三角形边角关系-经典例题.docx

合集下载

八年级三角形边角关系 经典例题

八年级三角形边角关系 经典例题

1、 如图,BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,BE 、CF 相交于点G,∠BDC=140°,∠BGC=110°。

求∠A 的度数.2、如图,已知P 是△ABC 内一点,连结AP,PB,PC求证:(1)PA+PB+PC > 21(AB+AC+BC) (2)PA+PB+PC < AB+AC+BC3、如图1,△ABC 中,点P 是∠ABC 与∠ACB 平分线的交点.(1)求∠P 与∠A 有怎样的大小关系?(2)如图2,点P 是∠CBD 与∠BCE 平分线的交点,求∠P 与∠A 的关系.(3)如图3,点P 是∠ABC 与∠ACF 平分线的交点,求∠P 与∠A 的关系.4、如图1,在△ABC 中,AD ⊥BC,AE 是角平分线,(1)求∠DAE 与∠B 、∠C 之间的关系;(2)如图2,AE 是∠BAC 的角平分线,FD 垂直于BC 于D,求∠DFE 与∠B 、∠C 之间的关系.(3)如图3,当点F 在AE 延长线上时,FD 仍垂直于BC 于D ,继续探讨∠DFE 与∠B 、∠C 的关系E G AB DC F 十一章经典例题图1 图2 F图35、如图△ABC中, ∠BAD=∠CBE=∠ACF,∠ABC=50°,∠ACB=62°,求∠DFE的大小.6、△ABC中,AD、BE、CF是角平分线,交点是点G,GH⊥BC求证:∠BGD=∠CGH.7、如图,∠xOy=90°,点A、B分别在坐标轴Ox、Oy上移动,BF是∠ABP的平分线,BF的反向延长线与∠OAB的平分线交于点C,求证∠ACB的度数是定值.8、在平面直角坐标系中,点O为坐标原点,点A在第一象限,点B是x正半轴上一点。

过点O做OD∥AB,∠BAO的平分线与∠MOD的平分线相交于点Q,求AQO AON∠∠的值9、直角坐标系中,OP平分∠XOY,B为Y轴正半轴上一点,D为第四象限内一点,BD交x轴于C,过D作DE∥OP交x轴于点E,CA平分∠BCE交OP于A,∠BDE的平分线交OP于G,交直线AC于M,如图求证2OGD OEDOAC∠-∠∠为定值EDCBAFGAB CDEFHMDBAQNyxOWelcome !!! 欢迎您的下载,资料仅供参考!。

中考数学压轴题之直角三角形的边角关系(中考题型整理,突破提升)含详细答案

中考数学压轴题之直角三角形的边角关系(中考题型整理,突破提升)含详细答案

中考数学压轴题之直角三角形的边角关系(中考题型整理,突破提升)含详细答案一、直角三角形的边角关系1.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=,2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到1cm )?【答案】【解析】过A 作AF CD ⊥于F ,根据锐角三角函数的定义用θ1、θ2表示出DF 、EF 的值,又可证四边形ABCE 为平行四边形,故有EC=AB=25cm ,再再根据DC=DE+EC 进行解答即可.2.已知Rt △ABC 中,∠ACB=90°,点D 、E 分别在BC 、AC 边上,连结BE 、AD 交于点P ,设AC=kBD ,CD=kAE ,k 为常数,试探究∠APE 的度数: (1)如图1,若k=1,则∠APE 的度数为 ;(2)如图2,若31)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE 的度数.(3)如图3,若3D 、E 分别在CB 、CA 的延长线上,(2)中的结论是否成立,请说明理由.【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.【解析】分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD.∵AC=BD,CD=AE,∴AF=AC.∵∠FAC=∠C=90°,∴△FAE≌△ACD,∴EF=AD=BF,∠FEA=∠ADC.∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EHD.∵AD∥BF,∴∠EFB=90°.∵EF=BF,∴∠FBE=45°,∴∠APE=45°.(2)(1)中结论不成立,理由如下:如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形, ∴BD=AF ,BF=AD . ∵AC=3BD ,CD=3AE ,∴3AC CDBD AE ==. ∵BD=AF ,∴3AC CDAF AE==. ∵∠FAC=∠C=90°, ∴△FAE ∽△ACD ,∴3AC AD BFAF EF EF ===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD . ∵AD ∥BF , ∴∠EFB=90°.在Rt △EFB 中,tan ∠FBE=33EF BF =, ∴∠FBE=30°, ∴∠APE=30°,(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形, ∴BE=DH ,EH=BD . ∵3BD ,3AE ,∴3AC CDBD AE==. ∵∠HEA=∠C=90°, ∴△ACD ∽△HEA ,∴3AD ACAH EH==,∠ADC=∠HAE . ∵∠CAD+∠ADC=90°, ∴∠HAE+∠CAD=90°, ∴∠HAD=90°.在Rt △DAH 中,tan ∠ADH=3AHAD=, ∴∠ADH=30°, ∴∠APE=30°.点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.3.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.(1)求的面积;(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)(参考数据:,,,,,,)【答案】(1)560000(2)565.6 【解析】试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE ,再根据正弦的性质求出CE 的长,从而得到△ABC 的面积;(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE 、AE 的长,再根据勾股定理求解即可. 