断即可.解:∵经过原点的直线是正比例函数,∴设解析式为y=kx,即k=,A、≠,即过点(1,2)和(2,3)的直线不是正比例函数,即不经过原点,故本选项不符合题意;B、=,即过点(﹣2,3)和(4,﹣6)的直线是正比例函数,即经过原点,故本选项符合题意;C、≠,即过点(2,3)和(﹣4,6)的直线不是正比例函数,即不经过原点,故本选项不符合题意;D、≠,即过点(2,﹣3)和(﹣4,﹣6)的直线不是正比例函数,即不经过原点,故本选项不符合题意;故选:B.11.如图,C、E是直线l两侧的点,以点C为圆心,CE长为半径作圆弧交l于A、B两点;再分别以A,B为圆心,大于AB的长为半径作圆弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥l B.点A,B关于直线CD对称C.CD平分∠ACB D.点C,D关于直线l对称【分析】利用基本作图可对A进行判断;利用CD垂直平分AB可对B、D进行判断;利用AC与AD不一定相等可对C进行判断.解:由作法得CD垂直平分AB,所以A、B选项正确;因为CD垂直平分AB,所以CA=CB,所以CD平分∠ACB,所以C选项正确;因为AD不一定等于AC,所以D选项错误.故选:D.12.若点(x1,y1)、(x2,y2)都是反比例函数y=﹣图象上的点,并且y1<0<y2,则下列结论中正确的是()A.x1>x2B.x1<x2C.y随x的增大而减小D.两点有可能在同一象限【分析】直接利用反比例函数的增减性得出两点分布的象限,进而得出y1<0<y2时,对应x的值大小.解:∵点(x1,y1)、(x2,y2)都是反比例函数y=﹣图象上的点,并且y1<0<y2,∴图象分布在第二、四象限,每个象限内y随x的增大而增大,第二象限内所有点对应y值都是正值,第四象限内所有点对应y值都是负值,∴点(x1,y1)在第四象限,(x2,y2)在第二象限,∴x1>x2.故选:A.13.某工厂六台机床第一天和第二天生产的零件数分别如图1和图2所示,则与第一天相比,这六台机床第二天生产零件数的平均数与方差的变化是()A.平均数变大,方差不变B.平均数变小,方差变大C.平均数不变,方差变小D.平均数不变,方差变大【分析】根据统计图给出的数据得出平均数相等,而第二天的方差大于第一天的方差,从而得出方差变大.解:根据统计图可知,第一天的平均数是m,第二天的平均数还是m,所以平均数不变,但方差变大;故选:D.14.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为()A.75m2B.C.48m2D.【分析】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,表示出总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75即可求得面积的最值.解:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米,故选:A.15.把两个相同的矩形按如图方式叠合起来,重叠部分为图中的阴影部分,已知AD=4,DC=3,则重叠部分的面积为()A.6B.C.D.【分析】根据勾股定理求出AC,继而求出CE,易证得△CEF∽△CAB,根据相似三角形的相似比等于对应高之比求出,求出S四边形ABEF=S△ABC,代入求出即可.解:∵在矩形ABCD中,AD=4,DC=3,∴在Rt△ADC中,AC==5,∴CF=AC﹣AF=5﹣4=1,由矩形的性质得:∠CFE=∠CBA=90°,∵∠FCE=∠CAB,∴△CEF∽△CAB,∴=()2=,∴S四边形ABEF=S△ABC=××3×4=,故选:D.16.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,则下面说法正确的是()A.1一定不是方程x2+bx+a=0的根B.0一定不是方程x2+bx+a=0的根C.﹣1可能是方程x2+bx+a=0的根D.1和﹣1都是方程x2+bx+a=0的根【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:C.二、填空题(有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:﹣=.【分析】直接利用有理数的加减运算法则计算得出答案.解:﹣+=﹣+=.故答案:.18.一个矩形的两边长分别为a,b,其周长为14,面积是12,则ab2+a2b的值为84.【分析】直接利用矩形面积求法以及矩形周长求法得出ab,a+b的值,再利用提取公因式法分解因式得出答案.解:∵一个矩形的两边长分别为a,b,其周长为14,面积是12,∴ab=12,a+b=7,ab2+a2b=ab(b+a)=12×7=84.故答案为:84.19.如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4.①AB的长为7;②若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE∥AC时,tan∠BCD的值为.【分析】①如图作AM⊥BC于M.在Rt△ABM中,由∠AMB=90°,∠B=45°,推出BM=AM,AB=AM,设AM=BM=x,在Rt△AMC中,根据AC2=AM2+CM2,可得方程52=x2+(4﹣x)2,求出x即可解决问题.②如图作FN⊥BC于N.由△ACF∽△ABC,得到AC2=AF•AB,推出AF=,BF =AB﹣AF=,求出FN、CN,根据tan∠BCD=计算即可.解:①如图作AM⊥BC于M.在Rt△ABM中,∵∠AMB=90°,∠B=45°,∴BM=AM,AB=AM,设AM=BM=x,在Rt△AMC中,∵AC2=AM2+CM2,∴52=x2+(4﹣x)2,解得x=或(舍弃),∴AB=x=7,故答案为7.②如图作FN⊥BC于N.∵DE∥AC,∴∠ACF=∠D=∠B,∵∠CAF=∠CAB,∴△ACF∽△ABC,∴AC2=AF•AB,∴AF=,∴BF=AB﹣AF=7﹣=,∴BN=FN=,∴CN=BC﹣BN=4﹣=,∴tan∠BCD===,故答案为.三、解答题(共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.李华同学准备化简:(3x2﹣5x﹣3)﹣(x2+2x□6),算式中“□”是“+,一,×,÷”中的某一种运算符号(1)如果“□”是“÷”,请你化简:(3x2﹣5x﹣3)﹣(x2+2x÷6);(2)当x=1时,(3x2﹣5x﹣3)﹣(x2+2x□6)的结果是﹣2,请你通过计算说明“□”所代表的运算符号.【分析】(1)原式去括号合并即可得到结果;(2)“□”所代表的运算符号是“﹣”,验证即可.解:(1)原式=(3x2﹣5x﹣3)﹣(x2+x)=3x2﹣5x﹣3﹣x2﹣x=2x2﹣x﹣3;(2)“□”所代表的运算符号是“﹣”,当x=1时,原式=(3﹣5﹣3)﹣(1+2□6)=﹣2,整理得:﹣8﹣□6=﹣2,即□处应为“﹣”.21.某校380名学生参加了这学期的“读书伴我行”活动要求每人在这学期读书4~7本活动结束后随机抽查了20名学生每人的读书量,并分为四种等级,A:4本;B:5本;C:6本;D:7本.将各等级的人数绘制成尚不完整的扇形图(如图1)和条形图(如图2)回答下列问题:(1)补全条形图;这20名学生每人这学期读书量的众数是6本,中位数是 5.5本;(2)在求这20名学生这学期每人读书量的平均数时,小亮是这样计算的:==5.5(本);小亮的计算是否正确?如果正确估计这380名学生在这学期共读书多少本;如果不正确,请你帮他计算出正确的平均数并估计这380名学生在这学期共读书多少本;(3)若A等级的四名学生中有男生、女生各两名现从中随机选出两名学生写读书感想,请用画树状图的方法求出刚好选中一名男生、一名女生的概率.【分析】(1)求出等级C的人数,补全统计图;由众数和中位数的定义即可得出结果;(2)由加权平均数求出正确的平均数,用总人数乘以平均数即可;(3)根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.解:(1)20×40%=8,补全条形图如图2所示;这20名学生每人这学期读书量的众数是6本,中位数是=5.5(本);故答案为:6,5.5;(2)小亮的计算不正确;正确的平均数为=5.4(本),5.4×380=2052(本);即估计这380名学生在这学期共读书2052本;(3)画树状图如图3所示:∵共有12种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,∴所选两名学生刚好是一名女生和一名男生的概率为:=.22.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下我们称使等式a﹣b=ab+1成立的一对有理数“a,b”为共生有理数对”,记为(a,b)(1)通过计算判断数对“﹣2,1”,“4,”是不是“共生有理数对”;(2)若(6,a)是“共生有理数对”,求a的值;(3)若(m,n)是“共生有理数对”,则“﹣n,﹣m”是“共生有理数对”(填“是”或“不是”),并说明理由;(4)如果(m,n)是“共生有理数对”(其中n≠1),直接用含n的代数式表示m.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可判断;(4)根据“共生有理数对”的定义即可解决问题.解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是共生有理数对;∵4﹣=,,∴(4,)是共生有理数对;(2)由题意得:6﹣a=6a+1,解得a=;(3)是.理由:﹣n﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是共生有理数对,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是共生有理数对;故答案为:是;(4)∵(m,n)是共生有理数对,∴m﹣n=mn+1,即mn﹣m=﹣(n+1),∴(n﹣1)m=﹣(n+1),∴.23.如图1,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,连接BD,CE将△ADE绕点A旋转,BD,CE也随之运动(1)求证:BD=CE;(2)在△ADE绕点A旋转过程中,当AE∥BC时,求∠DAC的度数;(3)如图2,当点D恰好是△ABC的外心时,连接DC,判断四边形ADCE的形状,并说明理由.【分析】(1)由∠BAC=∠DAE可得出∠BAD=∠CAE,结合AB=AC,AD=AE即可证出△BAD≌△CAE(SAS),利用全等三角形的性质即可证出BD=CE;(2)当点E在点A的右侧时,由等腰三角形的性质及三角形内角和定理可求出∠ABC 的度数,由AE∥BC利用“两直线平行,同旁内角互补”可求出∠BAE的度数,结合∠CAD=∠BAE﹣∠BAC﹣∠DAE即可求出∠DAC的度数;当点E在点A的左侧时,由等腰三角形的性质及三角形内角和定理可求出∠ABC的度数,由AE∥BC利用“两直线平行,内错角相等”可求出∠BAE的度数,结合∠CAD=∠BAC+∠BAE+∠DAE即可求出∠DAC的度数;(3)四边形ADCE为菱形,由外心的定义可得出AD=BD=CD,同(1)可得出BD=CE,结合AD=AE可得出AD=AE=CD=CE,进而可证出四边形ADCE为菱形.【解答】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠BAD=∠CAE.在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE.(2)解:当点E在点A的右侧时,如图1所示.∵AB=AC,∠BAC=40°,∴∠ABC=(180°﹣∠BAC)=70°.∵AE∥BC,∴∠BAE=180°﹣∠ABC=110°,∴∠CAD=∠BAE﹣∠BAC﹣∠DAE=30°.当点E在点A的左侧时,如图3所示.∵AB=AC,∠BAC=40°,∴∠ABC=(180°﹣∠BAC)=70°.∵AE∥BC,∴∠BAE=∠ABC=70°,∴∠CAD=∠BAC+∠BAE+∠DAE=150°.∴当AE∥BC时,求∠DAC的度数为30°或150°.(3)解:四边形ADCE为菱形,理由如下:∵点D为△ABC的外心,∴AD=BD=CD.同(1)可得出△BAD≌△CAE(SAS),∴BD=CE.又∵AD=AE,∴AD=AE=CD=CE,∴四边形ADCE为菱形.24.甲、乙两车沿相同路线从A城出发前往B城已知A、B两城之间的距离是300km,甲车8:30出发,速度为60km/h;乙车9:30出发,速度为100km/h设甲、乙两车离开A 城的距离分别为y1,y2(单位km),甲车行驶x(h)(1)分别写出y1,y2与x之间的函数关系式,并直接写出x的取值范围;(2)当甲车出发1.5小时时,求甲车与乙车之间的距离;(3)在乙车行驶过程中;①求乙车没有超过甲车时x的取值范围;②直接写出甲车与乙车之间的距离是40km时x的值.【分析】(1)根据“路程、速度、时间”之间的关系解答即可;(2)根据两车路程差解答即可;(3)①根据题意列不等式解答即可;②根据题意分三情况列方程解答即可.解:(1)根据题意得:y1=60x(0≤x≤5);y2=100(x﹣1)=100x﹣100(0≤x≤4);(2)60×1.5﹣100×0.5=40(千米);(3)①根据题意得:0≤100x﹣100≤60x,解得0≤,∴乙车没有超过甲车时x的取值范围为0≤x≤;②根据题意得:60x﹣(100x﹣100)=40或100x﹣100﹣60x=40或60x=300﹣40,解得x=1.5或3.5或.答:甲车与乙车之间的距离是40km时x的值为1.5或3.5或.25.如图,在矩形ABCD中,AB=4,BC=3,点M是AB边上一点,且∠CMB=45°.点Q是直线AB上一点且在点B的右侧,BQ=4,点P从点Q出发,沿射线QA方向以每秒1个单位长度的速度运动设运动时间为t秒以P为圆心,PC为半径作半圆P;交直线AB分别于点G,H(点G在H的左侧).(1)当t=3秒时,PC的长等于,t=秒时,半圆P与AD相切;(2)当点P与点B重合时,求半圆P被矩形ABCD的对角线AC所截得的弦长;(3)若∠MCP=15°,求扇形HPC的面积(参考数据:sin37°=,sin53°=,tan37°=);【分析】(1)由点P的运动速度可找出t=3秒时PQ的长,进而可得出BP的长,在Rt△BCP中,利用勾股定理可求出PC的长;设当半圆P与AD相切时,BP=x,则PC =PA=4﹣x,利用勾股定理可得出关于x的方程,解之即可得出x的值,再结合PQ=BQ+BP即可求出此时t的值;(2)过点B作BE⊥AC于点E,利用面积法可求出BE的长,在Rt△BCE中利用勾股定理可求出CE的长,再利用垂径定理可求出半圆P被矩形ABCD的对角线AC所截得的弦长;(3)分点P在点M的左侧和点P在点M的右侧两种情况考虑:①当点P在点M的右侧时,∠CPB=60°,通过解直角三角形可求出PC的长,再利用扇形的面积公式即可求出扇形HPC的面积;②当点P在点M的左侧时,∠CPB=30°,通过解直角三角形可求出PC的长,再利用扇形的面积公式即可求出扇形HPC的面积.综上,此题得解.解:(1)当t=3秒时,PQ=3,∴BP=BQ﹣PQ=1.在Rt△BCP中,BP=1,BC=3,∴PC==.设当半圆P与AD相切时,BP=x,则PC=PA=4﹣x,∴x2+32=(4﹣x)2,解得:x=,∴PQ=4+=,∴当t=时,半圆P与AD相切.故答案为:;.(2)过点B作BE⊥AC于点E,如图2所示.∵AB=4,BC=3,∴AC==5,∴BE==.在Rt△BCE中,BC=3,BE=,∴CE==,∴半圆P被矩形ABCD的对角线AC所截得的弦长为×2=.(3)分两种情况考虑,如图3所示:①当点P在点M的右侧时,∵∠CMB=45°,∠MCP=15°,∴∠MCB=45°,∠PCB=30°,∴∠CPB=60°,CP===2,∴S扇形HPC=πPC2=2π;②当点P在点M的左侧时,∵∠MCB=45°,∠MCP=15°,∴∠PCB=∠MCB+∠MCP=60°,∴∠CPB=30°,CP===6,∴S扇形HPC=πPC2=3π.综上所述:当∠MCP=15°时,扇形HPC的面积为2π或3π.26.已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴;(2)当L经过点(4,﹣7)时,求此时L的表达式及其顶点坐标;(3)横,纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有5个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.【分析】(1)点P(2,﹣3)代入抛物线上,则k=﹣3﹣a;抛物线L的对称轴为直线x=﹣=1,即x=1;(2)点(4,﹣7),代入抛物线上,则有k=﹣3﹣a,解得a=﹣,k=﹣,即可求解;(3)顶点坐标(1,﹣a﹣3),2<﹣a﹣3≤3时在指定区域内有5个整数点;(4)当a>0时,t≥3或t+1≤﹣1;当a<0时,t+1≤3或t≥﹣1.解:(1)∵点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数且a≠0)上,∴﹣3=4a﹣4a+a+k,∴k=﹣3﹣a;抛物线L的对称轴为直线x=﹣=1,即x=1;(2)∵L经过点(4,﹣7),∴16a﹣8a+a+k=﹣7,∵k=﹣3﹣a,∴8a=﹣4,解得a=﹣,k=﹣,∴L的表达式为y=﹣x2+x﹣3;∵y=﹣x2+x﹣4=﹣(x﹣1)2﹣,∴顶点坐标为(1,﹣);(3)顶点坐标(1,﹣a﹣3),∵在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有5个整点,∴2<﹣a﹣3≤3,∴﹣6≤a<﹣5;(4)当a>0时,t≥3或t+1≤﹣1,∴t≥3或t≤﹣2;代入检验,此时有不符合条件的点使y1≥y2,故此情况舍去;当a<0时,t+1≤3且t≥﹣1,∴﹣1≤t≤2;综上所述,﹣1≤t≤2;。
2019年河北省中考数学试卷含答案解析(word版)
2019年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2019年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
(完整版)2019年河北省中考数学试卷及答案
24.(10 分)长为 300m 的春游队伍,以 v(m/s)的速度向东行进,如图 1 和图 2,当队 伍排尾行进到位置 O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲 的往返速度均为 2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置 O 开始行进的时间为 t(s),排头与 O 的距离为 S 头(m).
8
(完整版)2019 年河北省中考数学试卷及答案(word 版可编辑修改)
又拿 先拿
23.(9 分)如图,△ABC 和△ADE 中,AB=AD=6,BC=DE,∠B=∠D=30°,边 AD 与边 BC 交于点 P(不与点 B,C 重合),点 B,E 在 AD 异侧,I 为△APC 的内心. (1)求证:∠BAD=∠CAE; (2)设 AP=x,请用含 x 的式子表示 PD,并求 PD 的最大值; (3)当 AB⊥AC 时,∠AIC 的取值范围为 m°<∠AIC<n°,分别直接写出 m,n 的值.