试题解析:(1)过点作交的延长线于点,在中,,所以米.所以(平方米). (2)连接,过点作,垂足为点,则.因为是中点,所以米,且为中点,米,所以米.所以米,由勾股定理得,米.答:、间的距离为米.考点:解直角三角形4.阅读下面材料:观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图),则sin B =AD c ,sin C =ADb,即AD =c sin B ,AD =b sin C ,于是c sin B =b sin C ,即sin sin b c B C = .同理有:sin sin c aC A=,sin sin a b A B=,所以sin sin sin a b cA B C ==. 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC 中,∠B =75°,∠C =45°,BC =60,则AB = ;(2)如图,一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A 的距离AB . (3)在(2)的条件下,试求75°的正弦值.(结果保留根号)【答案】(1)6;(2)6海里;(36+2【解析】 【分析】(1)根据材料:在一个三角形中,各边和它所对角的正弦的比相等,写出比例关系,代入数值即可求得AB 的值.(2)此题可先由速度和时间求出BC 的距离,再由各方向角得出∠A 的角度,过B 作BM ⊥AC 于M ,求出∠MBC=30°,求出MC ,由勾股定理求出BM ,求出AM 、BM 的长,由勾股定理求出AB 即可;(3)在三角形ABC 中,∠A=45,∠ABC=75,∠ACB=60,过点C 作AC 的垂线BD ,构造直角三角形ABD ,BCD ,在直角三角形ABD 中可求出AD 的长,进而可求出sin75°的值. 【详解】解:(1)在△ABC 中,∠B=75°,∠C=45°,BC=60,则∠A=60°, ∵AB sinC =sin BCA , ∴45AB sin o =60sin60o, 223,解得:6. (2)如图,依题意:BC=60×0.5=30(海里)∵CD∥BE,∴∠DCB+∠CBE=180°∵∠DCB=30°,∴∠CBE=150°∵∠ABE=75°.∴∠ABC=75°,∴∠A=45°,在△ABC中,sin AB ACB∠=BCsin A∠即60?ABsin=3045?sin,解之得:AB=156.答:货轮距灯塔的距离AB=156海里.(3)过点B作AC的垂线BM,垂足为M.在直角三角形ABM中,∠A=45°,6,所以3BDC中,∠BCM=60°,BC=30°,可求得CM=15,所以3,由题意得,1531575sin+o=15660sin o,sin75°=6+24.【点睛】本题考查方向角的含义,三角形的内角和定理,含30度角的直角三角形,等腰三角形的性质和判定等知识点,解题关键是熟练掌握解直角三角形方法.5.如图,在▱ABCD中,AC与BD交于点O,AC⊥BC于点C,将△ABC沿AC翻折得到△AEC,连接DE.(1)求证:四边形ACED是矩形;(2)若AC=4,BC=3,求sin∠ABD的值.【答案】(1)证明见解析(2)613 65【解析】【分析】(1)根据▱ABCD中,AC⊥BC,而△ABC≌△AEC,不难证明;(2)依据已知条件,在△ABD或△AOC作垂线AF或OF,求出相应边的长度,即可求出∠ABD的正弦值.【详解】(1)证明:∵将△ABC沿AC翻折得到△AEC,∴BC=CE,AC⊥CE,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD=CE,AD∥CE,∴四边形ACED是平行四边形,∵AC⊥CE,∴四边形ACED是矩形.(2)解:方法一、如图1所示,过点A作AF⊥BD于点F,∵BE=2BC=2×3=6,DE=AC=4,∴在Rt△BDE中,2222BD BE DE64213=+=+=∵S△BDE=12×DE•AD=12AF•BD,∴AF613213=,∵Rt △ABC 中,AB =2234+=5, ∴Rt △ABF 中,sin∠ABF =sin ∠ABD =61361313655AF AB ==.方法二、如图2所示,过点O 作OF ⊥AB 于点F , 同理可得,OB =1132BD =, ∵S △AOB =11OF AB OA BC 22⋅=⋅, ∴OF =23655⨯=, ∵在Rt △BOF 中,sin ∠FBO =061365513F OB ==, ∴sin ∠ABD =613.【点睛】本题考查直角三角形翻折变化后所得图形的性质,矩形的判定和性质,平行四边形的性质和解直角三角形求线段的长度,关键是正确添加辅助线和三角形面积的计算公式求出sin ∠ABD .6.如图,AB 为O e 的直径,C 、D 为O e 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒. (2)若2ABD BDC ∠=∠. ①求证:CF 是O e 的切线. ②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】 【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】解:(1)AB 是O e 的直径,且D 为O e 上一点,90ADB ∴∠=︒, CE DB ⊥Q , 90DEC ∴∠=︒, //CF AD ∴,180DAC ACF ∴∠+∠=︒. (2)①如图,连接OC . OA OC =Q ,12∴∠=∠. 312∠=∠+∠Q , 321∴∠=∠.42BDC Q ∠=∠,1BDC ∠=∠, 421∴∠=∠, 43∴∠=∠, //OC DB ∴.CE DB ⊥Q , OC CF ∴⊥.又OC Q 为O e 的半径, CF ∴为O e 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠,3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD =Q483AD BD ∴==,226810AB ∴=+=,5OB OC ==.OC CF Q ⊥, 90OCF ∴∠=︒,3tan 4OC F CF ∴==,解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.7.