A.点 M
B.点 N
C.点 P
D.点 Q
13.(2 分)如图,若 x 为正整数,则表示
﹣ 的值的点落在( )
A.段①
B.段②
C.段③
D.段④
14.(2 分)图 2 是图 1 中长方体的三视图,若用 S 表示面积,S 主=x2+2x,S 左=x2+x, 则 S 俯=( )
2019年河北省中考数学一模试卷(含解析)
2019年河北省中考数学一模试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在数轴上,小手遮挡住的点表示的数可能是()A.﹣1.5B.﹣2.5C.﹣0.5D.0.52.(3分)如图是一个中心对称图形,则此图形的对称中心为()A.A点B.B点C.C点D.D点3.(3分)若100000﹣1用科学记数法表示成a×10n,则n的值是()A.5B.6C.﹣5D.﹣64.(3分)如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C 的度数为()A.99°B.109°C.119°D.129°5.(3分)将2001×1999变形正确的是()A.20002﹣1B.20002+1C.20002+2×2000+1D.20002﹣2×2000+16.(3分)如图,在菱形ABCD中,O、F分别是AC、BC的中点,若OF=3,则AD的长为()A.3B.6C.9D.127.(3分)计算时,第一步变形正确的是()A.1+x2B.1﹣x2C.D.8.(3分)若2<<3,则a的值可以是()A.﹣7B.C.D.129.(3分)如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=,则△ACE的面积为()A.1B.C.2D.210.(3分)图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:(1)弧①是以O为圆心,任意长为半径所画的弧;(2)弧②是以P为圆心,任意长为半径所画的弧;(3)弧③是以A为圆心,任意长为半径所画的弧;(4)弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4B.3C.2D.111.(3分)若55+55+55+55+55=25n,则n的值为()A.10B.6C.5D.312.(2分)在图上剪去一个图形,剩下的图形可以折叠成一个长方体,则剪去的这个图形是()A.①B.②C.③D.④13.(2分)如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()A.B.C.D.14.(2分)如图,点O是△ABC的内心,M、N是AC上的点,且CM=CB,AN=AB,若∠B=100°,则∠MON=()A.60°B.70°C.80°D.100°15.(2分)如图所示的四边形,与选项中的一个四边形相似,这个四边形是()A.B.C.D.16.(2分)一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.(3分)的立方根是.18.(3分)若a2+3=2b,则a3﹣2ab+3a=.19.(6分)有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是.有n个长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为.三、解答题(本大题共7个小题,共66分.解答应写出文字说明、证明过程或验算步骤)20.(8分)李宁准备完成题目;解二元一次方程组,发现系数“□”印刷不清楚.(1)他把“□”猜成3,请你解二元一次方程组;(2)张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?21.(9分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.(1)这组成绩的众数是;(2)求这组成绩的方差;(3)若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.22.(9分)如下表所示,有A、B两组数:(1)A组第4个数是;(2)用含n的代数式表示B组第n个数是,并简述理由;(3)在这两组数中,是否存在同一列上的两个数相等,请说明.23.(9分)如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC 上作等速运动,到达C点、B点后运动停止.(1)求证:△ABE≌△ACD;(2)若AB=BE,求∠DAE的度数;拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.24.(10分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.(1)求y与x之间的函数关系式;(2)设种植的总成本为w元,①求w与x之间的函数关系式;②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.25.(10分)如图1,已知点A、O在直线l上,且AO=6,OD⊥l于O点,且OD=6,以OD为直径在OD的左侧作半圆E,AB⊥AC于A,且∠CAO=60°.(1)若半圆E上有一点F,则AF的最大值为;(2)向右沿直线l平移∠BAC得到∠B'A'C';①如图2,若A'C'截半圆E的的长为π,求∠A'GO的度数;②当半圆E与∠B'A'C'的边相切时,求平移距离.26.(10分)如图,在平面直角坐标系中,抛物线y=x(x﹣b)﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.(1)若点B与点C关于直线x=1对称,求b的值;(2)若OB=OA,求△BCP的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h有最大值或最小值,直接写出这个最大值或最小值.2019年河北省中考数学一模试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在数轴上,小手遮挡住的点表示的数可能是()A.﹣1.5B.﹣2.5C.﹣0.5D.0.5【分析】设小手盖住的点表示的数为x,则﹣1<x<0,再根据每个选项中实数的范围进行判断即可.【解答】解:设小手盖住的点表示的数为x,则﹣1<x<0,则表示的数可能是﹣0.5.故选:C.2.(3分)如图是一个中心对称图形,则此图形的对称中心为()A.A点B.B点C.C点D.D点【分析】直接利用中心对称图形的性质得出对称中心.【解答】解:如图是一个中心对称图形,则此图形的对称中心为:点B.故选:B.3.(3分)若100000﹣1用科学记数法表示成a×10n,则n的值是()A.5B.6C.﹣5D.﹣6【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n是负数.【解答】解:100000﹣1=1.0×10﹣5.即n=﹣5.故选:C.4.(3分)如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C 的度数为()A.99°B.109°C.119°D.129°【分析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF 与∠BCF的度数,∠ACF与∠BCF的和即为∠C的度数.【解答】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选:B.5.(3分)将2001×1999变形正确的是()A.20002﹣1B.20002+1C.20002+2×2000+1D.20002﹣2×2000+1【分析】原式变形后,利用平方差公式计算即可求出值.【解答】解:原式=(2000+1)×(2000﹣1)=20002﹣1,故选:A.6.(3分)如图,在菱形ABCD中,O、F分别是AC、BC的中点,若OF=3,则AD的长为()A.3B.6C.9D.12【分析】根据三角形的中位线定理得出AB=2OF,进而利用菱形的性质解答即可.【解答】解:∵O、F分别是AC、BC的中点,∴AB=2OF=6,∵菱形ABCD,∴AD=AB=6,故选:B.7.(3分)计算时,第一步变形正确的是()A.1+x2B.1﹣x2C.D.【分析】根据分式的运算法则即可求出答案.【解答】解:原式===x+1,故选:D.8.(3分)若2<<3,则a的值可以是()A.﹣7B.C.D.12【分析】根据已知条件得到4<a﹣2<9,由此求得a的取值范围,易得符合条件的选项.【解答】解:∵2<<3,∴4<a﹣2<9,∴6<a<11.又a﹣2≥0,即a≥2.∴a的取值范围是6<a<11.观察选项,只有选项C符合题意.故选:C.9.(3分)如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=,则△ACE的面积为()A.1B.C.2D.2【分析】由折叠的性质可得CD=CF=,DE=EF,AC=2,由三角形面积公式可求EF的长,即可求△ACE的面积.【解答】解:∵点F是AC的中点,∴AF=CF=AC,∵将△CDE沿CE折叠到△CFE,∴CD=CF=,DE=EF,∴AC=2,在Rt△ACD中,AD==3∵S△ADC=S△AEC+S△CDE,∴×AD×CD=×AC×EF+×CD×DE∴3×=2EF+DE∴DE=EF=1∴S△AEC=×2×1=故选:B.10.(3分)图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:(1)弧①是以O为圆心,任意长为半径所画的弧;(2)弧②是以P为圆心,任意长为半径所画的弧;(3)弧③是以A为圆心,任意长为半径所画的弧;(4)弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4B.3C.2D.1【分析】根据基本作图的方法即可得到结论.【解答】解:(1)弧①是以O为圆心,任意长为半径所画的弧;正确;(2)弧②是以P为圆心,不是任意长为半径所画的弧;错误;(3)弧③是以A为圆心,不是任意长为半径所画的弧;错误;(4)弧④是以P为圆心,任意长为半径所画的弧;正确;故选:C.11.(3分)若55+55+55+55+55=25n,则n的值为()A.10B.6C.5D.3【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【解答】解:∵55+55+55+55+55=25n,∴55×5=,则56=52n,解得:n=3.故选:D.12.(2分)在图上剪去一个图形,剩下的图形可以折叠成一个长方体,则剪去的这个图形是()A.①B.②C.③D.④【分析】根据拼成长方体的4种情况可判断.【解答】解:拼成长方体的4种情况1.“一•四•一”,中间一行4个作侧面,两边各1个分别作上下底面,•共有6种.2.“二•三•一”(或一•三•二)型,中间3个作侧面,上(或下)边2•个那行,相连的长方形作底面,不相连的再下折作另一个侧面,共3种.3.“二•二•二”型,成阶梯状.4.“三•三”型,两行只能有1个长方形相连.因此剪去①,剩下的图形可以折叠成一个长方体.故选:A.13.(2分)如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()A.B.C.D.【分析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.【解答】解:由题意可得,y==,当x=40时,y=6,故选:C.14.(2分)如图,点O是△ABC的内心,M、N是AC上的点,且CM=CB,AN=AB,若∠B=100°,则∠MON=()A.60°B.70°C.80°D.100°【分析】连接OB,OC.首先证明OB=OB=OM,想办法求出∠MBN即可解决问题.【解答】解:连接OB,OC.∵CB=CM,∠OCB=∠OCM,CO=CO,∴△OCB≌△OCM(SAS),∴OB=OM,同法可知OB=ON,∵∠ABC=100°,∴∠A+∠ACB=80°,∵CB=CM,AN=AN,∴∠CMB=∠CBM,∠ANB=∠ABN,∴∠CMB+∠ANB=(360°﹣80°)=140°,∴∠MBN=40°,∵OM=OB=ON,∴∠OBN=∠ONB,∠OBM=∠OMB,∴∠MON=∠ONB+∠OBN+∠OBM+∠OMB=80°,故选:C.15.(2分)如图所示的四边形,与选项中的一个四边形相似,这个四边形是()A.B.C.D.【分析】根据勾股定理求出四边形ABCD的四条边之比,根据相似多边形的性质判断即可.【解答】解:作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选:D.16.(2分)一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确【分析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【解答】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N(﹣1,2),Q(2,7)为G2的两个临界点,易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k=0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x轴,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=,∴PM=故③正确.综上,故选:D.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.(3分)的立方根是﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵(﹣)3=﹣,∴﹣的立方根根是:﹣.故答案是:﹣.18.(3分)若a2+3=2b,则a3﹣2ab+3a=0.【分析】利用提公因式法将多项式分解为a(a2+3)﹣2ab,将a2+3=2b代入可求出其值.【解答】解:∵a2+3=2b,∴a3﹣2ab+3a=a(a2+3)﹣2ab=2ab﹣2ab=0,故答案为:0.19.(6分)有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是7.有n个长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为.【分析】有四个边长均为1的正六边形,采用方式1拼接,利用4n+2的规律计算;把六个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多.【解答】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×4+2=18;按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n的最大值为7.故答案为:18,7.三、解答题(本大题共7个小题,共66分.解答应写出文字说明、证明过程或验算步骤)20.(8分)李宁准备完成题目;解二元一次方程组,发现系数“□”印刷不清楚.(1)他把“□”猜成3,请你解二元一次方程组;(2)张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?【分析】(1)②+①得出4x=﹣4,求出x,把x=﹣1代入①求出y即可;(2)把x=﹣y代入x﹣y=4求出y,再求出x,最后求出答案即可.【解答】解:(1)②+①得:4x=﹣4,解得:x=﹣1,把x=﹣1代入①得:﹣1﹣y=4,解得:y=﹣5,所以方程组的解是:;(2)设“□”为a,∵x、y是一对相反数,∴把x=﹣y代入x﹣y=4得:﹣y﹣y=4,解得:y=﹣2,即x=2,所以方程组的解是,代入ax+y=﹣8得:2a﹣2=﹣8,解得:a=﹣3,即原题中“□”是﹣3.21.(9分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.(1)这组成绩的众数是10;(2)求这组成绩的方差;(3)若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.【分析】(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案.(2)先求这组成绩的平均数,再求这组成绩的方差;(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数.【解答】解:(1)由折线统计图可知10出现的次数最多,则众数是10(环).故答案为:10.(2)这组成绩的平均数为:(10+7+10+10+9+8+9)=9(环),这组成绩的方差为:[(10﹣9)2×3+(9﹣9)2×2+(8﹣9)2+(7﹣9)2]=;即这组成绩的方差是;(3)原来7次成绩从小到大排列是:7,8,9,9,10,10,10,原来7次成绩的中位数是:9,∵嘉淇再射击一次得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,∴第8次的射击成绩的最大环数是9环.22.(9分)如下表所示,有A、B两组数:(1)A组第4个数是3;(2)用含n的代数式表示B组第n个数是3n﹣2,并简述理由;(3)在这两组数中,是否存在同一列上的两个数相等,请说明.【分析】(1)将n=4代入n2﹣2n﹣5中即可求解;(2)当n=1,2,3,…,9,…,时对应的数分别为3×1﹣2,3×2﹣2,3×4﹣2,…,3×9﹣2…,由此可归纳出第n个数是3n﹣2;(3)根据“在这两组数中,是否存在同一列上的两个数相等”,即将问题转换为n2﹣2n﹣5=3n﹣2有无正整数解的问题.【解答】解:(1)∵A组第n个数为n2﹣2n﹣5,∴A组第4个数是3,故答案为:3;(2)∵第1个数为1,可写成3×1﹣2;第2个数为4,可写成3×2﹣2;第3个数为7,可写成3×3﹣2;第4个数为10,可写成3×4﹣2;……第9个数为25,可写成3×9﹣2;∴第n个数为3n﹣2;故答案为:3n﹣2;(3)在这两组数中,不存在同一列上的两个数相等.理由如下:由题意可得:n2﹣2n﹣5=3n﹣2,解得:n=或n=,∵n为正整数,∴在这两组数中,不存在同一列上的两个数相等.23.(9分)如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC 上作等速运动,到达C点、B点后运动停止.(1)求证:△ABE≌△ACD;(2)若AB=BE,求∠DAE的度数;拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.【分析】(1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证明△ABE≌△ACD即可;(2)由等腰三角形的性质和三角形内角和定理求出∠BEA=∠EAB=70°,作出AC=CD,由等腰三角形的性质得出∠ADC=∠DAC=70°,即可得出∠DAE的度数;拓展:对△ABD的外心位置进行推理,即可得出结论.【解答】(1)证明:∵点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止,∴BD=CE,∴BC﹣BD=BC﹣CE,即BE=CD,∵∠B=∠C=40°,∴AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS);(2)解:∵∠B=∠C=40°,AB=BE,∴∠BEA=∠EAB=(180°﹣40°)=70°,∵BE=CD,AB=AC,∴AC=CD,∴∠ADC=∠DAC=(180°﹣40°)=70°,∴∠DAE=180°﹣∠ADC﹣∠BEA=180°﹣70°﹣70°=40°;拓展:解:若△ABD的外心在其内部时,则△ABD是锐角三角形.∴∠BAD=140°﹣∠BDA<90°.∴∠BDA>50°,又∵∠BDA<90°,∴50°<∠BDA<90°.24.(10分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.(1)求y与x之间的函数关系式;(2)设种植的总成本为w元,①求w与x之间的函数关系式;②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.【分析】(1)先求出种植C种树苗的人数,根据现种植A、B、C三种树苗一共480棵,可以列出等量关系,解出y与x之间的关系;(2)①分别求出种植A,B,C三种树苗的成本,然后相加即可;②求出种植C种树苗工人的人数,然后用种植C种树苗工人的人数÷总人数即可求出概率.【解答】解:(1)设种植A种树苗的工人为x名,种植B种树苗的工人为y名,则种植C种树苗的人数为(80﹣x﹣y)人,根据题意,得:8x+6y+5(80﹣x﹣y)=480,整理,得:y=﹣3x+80;(2)①w=15×8x+12×6y+8×5(80﹣x﹣y)=80x+32y+3200,把y=﹣3x+80带入,得:w=﹣16x+5760,②种植的总成本为5600元时,w=﹣16x+5760=5600,解得x=10,y=﹣3×10+80=50,即种植A种树苗的工人为10名,种植B种树苗的工人为50名,种植B种树苗的工人为:80﹣10﹣50=20名.采访到种植C种树苗工人的概率为:.25.(10分)如图1,已知点A、O在直线l上,且AO=6,OD⊥l于O点,且OD=6,以OD为直径在OD的左侧作半圆E,AB⊥AC于A,且∠CAO=60°.(1)若半圆E上有一点F,则AF的最大值为6;(2)向右沿直线l平移∠BAC得到∠B'A'C';①如图2,若A'C'截半圆E的的长为π,求∠A'GO的度数;②当半圆E与∠B'A'C'的边相切时,求平移距离.【分析】(1)当F与D重合时,AF的值最大,由勾股定理求出即可;(2)①连接EH、EG、DH,则半圆E的半径ED=EO=OD=3,由弧长公式求出∠GEH=60°,得出△EGH是等边三角形,证出EG∥l,得出EG⊥OD,求出∠DEH=30°,由等腰三角形性质和三角形内角和定理求出∠D=75°,再由圆内接四边形的性质即可得出结果;②分两种情况:当半圆E与A'C'相切时,由切线长定理得出OA'=P A'’,由直角三角形的性质得出OA'=OE=3,得出平移距离AA'=AO﹣OA'=6﹣3;当半圆E与A'B'相切时,由切线长定理和弦切角定理得出∠OEA'=15°,由直角三角形的性质得出OA'=6﹣3,即可得出平移距离AA'=AO﹣OA'=3.【解答】解:(1)∵OD⊥l,∴∠AOD=90°,若半圆E上有一点F,当F与D重合时,AF的值最大,如图1所示:最大值===6;故答案为:6;(2)①连接EH、EG、DH,如图2所示:则半圆E的半径ED=EO=OD=3,设∠GEH=n°,∵A'C'截半圆E的的长为π,∴=π,解得:n=60,∴∠GEH=60°,∵EH=EG,∴△EGH是等边三角形,∴∠EGH=60°=∠C'A'O=60°.∴EG∥l,∵OD⊥l,∴EG⊥OD,∴∠DEH=90°﹣60°=30°,∵ED=EH,∴∠D=(180°﹣30°)=75°,由圆内接四边形的性质得:∠A'GO=∠D=75°;②分两种情况:当半圆E与A'C'相切时,如图3所示:∵OA'⊥OD,OD⊥l,∴l是半圆E的切线,∴OA'=P A',∠OA'E=∠C'A'O=30°,∴OA'=OE=3,∴平移距离AA'=AO﹣OA'=6﹣3;当半圆E与A'B'相切时,如图4所示:则∠P A'A=180°﹣90°﹣60°=30°,∵OA'=P A',∴∠POA'=15°,∴∠OEA'=∠P A'A=15°,如图5所示:tan15°===2﹣,∴=2﹣,∴OA'=3(2﹣)=6﹣3,∴平移距离AA'=AO﹣OA'=3;综上所述,当半圆E与∠B'A'C'的边相切时,平移距离为6﹣3或3.26.(10分)如图,在平面直角坐标系中,抛物线y=x(x﹣b)﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.(1)若点B与点C关于直线x=1对称,求b的值;(2)若OB=OA,求△BCP的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h有最大值或最小值,直接写出这个最大值或最小值.【分析】(1)由点B与点C关于直线x=1对称,可得出抛物线的对称轴为直线x=1,再利用二次函数的性质可求出b值;(2)利用二次函数图象上点的坐标特征可求出点A的坐标,结合OA=OB可得出点B的坐标,由点B 的坐标利用待定系数法可求出抛物线的解析式,由抛物线的解析式利用二次函数图象上点的坐标特征可求出点C的坐标,利用配方法可求出点P的坐标,再利用三角形的面积公式即可求出△BCP的面积;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况考虑,利用二次函数图象上点的坐标特征结合二次函数的图象找出h关于b的关系式,再找出h的最值即可得出结论.【解答】解:(1)∵点B与点C关于直线x=1对称,y=x(x﹣b)﹣=x2﹣bx﹣,∴﹣=1,解得:b=2.(2)当x=0时,y=x2﹣bx﹣=﹣,∴点A的坐标为(0,﹣).又∵OB=OA,∴点B的坐标为(﹣,0).将B(﹣,0)代入y=x2﹣bx﹣,得:0=+b﹣,解得:b=,∴抛物线的解析式为y=x2﹣x﹣.∵y=x2﹣x﹣=(x﹣)2﹣,∴点P的坐标为(,﹣).当y=0时,x2﹣x﹣=0,解得:x1=﹣,x2=1,∴点C的坐标为(1,0).∴S△BCP=×[1﹣(﹣)]×|﹣|=.(3)y=x2﹣bx﹣=(x﹣)2﹣﹣.当≥1,即b≥2时,如图1所示,y最大=b+,y最小=﹣b+,∴h=2b;当0≤<1,即0≤b<2时,如图2所示,y最大=b+,y最小=﹣﹣,∴h=1+b+=(1+)2;当﹣1<<0,﹣2<b<0时,如图3所示y最大=﹣b,y最小=﹣﹣,∴h=1﹣b+=(1﹣)2;当≤﹣1,即b≤﹣2时,如图4所示,y最大=﹣b+,y最小=b+,h=﹣2b.综上所述:h=,h存在最小值,最小值为1.。
2019年河北省保定市高阳县中考数学一模试卷 解析版
2019年河北省保定市高阳县中考数学一模试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列计算结果为1的是()A.(﹣1)+(﹣1)B.(﹣1)﹣(﹣1)C.(﹣1)÷(﹣1)D.(﹣1)32.(3分)将数字0.0000208用科学记数法可表示为a×10n(1≤a<10,n为整数)的形式,则n的值为()A.4B.﹣4C.5D.﹣53.(3分)下列图形中,能确定∠1>∠2的是()A.B.C.D.4.(3分)一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是()A.0B.2C.1D.﹣15.(3分)把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A.6→3B.7→16C.7→8D.6→156.(3分)下列说法中正确的个数是()①﹣1的倒数是1②4的平方根是2③tan45°=1④2a2•3a﹣1=6a⑤一组数据1,1,1的方差为1A.1个B.2个C.3个D.4个7.(3分)一个正方体的六个面上分别标有﹣1,﹣2,﹣3,﹣4,﹣5,﹣6中的一个数,各个面上所标数字都不相同,如图是这个正方体的三种放置方法,则数字﹣3对面的数字是()A.﹣1B.﹣2C.﹣5D.﹣68.(3分)已知,则A=()A.B.C.D.x2﹣19.(3分)(﹣8)2019+(﹣8)2018能被下列哪个数整除()A.3B.5C.7D.910.(3分)如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为()A.5a B.4a C.3a D.2a11.(2分)设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A.B.C.D.12.(2分)如图,某边防战士驾驶摩托艇外出巡逻,先从港口A点沿北偏东60°的方向行驶30海里到达B点,再从B点沿北偏西30°方向行驶30海里到C点,要想从C点直接回到港口A,行驶的方向应是()A.南偏西15°方向B.南偏西60°方向C.南偏西30°方向D.南偏西45°方向13.(2分)一组数据2;3;6;8;x的唯一众数是x,其中x是不等式组的解,则这组数据的中位数是()A.3B.4C.4.5D.614.(2分)为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0.4元、0.5元C.0.3元、0.4元D.0.6元、0.7元15.(2分)如图,点E在边长为10的正方形ABCD内,满足∠AEB=90°,则阴影部分的面积的最小值是()A.75B.100﹣C.D.2516.(2分)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁二、填空题(本大题有3个小题,共12分.17~18小题每空3分,19题2空,每空3分.把答案写在题中横线上)17.(3分)比较大小:3(填“>”、“=”或“<”).18.(3分)如图,在△ABC中,∠ABC=2∠C,小明做了如下操作:(Ⅰ)以A为圆心,AB长为半径画弧,交AC于点F;(Ⅱ)以A为圆心,任意长为半径画弧,交AB、AC于M、N两点,分别以M、N为圆心,以大于MN 为半径画弧,两弧交于一点P,作射线AP,交BC于点E;(Ⅲ)作直线EF.依据小明尺规作图的方法,若AB=3.3,BE=1.8,则AC的长为;19.(6分)如图,点A1、A2、A3…在直线y=x上,点C1,C2,C3…在直线y=2x上,以它们为顶点依次构造第一个正方形A1C1A2B1,第二个正方形A2C2A3B2…,若A2的横坐标是1,则B3的坐标是,第n个正方形的面积是.三、解答题(本大题共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.21.(9分)某学校为了了解九年级学生寒假的阅读情况,随机抽取了该年级的部分学生进行调查,统计了他们每人的阅读本数,设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:请根据以上信息回答下列问题:(1)分别求出统计表中的x,y的值;(2)求扇形统计图中“优秀”类所在扇形的圆心角的度数;(3)如果随机去掉一个数据,求众数发生变化的概率,并指出众数变化时,去掉的是哪个数据.22.(9分)在一次聚会上,规定每两个人见面必须握手,且握手1次.(1)若参加聚会的人数为3,则共握手次;若参加聚会的人数为5,则共握手次;(2)若参加聚会的人数为n(n为正整数),则共握手次;(3)若参加聚会的人共握手28次,请求出参加聚会的人数.(4)嘉嘉由握手问题想到了一个数学问题:若线段AB上共有m个点(不含端点A,B),线段总数为多少呢?请直接写出结论.23.(9分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.(3)在(2)的条件下,要是四边形ADCF为正方形,在△ABC中应添加什么条件,请直接把补充条件写在横线上(不需说明理由).24.(10分)如图1,在直角坐标系中,一次函数的图象l1与y轴交于点A(0,2),与一次函数y=x﹣3的图象l2交于点E(m,﹣5).(1)求m的值及l1的表达式;(2)直线l1与x轴交于点B,直线l2与y轴交于点C,求四边形OBEC的面积;(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x轴上平移,若矩形MNPQ与直线l1或l2有交点,直接写出a的取值范围.25.(10分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.26.(11分)如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作α;设半圆O的半径为R,AM的长度为m,回答下列问题:探究:(1)若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是;如图2,当α=°时,半圆O与射线AB相切;(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM 长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.(3)发现:(3)如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα=(用含有R、m的代数式表示)拓展:(4)如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是,并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)2019年河北省保定市高阳县中考数学一模试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列计算结果为1的是()A.(﹣1)+(﹣1)B.(﹣1)﹣(﹣1)C.(﹣1)÷(﹣1)D.(﹣1)3【分析】根据选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵(﹣1)+(﹣1)=﹣2,故选项A不符合题意,∵(﹣1)﹣(﹣1)=0,故选项B不符合题意,∵(﹣1)÷(﹣1)=1,故选项C符合题意,∵(﹣1)3=﹣1,故选项D不符合题意,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.2.(3分)将数字0.0000208用科学记数法可表示为a×10n(1≤a<10,n为整数)的形式,则n的值为()A.4B.﹣4C.5D.﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000208=2.08×10﹣5,故n=﹣5.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)下列图形中,能确定∠1>∠2的是()A.B.C.D.【分析】分别根据对顶角相等、平行线的性质、三角形外角的性质对四个选项进行逐一判断即可.【解答】解:A、∵∠1与∠2是对顶角,∴∠1=∠2,故本选项错误;B、若两条直线平行,则∠1=∠2,若所截两条直线不平行,则∠1与∠2无法进行判断,故本选项正确;C、∵∠1是∠2所在三角形的一个外角,∴∠1>∠2,故本选项正确;D、∵已知三角形是直角三角形,∴由直角三角形两锐角互余可判断出∠1=∠2.故选:C.【点评】本题考查的是对顶角相等、平行线的性质、三角形外角的性质及直角三角形的性质,熟知以上知识是解答此题的关键.4.(3分)一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是()A.0B.2C.1D.﹣1【分析】根据平移的路径确定出此时点表示的数即可.【解答】解:根据题意得:﹣2+7﹣4=1,则此时这个点表示的数是1,故选:C.【点评】此题考查了数轴,列出正确的算式是解本题的关键.5.(3分)把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A.6→3B.7→16C.7→8D.6→15【分析】直接利用轴对称图形以及中心对称图形的性质分别分析得出答案.【解答】解:阴影部分的小正方形6→15,能使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形.故选:D.【点评】此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.6.(3分)下列说法中正确的个数是()①﹣1的倒数是1②4的平方根是2③tan45°=1④2a2•3a﹣1=6a⑤一组数据1,1,1的方差为1A.1个B.2个C.3个D.4个【分析】根据倒数、单项式乘单项式、负整数指数幂、特殊角的三角函数值和方差的意义分别进行解答即可.【解答】解:①﹣1的倒数是﹣1,②4的平方根是±2,③tan45°=1,④2a2•3a﹣1=6a⑤一组数据1,1,1的方差为0,正确的个数有2个;故选:B.【点评】此题考查了倒数、单项式乘单项式、负整数指数幂、特殊角的三角函数值和方差的意义,解题的关键是正确理解各概念的含义.7.(3分)一个正方体的六个面上分别标有﹣1,﹣2,﹣3,﹣4,﹣5,﹣6中的一个数,各个面上所标数字都不相同,如图是这个正方体的三种放置方法,则数字﹣3对面的数字是()A.﹣1B.﹣2C.﹣5D.﹣6【分析】根据与﹣2相邻的面的数字有﹣1、﹣4、﹣5、﹣6判断出﹣2的对面数字是﹣3,即可求解.【解答】解:由图可知,∵与﹣2相邻的面的数字有﹣1、﹣4、﹣5、﹣6,∴﹣2的对面数字是﹣3.故选:B.【点评】本题考查了正方体相对两个面上的文字,根据相邻面上的数字确定出相对面上的数字是解题的关键.8.(3分)已知,则A=()A.B.C.D.x2﹣1【分析】根据已知得出A=•(1+),先算括号内的加法,再算乘法即可.【解答】解:∵,∴A=•(1+)=•=,故选:B.【点评】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键.9.(3分)(﹣8)2019+(﹣8)2018能被下列哪个数整除()A.3B.5C.7D.9【分析】将已知式子提取公因数(﹣8)2018即可求解;【解答】解:(﹣8)2019+(﹣8)2018=(﹣8)2018×(﹣8+1)=﹣7×(﹣8)2018,∴能被7整除;故选:C.【点评】本题考查有理数的乘方;能够将较大数提取公因数是解题的关键.10.(3分)如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为()A.5a B.4a C.3a D.2a【分析】如图所示可将正六边形分为6个全等的三角形,阴影部分由两个三角形组成,剩余部分由4个三角形组成,故此可求得剩余部分的面积.【解答】解:如图所示:将正六边形可分为6个全等的三角形,∵阴影部分的面积为2a,∴每一个三角形的面积为a,∵剩余部分可分割为4个三角形,∴剩余部分的面积为4a.故选:B.【点评】本题主要考查的是图形的剪拼,将正六边形分割为六个全等的三角形是解题的关键.11.(2分)设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A.B.C.D.【分析】根据反比例函数解析式以及z=,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.【解答】解:∵y=(k≠0,x>0),∴z===(k≠0,x>0).∵反比例函数y=(k≠0,x>0)的图象在第一象限,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选:D.【点评】本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.12.(2分)如图,某边防战士驾驶摩托艇外出巡逻,先从港口A点沿北偏东60°的方向行驶30海里到达B点,再从B点沿北偏西30°方向行驶30海里到C点,要想从C点直接回到港口A,行驶的方向应是()A.南偏西15°方向B.南偏西60°方向C.南偏西30°方向D.南偏西45°方向【分析】依据∠BAF=60°,∠CBE=30°,AF∥BE,可得∠ABC=90°,进而得出△ABC是等腰直角三角形,依据∠BCA=45°,∠BCD=∠CBE=30°,即可得到∠ACD=15°.【解答】解:如图,由题可得,∠BAF=60°,∠CBE=30°,AF∥BE,∴∠ABC=90°,又∵AB=BC,∴△ABC是等腰直角三角形,∴∠BCA=45°,又∵∠BCD=∠CBE=30°,∴∠ACD=15°,∴从C点直接回到港口A,行驶的方向应是南偏西15°方向,故选:A.【点评】此题主要考查了学生对方向角的理解及等腰直角三角形的判定等知识点的掌握情况.用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.13.(2分)一组数据2;3;6;8;x的唯一众数是x,其中x是不等式组的解,则这组数据的中位数是()A.3B.4C.4.5D.6【分析】根据不等式组可以求得x的取值范围,然后根据一组数据2;3;6;8;x的唯一众数是x,可以求得x的值,从而可以得到这组数据的中位数.【解答】解:由不等式组得,3<x<7,∵一组数据2;3;6;8;x的唯一众数是x,∴x=6,∴这组数据为:2、3、6、6、8,∴这组数据的中位数是6,故选:D.【点评】本题考查众数、中位数、解一元一次不等式组,解答本题的关键是明确众数、中位数的定义,会解答一元一次不等式组.14.(2分)为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0.4元、0.5元C.0.3元、0.4元D.0.6元、0.7元【分析】设第一阶梯电价每度x元,第二阶梯电价每度y元,分别根据9月份和10月份的电费收据,列出方程组,求出x和y值.【解答】解:设第一阶梯电价每度x元,第二阶梯电价每度y元,由题意可得,,解得.即:第一阶梯电价每度0.5元,第二阶梯电价每度0.6元.故选:A.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.15.(2分)如图,点E在边长为10的正方形ABCD内,满足∠AEB=90°,则阴影部分的面积的最小值是()A.75B.100﹣C.D.25【分析】取AB的中点O,连接OE,作EH⊥AB于H.求出△ABE的面积的最大值即可解决问题.【解答】解:取AB的中点O,连接OE,作EH⊥AB于H.∵∠AEB=90°,OA=OB,∴OE=AB=5,=×AB×EH,EH≤OE,∵S△ABE∴当EH与OE重合时,△AEB的面积最大,面积的最大值=×10×5=25,∴阴影部分的面积的最小值=10×10﹣15=75,故选:A.【点评】本题考查正方形的性质,三角形的面积等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.16.(2分)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁【分析】假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论).【解答】解:假设甲和丙的结论正确,则,解得:,∴抛物线的解析式为y=x2﹣2x+4.当x=﹣1时,y=x2﹣2x+4=7,∴乙的结论不正确;当x=2时,y=x2﹣2x+4=4,∴丁的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假设成立.故选:B.【点评】本题考查了抛物线与x轴的交点、二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质求出b、c值是解题的关键.二、填空题(本大题有3个小题,共12分.17~18小题每空3分,19题2空,每空3分.把答案写在题中横线上)17.(3分)比较大小:<3(填“>”、“=”或“<”).【分析】求出2=,3=,再比较即可.【解答】解:∵2=,3=,∴2<3,故答案为:<.【点评】本题考查了二次根式的性质,实数的大小比较的应用,主要考查学生的比较能力.18.(3分)如图,在△ABC中,∠ABC=2∠C,小明做了如下操作:(Ⅰ)以A为圆心,AB长为半径画弧,交AC于点F;(Ⅱ)以A为圆心,任意长为半径画弧,交AB、AC于M、N两点,分别以M、N为圆心,以大于MN 为半径画弧,两弧交于一点P,作射线AP,交BC于点E;(Ⅲ)作直线EF.依据小明尺规作图的方法,若AB=3.3,BE=1.8,则AC的长为 5.1;【分析】根据作图的步骤,可知△ABE与△AEF全等,那么AB=AF,BE=EF,∠ABC=∠EFA,∠ABC=2∠C,从而推出∠CEF=∠C,得出FE=FC,最后把AF与FC相加得出AC的长;【解答】解:根据作图的步骤,可知:△ABE≌△AEF(SAS)∴AB=AF,BE=EF,∠ABC=∠EFA=2∠C∴∠CEF=∠C∴FE=FC=BE∵AB=3.3,BE=1.8∴FC=BE=1.8,AF=AB=3.3∴AC=AF+FC=1.8+3.3=5.1【点评】这题主要考查:圆规作图,三角形全等的性质与判定,等腰三角形的性质,三角形的外角性质,解题的突破口是:理解该题的圆规作图可以得出三角形全等,利用三角形的全等的性质来求.19.(6分)如图,点A1、A2、A3…在直线y=x上,点C1,C2,C3…在直线y=2x上,以它们为顶点依次构造第一个正方形A1C1A2B1,第二个正方形A2C2A3B2…,若A2的横坐标是1,则B3的坐标是(4,2),第n个正方形的面积是22n﹣4.【分析】由A2的横坐标是1,可得A2(1,1),利用两个函数解析式求出点C1、A1的坐标,得出A1C1的长度以及第1个正方形的面积,求出B1的坐标;然后再求出C2的坐标,得出第2个正方形的面积,求出B2的坐标;再求出B3、C3的坐标,得出第3个正方形的面积;从而得出规律即可得到第n个正方形的面积.【解答】解:∵点A1、A2、A3…在直线y=x上,A2的横坐标是1,∴A2(1,1),∵点C1,C2,C3…在直线y=2x上,∴C1(,1),A1(,),∴A1C1=1﹣=,B1(1,),∴第1个正方形的面积为:()2;∵C2(1,2),∴A2C2=2﹣1=1,B2(2,1),A3(2,2),∴第2个正方形的面积为:12;∵C3(2,4),∴A3C3=4﹣2=2,B3(4,2),∴第3个正方形的面积为:22;…,∴第n个正方形的面积为:(2n﹣2)2=22n﹣4.故答案为(4,2),22n﹣4.【点评】本题考查了一次函数图象上点的坐标特征,正方形的性质以及规律型中图形的变化规律,解题的关键是找出规律.本题难度适中,解决该题型题目时,根据给定的条件求出第1、2、3个正方形的边长,根据数据的变化找出变化规律是关键.三、解答题(本大题共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.【分析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a﹣b)2+2(a+b)可得(a﹣b)2+2×4=17,据此进一步计算可得.【解答】解:(1)原式=ab+a+b+1﹣ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),∴(a﹣b)2+2×4=17,∴(a﹣b)2=9,则a﹣b=3或﹣3.【点评】本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则、因式分解的能力及整体思想的运用.21.