如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =4,动点P 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.过点P 作PD ⊥AC 于点D (点P 不与点A ,B 重合),作∠DPQ =60°,边PQ 交射线DC 于点Q .设点P 的运动时间为t 秒.(1)用含t的代数式表示线段DC的长:_________________;(2)当t =__________时,点Q与点C重合时;(3)当线段PQ的垂直平分线经过△ABC一边中点时,求出t的值.【答案】(1);(2)1;(3)t的值为或或.【解析】【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AQ=AC,即可得出结论;(3)分三种情况,利用锐角三角函数,即可得出结论.【详解】(1)∵AP= , AB=4,∠A=30°∴AC= , AD=∴CD=;(2)AQ=2AD=当AQ=AC时,Q与C重合即=∴t=1;(3)①如图,当PQ的垂直平分线过AB的中点F时,∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2.∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=②如图,当PQ的垂直平分线过AC的中点N时,∴∠QMN =90°,AN=AC=,QM=PQ=AP=t.在Rt△NMQ中,∵AN+NQ=AQ,∴③如图,当PQ的垂直平分线过BC的中点F时,∴BF=BC=1,PE=PQ=t,∠H=30°.∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1.在Rt△PEH中,PH=2PE=2t.∵AH=AP+PH=AB+BH,∴2t+2t=5,∴t=.即当线段PQ的垂直平分线经过△ABC一边中点时,t的值为或或.【点睛】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.8.关于三角函数有如下的公式:sin(α+β)=sinαcosβ+cosαsinβ①cos(α+β)=cosαcosβ﹣sinαsinβ②tan(α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:tan105°=tan(45°+60°)==﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.【答案】建筑物CD的高为84米.【解析】分析:如图,过点D作DE⊥AB于点E,由题意易得∠ACB=75°,∠ABC=90°,DE=BC=42m,∠ADE=60°,这样在Rt△ABC和在Rt△ADE中,结合题中所给关系式分别求出AB和AE的长,即可由CD=BE=AB-AE求得结果了.如图,过点D作DE⊥AB于点E,由题意可得∠ACB=75°,∠ABC=90°,DE=BC=42m,CD=BE,∠ADE=60°,∴在Rt△ABC和Rt△ADEAB=BC•tan75°=42tan75°=,AE=,∴CD=AB﹣AE=(米).答:建筑物CD的高为84米.睛:读懂题意,把已知量和未知量转化到Rt△ABC和Rt△ADE中,这样利用直角三角形中边角间的关系结合题目中所给的“两角和的三角形函数公式”即可使问题得到解决.9.抛物线y=ax²+bx+4(a≠0)过点A(1, ﹣1),B(5, ﹣1),与y轴交于点C.(1)求抛物线表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC下方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,①求点P坐标;②过此二点的直线交y轴于F, 此直线上一动点G,当GB+2GF2最小时,求点G坐标.(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值【答案】(1)y=x²﹣6x+4(2)①P(2, -4)或P(3, -5) ②G(0, -2)(3)313【分析】(1)把点A(1,-1),B(5,-1)代入抛物线y=ax2+bx+4解析式,即可得出抛物线的表达式;(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,可求得直线BC的解析式为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),因为▱CBPQ的面积为30,所以S△PBC=1 2×(−t+4−t2+6t−4)×5=15,解得t的值,即可得出点P的坐标;②当点P为(2,-4)时,求得直线QP的解析式为:y=-x-2,得F(0,-2),∠GOR=45°,因为GB+2 2GF=GB+GR,所以当G于F重合时,GB+GR最小,即可得出点G的坐标;当点P为(3,-5)时,同理可求;(3)先用面积法求出sin∠ACB=21313,tan∠ACB=23,在Rt△ABE中,求得圆的直径,因为MB⊥NB,可得∠N=∠AEB=∠ACB,因为tanN=MBBN=23,所以BN=32MB,当MB为直径时,BN的长度最大.【详解】(1) 解:(1)∵抛物线y=ax2+bx+4(a≠0)过点A(1,-1),B(5,-1),∴1412554a ba b-++⎧⎨-++⎩=,=解得16ab⎧⎨-⎩=,=∴抛物线表达式为y=x²﹣6x+4.(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,设直线BC的解析式为y=kx+m,∵B(5,-1),C(0,4),∴154k mm-+⎧⎨⎩==,解得14km=,=-⎧⎨⎩∴直线BC的解析式为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),∵▱CBPQ的面积为30,∴S△PBC=12×(−t+4−t2+6t−4)×5=15,解得t=2或t=3,当t=2时,y=-4当t=3时,y=-5,∴点P坐标为(2,-4)或(3,-5);②当点P为(2,-4)时,∵直线BC解析式为:y=-x+4, QP∥BC,设直线QP的解析式为:y=-x+n,将点P代入,得-4=-2+n,n=-2,∴直线QP的解析式为:y=-x-2,∴F(0,-2),∠GOR=45°,∴GF=GB+GR当G于F重合时,GB+GR最小,此时点G的坐标为(0,-2),同理,当点P为(3,-5)时,直线QP的解析式为:y=-x-2,同理可得点G的坐标为(0,-2),(3) )∵A(1,-1),B(5,-1)C(0,4),∴,,∵S△ABC=12AC×BCsin∠ACB=12AB×5,∴sin∠tan∠ACB=23,∵AE为直径,AB=4,∴∠ABE=90°,∵sin∠AEB=sin∠4AE,∴∵MB⊥NB,∠NMB=∠EAB,∴∠N=∠AEB=∠ACB,∴tanN=MBBN =23,∴BN=32MB,当MB为直径时,BN的长度最大,为【点睛】题考查用到待定系数法求二次函数解析式和一次函数解析式,圆周角定理,锐角三角函数定义,平行四边形性质.解决(3)问的关键是找到BN与BM之间的数量关系.10.如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足为D(1)求证:PC是⊙O的切线;(2)求证:PA AD PC CD;(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=35,CF=5,求BE的长.【答案】(1)见解析;(2)BE=12.【解析】【分析】(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=弧AG,于是得到∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到CF=AF,在R t△AFD中,AF=5,sin∠FAD=35,求得FD=3,AD=4,CD=8,在R t△OCD中,设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=35,得到BEAB=35,于是求得结论.【详解】(1)证明:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴∠PCO=90°,∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OC=OA,∴∠OCA=∠OAC,∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴弧AC=弧AG,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴CF=AF,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=35,∴sin∠FAD=35,在R t△AFD中,AF=5,sin∠FAD=35,∴FD=3,AD=4,∴CD=8,在R t△OCD中,设OC=r,∴r2=(r﹣4)2+82,∴r=10,∴AB=2r=20,∵AB为⊙O的直径,∴∠AEB=90°,在R t△ABE中,∵sin∠EAD=35,∴35BEAB,∵AB=20,∴BE=12.【点睛】本题考查切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,解题关键是连接OC构造直角三角形.11.如图,直线与轴交于点,与轴交于点,抛物线经过点,.点为轴上一动点,过点且垂直于轴的直线分别交直线及抛物线于点,.(1)填空:点的坐标为,抛物线的解析式为;(2)当点在线段上运动时(不与点,重合),①当为何值时,线段最大值,并求出的最大值;②求出使为直角三角形时的值;(3)若抛物线上有且只有三个点到直线的距离是,请直接写出此时由点,,,构成的四边形的面积.【答案】(1),;(2)①当时,有最大值是3;②使为直角三角形时的值为3或;(3)点,,,构成的四边形的面积为:6或或.【解析】【分析】(1)把点A坐标代入直线表达式y=,求出a=−3,把点A、B的坐标代入二次函数表达式,即可求解;(2)①设:点P(m,),N(m,)求出PN值的表达式,即可求解;②分∠BNP=90°、∠NBP=90°、∠BPN=90°三种情况,求解即可;(3)若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB上方的交点有两个,分别求解即可.【详解】解:(1)把点坐标代入直线表达式,解得:,则:直线表达式为:,令,则:,则点坐标为,将点的坐标代入二次函数表达式得:,把点的坐标代入二次函数表达式得:,解得:,故:抛物线的解析式为:,故:答案为:,;(2)①∵在线段上,且轴,∴点,,∴,∵,∴抛物线开口向下,∴当时,有最大值是3,②当时,点的纵坐标为-3,把代入抛物线的表达式得:,解得:或0(舍去),∴;当时,∵,两直线垂直,其值相乘为-1,设:直线的表达式为:,把点的坐标代入上式,解得:,则:直线的表达式为:,将上式与抛物线的表达式联立并解得:或0(舍去),当时,不合题意舍去,故:使为直角三角形时的值为3或;(3)∵,,在中,,则:,,∵轴,∴,若抛物线上有且只有三个点到直线的距离是,则只能出现:在直线下方抛物线与过点的直线与抛物线有一个交点,在直线上方的交点有两个.当过点的直线与抛物线有一个交点,点的坐标为,设:点坐标为:,则:,过点作的平行线,则点所在的直线表达式为:,将点坐标代入,解得:过点直线表达式为:,将拋物线的表达式与上式联立并整理得:,,将代入上式并整理得:,解得:,则点的坐标为,则:点坐标为,则:,∵,,∴四边形为平行四边形,则点到直线的距离等于点到直线的距离,即:过点与平行的直线与抛物线的交点为另外两个点,即:、,直线的表达式为:,将该表达式与二次函数表达式联立并整理得:,解得:,则点、的横坐标分别为,,作交直线于点,则,作轴,交轴于点,则:,,,则:,同理:,故:点,,,构成的四边形的面积为:6或或.【点睛】本题考查的是二次函数知识的综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3)中确定点N的位置是本题的难点,核心是通过△=0,确定图中N点的坐标.12.如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,33),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).【答案】(1)D(032)C(12﹣33﹣18);(3)B'(13 0),(2130).