(9分)某学校为了了解九年级学生寒假的阅读情况,随机抽取了该年级的部分学生进行调查,统计了他们每人的阅读本数,设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:请根据以上信息回答下列问题:(1)分别求出统计表中的x,y的值;(2)求扇形统计图中“优秀”类所在扇形的圆心角的度数;(3)如果随机去掉一个数据,求众数发生变化的概率,并指出众数变化时,去掉的是哪个数据.【分析】(1)首先求得总人数,然后即可求得x和y的值;(2)首先求得样本中的优秀率,然后用样本估计总体即可;(3)根据原来的众数是5,只有去掉一个数据5,众数才会变为5和6,求解可得.【解答】解:(1)由表可知被调查学生中“一般”档次的有13人,所占比例是26%,所以共调查的学生数是13÷26%=50,∵12+x+7=50×60%,∴x=11,∵y+1=50﹣(1+2)﹣(6+7)﹣(12+11+7),∴y=3.(2)扇形统计图中“优秀”类所在扇形的圆心角的度数360°×=28.8°.(3)由表格可知,原来的众数是5,只有去掉一个数据5,众数才会变为5和6,所以众数发生变化的概率是=,去掉的数据是5.【点评】本题主要考查了扇形统计图,用样本估计总体以及频数分布表的运用,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.各部分扇形圆心角的度数=部分占总体的百分比×360°.22.(9分)在一次聚会上,规定每两个人见面必须握手,且握手1次.(1)若参加聚会的人数为3,则共握手3次;若参加聚会的人数为5,则共握手10次;(2)若参加聚会的人数为n(n为正整数),则共握手n(n﹣1)次;(3)若参加聚会的人共握手28次,请求出参加聚会的人数.(4)嘉嘉由握手问题想到了一个数学问题:若线段AB上共有m个点(不含端点A,B),线段总数为多少呢?请直接写出结论.【分析】(1)由握手总数=参加聚会的人数×(参加聚会的人数﹣1)÷2,即可求出结论;(2)由参加聚会的人数为n(n为正整数),可知每人需跟(n﹣1)人握手,同(1)即可求出握手总数;(3)由(1)的结论结合共握手28次,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(4)将线段数当成人握手次数,结合(1)即可得出结论.【解答】解:(1)3×(3﹣1)÷2=3,5×(5﹣1)÷2=10.故答案为:3;10.(2)∵参加聚会的人数为n(n为正整数),∴每人需跟(n﹣1)人握手,∴共握手n(n﹣1)次.故答案为:n(n﹣1).(3)依题意,得:n(n﹣1)=28,整理,得:n2﹣n﹣56=0,解得:n1=8,n2=﹣7(不合题意,舍去).答:参加聚会的人数为8人.(4)∵线段AB上共有m个点(不含端点A,B),∴可当成共有(m+2)个人握手,∴线段总数为(m+2)(m+1).【点评】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,列出代数式;(3)找准等量关系,正确列出一元二次方程;(4)将线段数当成人握手次数来解决问题.23.(9分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.(3)在(2)的条件下,要是四边形ADCF为正方形,在△ABC中应添加什么条件,请直接把补充条件写在横线上AC=AB(不需说明理由).【分析】(1)连接DF,证三角形AFE和三角形DBE全等,推出AF=BD,即可得出答案;(2)根据平行四边形的判定得出平行四边形ADCF,求出AD=CD,根据菱形的判定得出即可;(3)根据等腰三角形性质求出AD⊥BC,推出∠ADC=90°,根据正方形的判定推出即可.【解答】(1)证明:连接DF,∵E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴EF=BE,∵AE=DE,∴四边形AFDB是平行四边形,∴BD=AF,∵AD为中线,∴DC=BD,∴AF=DC;(2)四边形ADCF的形状是菱形,证明:∵AF=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AC⊥AB,∴∠CAB=90°,∵AD为中线,∴AD=DC,∴平行四边形ADCF是菱形;(3)解:AC=AB,理由是:∵∠CAB=90°,AC=AB,AD为中线,∴AD⊥BC,∴∠ADC=90°,∵四边形ADCF是菱形,∴四边形ADCF是正方形,故答案为:AC=AB.【点评】本题考查了平行四边形、菱形、矩形、正方形的判定,全等三角形的性质和判定,直角三角形斜边上中线性质的应用,主要考查学生的推理能力.24.(10分)如图1,在直角坐标系中,一次函数的图象l1与y轴交于点A(0,2),与一次函数y=x﹣3的图象l2交于点E(m,﹣5).(1)求m的值及l1的表达式;(2)直线l1与x轴交于点B,直线l2与y轴交于点C,求四边形OBEC的面积;(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x轴上平移,若矩形MNPQ与直线l1或l2有交点,直接写出a的取值范围.【分析】(1)根据点E在一次函数图象上,求出m的值,利用待定系数法即可求出直线l1的函数解析式;(2)由(1)求出点B 、C 的坐标,利用S 四边形OBEC =S △OBE +S △OCE 即可得解;(3)分别求出矩形MNPQ 在平移过程中,当点Q 在l 1上、点N 在l 1上、点Q 在l 2上、点N 在l 2上时a 的值,即可得解.【解答】解:(1)∵点E (m ,﹣5)在一次函数y =x ﹣3图象上, ∴m ﹣3=﹣5, ∴m =﹣2;设直线l 1的表达式为y =kx +b ,∵直线l 1过点A (0,2)和E (﹣2,﹣5),∴,解得.∴直线l 1的表达式为.(2)由(1)可知:B 点坐标为,C 点坐标为(0,﹣3),∴S 四边形OBEC =S △OBE +S △OCE =.(3)或3≤a ≤6.当矩形MNPQ 的顶点Q 在l 1上时,a 的值为,矩形MNPQ 向右平移,当点N 在l 1上时,,解得x =,即点N (,1),∴a 的值为+2=,矩形MNPQ 继续向右平移,当点Q 在l 2上时,a 的值为3, 矩形MNPQ 继续向右平移,当点N 在l 2上时, x ﹣3=1,解得x =4,即点N (4,1), ∴a 的值4+2=6,综上所述,当或3≤a ≤6时,矩形MNPQ 与直线l 1或l 2有交点.【点评】本题主要考查两条直线相交或平行、图形的平移等知识的综合应用,在解决第(3)小题时,只有求出各临界点时a 的值,就可以得到a 的取值范围.25.(10分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x 轴,喷水池中心为原点建立直角坐标系.。
2019年河北省保定市中考数学三模试卷(带答案解析)(免费)
2019年河北省保定市中考数学三模试卷一、选择题(本大题共16个小题,共42分.1~10小题各3分;11~16小题各2分在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•保定三模)下列各式错误的是()A.﹣(﹣3)=3B.|2|=|﹣2|C.0>|﹣1|D.﹣2>﹣3 2.(3分)(2019•保定三模)下列计算结果为x7的是()A.x9﹣x2B.x•x6C.x14÷x2D.(x4)33.(3分)(2019•保定三模)如图,要修建一条公路,从A村沿北偏东75°方向到B村,从B村沿北偏西25°方向到C村.若要保持公路CE与AB的方向一致,则∠ECB的度数为()A.80°B.90°C.100°D.105°4.(3分)(2019•保定三模)若是3﹣m的立方根,则()A.m=3B.m是小于3的实数C.m是大于3的实数D.m可以是任意实数5.(3分)(2019•保定三模)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5B.左视图的面积为3C.俯视图的面积为3D.三种视图的面积都是46.(3分)(2019•保定三模)设“●”“■”“▲”分别表示不同的物体,如图所示,前两架天平保持平衡,如果要第三架天平也平衡,那么“?”处应放“■”的个数为()A.5B.4C.3D.27.(3分)(2019•保定三模)如图点A,B,C在正方形网格中的格点上,每个小正方形的边长为1,则下列关于△ABC边长的说法,正确的是()A.AB,BC长均为有理数,AC长为无理数B.AC长是有理数,AB,BC长均为无理数C.AB长是有理数,AC,BC长均为无理数D.三边长均为无理数8.(3分)(2019•保定三模)下列式子运算结果为x+1的是()A.B.1﹣C.D.÷9.(3分)(2019•保定三模)某同学以正六边形三个不相邻的顶点为圆心,边长为半径,向外作三段圆弧,设计了如图所示的图案.已知正六边形的边长为1,则该图案外围轮廓的周长为()A.2πB.3πC.4πD.6π10.(3分)(2019•保定三模)由下列两个点确定的直线经过原点的是()A.(1,2)和(2,3)B.(﹣2,3)和(4,﹣6)C.(2,3)和(﹣4,6)D.(2,﹣3)和(﹣4,﹣6)11.(2分)(2019•保定三模)如图,C、E是直线l两侧的点,以点C为圆心,CE长为半径作圆弧交l于A、B两点;再分别以A,B为圆心,大于AB的长为半径作圆弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥l B.点A,B关于直线CD对称C.CD平分∠ACB D.点C,D关于直线l对称12.(2分)(2019•保定三模)若点(x1,y1)、(x2,y2)都是反比例函数y=﹣图象上的点,并且y1<0<y2,则下列结论中正确的是()A.x1>x2B.x1<x2C.y随x的增大而减小D.两点有可能在同一象限13.(2分)(2019•保定三模)某工厂六台机床第一天和第二天生产的零件数分别如图1和图2所示,则与第一天相比,这六台机床第二天生产零件数的平均数与方差的变化是()A.平均数变大,方差不变B.平均数变小,方差变大C.平均数不变,方差变小D.平均数不变,方差变大14.(2分)(2019•保定三模)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为()A.75m2B.C.48m2D.15.(2分)(2019•保定三模)把两个相同的矩形按如图方式叠合起来,重叠部分为图中的阴影部分,已知AD=4,DC=3,则重叠部分的面积为()A.6B.C.D.16.(2分)(2019•保定三模)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,则下面说法正确的是()A.1一定不是方程x2+bx+a=0的根B.0一定不是方程x2+bx+a=0的根C.﹣1可能是方程x2+bx+a=0的根D.1和﹣1都是方程x2+bx+a=0的根二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.(3分)(2019•保定三模)计算:﹣=.18.(3分)(2019•保定三模)一个矩形的两边长分别为a,b,其周长为14,面积是12,则ab2+a2b的值为.19.(6分)(2019•保定三模)如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4.①AB的长为;②若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE∥AC时,tan∠BCD的值为.三、解答题(本大题共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(2019•保定三模)李华同学准备化简:(3x2﹣5x﹣3)﹣(x2+2x□6),算式中“□”是“+,一,×,÷”中的某一种运算符号(1)如果“□”是“÷”,请你化简:(3x2﹣5x﹣3)﹣(x2+2x÷6);(2)当x=1时,(3x2﹣5x﹣3)﹣(x2+2x□6)的结果是﹣2,请你通过计算说明“□”所代表的运算符号.21.(2019•保定三模)某校380名学生参加了这学期的“读书伴我行”活动要求每人在这学期读书4~7本活动结束后随机抽查了20名学生每人的读书量,并分为四种等级,A:4本;B:5本;C:6本;D:7本.将各等级的人数绘制成尚不完整的扇形图(如图1)和条形图(如图2)回答下列问题:(1)补全条形图;这20名学生每人这学期读书量的众数是本,中位数是本;(2)在求这20名学生这学期每人读书量的平均数时,小亮是这样计算的:==5.5(本);小亮的计算是否正确?如果正确估计这380名学生在这学期共读书多少本;如果不正确,请你帮他计算出正确的平均数并估计这380名学生在这学期共读书多少本;(3)若A等级的四名学生中有男生、女生各两名现从中随机选出两名学生写读书感想,请用画树状图的方法求出刚好选中一名男生、一名女生的概率.22.(2019•保定三模)观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下我们称使等式a﹣b=ab+1成立的一对有理数“a,b”为共生有理数对”,记为(a,b)(1)通过计算判断数对“﹣2,1”,“4,”是不是“共生有理数对”;(2)若(6,a)是“共生有理数对”,求a的值;(3)若(m,n)是“共生有理数对”,则“﹣n,﹣m”“共生有理数对”(填“是”或“不是”),并说明理由;(4)如果(m,n)是“共生有理数对”(其中n≠1),直接用含n的代数式表示m.23.(2019•保定三模)如图1,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE =40°,连接BD,CE将△ADE绕点A旋转,BD,CE也随之运动(1)求证:BD=CE;(2)在△ADE绕点A旋转过程中,当AE∥BC时,求∠DAC的度数;(3)如图2,当点D恰好是△ABC的外心时,连接DC,判断四边形ADCE的形状,并说明理由.24.(2019•保定三模)甲、乙两车沿相同路线从A城出发前往B城已知A、B两城之间的距离是300km,甲车8:30出发,速度为60km/h;乙车9:30出发,速度为100km/h设甲、乙两车离开A城的距离分别为y1,y2(单位km),甲车行驶x(h)(1)分别写出y1,y2与x之间的函数关系式,并直接写出x的取值范围;(2)当甲车出发1.5小时时,求甲车与乙车之间的距离;(3)在乙车行驶过程中;①求乙车没有超过甲车时x的取值范围;②直接写出甲车与乙车之间的距离是40km时x的值.25.(2019•保定三模)如图,在矩形ABCD中,AB=4,BC=3,点M是AB边上一点,且∠CMB=45°.点Q是直线AB上一点且在点B的右侧,BQ=4,点P从点Q出发,沿射线QA方向以每秒1个单位长度的速度运动设运动时间为t秒以P为圆心,PC为半径作半圆P;交直线AB分别于点G,H(点G在H的左侧).(1)当t=3秒时,PC的长等于,t=秒时,半圆P与AD相切;(2)当点P与点B重合时,求半圆P被矩形ABCD的对角线AC所截得的弦长;(3)若∠MCP=15°,求扇形HPC的面积(参考数据:sin37°=,sin53°=,tan37°=);26.(2019•保定三模)已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴;(2)当L经过点(4,﹣7)时,求此时L的表达式及其顶点坐标;(3)横,纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有5个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.2019年河北省保定市中考数学三模试卷参考答案与试题解析一、选择题(本大题共16个小题,共42分.1~10小题各3分;11~16小题各2分在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•保定三模)下列各式错误的是()A.﹣(﹣3)=3B.|2|=|﹣2|C.0>|﹣1|D.﹣2>﹣3【考点】14:相反数;15:绝对值;18:有理数大小比较.【专题】511:实数.【分析】根据正数大于零,零大于负数和绝对值、相反数的概念可得答案.【解答】解:A、﹣(﹣3)=3,正确;B、|2|=|﹣2|,正确;C、0<|﹣1|,错误;D、﹣2>﹣3,正确;故选:C.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.(3分)(2019•保定三模)下列计算结果为x7的是()A.x9﹣x2B.x•x6C.x14÷x2D.(x4)3【考点】35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【专题】512:整式;66:运算能力.【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.【解答】解:A、x9﹣x2,无法计算,故此选项不符合题意;B、x•x6=x7,故此选项符合题意;C、x14÷x2=x12,故此选项不符合题意;D、(x4)3=x12,故此选项不符合题意;故选:B.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.3.(3分)(2019•保定三模)如图,要修建一条公路,从A村沿北偏东75°方向到B村,从B村沿北偏西25°方向到C村.若要保持公路CE与AB的方向一致,则∠ECB的度数为()A.80°B.90°C.100°D.105°【考点】IH:方向角.【分析】根据题意得出∠FBD的度数以及∠FBC的度数,进而得出答案.【解答】解:由题意可得:AN∥FB,EC∥BD,故∠NAB=∠FBD=75°,∵∠CBF=25°,∴∠CBD=100°,则∠ECB=180°﹣100°=80°.故选:A.【点评】此题主要考查了方向角,正确得出平行线是解题关键.4.(3分)(2019•保定三模)若是3﹣m的立方根,则()A.m=3B.m是小于3的实数C.m是大于3的实数D.m可以是任意实数【考点】24:立方根;2A:实数大小比较.【专题】511:实数.【分析】依据立方根的定义回答即可.【解答】解:∵是3﹣m的立方根∴3﹣m为任意实数∴m可以是任意实数故选:D.【点评】本题主要考查的是立方根的定义,掌握立方根的定义是解题的关键.5.(3分)(2019•保定三模)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5B.左视图的面积为3C.俯视图的面积为3D.三种视图的面积都是4【考点】U2:简单组合体的三视图.【专题】121:几何图形问题.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,比较即可.【解答】解:A、从正面看,可以看到4个正方形,面积为4,故A选项错误;B、从左面看,可以看到3个正方形,面积为3,故B选项正确;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、三种视图的面积不相同,故D选项错误.故选:B.【点评】本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.6.(3分)(2019•保定三模)设“●”“■”“▲”分别表示不同的物体,如图所示,前两架天平保持平衡,如果要第三架天平也平衡,那么“?”处应放“■”的个数为()A.5B.4C.3D.2【考点】9A:二元一次方程组的应用.【专题】521:一次方程(组)及应用;64:几何直观;66:运算能力.【分析】设“●”“■”“▲”分别为x、y、z,由图列出方程组解答即可解决问题.【解答】解:设“●”“■”“▲”分别为x、y、z,由图(1)(2)可知,,解得x=2y,z=3y,所以x+z=2y+3y=5y,即“■”的个数为5.故选:A.【点评】本题考查了二元一次方程组.解决此题的关键列出方程组,求解时用其中的一个数表示其他两个数,从而使问题解决.7.(3分)(2019•保定三模)如图点A,B,C在正方形网格中的格点上,每个小正方形的边长为1,则下列关于△ABC边长的说法,正确的是()A.AB,BC长均为有理数,AC长为无理数B.AC长是有理数,AB,BC长均为无理数C.AB长是有理数,AC,BC长均为无理数D.三边长均为无理数【考点】12:有理数;26:无理数;KQ:勾股定理.【专题】554:等腰三角形与直角三角形.【分析】根据勾股定理求出三边的长度,再判断即可.【解答】解:由勾股定理得:AC==5,是有理数,不是无理数;BC==,是无理数;AB==,是无理数,即网格上的△ABC三边中,AC长是有理数,AB,BC长均为无理数,故选:B.【点评】本题考查了无理数和勾股定理,能正确根据勾股定理求出三边的长度是解此题的关键.8.(3分)(2019•保定三模)下列式子运算结果为x+1的是()A.B.1﹣C.D.÷【考点】6C:分式的混合运算.【分析】对各个选项中的式子进行化简即可解答本题.【解答】解:∵=x﹣1,故选项A不符合题意,∵,故选项B不符合题意,∵,故选项C符合题意,∵=,故选项D不符合要求,故选:C.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.9.(3分)(2019•保定三模)某同学以正六边形三个不相邻的顶点为圆心,边长为半径,向外作三段圆弧,设计了如图所示的图案.已知正六边形的边长为1,则该图案外围轮廓的周长为()A.2πB.3πC.4πD.6π【考点】MM:正多边形和圆;MN:弧长的计算.【专题】55B:正多边形与圆.【分析】根据多边形的内角和公式得到正六边形的内角==120°,根据弧长公式即可得到结论.【解答】解:正六边形的内角==120°,∵正六边形的边长为1,∴该图案外围轮廓的周长=3×=4π,故选:C.【点评】本题考查了正多边形和圆,正六边形的性质,弧长的计算公式,正确的识别图形是解题的关键.10.(3分)(2019•保定三模)由下列两个点确定的直线经过原点的是()A.(1,2)和(2,3)B.(﹣2,3)和(4,﹣6)C.(2,3)和(﹣4,6)D.(2,﹣3)和(﹣4,﹣6)【考点】F8:一次函数图象上点的坐标特征.【专题】11:计算题;533:一次函数及其应用;66:运算能力;68:模型思想.【分析】设函数的解析式为y=kx,求出k=,再逐个判断即可.【解答】解:∵经过原点的直线是正比例函数,∴设解析式为y=kx,即k=,A、≠,即过点(1,2)和(2,3)的直线不是正比例函数,即不经过原点,故本选项不符合题意;B、=,即过点(﹣2,3)和(4,﹣6)的直线是正比例函数,即经过原点,故本选项符合题意;C、≠,即过点(2,3)和(﹣4,6)的直线不是正比例函数,即不经过原点,故本选项不符合题意;D、≠,即过点(2,﹣3)和(﹣4,﹣6)的直线不是正比例函数,即不经过原点,故本选项不符合题意;故选:B.【点评】本题考查了一次函数图象上点的坐标特征和正比例函数的性质,能熟记正比例函数的性质的内容是解此题的关键.11.(2分)(2019•保定三模)如图,C、E是直线l两侧的点,以点C为圆心,CE长为半径作圆弧交l于A、B两点;再分别以A,B为圆心,大于AB的长为半径作圆弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥l B.点A,B关于直线CD对称C.CD平分∠ACB D.