【解析】【分析】(1)设OD为x,则3x,在RT△ODA中应用勾股定理即可求解;(2)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为2,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.【详解】(Ⅰ)设OD为x,∵点A(3,0),点B(0,33),∴AO=3,BO=33 ∴AB=6 ∵折叠 ∴BD=DA 在Rt △ADO 中,OA2+OD2=DA2.∴9+OD2=(33﹣OD )2.∴OD=3∴D (0,3)(Ⅱ)∵折叠∴∠BDC=∠CDO=90°∴CD ∥OA∴BD BC BO AB =且BD=AC , ∴6633BD -= ∴BD=123﹣18∴OD=33﹣(123﹣18)=18﹣93∵tan ∠ABO=3OB AO =, ∴∠ABC=30°,即∠BAO=60° ∵tan ∠ABO=3BD CD =, ∴CD=12﹣63∴D (12﹣63,123﹣18)(Ⅲ)如图:过点C 作CE ⊥AO 于E∵CE ⊥AO∴OE=2,且AO=3∴AE=1,∵CE ⊥AO ,∠CAE=60°∴∠ACE=30°且CE ⊥AO∴AC=2,3∵BC=AB﹣AC∴BC=6﹣2=4若点B'落在A点右边,∵折叠∴BC=B'C=4,CE⊥OA∴=∴∴B'(0)若点B'落在A点左边,∵折叠∴BC=B'C=4,CE⊥OA∴=∴2∴B'(20)综上所述:B'(0),(20)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.。

直角三角形的边角关系(含答案)

直角三角形的边角关系(含答案)

第十四章直角三角形的边角关系基础知识梳理1.锐角三角函数.在Rt△ABC中,∠C是直角,如图所示.(1)正切:∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA=AA∠∠的对边的邻边.(2)正弦:∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=A∠的对边邻边.(3)余弦:∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA=A∠的邻边邻边.(4)锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(5)锐角的正弦和余弦之间的关系.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值.即:如果∠A+∠B=90°,那么sinA=cos(90°-A)=cosB;cosA=sin(•90•°-•A)•=sinB.(6)一些特殊角的三角函数值(如下表).三角函数角sin cos tan30°12323345°2222160°32123(7)已知角度可利用科学计算器求得锐角三角函数值;同样,•已知三角函数值也可利用科学计算器求得角度的大小.(8)三角函数值的变化规律.①当角度在0°~90°间变化时,正弦值(正切值)随着角度的增大(或减小)而增大(或减小).②当角度在0°~90°间变化时,余弦值随着角度的增大(或减小)而减小(•或增大).(9)同角三角函数的关系.①sin2A+cos2A=1;②tanA=sincosAA.2.运用三角函数解直角三角形.由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形.如图所示,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c.(1)三边之间的关系:a2+b2=c2(勾股定理).(2)锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sinA=ac,cosA=bc,tanA=ab.所以,在直角三角形中,只要知道除直角外的两个元素(其中至少有一个是边),•就可以求出其余三个未知元素.解直角三角形的基本类型题解法如下表所示:类型已知条件解法两边两直角边a,bc=22a b+,tanA=ab,B=90°-A一直角边a,斜边cb=22c a-,sinA=ac,B=90°-A一边、一锐角一直角边a,锐角AB=90°-A,b=tanaA,c=sinaA斜边a,锐角A B=90°-A,a=c·sin,b=c·cosA注意:解直角三角形需要注意的问题:(1)尽量使用原始数据,使计算更加准确;(2)不是解直角三角形的问题,添加合适的辅助线转化为解直角三角形的问题;(3)恰当使用方程或方程组的方法解决一些较复杂的解直角三角形的问题;(4)在选用三角函数式时,尽量做乘法,避免做除法,以使运算简便;(5)必要时画出图形,分析已知什么,求什么,它们在哪个三角形中,•应当选用什么关系式进行计算;(6)添加辅助线的过程应书写在解题过程中.3.解直角三角形的实际问题.解直角三角形的实际问题涉及到如下概念和术语.(1)坡度、坡角.如图所示,坡面的垂直高度h和水平宽度L的比叫做坡度(或叫做坡比),用字母i表示,即i=hl.坡面与水平面的夹角记作α(叫做坡角),则i=hl=tanα.(2)仰角、俯角.当从低处观测高处的目标时,视线和水平线所成的锐角称为仰角.当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角.如图所示.(3)方位角和方向角.①方位角:正北方向顺时针旋转与已知射线所成的角叫做方位角.如图所示的∠α(0°<α<360°).②方向角:正北或正南方向与已知射线所成的锐角叫做方向角.如图14-5所示的∠β(0°<β<90°),若∠β=30°,则方向角可记作南偏西30°.(4)燕尾槽的深度、燕尾角.燕尾槽的横断面如图所示,AE是燕尾槽的深度,AD是外口宽,BC是里口宽,∠B是燕尾角.考点与命题趋向分析(一)能力1.通过实例认识锐角三角函数(sinA ,cosA ,tanA ),知道30°,45°,60•°角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.2.运用三角函数解决与直角三角形有关的简单实际问题. (二)命题趋向分析1.三角函数是代数与几何衔接点之一,是三角学的基础,近年来锐角三角函数常与四边形、相似形、坐标系、圆等相结合出题,多涉及实际应用问题,如梯子的倾斜程度、坡度等问题.【例1】(2004年河南省)如图1,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时梯子的倾斜角为75°.