点C,D关于直线l对称【考点】N2:作图—基本作图;P2:轴对称的性质.【专题】13:作图题;551:线段、角、相交线与平行线.【分析】利用基本作图可对A进行判断;利用CD垂直平分AB可对B、D进行判断;利用AC与AD不一定相等可对C进行判断.【解答】解:由作法得CD垂直平分AB,所以A、B选项正确;因为CD垂直平分AB,所以CA=CB,所以CD平分∠ACB,所以C选项正确;因为AD不一定等于AC,所以D选项错误.故选:D.【点评】本题考查了作图﹣基本作图:掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).12.(2分)(2019•保定三模)若点(x1,y1)、(x2,y2)都是反比例函数y=﹣图象上的点,并且y1<0<y2,则下列结论中正确的是()A.x1>x2B.x1<x2C.y随x的增大而减小D.两点有可能在同一象限【考点】G4:反比例函数的性质;G6:反比例函数图象上点的坐标特征.【专题】534:反比例函数及其应用.【分析】直接利用反比例函数的增减性得出两点分布的象限,进而得出y1<0<y2时,对应x的值大小.【解答】解:∵点(x1,y1)、(x2,y2)都是反比例函数y=﹣图象上的点,并且y1<0<y2,∴图象分布在第二、四象限,每个象限内y随x的增大而增大,第二象限内所有点对应y 值都是正值,第四象限内所有点对应y值都是负值,∴点(x1,y1)在第四象限,(x2,y2)在第二象限,∴x1>x2.故选:A.【点评】此题主要考查了反比例函数的性质以及反比例函数图象上点的坐标特点,正确应用反比例函数的性质是解题关键.13.(2分)(2019•保定三模)某工厂六台机床第一天和第二天生产的零件数分别如图1和图2所示,则与第一天相比,这六台机床第二天生产零件数的平均数与方差的变化是()A.平均数变大,方差不变B.平均数变小,方差变大C.平均数不变,方差变小D.平均数不变,方差变大【考点】W1:算术平均数;W7:方差.【专题】542:统计的应用;65:数据分析观念.【分析】根据统计图给出的数据得出平均数相等,而第二天的方差大于第一天的方差,从而得出方差变大.【解答】解:根据统计图可知,第一天的平均数是m,第二天的平均数还是m,所以平均数不变,但方差变大;故选:D.【点评】此题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.(2分)(2019•保定三模)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为()A.75m2B.C.48m2D.【考点】HE:二次函数的应用.【分析】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,表示出总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75即可求得面积的最值.【解答】解:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米,故选:A.【点评】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出函数模型,难度不大.15.(2分)(2019•保定三模)把两个相同的矩形按如图方式叠合起来,重叠部分为图中的阴影部分,已知AD=4,DC=3,则重叠部分的面积为()A.6B.C.D.【考点】S9:相似三角形的判定与性质.【分析】根据勾股定理求出AC,继而求出CE,易证得△CEF∽△CAB,根据相似三角=S△ABC,代入求出即可.形的相似比等于对应高之比求出,求出S四边形ABEF【解答】解:∵在矩形ABCD中,AD=4,DC=3,∴在Rt△ADC中,AC==5,∴CF=AC﹣AF=5﹣4=1,由矩形的性质得:∠CFE=∠CBA=90°,∵∠FCE=∠CAB,∴△CEF∽△CAB,∴=()2=,=S△ABC=××3×4=,∴S四边形ABEF故选:D.【点评】此题考查了相似三角形的判定与性质、勾股定理以及矩形的性质.注意相似三角形的面积比等于相似比的平方.16.(2分)(2019•保定三模)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,则下面说法正确的是()A.1一定不是方程x2+bx+a=0的根B.0一定不是方程x2+bx+a=0的根C.﹣1可能是方程x2+bx+a=0的根D.1和﹣1都是方程x2+bx+a=0的根【考点】A3:一元二次方程的解;AA:根的判别式.【专题】523:一元二次方程及应用.【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:C.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.(3分)(2019•保定三模)计算:﹣=.【考点】19:有理数的加法.【专题】511:实数.【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:﹣+=﹣+=.故答案:.【点评】此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.18.(3分)(2019•保定三模)一个矩形的两边长分别为a,b,其周长为14,面积是12,则ab2+a2b的值为84.【考点】53:因式分解﹣提公因式法.【专题】512:整式.【分析】直接利用矩形面积求法以及矩形周长求法得出ab,a+b的值,再利用提取公因式法分解因式得出答案.【解答】解:∵一个矩形的两边长分别为a,b,其周长为14,面积是12,∴ab=12,a+b=7,ab2+a2b=ab(b+a)=12×7=84.故答案为:84.【点评】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.19.(6分)(2019•保定三模)如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4.①AB的长为7;②若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE∥AC时,tan∠BCD的值为.【考点】PB:翻折变换(折叠问题);T7:解直角三角形.【分析】①如图作AM⊥BC于M.在Rt△ABM中,由∠AMB=90°,∠B=45°,推出BM=AM,AB=AM,设AM=BM=x,在Rt△AMC中,根据AC2=AM2+CM2,可得方程52=x2+(4﹣x)2,求出x即可解决问题.②如图作FN⊥BC于N.由△ACF∽△ABC,得到AC2=AF•AB,推出AF=,BF=AB﹣AF=,求出FN、CN,根据tan∠BCD=计算即可.【解答】解:①如图作AM⊥BC于M.在Rt△ABM中,∵∠AMB=90°,∠B=45°,∴BM=AM,AB=AM,设AM=BM=x,在Rt△AMC中,∵AC2=AM2+CM2,∴52=x2+(4﹣x)2,解得x=或(舍弃),∴AB=x=7,故答案为7.②如图作FN⊥BC于N.∵DE∥AC,∴∠ACF=∠D=∠B,∵∠CAF=∠CAB,∴△ACF∽△ABC,∴AC2=AF•AB,∴AF=,∴BF=AB﹣AF=7﹣=,∴BN=FN=,∴CN=BC﹣BN=4﹣=,∴tan∠BCD===,故答案为.【点评】本题考查翻折变换,解直角三角形、等腰直角三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用方程的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本大题共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(2019•保定三模)李华同学准备化简:(3x2﹣5x﹣3)﹣(x2+2x□6),算式中“□”是“+,一,×,÷”中的某一种运算符号(1)如果“□”是“÷”,请你化简:(3x2﹣5x﹣3)﹣(x2+2x÷6);(2)当x=1时,(3x2﹣5x﹣3)﹣(x2+2x□6)的结果是﹣2,请你通过计算说明“□”所代表的运算符号.【考点】1G:有理数的混合运算;44:整式的加减.【专题】11:计算题;512:整式.【分析】(1)原式去括号合并即可得到结果;(2)“□”所代表的运算符号是“﹣”,验证即可.【解答】解:(1)原式=(3x2﹣5x﹣3)﹣(x2+x)=3x2﹣5x﹣3﹣x2﹣x=2x2﹣x﹣3;(2)“□”所代表的运算符号是“﹣”,当x=1时,原式=(3﹣5﹣3)﹣(1+2□6)=﹣2,整理得:﹣8﹣□6=﹣2,即□处应为“﹣”.【点评】此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.21.(2019•保定三模)某校380名学生参加了这学期的“读书伴我行”活动要求每人在这学期读书4~7本活动结束后随机抽查了20名学生每人的读书量,并分为四种等级,A:4本;B:5本;C:6本;D:7本.将各等级的人数绘制成尚不完整的扇形图(如图1)和条形图(如图2)回答下列问题:(1)补全条形图;这20名学生每人这学期读书量的众数是6本,中位数是 5.5本;(2)在求这20名学生这学期每人读书量的平均数时,小亮是这样计算的:==5.5(本);小亮的计算是否正确?如果正确估计这380名学生在这学期共读书多少本;如果不正确,请你帮他计算出正确的平均数并估计这380名学生在这学期共读书多少本;(3)若A等级的四名学生中有男生、女生各两名现从中随机选出两名学生写读书感想,请用画树状图的方法求出刚好选中一名男生、一名女生的概率.【考点】VB:扇形统计图;VC:条形统计图;W2:加权平均数;W4:中位数;W5:众数;X6:列表法与树状图法.【专题】542:统计的应用;543:概率及其应用.【分析】(1)求出等级C的人数,补全统计图;由众数和中位数的定义即可得出结果;(2)由加权平均数求出正确的平均数,用总人数乘以平均数即可;(3)根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.【解答】解:(1)20×40%=8,补全条形图如图2所示;这20名学生每人这学期读书量的众数是6本,中位数是=5.5(本);故答案为:6,5.5;(2)小亮的计算不正确;正确的平均数为=5.4(本),5.4×380=2052(本);即估计这380名学生在这学期共读书2052本;(3)画树状图如图3所示:∵共有12种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,∴所选两名学生刚好是一名女生和一名男生的概率为:=.【点评】此题考查了树状图法与列表法求概率、众数、中位数、加权平均数、条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22.(2019•保定三模)观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下我们称使等式a﹣b=ab+1成立的一对有理数“a,b”为共生有理数对”,记为(a,b)(1)通过计算判断数对“﹣2,1”,“4,”是不是“共生有理数对”;(2)若(6,a)是“共生有理数对”,求a的值;(3)若(m,n)是“共生有理数对”,则“﹣n,﹣m”是“共生有理数对”(填“是”或“不是”),并说明理由;(4)如果(m,n)是“共生有理数对”(其中n≠1),直接用含n的代数式表示m.【考点】12:有理数;1B:有理数的加减混合运算;1C:有理数的乘法.【专题】511:实数.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可判断;(4)根据“共生有理数对”的定义即可解决问题.【解答】解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是共生有理数对;∵4﹣=,,∴(4,)是共生有理数对;(2)由题意得:6﹣a=6a+1,解得a=;(3)是.理由:﹣n﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是共生有理数对,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是共生有理数对;故答案为:是;(4)∵(m,n)是共生有理数对,∴m﹣n=mn+1,即mn﹣m=﹣(n+1),∴(n﹣1)m=﹣(n+1),∴.【点评】本题考查有理数的混合运算、“共生有理数对”的定义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.23.(2019•保定三模)如图1,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE =40°,连接BD,CE将△ADE绕点A旋转,BD,CE也随之运动(1)求证:BD=CE;(2)在△ADE绕点A旋转过程中,当AE∥BC时,求∠DAC的度数;(3)如图2,当点D恰好是△ABC的外心时,连接DC,判断四边形ADCE的形状,并说明理由.【考点】MR:圆的综合题.【专题】152:几何综合题.【分析】(1)由∠BAC=∠DAE可得出∠BAD=∠CAE,结合AB=AC,AD=AE即可证出△BAD≌△CAE(SAS),利用全等三角形的性质即可证出BD=CE;(2)当点E在点A的右侧时,由等腰三角形的性质及三角形内角和定理可求出∠ABC 的度数,由AE∥BC利用“两直线平行,同旁内角互补”可求出∠BAE的度数,结合∠CAD=∠BAE﹣∠BAC﹣∠DAE即可求出∠DAC的度数;当点E在点A的左侧时,由等腰三角形的性质及三角形内角和定理可求出∠ABC的度数,由AE∥BC利用“两直线平行,内错角相等”可求出∠BAE的度数,结合∠CAD=∠BAC+∠BAE+∠DAE即可求出∠DAC的度数;(3)四边形ADCE为菱形,由外心的定义可得出AD=BD=CD,同(1)可得出BD=CE,结合AD=AE可得出AD=AE=CD=CE,进而可证出四边形ADCE为菱形.【解答】(1)证明:∵∠BAC=∠DAE,。
2019年河北省中考数学试题(解析版)
2019年河北省中考数学试卷一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A.B.C.D.2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3 B.﹣3 C.﹣D.+3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.(3分)语句“x的与x的和不超过5”可以表示为()A.+x≤5 B.+x≥5 C.≤5 D.+x=55.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°6.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.47.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣59.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.210.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①12.(2分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q13.(2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p的值为.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣1 2n B勾股数组Ⅰ/ 8勾股数组Ⅱ35 /22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿23.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P (不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.2019年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A.B.C.D.【分析】根据正多边形的定义;各个角都相等,各条边都相等的多边形叫做正多边形可得答案.【解答】解:正五边形五个角相等,五条边都相等,故选:D.【点评】此题主要考查了正多边形,关键是掌握正多边形的定义.2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3 B.﹣3 C.﹣D.+【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.故选:B.【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC【分析】根据仰角的定义进行解答便可.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.【点评】本题主要考查了仰角的识别,熟记仰角的定义是解题的关键.仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.4.(3分)语句“x的与x的和不超过5”可以表示为()A.+x≤5 B.+x≥5 C.≤5 D.+x=5【分析】x的即x,不超过5是小于或等于5的数,按语言叙述列出式子即可.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.故选:A.【点评】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.5.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°【分析】由菱形的性质得出AB∥CD,∠BAD=2∠1,求出∠BAD=30°,即可得出∠1=15°.【解答】解:∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°;故选:D.【点评】此题考查了菱形的性质,以及平行线的性质,熟练掌握菱形的性质是解本题的关键.6.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.4【分析】直接利用单项式乘以多项式以及多项式除以单项式运算法则计算得出答案.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.【点评】此题主要考查了单项式乘以多项式以及多项式除以单项式运算,正确掌握相关运算法则是解题关键.7.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB【分析】根据图形可知※代表CD,即可判断D;根据三角形外角的性质可得◎代表∠EFC,即可判断A;利用等量代换得出▲代表∠EFC,即可判断C;根据图形已经内错角定义可知@代表内错角.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.【点评】本题考查了平行线的判定,三角形外角的性质,比较简单.8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:=0.00002=2×10﹣5.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.2【分析】由等边三角形有三条对称轴可得答案.【解答】解:如图所示,n的最小值为3,故选:C.【点评】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.10.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【分析】根据三角形外心的定义,三角形外心为三边的垂直平分线的交点,然后利用基本作图格选项进行判断.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①【分析】根据题意和频数分布表、扇形统计图制作的步骤,可以解答本题.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.【点评】本题考查扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤.12.(2分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q【分析】由函数解析式可知函数关于y轴对称,即可求解;【解答】解:由已知可知函数y=关于y轴对称,所以点M是原点;故选:A.【点评】本题考查反比例函数的图象及性质;熟练掌握函数的解析式与函数图象的关系是解题的关键.13.(2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤x<1故表示﹣的值的点落在②故选:B.【点评】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.【点评】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根【分析】直接把已知数据代入进而得出c的值,再解方程求出答案.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.【点评】此题主要考查了根的判别式,正确得出c的值是解题关键.16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对【分析】平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;乙的思路与计算都错误,图示情况不是最长;故选:B.【点评】本题考查了矩形的性质与旋转的性质,熟练运用矩形的性质是解题的关键.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p的值为﹣3 .【分析】直接利用同底数幂的乘法运算法则进而得出答案.【解答】解:∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为:﹣3.【点评】此题主要考查了同底数幂的乘法运算,正确掌握相关运算法则是解题关键.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=3x;(2)当y=﹣2时,n的值为 1 .【分析】(1)根据约定的方法即可求出m;(2)根据约定的方法即可求出n.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.【点评】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20 km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为13 km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;【点评】本题考查勾股定理,解题的关键是根据A、B、C三点的坐标求出相关线段的长度,本题属于中等题型.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【分析】(1)根据有理数的加减法可以解答本题;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.【点评】本题考查有理数的混合运算,解答本题得关键是明确有理数混合运算的计算方法.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣1 2n B勾股数组Ⅰ/ 8 15勾股数组Ⅱ35 / 37【分析】先根据整式的混合运算法则求出A,进而求出B,再把n的值代入即可解答.【解答】解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=15;当n2﹣1=35时,n2+1=37.故答案为:15;37【点评】本题考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿【分析】(1)由概率公式求出8元球的个数,由众数的定义即可得出答案;(2)①由中位数的定义即可得出答案;②用列表法得出所有结果,乙组两次都拿到8元球的结果有4个,由概率公式即可得出答案.【解答】解:(1)∵P(一次拿到8元球)=,∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为.【点评】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.23.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P (不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.【分析】(1)由条件易证△ABC≌△ADE,得∠BAC=∠DAE,∴∠BAD=∠CAE.(2)PD=AD﹣AP=6﹣x,∵点P在线段BC上且不与B、C重合,∴AP的最小值即AP⊥BC时AP的长度,此时PD可得最大值.(3)I为△APC的内心,即I为△APC角平分线的交点,应用“三角形内角和等于180°“及角平分线定义即可表示出∠AIC,从而得到m,n的值.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠PAC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠PAC,∠PCA,∴∠IAC=∠PAC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠PAC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.【点评】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30°的角所对的直角边等于斜边的一半,全等三角形的判定和性质,三角形内心概念及角平分线定义等,解题关键是将PD最大值转化为PA的最小值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.【分析】(1)①排头与O的距离为S头(m).等于排头行走的路程+队伍的长300,而排头行进的时间也是t(s),速度是2m/s,可以求出S头与t的函数关系式;②甲赶到排头位置的时间可以根据追及问题的数量关系得出,代入求S即可;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m)是在S的基础上减少甲返回的路程,而甲返回的时间(总时间t减去甲从排尾赶到排头的时间),于是可以求S甲与t的函数关系式;(2)甲这次往返队伍的总时间为T(s),是甲从排尾追到排头用的时间与从排头返回排尾用时的和,可以根据追及问题和相遇问题的数量关系得出结果;在甲这次往返队伍的过程中队伍行进的路程=队伍速度×返回时间.【解答】解:(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600 m甲返回时间为:(t﹣150)s∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.(2)T=t追及+t返回=+=,在甲这次往返队伍的过程中队伍行进的路程为:v×(T﹣150)=v×(﹣﹣150)=400﹣150v;因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为(400﹣150v)m.【点评】考查行程问题中相遇、追及问题的数量关系的理解和应用,同时函数思想方法的应用,切实理解变量之间的变化关系,由于时间有重合的部分,容易出现错误.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.【分析】(1)由三角函数定义知:Rt△PBC中,=tan∠PBC=tan∠DAB=,设CP=4k,BP=3k,由勾股定理可求得BP,根据“直径所对的圆周角是直角”可得PE⊥AD,由此可得PE⊥BC;(2)作CG⊥AB,运用勾股定理和三角函数可求CG和AG,再应用三角函数求∠CAP,应用弧长公式求劣弧长度,再比较它与AP长度的大小;(3)当⊙O与线段AD只有一个公共点时,⊙O与AD相切于点A,或⊙O与线段DA的延长线相交于另一点,此时,BP只有最小值,即x≥18.【解答】解:(1)如图1,AP经过圆心O,∵CP与⊙O相切于P,∴∠APC=90°,∵▱ABCD,∴AD∥BC,∴∠PBC=∠DAB∴=tan∠PBC=tan∠DAB=,设CP=4k,BP=3k,由CP2+BP2=BC2,得(4k)2+(3k)2=152,解得k1=﹣3(舍去),k2=3,∴x=BP=3×3=9,故当x=9时,圆心O落在AP上;∵AP是⊙O的直径,∴∠AEP=90°,∴PE⊥AD,∵▱ABCD,∴BC∥AD∴PE⊥BC(2)如图2,过点C作CG⊥AP于G,∵▱ABCD,∴BC∥AD,∴∠CBG=∠DAB。
2019年河北省中考数学试卷含答案解析
2019年河北省中考数学试卷含答案解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A.B.C.D.2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3B.﹣3C.﹣D.+3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.(3分)语句“x的与x的和不超过5”可以表示为()A.+x≤5B.+x≥5C.≤5D.+x=55.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°6.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1B.2C.3D.47.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣59.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.210.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①12.(2分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q13.(2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S=()俯A.x2+3x+2B.x2+2C.x2+2x+1D.2x2+3x15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1D.有两个相等的实数根16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p的值为.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P (一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由; ②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.23.(9分)如图,△ABC 和△ADE 中,AB =AD =6,BC =DE ,∠B =∠D =30°,边AD 与边BC 交于点P (不与点B ,C 重合),点B ,E 在AD 异侧,I 为△APC 的内心.(1)求证:∠BAD =∠CAE ;(2)设AP =x ,请用含x 的式子表示PD ,并求PD 的最大值;(3)当AB ⊥AC 时,∠AIC 的取值范围为m °<∠AIC <n °,分别直接写出m ,n 的值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S头的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.2019年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A.B.C.D.【考点】L1:多边形.【分析】根据正多边形的定义;各个角都相等,各条边都相等的多边形叫做正多边形可得答案.【解答】解:正五边形五个角相等,五条边都相等,故选:D.【点评】此题主要考查了正多边形,关键是掌握正多边形的定义.2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3B.﹣3C.﹣D.+【考点】11:正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.故选:B.【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】根据仰角的定义进行解答便可.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.【点评】本题主要考查了仰角的识别,熟记仰角的定义是解题的关键.仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.4.(3分)语句“x的与x的和不超过5”可以表示为()A.+x≤5B.+x≥5C.≤5D.+x=5【考点】C8:由实际问题抽象出一元一次不等式.【分析】x的即x,不超过5是小于或等于5的数,按语言叙述列出式子即可.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.故选:A.【点评】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.5.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°【考点】L8:菱形的性质.【分析】由菱形的性质得出AB∥CD,∠BAD=2∠1,求出∠BAD=30°,即可得出∠1=15°.【解答】解:∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°;故选:D.【点评】此题考查了菱形的性质,以及平行线的性质,熟练掌握菱形的性质是解本题的关键.6.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1B.2C.3D.4【考点】4A:单项式乘多项式.【分析】直接利用单项式乘以多项式以及多项式除以单项式运算法则计算得出答案.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.【点评】此题主要考查了单项式乘以多项式以及多项式除以单项式运算,正确掌握相关运算法则是解题关键.7.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB【考点】J9:平行线的判定.【分析】根据图形可知※代表CD,即可判断D;根据三角形外角的性质可得◎代表∠EFC,即可判断A;利用等量代换得出▲代表∠EFC,即可判断C;根据图形已经内错角定义可知@代表内错角.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.【点评】本题考查了平行线的判定,三角形外角的性质,比较简单.8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:=0.00002=2×10﹣5.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.2【考点】P8:利用轴对称设计图案.【分析】由等边三角形有三条对称轴可得答案.【解答】解:如图所示,n的最小值为3,故选:C.【点评】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.10.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【考点】MA:三角形的外接圆与外心;N2:作图—基本作图.【分析】根据三角形外心的定义,三角形外心为三边的垂直平分线的交点,然后利用基本作图格选项进行判断.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①【考点】V1:调查收集数据的过程与方法;V7:频数(率)分布表;VB:扇形统计图.【分析】根据题意和频数分布表、扇形统计图制作的步骤,可以解答本题.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.【点评】本题考查扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤.12.(2分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q【考点】G2:反比例函数的图象.【分析】由函数解析式可知函数关于y轴对称,即可求解;【解答】解:由已知可知函数y=关于y轴对称,所以点M是原点;故选:A.【点评】本题考查反比例函数的图象及性质;熟练掌握函数的解析式与函数图象的关系是解题的关键.13.(2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④【考点】6B:分式的加减法.【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤<1故表示﹣的值的点落在②故选:B.【点评】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S=()俯A.x2+3x+2B.x2+2C.x2+2x+1D.2x2+3x【考点】I4:几何体的表面积;U3:由三视图判断几何体.【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.【点评】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1D.有两个相等的实数根【考点】A7:解一元二次方程﹣公式法;AA:根的判别式.【分析】直接把已知数据代入进而得出c的值,再解方程求出答案.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.【点评】此题主要考查了根的判别式,正确得出c的值是解题关键.16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对【考点】LB:矩形的性质;LE:正方形的性质;Q2:平移的性质;R2:旋转的性质.【分析】平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;丙的思路与计算都错误,图示情况不是最长;故选:B.【点评】本题考查了矩形的性质与旋转的性质,熟练运用矩形的性质是解题的关键.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p的值为﹣3.【考点】6E:零指数幂;6F:负整数指数幂.【分析】直接利用同底数幂的乘法运算法则进而得出答案.【解答】解:∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为:﹣3.【点评】此题主要考查了同底数幂的乘法运算,正确掌握相关运算法则是解题关键.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=3x;(2)当y=﹣2时,n的值为1.【考点】32:列代数式;33:代数式求值.【分析】(1)根据约定的方法即可求出m;(2)根据约定的方法即可求出n.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.【点评】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【考点】KU:勾股定理的应用.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;【点评】本题考查勾股定理,解题的关键是根据A、B、C三点的坐标求出相关线段的长度,本题属于中等题型.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【考点】1G:有理数的混合运算.【分析】(1)根据有理数的加减法可以解答本题;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【解答】解:(1)1+2﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.【点评】本题考查有理数的混合运算,解答本题得关键是明确有理数混合运算的计算方法.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:【考点】47:幂的乘方与积的乘方;KT:勾股数.【分析】先根据整式的混合运算法则求出A,进而求出B,再把n的值代入即可解答.【解答】解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=17;当n2﹣1=35时,n2+1=37.故答案为:17;37【点评】本题考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.【考点】B7:分式方程的应用;W4:中位数;W5:众数;X4:概率公式;X6:列表法与树状图法.【分析】(1)由概率公式求出8元球的个数,由众数的定义即可得出答案;(2)①由中位数的定义即可得出答案;②用列表法得出所有结果,乙组两次都拿到8元球的结果有4个,由概率公式即可得出答案.【解答】解:(1)∵P(一次拿到8元球)=,∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为.【点评】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.23.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.【考点】KY:三角形综合题.【分析】(1)由条件易证△ABC≌△ADE,得∠BAC=∠DAE,∴∠BAD=∠CAE.(2)PD=AD﹣AP=6﹣x,∵点P在线段BC上且不与B、C重合,∴AP的最小值即AP⊥BC时AP的长度,此时PD可得最大值.(3)I为△APC的内心,即I为△APC角平分线的交点,应用“三角形内角和等于180°“及角平分线定义即可表示出∠AIC,从而得到m,n的值.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠P AC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠P AC,∠PCA,∴∠IAC=∠P AC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠P AC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.【点评】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30°的角所对的直角边等于斜边的一半,全等三角形的判定和性质,三角形内心概念及角平分线定义等,解题关键是将PD最大值转化为P A的最小值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S头的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.【考点】GA:反比例函数的应用.【分析】(1)①排头与O的距离为S头(m).等于排头行走的路程+队伍的长300,而排头行进的时间也是t(s),速度是2m/s,可以求出S头与t的函数关系式;②甲赶到排头位置的时间可以根据追及问题的数量关系得出,代入求S即可;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m)是在S的基础上减少甲返回的路程,而甲返回的时间(总时间t减去甲从排尾赶到排头的时间),于是可以求S甲与t的函数关系式;(2)甲这次往返队伍的总时间为T(s),是甲从排尾追到排头用的时间与从排头返回排尾用时的和,可以根据追及问题和相遇问题的数量关系得出结果;在甲这次往返队伍的过程中队伍行进的路程=队伍速度×返回时间.【解答】解:(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600 m甲返回时间为:(t﹣150)s∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.(2)T=t追及+t返回=+=,在甲这次往返队伍的过程中队伍行进的路程为:v×=400;因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为400m.【点评】考查行程问题中相遇、追及问题的数量关系的理解和应用,同时函数思想方法的应用,切实理解变量之间的变化关系,由于时间有重合的部分,容易出现错误.。
2019届河北石家庄市九年级中考模拟数学试卷【含答案及解析】
姓名 ___________ 班级 ____________ 分数 __________
题一二三四五六七八九 十十十十十十十十总
号
分
得
分
一、单选题
1. 若等式﹣ 2□(﹣2) =4 成立,则“□”内的运算符号是(
)
A. + B. ﹣ C. × D. ÷
26. 如图,已知某小区的两幢 10 层住宅楼间的距离为 AC=30 m,由地面向上依次为第 1 层、 第 2 层、…、第 10 层,每层高度为 3 m.假设某一时刻甲楼在乙楼侧面的影长 EC=h,太 阳光线与水平线的夹角为 α .
(1) 用含 α 的式子表示 h( 不必指出 α 的取值范围 ) ;
2. 已知 28a2bm ÷ 4anb2=7b2, 那么m,n 的值为(
)
A. m=4 , n=2 B. m=4 ,n=1 C. m=1 ,n=2 D. m=2 , n=2
二、选择题
3. 下列四个图案中,属于中心对称图形的是(
)
A.
B
.
.
D.