如果梯子底端不动,顶端靠在对面墙上,此时梯子顶端距地面的垂直距离NB 为b 米,梯子的倾斜角为45°,则这间房子的宽AB 是________米.(1) (2) 【分析一】AB=AC+CB=tan 75a ︒+tan 45b︒.如图2,在Rt △ACB 中,∠C=90°.∠A=15•°,•∠ABC=75°, 在∠ABC 内部作∠ABD=15°,则∠BDC=30°,∠DBC=60°, 设BC=1,则BD=2,3, ∵∠A=∠ABD=15° ∴AD=BD=2 ∴3 ∴tan75°=AC BC23+3∴∴sin75°=ACAB 如图1所示:NB=CB=b 米∴b 米∴米 在Rt △MAC 中,sin75°=AMMC∴4a=()b解得-1)a∴AB=AC+CB=tan 75a ︒+tan 45b︒+b=(a+)a=a (米)【分析二】在图1中连MN ,可由MC=NC ,∠MCN=60°得等边三角形MCN ,作MH•⊥BN 于H .由∠A=∠MHB=90°,∠MCA=∠MNH=75°,MC=MN .可证△MAC ≌△MHN ,得AM=MH .•再证四边形MABH 为矩形,可得AB=MH=AM=a 米. 【解】此空应填a .2.涉及特殊角的三角函数值的应用题是近年中考中的热点,•对学生的综合能力要求较高,要勤于观察生活中的数学现象,并善于将生活中的实际问题转化为数学问题并加以解决.【例2】(2004年哈尔滨市)如图,在测量塔高AB 时,•选择与塔底在同一水平面的同一直线上的C 、D 两点,用测角仪器测得塔顶A 的仰角分别是30°和60°.•已知测角器高CE=1.5m ,CD=30m .求塔高AB .(答案保留根号) 【分析】由CD=30m ,可求EG=30m ,考虑到∠AGF 是△AEG 的外角,可知EG=AG ,故AG=30m ,在Rt △AGF 中可求AF 长.AB=AF+FB 问题得以解决. 【解】由题意可知:EG=CD=30米 ∵∠AEG=30°,∠AGF=60°∴∠EAG=30°∴EG=AG=30米在Rt△AFG中,sin60°=AF AG∴AF=AG·sin60°=30×32=153(米)∴AB=AF+FB=153+32(米)答:塔高AB为(153+32)米.【规律总结】本题发现EG=AG=30米,以及熟记特殊角三角函数值是关键.3.近10年来含特殊角的三角函数值的应用问题中中考中呈现上升趋势,•这类考题往往给定一些角的三角函数值供考生选用,且这类题多以中档解答题为主,望读者引起注意.【例3】(2004年沈阳市)某地一居民楼,窗户朝南,窗户的高度为h米,•此地一年中的冬至这一天的正午时刻太阳光与地面的夹角最小为α,夏至这一天的正午时刻太阳光与地面的夹角最大为β(如图1).小明想为自己家的窗户设计一个直角形遮阳篷BCD,要求它既能最大限度地遮挡夏天炎热的阳光,•又能最大限度地使冬天温度的阳光射入室内.小明查阅了有关资料,获得了所在地区∠α和∠β的相应数据:∠α=24°36′,∠β=73°30′,小明又量得窗户的高AB=1.65米.若同时满足下面两个条件:(1)•当太阳光与地面夹角为α时,要想使太阳光刚好全部射入室内;(2)•当太阳光与地面夹角为β时,要想使太阳光刚好不射入室内.请你借助图形(如图2),帮助小明算一算,•遮阳篷BCD中,BC和CD的长各是多少?(精确到0.01米)以下数据供计算中选用:sin24°36′=0.416 cos24°36′=0.909tan24°36′=0.458 cot24°36′=2.184sin73°30′=0.959 cos73°30′=0.284tan73°30′=3.376 cot73°30′=0.296【分析】图中有两个直角三角形,即△BCD 和△ACD .•利用这两个直角三角形求解.另外题中所给数据中cot24°36′实际上是tan24°36′的倒数,今后我们会学习到. 【解】∵在Rt △BCD 中,tan ∠CDB=BCCD,∠CDB=∠α ∴BC=CD ·tan ∠CDB=CD ·tan α ∵在Rt △ACD 中,tan ∠CDA=ACCD,∠CDA=∠β ∴AC=CD ·tan ∠CDA=CD ·tan β ∵AB=AC-BC=CD ·tan β-CD ·tan α =CD (tan β-tan α) ∴CD=tan tan AB βα-= 1.653.3760.458-≈0.57(米)∴BC=CD ·tan ∠CDB ≈0.57×0.458≈0.26(米) 答:BC 的长约为0.26米,CD 的长约为0.57米.【规律总结】本题的解决关键是把∠α、∠β置于两个直角三角形中,另外要细心体会把实际问题转化为数学模型的过程和方法.4.运用解直角三角形知识解决实际问题是近年中考的热点题型,•主要涉及测量(特别是底部不可到达的物体的高度的测量)、航空、航海、工程等领域,且说理性题(如船会不会触礁,速度应提高多少,巡逻艇能否追上走私船等)比重有所加大.这类题主要考查学生应用相关知识解决实际问题的能力. 【例4】(2003年青岛)如图14-11所示,•人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O 点的正北方向10海里处的A 点有一涉嫌走私船只,正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26•海里/时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问 (1)需要几小时才能追上?(点B 为追上时的位置) (2)确定巡逻艇追赶方向(精确到0.1°)(参考数据:sin66.8°≈0.9191,cos66.8°≈0.3939,•sin67.•4•°≈0.•9231,cos67.4°≈0.3843,sin68.4°≈0.9298,cos68.4°≈0.3681,•sin70.•6•°≈0.9432,cos70.6°≈0.3322).【分析】由于已知速度,本题第(1)问可利用直角△ABO 的各边长列方程求解,•第(2)问可利用sin ∠AOB=ABOB,求出∠AOB 的度数. 【解】(1)设需要t 小时才能追上,则AB=24t ,OB=26t .在Rt △ABO 中,OB 2=AB 2+OA 2,即(26t )2=(24t )2+102,解得t=±1,t=-1不合题意,舍去,∴t=1,即需要1小时才能追上. (2)在Rt △ABO 中 ∵sin ∠AOB=AB OB =2426t t =1213≈0.9231, ∴∠AOB ≈67.4°即巡逻艇的追赶方向是北偏东67.4°.