三、单选题
4. 某厂接到加工 720 件衣服的订单,预计每天做 48 件,正好按时完成,后因客户要求提
)
A. x=3 B. x=2.5 C. x1=3
,x2=2.5 D. x= ﹣ 3
十二、选择题
15. 如图, DE∥ BC,在下列比例式中,不能成立的是( )
A. =
B
.=
C. =
D
.=
十三、单选题
16. 若二次函数 y=ax2+bx+c( a≠ 0)的图象上有两点,坐标分别为(
《押题》2019年河北省石家庄市新华区中考数学一模试卷(解析版)
2019年河北省石家庄市新华区中考数学一模试卷一、选择题(本大题共16小题,共42.0分)1.下列四个图形中,是中心对称图形但不是轴对称图形的是()A. B.C. D.2.在下列气温的变化中,能够反映温度上升5℃的是()A. 气温由℃到℃B. 气温由℃到℃C. 气温由℃到℃D. 气温由℃到℃3.在下列各图形中,不是正方体的展开图的是()A. B.C. D.4.近似数1.23×103精确到()A. 百分位B. 十分位C. 个位D. 十位5.将一副三角尺按如图所示的方式摆放(两条直角边在同一条直线上,且两锐角顶点重合),连接另外两条锐角顶点,并测得∠1=47°,则∠2的度数为()A. B. C. D.6.如图,设一枚5角硬币的半径为1个单位长度,将这枚硬币放置在平面内一条数轴上,使硬币边缘上一点P与原点O重合,让这枚硬币沿数轴正方向无滑动滚动,转动一周时,点P到达数轴上点P′的位置,则点P′所对应的数是()A. B. C. D.7.化简的结果为()A. B. C. D.8.如图,要修建一条公路,从A村沿北偏东75°方向到B村,从B村沿北偏西25°方向到C村.若要保持公路CE与从A村到B村的方向一致,则应顺时针转动的度数为()A.B.C.D.9.某公司承担了制作600个上海世博会道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了10个,因此提前5天完成任务.根据题意,下列方程正确的是()A. B. C. D.10.如图,将正五边形ABCDE绕其顶点A沿逆时针方向旋转,若使点B落在AE边所在的直线上,则旋转的角度可以是()A. B. C. D.11.一元二次方程x2-6x+5=0配方后可变形为()A. B. C. D.12.某市公园的东、南、西、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A. B. C. D.13.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为()A. B. 2 C. D.14.把直线y=-x-3向上平移m个单位后,与直线y=2x+4的交点在第二象限,则m可以取得的整数值有()A. 1个B. 3个C. 4个D. 5个15.如图,在锐角△ABC中,延长BC到点D,点O是AC边上的一个动点,过点O作直线MN∥BC,MN分别交∠ACB、∠ACD的平分线于E,F两点,连接AE、AF,在下列结论中:①OE=OF;②CE=CF;③若CE=12,CF=5,则OC的长为6;④当AO=CO时,四边形AECF是矩形.其中正确的是()A. ①④B. ①②C. ①②③D. ②③④16.如图,抛物线L:y=-(x-t)(x-t+4)(常数t>0),双曲线y=(x>0),设L与双曲线有个交点的横坐标为x0,且满足3<x0<4,在L位置随t变化的过程中,t的取值范围是()A. B. C. D.二、填空题(本大题共3小题,共12.0分)17.计算:(-2)3=______.18.分解因式:ab2-4ab+4a=______.19.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4,以AC为斜边作Rt△ACC1,使∠CAC1=30°,Rt△ACC1的面积记为S1,则S1=______;再以AC1为斜边作Rt△AC1C2,使∠C1AC2=30°,Rt△AC1C2的面积记为S2,……,以此类推,则S n=______.(含n的式子表示)三、解答题(本大题共7小题,共66.0分)20.在多项式的乘法公式中,完全平方公式(a+b)2=a2+2ab+b2是其中重要的一个.(1)请补全完全平方公式的推导过程;(a+b)2=(a+b)(a+b)=a2+______+______+b2=a2+______+b2(2)如图,将边长为a+b的正方形分割成Ⅰ、Ⅱ、Ⅲ、Ⅳ四部分,请你结合图给出完全平方公式的几何解释.(3)用完全平方公式求5982的值.21.为在中小学生中普及交通法规常识,倡导安全出行,某市教育局在全市范围内组织七年级学生进行了一次“交规记心间”知识竞赛.为了解市七年级学生的竟赛成绩,随机抽取了若干名学生的竞赛成绩(成绩为整数,满分100分),进行统计后,绘制出如下频数分布表和如图所示的频数分布直方图(频数分布直方图中有一处错误).请根据图表信息回答下列问题:(1)在频数分布表中,a=______,b=______.(2)指出频数分布直方图中的错误,并在图上改正;(3)甲同学说:“我的成绩是此次抽样调查所得数据的中位数”,问:甲同学的成绩应在什么范围?(4)全市共有5000名七年级学生,若规定成绩在80分以上(不含80分)为优秀,估计这次竞赛中成绩为优秀的学生有多少人?22.【探究】(1)观察下列算式,并完成填空:1=121+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+…+(2n-1)=______.(n是正整数)(2)如图是某市一广场用正六边形、正方形和正三角形地板砖铺设的图案,图案中央是一块正六边形地板砖,周围是正方形和正三角形的地板砖.从里向外第一层包括6块正方形和6块正三角形地板砖;第二层包括6块正方形和18块正三角形地板砖;以此递推.①第3层中分别含有______块正方形和______块正三角形地板砖;②第n层中含有______块正三角形地板砖(用含n的代数式表示).【应用】该市打算在一个新建广场中央,采用如图样式的图案铺设地面,现有1块正六边形、150块正方形和420块正三角形地板砖,问:铺设这样的图案,最多能铺多少层?请说明理由.23.已知:如图,作∠AOB的平分线OP,在∠AOB的两边上分别截取OA=OB,再以点A为圆心,线段OA长为半径画弧,交OP于点P,连接BP.(1)求证:四边形OAPB是菱形;(2)尺规作图:作线段OA的垂直平分线EF,分别交OP于点E,OA于点F,连接BE(不写作法,保留作图痕迹);(3)当∠AOB=60°时,判断△PBE的形状,并说明理由.24.如图,一座拱桥的轮廓是抛物线型,拱高6m,在长度为8m的两支柱OC和AB之间,还安装着三根支柱,相邻两支柱间的距离均为5m.(1)建立如图所示的直角坐标系,求拱桥抛物线的函数表达式;(2)求支柱EF的长度;(3)拱桥下面拟铺设行车道,要保证高3m的汽车能够通过(车顶与拱桥的距离不小于0.3m),行车道最宽可以铺设多少米?25.如图,在Rt△OAB中,∠AOB=90°,OA=OB=4,以点O为圆心、2为半径画圆,点C是⊙O上任意一点,连接BC,OC.将OC绕点O按顺时针方向旋转90°,交⊙O于点D,连接AD.(1)当AD与⊙O相切时,①求证:BC是⊙O的切线;②求点C到OB的距离.(2)连接BD,CD,当△BCD的面积最大时,点B到CD的距离为______.26.如图,直线y=2x+2与x轴,y轴分别交于A,B两点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且AB=BM,点N(a,1)在反比例函数y=(x>0)的图象上.(1)求k的值;(2)在x轴的正半轴上存在一点P,使得PM+PN的值最小,求点P的坐标;(3)点N关于x轴的对称点为N′,把△ABO向右平移m个单位到△A′B′O′的位置,当N′A+N′B取得最小值时,请你在横线上直接写出m的值,m=______.答案和解析1.【答案】C【解析】解:A、是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项正确;D、不是中心对称图形,是轴对称图形,故此选项错误;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】A【解析】解:A.气温由-3℃到2℃,上升了2-(-3)=5(℃),符合题意;B.气温由-1℃到-6℃,上升了-6-(-1)=-5(℃),不符合题意;C.气温由-1℃到5℃,上升了5-(-1)=6(℃),不符合题意;D.气温由4℃到-1℃,上升了-1-4=-5(℃),不符合题意;故选:A.根据题意列出算式,分别计算可得.本题主要考查有理数的加减运算,解题的关键是掌握有理数的减法法则.3.【答案】C【解析】解:由正方体展开图的特征即可判定C不是正方体的展开图,故选:C.由正方体展开图的特征即可判定出正方体的展开图.本题主要考查了几何体的展开图,解题的关键是熟记正方体展开图的特征.4.【答案】D【解析】解:∵1.23×103=1 230,∴这个近似数精确到十位.故选:D.用科学记数法表示的数,要确定精确到哪位,首先要把这个数还原成一般的数,然后看a中的最后一个数字在还原的数中是什么位,则用科学记数法表示的数就精确到哪位.考查了近似数和有效数字,精确到了哪一位,一定要看最后一个数字实际落在了哪一位.5.【答案】B【解析】解:如图所示,∠3=180°-60°-45°=75°,则∠2=180°-∠1-∠3=180°-47°-75°=58°.故选:B.由三角尺角的特殊性,利用平角定义及三角形内角和定理即可求出.本题考查平角定义及三角形内角和定理,并且要明确知道三角尺各角的度数,进行计算.6.【答案】A【解析】解:硬币的周长是2π,转动一周时前进了2π个单位长度,所以点P′所对应的数是2π.故选:A.硬币沿数轴正方向无滑动滚动,转动一周时,前进了一个周长,即前进了2π个单位长度.本题考查数轴的相关知识.确定硬币滚动一周的前进距离是解答关键.7.【答案】B【解析】解:原式=-==,故选:B.根据分式的运算法则即可求出答案.本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8.【答案】C【解析】解:由题意可得:AN∥FB,DC∥BE,∴∠NAB=∠FBE=75°,∵∠CBF=25°,∴∠CBE=100°,则应顺时针转动的度数为100°.故选:C.利用平行线的性质,即可得到∠NAB=∠FBE=75°,再根据∠CBF=25°,可得∠CBE=100°,进而得出∠DCB=180°-100°=80°.此题主要考查了平行线的性质,运用两直线平行,同旁内角互补是解题关键.9.【答案】B【解析】解:根据题意,原计划每天制作个,实际每天制作个,由实际平均每天多制作了10个,可得-=10.故选:B.关键描述语是:实际平均每天比原计划多制作了10个,根据等量关系列式.此题涉及的公式:工作效率=工作量÷工作时间,解题时找到等量关系是列式的关键.10.【答案】A【解析】解:∵在正五边形ABCDE中,如右图所示,∴∠BAE=,∴∠BAF=180°-108°=72°,即使点B落在AE边所在的直线上,则旋转的角度是72°,故选:A.根据题意可以求得正五边形的每个内角,从而可以求得旋转角,本题得以解决.本题考查旋转的性质、正多边形和圆,解题的关键是明确题意,利用数形结合的思想解答.11.【答案】A【解析】解:x2-6x=5,x2-6x+9=5+9,即(x-3)2=14,故选:A.先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.12.【答案】B【解析】解:画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为=,故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.13.【答案】C【解析】解:过O作OC⊥AB,交圆O于点D,连接OA,由折叠得到CD=OC=OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:AC=cm,则AB=2AC=2cm.故选:C.过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.14.【答案】D【解析】解:直线y=-x-3向上平移m个单位后可得:y=-x-3+m,联立两直线解析式得:,解得:,∵交点在第二象限,∴,解得:1<m<7.m取整数有5个解.故选:D.直线y=-x-3向上平移m个单位后可得:y=-x-3+m,求出直线y=-x-3+m与直线y=2x+4的交点,再由此点在第二象限可得出m的取值范围.本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第二象限的点的横坐标小于0、纵坐标大于0.15.【答案】A【解析】解:∵MN∥CB,∴∠OEC=∠BCE,∠OFC=∠ACF∵∠ACE=∠BCE,∠ACF=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OC=OE=OF,故①正确,∵∠BCD=180°,∴∠ECF=90°,若EC=CF,则∠OFC=45°,显然不可能,故②错误,∵∠ECF=90°,EC=12,CF=5,∴EF==13,∴OC=EF=6.5,故③错误,∴OE=OF,OA=OC,∴四边形AECF是平行四边形,∵∠ECF=90°,∴四边形AECF是矩形.故选:A.①只要证明OC=OE,OC=OF即可.②首先证明∠ECF=90°,若EC=CF,则∠OFC=45°,显然不可能,故②错误,③利用勾股定理可得EF=13,推出OC=6.5,故③错误.④根据矩形的判定方法即可证明.本题考查矩形的判定,角平分线的定义,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】D【解析】解:对双曲线,当3<x0<4时,,即L与双曲线在(4,),(3,2)之间的一段有个交点.①由(4-t)(4-t+4)解得t=5或7.②由2=-(3-t)(3-t+4)解得t=5.满足条件的t的值为5<t<7.故选:D.利用双曲线求出L与双曲线在(4,),(3,2)之间的一段有个交点,利用方程即可解决问题.本题考查二次函数综合题、待定系数法、平移等知识,解题的关键是理解题意,学会利用图形信息解决问题,学会用方程的思想思考问题,考虑问题要全面,属于中考常考题型.17.【答案】-8【解析】解:(-2)3=-8.(-2)3表示3个-2相乘.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数.18.【答案】a(b-2)2【解析】解:ab2-4ab+4a=a(b2-4b+4)--(提取公因式)=a(b-2)2.--(完全平方公式)故答案为:a(b-2)2.先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2-2ab+b2=(a-b)2.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.19.【答案】【解析】解:∵∠ACB=90°,∠BAC=30°,AB=4,∴BC=AB=2,∴AC=BC=2,∴S△ABC=•BC•AC=2,在△ABC1中,∵∠CAC1=30°,∴CC═AC=,1∵∠BAC=∠CAC1,∠ACB=∠AC1C=90°,∴△ACB∽△AC1C,∴,∴S1=•S△ABC=,同理可得,S2=•S1=()2•S△ABC,S3=()3•S△ABC,…根据此规律可得,S n=()n•S△ABC=,故答案为;,首先计算得出△ABC1的面积,进一步利用含30°角的直角三角形的特性以及勾股定理求得Rt△AC1C2和Rt△AC2C3的面积,找出规律得出结论.此题考查勾股定理、含30°角直角三角形的性质以及三角形的面积等知识点,规律型题目,解题的关键是学会从特殊到一般的探究方法,学会找规律,利用规律解决问题,属于中考常考题型.20.【答案】ab ab2ab【解析】解:(1)(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2故答案为:ab,ab,2ab;(2)边长为a+b的正方形的面积,等于边长分别为a和b的两个小正方形面积的和,再加上两个长为a,宽为b的长方形的面积.(3)5982=[(600+(-2)]2=6002+2×600×(-2)+(-2)2=360000-2400+4=357604.或5982=(600-2)2=6002-2×600×2+22=360000-2400+4=357604.(1)依据多项式乘多项式法则,即可得到结果;(2)依据边长为a+b的正方形分割成Ⅰ、Ⅱ、Ⅲ、Ⅳ四部分,即可得到完全平方公式的几何解释;(3)利用完全平方公式,即可得到5982的值.本题主要考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.21.【答案】60 0.05【解析】解:(1)抽取的学生总数为:20÷0.1=200.a=200×0.3=60,b==0.05.故答案为:60,0.05;(2)频数分布直方图中,80.5~90.5(分)的频数40是错误的,应为60.正确的频数分布直方图如下:(2)∵一共有200个数据,按从小到大的顺序排列后,第100与101个数都落在第三组:70.5~80.5,∴此次抽样调查所得数据的中位数是70.5~80.5,∴甲同学的成绩所在范围是70.5~80.5;(3)这次考试中成绩为优秀的学生为:5000×(0.3+0.05)=1750人.答:估计这次竞赛中成绩为优秀的学生有1750人.(1)首先根据第一组的已知频数与已知频率计算出抽取的学生总数,然后根据频数、频率与数据总数之间的关系求出a、b的值;(2)由求得的a的值即可改正频数分布直方图;(3)根据中位数的定义即可求解;(4)80分以上(不含80分)的学生数就是第四、五组的学生数之和,将样本中这两组的频率相加,乘以全市七年级学生总人数即可求解.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.【答案】n2 6 30 6(2n-1)或12n-6【解析】解:【探究】(1)观察算式规律,1+3+5+…+(2n-1)=n2,故答案为n2;(2)①∵第一层包括6块正方形和6块正三角形地板砖,第二层包括6块正方形和6+12=18块正三角形地板砖,∴第三层包括6块正方形和18+12=30块正三角形地板砖,故答案为6,30;②∵第一层6=6×1=6×(2×1-1)块正三角形地板砖,第二层18=6×3=6×(2×2-1)块正三角形地板砖,第三层30=6×5=6×(2×3-1)块正三角形地板砖,∴第n层6=6×1=6(2n-1)块正三角形地板砖,故答案为6(2n-1)或12n-6.【应用】铺设这样的图案,最多能铺8层.理由如下:∵150÷6=25(层),∴150块正方形地板砖可以铺设这样的图案25层;∵铺设n层需要正三角形地板砖的数量为:6[1+3+5+…+(2n-1)]=6n2,∴6n2=420,n2=70,n=.又∵8<<9,即8<n<9,∴420块正三角形地板砖最多可以铺设这样的图案8层.∴铺设这样的图案,最多能铺8层.【探究】(1)观察算式规律,1+3+5+…+(2n-1)=n2;(2)①第一层6块正方形和6块正三角形地板砖,第二层6块正方形和6+12=18块正三角形地板砖,第三层6块正方形和18+12=30块正三角形地板砖;②第一层6=6×1=6×(2×1-1)块正三角形地板砖,第二层18=6×3=6×(2×2-1)块正三角形地板砖,第三层30=6×5=6×(2×3-1)块正三角形地板砖,第n层6=6×1=6(2n-1)块正三角形地板砖,【应用】150块正方形地板砖可以铺设这样的图案150÷6=25(层),铺设n层需要正三角形地板砖的数量为:6[1+3+5+…+(2n-1)]=6n2,6n2=420,n2=70,n=,8<n<9,所以420块正三角形地板砖最多可以铺设这样的图案8层.因此铺设这样的图案,最多能铺8层.本题考查了图形的变化规律列代数式,正确找出图形变化规律是解题的关键.23.【答案】(1)证明:∵OP是∠AOB的平分线,∴∠AOP=∠BOP,∵OA=OB,OP=OP,∴△AOP≌△BOP(SAS)∴AP=BP,∵OA=AP,∴OA=OB=BP=AP,∴四边形OAPB是菱形.(2)解:如图1所示.(3)解:结论:△PBE是直角三角形.理由:连接AE,∵EF是线段OA的垂直平分线,∴AE=OE,∵PB=PA,∠EPB=∠EPA,PE=PE,∴△AEP≌△BEP(SAS),∴AE=BE,∴OE=BE,∴∠BOE=∠OBE,当∠AOB=60°时,∠BOE=30°,∴∠OBE=30°,∵OB=BP,∴∠BPO=∠BOE=30°,∴∠OBP=180°-2∠BPO=180°-2×30°=120°,∴∠PBE=∠OBP-∠OBE=120°-30°=90°,∴△PBE是直角三角形.【解析】(1)根据四边相等的四边形是菱形即可证明.(2)利用尺规周长线段OA的垂直平分线即可.(3)结论:△PBE是直角三角形.想办法证明∠PBE=90°即可.本题考查菱形的判定和性质,线段的垂直平分线的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.