解题方法与技巧1.数形结合思想.【例1】已知tan α=34,求sin cos sin cos αααα+-的值. 【分析】利用数形结合思想,将已知条件tan α=34用图形表示.【解】如图所示,在Rt △ABC 中,∠C=90°,∠A=α,设BC=3k ,AC=4k ,则AB=22AC BC +=22(4)(3)k k +=5k .∴sin α=BC AB =35k k =35 cos α=4455AC k AB k ==, ∴原式=34553455+-=-7.方法2:转化思想 【例2】已知tan α=34,求sin cos sin cos αααα+-的值. 【分析】可将所求式子的分子、分母都除以cos ,转化为含有sin cos αα的式子,•再利用tan α=sin cos αα进行转化求解. 【解】将式子sin cos sin cos αααα+-的分子、分母都除以cos α,得原式=31tan143tan114αα++=--=-7【规律总结】因为tanα=34所以α不等于90°,所以cosα≠0,因此分子分母可以同时除以cosα.实现转化的目的.方法3:方程思想【例3】去年某省将地处A、B两地的两所大学合并成了一所综合性大学,•为了方便A、B两地师生的交往,学校准备在相距2千米的A、B•两地之间修筑一条笔直的公路(即图中的线段AB),经测量,在A地的北偏东60°方向,B地的西偏北45°的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?【分析】过C作AB的垂线段CM,把AM、BM用含x的代数式3x,x表示,利用AM+MB=2列方程得,3x+x=2,解出CM的长与0.7千米进行比较,本题要体会设出CM的长,列方程解题的思想方法.【解】作CM⊥AB,垂足为M,设CM为x千米,在Rt△MCB中,∠MCB=∠MBC=45°,则MB=CM=x千米.在Rt△AMC中,∠CAM=30°,∠ACM=60°tan∠ACM=AM CM∴AM=CM·tan60°=3x千米∵AM+BM=2千米∴3x+x=2∴x=3-1≈1.732-2=0.732∴CM长约为0.732千米,大于0.7千米∴这条公路不会穿过公园.方法4:建模思想【例4】如图所示,一艘轮船以20里/时的速度由西向东航行,•途中接到台风警报,台风中心正以40里/时的速度由南向北移动,距离台风中心2010•里的圆形区域(包括边界)都属台风区,当轮船到A处时,测得台风中心移到位于点A•正南方向的B处,且AB=100里.(1)若这艘轮船自A处按原速度继续航行,在途中会不会遇到台风?若会,•试求轮船最初遇到台风的时间;若不,请说明理由.(2)现轮船自A处立即提高船速,向位于东偏北30°方向,相距60里的D港驶去,为使台风到来之前到达D港,问船速至少应提高多少?(取整数,13≈3.6)【分析】本题是航海问题,把航海问题抽象成纯数学问题,建立起“解直角三角形”的“数学模型”.【解】(1)设途中会遇到台风,且最初遇到台风的时间为t小时,此时,轮船位于C 处,台风中心移到E处,连结CE,则有AC=20t,AE=AB-EB=100-40t,EC=2010在Rt△ACE中,AE2+AC2=EC2∴(20t)2+(100-40t)2=(2010)2∴t2-4t+3=0△=(-4)2-4×1×3=4>0∴途中会遇到台风解方程①得t1=1,t2=3∴最初遇到台风的时间为1小时.(2)设台风抵达D港的时间为t小时,此时台风中心至M点,过D作DF⊥AB,垂足为F,连结DM.在Rt△ADF中,AD=60,∠FAD=60°∴DF=303,FA=30又FM=FA+AB-BM=130-40tMD=2010∴(303)2+(130-40t)2=(2010)2整理,得4t2-26t+39=0解之得t1=13134-,t2=13134+∴台风抵达D港的时间为13134-小时,到D港的速度为60÷13134-≈25.5(海里/时).因此为使台风抵达D 港之前轮船到D 港,轮船应提高6海里/时.方法5:说理性问题的解法【例5】如图,MN 表示某引水工程的一段设计路线,从M 到N 的走向为南偏东30°,在M 的南偏东60°方向上有一点A ,以A 为圆心,500m 为半径的圆形区域为居民区,•取MN 上另一点B ,测得BA 的方向为南偏东75°,已知MB=400m ,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?【分析】说明输水路线是否穿过居民区,应过A 作MN 的垂线段AH ,计算出AH 的长,然后把AH 与500m 比较大小.【解】过A 作AH ⊥MN ,垂足为H ∵MK ∥BG∴∠GBH=∠KMH=30°又∵∠GBA=75°,∠HBA=45° ∴∠BAH=45° ∴AH=BH设AH 为xm ,则BH=xm ,在Rt △MHA 中,∠HMA=∠KMA-∠KMB=60°-30°=30°. ∵tan ∠HMA=AHMH∴MH=tan 30x =33x =3x∵MB=MH-BH∴3x-x=400 解得x=200(3+1)∴AH ≈546.4m>500m答:输水路线不会穿过居民区.【规律总结】此题是说理性问题,这类题要求学生对基本概念、基本定理、基本思路有清醒的认识,能根据实际问题进行相关的计算,并利用计算所得结果说明问题的原因、依据.方法6:探索性问题【例6】某学校为了改善教职工居住条件,•准备在教学楼(正楼)的正南方向建一座住宅楼(正楼),要求住宅楼与教学楼等高,均为15.6米,已知该地区冬至正午时分太阳高度最低,太阳光线与水平线的夹角为30°,如果住宅楼与教学楼间相距19.2米,如图1所示.(1)此时住宅楼的影子落在教学楼上有多高?(精确到0.1米)(2)要使住宅楼的影子刚好落在教学楼的墙角,则两楼间的距离应是多少?•(精确到0.1米) 【分析】(1)如图所示,设冬至正午太阳最低时,住宅楼顶A•点的影子落在教学楼上的C 处,那么CD 的长就是影子落在教学楼上的高度.(2)如图2所示,BC 的长就是两楼间的距离.(1) (2) 【解】(1)如图1所示,作CE ⊥AB 于E , 在Rt △ACE 中,∠ACE=30°,EC=19.2, ∴AE=EC ·tan30°=19.2319.2 1.7323⨯≈11.1 CD=EB=AB-AE≈15.6-11.1=4.5(米)∴住宅楼的影子落在教学楼上约有4.5米高 (2)如图2所示,在Rt △ABC 中,∠ACB=30° BC=tan 30AB ︒3315.6×1.732≈27.0(米)∴要使冬至正午的太阳能够照到教学楼的墙角,两楼间的距离至少应为27.0米.