【答案】解:(1)根据题意,设拱桥抛物线的函数表达式为:y=ax2+bx,∵相邻两支柱间的距离均为5m,∴OA=4×5m=20m,∴(20,0),(10,6)两点都在抛物线上,∴ ,解得,∴y=-x2+x;(2)设点F的坐标为(15,y),∴y=-×152+×15=;∴EF=8-m=m=3.5m;(3)当y=3+0.3=3.3(m)时,有-x2+x=3.3,化简,得x2-20x+55=0,解得x=10±3,x1=3.292,x2=16.708,∴x2-x1=16.708-3.292=13.416≈13.4,答:行车道最宽可以铺设13.4米.【解析】(1)根据题目可知抛物线经过的两点的坐标,设出抛物线的解析式代入可求解;(2)设N点的坐标为(15,y)可求出支柱EF的长度;(3)令y=3.3,求得x的值即可求解.本题考查二次函数的实际应用,借助二次函数解决实际问题是解题根本,求出二次函数关系式是关键.25.【答案】4+【解析】(1)①证明:∵AD与⊙O相切,∴∠ADO=90°,∵∠AOB=∠COD=90°,∴∠AOB-∠AOC=∠COD-∠AOC,即∠COB=∠AOD,∵OB=OA,OC=OD,∴△BOC≌△AOD(SAS).∴∠BCO=∠ADO=90°.∴BC是⊙O的切线.②解:过点C作CE⊥OB,垂足为E,则CE即为点C到OB的距离.在Rt△BOC中,∵OB=4,OC=2,∴,∴∴OB▪CE=BC▪OC,即4CE=2×,CE=.∴点C到OB的距离是.(2)解:当点C在⊙O上运动到△BCD是等腰三角形,且BO的延长线与CD垂直位置时,△BCD的面积最大(如图2),此时OB=4,OC=OD=2,∵△COD是等腰直角三角形,∴,∴.故答案为:4+.(1)①先证明△BOC≌△AOD,则∠BCO=∠ADO=90°,BC是⊙O的切线;②过点C作CE⊥OB,根据勾股定理得BC=2,由△BCO的面积公式可得OB•CE=BC•OC,求得CE=;(2)当点C在⊙O上运动到△BCD是等腰三角形,且BO的延长线与CD垂直位置时,△BCD的面积最大(如图2),由等腰直角三角形的性质可求得OF=,则点B到CD的距离为4+.此题主要考查了圆的综合以及等腰直角三角形的性质、旋转的性质、切线的判定与性质、全等三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题.26.【答案】4.75【解析】解:(1)把x=0代y=2x+2,得:y=2×0+2=2.∴点B(0,2),即BO=2,∵BO∥MH,AB=BM,=∴MH=2BO=4,∵点M在y=2x+2上,4+2x+2,x=1,∴点M的坐标为(1,4),∵M在反比例函y=(x>0)的图象上,4=,k=4.(2)如图2所示,过点N作关于x轴的对称点N′,连接M N′,交x轴的正半轴于点P,则点P即为所求,此时PM+PN的值最小.∵点N(a,1)是反比例函y=(x>0)图象上的点,1=,a=4,∴点N′的坐标为(4,-1),设直线M N′的函数表达式y=kx+b,解∴y=x+,∴当y=0时,x,即点P的坐标为(,0).(3)过点N′作x轴的平行线,取A关于这条平行线的对称点A′,连接A′B的直线经过N′设A′B的解析式为:y=kx+b,代入平移后的B(m,2)、A′(m-1,-2)y=4x+2-4m把N′(4,-1)代入,解得:m=4.75.故答案为:4.75.(1)运用平行线分线段成比例定理可得M点坐标,就可求k的值;(2)找出N点的对称点N′,连接MN′与x轴交点就是点P;(3)过点N′作x轴的平行线,取A关于这条平行线的对称点A′,连接A′B的直线经过N′,可求m的值.本题考查了反比例函数、一次函数和轴对称的知识点,运用了数形结合的数学思想.。
精选2019年河北省中考数学模拟试题(三)含详细答案
精选2019年河北省中考数学模拟试题(三)含详细答案2019年河北省中考模拟试题(三)数学一、选择题(本大题共16小题,共42分。
1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是()A.a B.b C.c D.d2.用激光测距仪测量,从一座山峰发出的激光经过4×10–5秒到达另一座山峰,已知光速为3×108米/秒,则两座山峰之间的距离用科学记数法表示为()A.1.2×103米B.12×103米 C.1.2×104米D.1.2×105米3.下列图形中,∠2>∠1的是( )A .B .C .D . ﹣b=21,那么代数式(a ﹣a b 2)•ba a 的值是( ) A .﹣2 B .2 C .﹣21 D .21 5.某区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛活动. 小江统计了班级30名同学四月份的诗词背诵数量,具体数据如下表所示:那么这30名同学四月份诗词背诵数量的众数和中位数分别是( )平行四边形A.11,7 B.7,5 C.8,8 D.8,76. 在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形构成的图形为轴对称图形,则还需要涂黑的小正方形序号是()A.①或②B.③或⑥C.④或⑤D.③或⑨7. 小聪按如图所示的程序输入一个正数x,最后输出的结果为853,则满足条件的x的不同值最多有()A.4个B.5个C.6个D.6个以上8. 甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率给出的统计图如图所示,则符合这一结乙所示的几何体是可以形成“牟合方盖”的一种模型,其直观图如图丙,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是()A.a,b B.a,d C.c,b D.c,d13. 已知,菱形ABCD中,AD=1,记∠ABC为∠α(),菱形的面积记作S,菱形的周长记作C.则下列说法中,不正确的是()A.菱形的周长C与∠α的大小无关B.菱形的面积S是α的函数1C.当=45°时,菱形的面积是2D.菱形的面积S随α的增大而增大14.如图,点A在观测点的北偏东方向30 °,且与观测点的距离为8千米,将点A的位置记作A(8,30°),用同样的方法将点B,点C的位置分别记作B(8,60°),C (4,60°),则观测点的位置应在()B.O234115.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.16. 两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC=DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的是()A.小红的运动路程比小兰的长C.当小红运动到点D的时候,小兰已经经过了点D D.在4.84秒时,两人的距离正好等于⊙O的半径二、填空题(本大题共3小题,共10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年河北省中考模拟试题(三)数学一、选择题(本大题共16小题,共42分。
1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是( )A .aB .bC .cD .d 2.用激光测距仪测量,从一座山峰发出的激光经过4×10–5秒到达另一座山峰,已知光速为3×108米/秒,则两座山峰之间的距离用科学记数法表示为( ) A .1.2×103米B .12×103米C .1.2×104米D .1.2×105米3.下列图形中,∠2>∠1的是( )A .B .C .D .4.如果a ﹣b=21,那么代数式(a ﹣a b 2)•ba a的值是( )A .﹣2B .2C .﹣21 D .215.某区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛活动. 小江统计了班级30名同学四月份的诗词背诵数量,具体数据如下表所示: 诗词数量(首)4 5 6 7 8 9 10 11 人数34457511那么这30名同学四月份诗词背诵数量的众数和中位数分别是( )A .11,7B .7,5C .8,8D . 8,7 6. 在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形构成的图形为轴对称图形,则还需要涂黑的平行四边形小正方形序号是()A.①或②B.③或⑥C.④或⑤D.③或⑨7. 小聪按如图所示的程序输入一个正数x,最后输出的结果为853,则满足条件的x的不同值最多有()A.4个B.5个C.6个D.6个以上8. 甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率给出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概率C.任意写出一个整数,能被2整除的概率D.一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率9.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为()A.100°B.80°C.50°D.20°10.如图,在平面直角坐标系xOy中,点A从(3,4)出发,绕点O顺时针旋转一周,则点A不.经过()A.点M B.点N C.点P D.点Q11.鸡兔同笼问题是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?经计算可得()A.鸡23只,兔12只B.鸡12只,兔23只C .鸡15只,兔20只D .鸡20只,兔15只12. 我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.它是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,其直观图如图丙,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是( )A .a ,bB .a ,dC .c ,bD .c ,d13. 已知,菱形ABCD 中,AD =1,记∠ABC 为∠α(),菱形的面积记作S ,菱形的周长记作C .则下列说法中,不正确的是( )A .菱形的周长C 与∠α 的大小无关B .菱形的面积S 是α的函数C .当=45°时,菱形的面积是21D .菱形的面积S 随α的增大而增大14.如图,点A 在观测点的北偏东方向30 °,且与观测点的距离为8千米,将点A 的位置记作A (8,30°),用同样的方法将点B ,点C 的位置分别记作B (8,60°),C (4,60°),则观测点的位置应在( ) A.O 1 B.O 2 C.O 3 D.O 415.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是( )A .B .C .D .16. 两个少年在绿茵场上游戏.小红从点A 出发沿线段AB 运动到点B ,小兰从点C 出发,以相同的速度沿⊙O 逆时针运动一周回到点C ,两人的运动路线如图1所示,其中AC=DB .两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C 的距离y 与时间x (单位:秒)的对应关系如图2所示.则下列说法正确的是( )A .小红的运动路程比小兰的长B .两人分别在1.09秒和7.49秒的时刻相遇C .当小红运动到点D 的时候,小兰已经经过了点D D .在4.84秒时,两人的距离正好等于⊙O 的半径二、填空题(本大题共3小题,共10分。
17~18小题各3分;19小题有2个空,每空2分。
把答案写在题中横线上) 17.计算:)23)(23(-+= ____________. 18.如右图,四边形ABCD 为菱形,点D 、C 落在以B为圆心的弧EF 上,则A ∠的度数为____________;19.如下图,弹性小球从点P (0,3)出发,沿所示方向运动,每当小球碰到矩形OABC 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时,记为点P 1,第2次碰到矩形的边时,记为点P 2, ………第n 次碰到矩形的边时,记为点P n , 则点P 3的坐标是_______________; 点P 2017的坐标是_______________.三、解答题(本大题共7小题,共68分。
解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b =ab 2+2ab +a ,如:1☆3=1×32+2×1×3+1=16.(1)求(-2)☆3的值;(2)若(a +12☆3)=8,求a 的值.21.(9分)在春季运动会上,某学校教工组和学生组进行定点投篮比赛,每组均派五名选手参加,每名选手投篮十次,投中记1分,不中记零分,3分以上(含3分)视为合格,比赛成绩绘制成条形统计图如下:投篮成绩条形统计图图14(1)请你根据条形统计图中的数据填写表格:组别 平均数 中位数 方差 合格率 教工组 ________ 3 ________80% 学生组3.6________3.4460%(2)如果小亮认为教工组的成绩优于学生组,你认为他的理由是什么?小明认为学生组成绩优于教工组,他的理由又是什么?(3)若再让一名体育教师投篮后,六名教师成绩平均数大于学生组成绩的中位数,设这名体育教师命中m 分,求m 的值.22.(9分)张华发现某月的日历中一个有趣的问题,他用笔在上面画如图所示的十字框,若设任意一个十字框里的五个数为a 、b 、c 、d 、k .设中间的一个数为k ,如图:试回答下列问题: (1)此日历中能画出 个十字框? (2)若a+b+c+d=84,求k 的值;(3)是否存在k 的值,使得a+b+c+d=108,请说明理由.23.(9分)已知:直线l 1与直线l 2平行,且它们之间的距离为3,A ,B 是直线l 1上的两个定点,C ,D 是直线l 2上的两个动点(点C 在点D 的左侧),AB=CD=6,连接AC 、BD 、BC ,将△ABC 沿BC 折叠得到△A 1BC .(如图1)(1)当A 1与D 重合时(如图2),四边形ABDC 是什么特殊四边形,为什么?(2)当A 1与D 不重合时,连接A 1D ,则A 1 D ∥BC (不需证明),此时若以A 1,B ,C ,D 为顶点的四边形为矩形,且矩形的边长分别为a ,b ,求(a+b )2的值.24.(10分) 已知二次函数243y ax ax a =-+. (1)该二次函数图象的对称轴是x =;(2)若该二次函数的图象开口向下,当14x ≤≤时,y 的最大值是2,求当14x ≤≤时,y 的最小值;(3)若对于该抛物线上的两点11() P x y , ,22() Q x y ,,当1+1t x t ≤≤,25x ≥时,均满足12y y ≥,请结合图象,直接写出t 的最大值.25.(11分)(1)如图①,已知△ABC ,请画出△ABC 的中线AD ,并判断△ABD 与△ACD 的面积大小关系.(2)如图②,在平面直角坐标系中,△ABC 的边BC 在x 轴上,已知点A (2,4),B (﹣1,0),C (3,0),试确定过点A 的一条直线l ,平分△ABC 的面积,请写出直线l 的表达式. 综合运用:(3)如图③,在平面直角坐标系中,若A (1,4),B (3,2),那么在直线y=﹣4x+20上是否存在一点C ,使直线OC 恰好平分四边形OACB 的面积?若存在,请计算点C 的坐标;若不存在,请说明理由.26.(12分)如图1,将长为10的线段OA 绕点O 旋转90°得到OB ,点A 的运动轨迹为AB ︵,P 是半径OB 上一动点,Q 是AB ︵上的一动点,连接PQ.发现:∠POQ =________时,PQ 有最大值,最大值为________; 思考:(1)如图2,若P 是OB 中点,且QP ⊥OB 于点P ,求BQ ︵的长;(2)如图3,将扇形AOB 沿折痕AP 折叠,使点B 的对应点B ′恰好落在OA 的延长线上,求阴影部分面积;探究:如图4,将扇形OAB 沿PQ 折叠,使折叠后的弧QB ′恰好与半径OA 相切,切点为C ,若OP =6,求点O 到折痕PQ 的距离.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 答案 C C C D D B B D 题号 9 10 11 12 13 14 15 16 答案BCAACABD二、填空题17.1 18.60° 19.(8,3) (3,0) 三、解答题20. 解:(1)(-2)☆3=-2×32+2×(-2)×3+(-2)=-32; (2)a +12☆3=a +12×32+2×a +12×3+a +12=8a +8=8,解得a =0.21. 解:(1)补全表格如下:组别 平均数 中位数 方差 合格率 教工组 3.2 3 1.76 80% 学生组3.643.4460%(2)从合格率与方差上来看,教工组成绩优于学生组,从平均数、中位数来看,学生组优于教工组; (3)依题意,得1+3+3+4+5+m 6>4,解得m>8,又∵m 为正整数,∴m =9或m =10.22. 解:(1)由题意可得:十字框顶端分别在:1,2,5,6,7,8,9,12,13,14,15,16一共有12个位置,故答案为:12;(2)由题意可得:设最上面为a ,最左边为b ,最右边为c ,最下面为d , 则b=a+6,c=a+8,d=a+14,k=a+7, 故a+a+6+a+8+a+14=84, 解得:a=14, 则k=21;(3)不存在k 的值,使得a+b+c+d=108, 理由:当a+b+c+d=108, 则a+a+6+a+8+a+14=108,解得:a=20,故d=34>31(不合题意), 故不存在k 的值,使得a+b+c+d=108. 23.解:(1)四边形ABDC 是菱形; ∵AB=CD ,AB ∥CD ,∴四边形ABCD 为平行四边形, 又∵A 1与D 重合时, ∴AC=CD ,∴四边形ABDC 是菱形;(2)当以A 1,B ,C ,D 为顶点的四边形为矩形如图1时,连结A 1B ,S △A1CB =S △ABC =21×6×3=9 ∴S 矩形A1CBD =18,即ab=18,而在Rt △BCD 中, ∴a 2+b 2=CD 2=36∴(a+b )2=a 2+b 2+2ab=36+36=72,当以A 1,B ,C ,D 为顶点的四边形为矩形如图2时, ∴(a+b )2=(3+6)2=81, ∴(a+b )2的值为72或81.24. 解:(1)2.(2)∵ 该二次函数的图象开口向下,且对称轴为直线2x =, ∴ 当2x =时,y 取到在14x ≤≤上的最大值为2. ∴4832a a a -+=.∴2a =-,2286y x x =-+-. ∵ 当12x ≤≤时,y 随x 的增大而增大, ∴ 当1x =时,y 取到在12x ≤≤上的最小值0. ∵ 当24x ≤≤时,y 随x 的增大而减小, ∴ 当4x =时,y 取到在24x ≤≤上的最小值6-.∴ 当14x ≤≤时,y 的最小值为6-. (3)4.25.解:(1)如图①,过A 作AE ⊥BC 于点E , ∵AD 为BC 边上的中线, ∴BD=CD , ∴21BD •AE=21CD •AE , 即S △ABD =S △ACD ;(2)如图②,设BC 的中点为F , ∵直线l 平分△ABC 的面积, ∴由(1)可知直线l 过点F , ∵B (﹣1,0),C (3,0), ∴F (1,0),设直线l 的表达式为y=kx+b , 把A 、F 的坐标代入可得⎩⎨⎧=+=+0b k 4b k 2,解得⎩⎨⎧-==4b 4k ,∴直线l 的表达式y=4x ﹣4;(3)如图③,连接AB 交OC 于点G ,∵直线OC 恰好平分四边形OACB 的面积,∴直线OC 过AB 的中点,即G 为AB 的中点,∵A (1,4),B (3,2),∴G (2,3),设直线OC 解析式为y=ax ,则3=2a ,解得a=23, ∴直线OC 表达式为y=23x , 联立两直线解析式可得⎪⎩⎪⎨⎧=+-=23y 204y x ,解得,⎪⎩⎪⎨⎧==1160y 1140x ∴存在满足条件的点C ,其坐标为(1140,1160). 26.发现:解:90°,102; 思考:(1)解:如解图,连接OQ ,则OP =12OB =12OQ. ∵QP ⊥OB ,∴cos ∠QOP =OP OQ =12, ∴∠QOP =60°,∴lBQ ︵=60180π×10=103π; (2)解:由折叠的性质可得,BP =B ′P ,AB ′=AB =102 , 在Rt △B ′OP 中,OP 2+(102-10)2=(10-OP)2, 解得OP =102-10,S 阴影=S 扇形AOB -2S △AOP =90360π×102-2×12×10×(102-10)=25π-1002+100;探究:解:如解图,找点O 关于PQ 的对称点O ′,连接OO ′、O ′B 、O ′C 、O ′P ,OO ′交于点M ,则OM =O ′M ,OO ′⊥PQ ,O ′P =OP =6,点O ′是B ′Q ︵所在圆的圆心,∴O ′C =OB =10,∵折叠后的弧B ′Q ︵恰好与半径OA 相切于C 点,∴O ′C ⊥AO ,∴O ′C ∥OB ,∴四边形OCO ′B 是矩形,在Rt △O ′BP 中,O ′B =62-42=25,在Rt △OBO ′中,OO ′=102+(25)2=230,∴OM =12OO ′=12×230=30,即点O 到折痕PQ 的距离为30.。