【规律总结】此题为探索性题,结论没有直接给出,需要通过观察、分析、比较、概括、推理、判断等活动,逐步确定结论.方法7:开放性问题【例7】某处有一天线,高度超过10米,底部四周有铁丝网围墙,•使得不能直接到达天线底部,数学小组的同学们只有测倾器和测量长度用的量绳,请你为他们设计一个能测得天线高度的方案(包括测量方法,并推导计算公式).【分析】本题是一道开放性试题,是近年来有关解直角三角形的中考试题中,开放程度很高的题目,着重考查学生如何借助解直角三角形知识解决这类测量问题.解题中要注意测量工具所能测得的数据,以免审题失误.【解】如图所示,测倾器离地面b 米,在点B 处测得天线顶端仰角为α,从B•点向前走a 米,到达点C ,在点C 处测得天线顶端仰角为β,设AG 为x 米. 在Rt △AGC 中,CG=tan tan AG xββ= 在Rt △AGB 中,BG=tan tan AG xαα=∵BC=BG-CG ∴tan x α-tan x β=a∴x=11()tan tan aαβ-=tan tan tan tan a αββα-∴AM=AG+GM=tan tan tan tan a αββα-+b【规律总结】对于开放性问题,一般都有多种解题方法,首先应对解直角三角形知识有关的基本图形非常熟悉,然后才能给出设计方案,选择适合自己的解题方法,灵活巧妙地解答问题.方法8:综合性问题【例8】如图所示,已知A 为∠POQ 的边OQ 上一点,以A•为顶点的∠MAN 的两边分别交射线OP 于M 、N 两点,且∠MAN=∠POQ=α(α为锐角),当∠MAN 以点A 为旋转中心,AM 边从与AO 重合的位置开始,按逆时针方向旋转(∠MAN 保持不变)时,M 、N 两点在射线OP 上同时以不同的速度向右平移,设OM=x ,ON=y (y>x ≥0),△AOM•的面积为S ,且cos α,OA 是方程2z 2-5z+2=0的两个根.(1)当∠MAN 旋转30°(即∠OAM=30°)时,求点N 移动的距离; (2)求证:AN 2=ON ·MN ; (3)试求y 与x 之间的函数关系式及自变量x 的取值范围.(4)试写出S 随x 变化的函数关系式,并确定S 的取值范围.【分析】本题把解直角三角形与一元二次方程、相似三角形、平移、旋转、函数等知识糅合在一起,形成一道综合性很强的考题.本题从解一元二次方程入手,逐步挖掘隐含条件,构造直角三角形,将其转化为解直角三角形问题.【解】(1)解方程2z2-5z+2=0,得z1=12,z2=2∵α为锐角∴O<cosα<1∴OA=2,cosα=1 2∴α=60°,即∠POQ=∠MAN=60°∴ON=OA=2,如图14-20所示.当AM旋转到AM′时,点N移动到N′∴∠M′N′A=30°,∠OAN′=90°,在Rt△OAN′中,ON′=2AO=2×2=4,∴MN′=ON′-ON=4-2=2∴点N移动距离为2(2)如图1所示,在△OAN和△AMN中,∠AON=∠MAN,∠ANO=∠MNA,∴△AON•∽△MAN,∴ANMN=ONAN,∴AN2=ON·MN(1) (2) (3)如图2所示,过A作AH⊥OP于点H.∵MN=ON-OM=x-y,∴AN2=ON·MN=y(y-x)=y2-xy在Rt△AOH中,OH=OA·cos60°=2×12=1∴AH=OA·sin60°3∴HN=ON-OH=y-1在△ANH中,AN2=AH2+HN2=32+(y-1)2=y2-2y+4,∴y2-xy=y2-2y+4,整理得y=42x.∵y>O ∴2-x>O ∴x<2 又∵x ≥O∴x 的取值范围是O ≤x<2(4)如图2所示,在△AOM 中,OM 边上的高AH 为,∴S=12OM ·AH=12·x 2x∵S 是x ∴S 随x 的增大而增大∴O ≤ 【规律总结】本题通过作OM 边上的高AH ,从而将其转化为解直角三角形问题,在解有关综合性问题时,要注意挖掘隐含条件,合理运用相应知识,构造直角三角形,利用直角三角形的边角关系沟通各知识点间的联系.中考试题归类解析(一)锐角三角函数 【例1】(2003,大连)在Rt △ABC 中,∠C=90°,AC=4,BC=3,则B 的值为( ) A .45 B .35 C .43 D .34【思路分析】由勾股定理可知AB=5,根据锐角三角函数的定义可知cosB=35BC AB 解:答案B 【例2】(2003,南京)在△ABC 中,∠C=90°,tanA=1,那么cotB 等于( )A C .1 D .3【思路分析】由互为余角的三角函数关系可知:cotB=tanA=1 解:答案C【规律总结】本题也可由tanA=1得到∠A=45•°,•所以∠B=•45•°,• 故cotB=cot45°=1【例3】(2003,黄冈)已知∠A 为锐角,且cosA ≤12,那么( ) A .0°∠A ≤60° B .60°≤A ∠90° C .0°∠A ≤30° D .30°≤A ∠90°【思路分析】锐角三角函数的余弦值随角度的增大而减小,因为∠A 为锐角,所以O<cosA ≤12,即cos90°<cosA ≤cos60°,所以60°≤A<90° 解:答案B【例4】(2004,山西)计算:sin 248°+sin 242°-tan44•°·•tan45•°·•tan46•°=_______.【思路分析】利用互为余函数的关系化为同角函数,再利用同角三角函数公式就可求出值.【解】sin 248°+sin 242°-tan44°·tna45°tan46°=sin 248°+cos 248°-tan44°·cot44°tan45° =1-1×1 =0 故应填:0【规律总结】解决这样的问题一是要善于互化函数,往公式上靠,二是特殊角的三角函数值要记住.【例5】(2004,宁波)计算:(π-3)°-(12)-2+(-1)3-sin 245° 【思路分析】按运算法则和运算顺序直接计算即可. 【解】(π-3)°-(12)-2+(-1)3-sin 245° =1-211()2+(-1)3-(2)2 =1-4-1-12=-412【规律总结】在中考题中象这样代数值的运算和三角函数值的运算结合在一起的比较多.(二)解直角三角形【例1】已知如图所示,在△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c .【求证】S △ABC =12absinc=12bcsinA=12casinB . 【思路分析】要求面积关键是作高,构造出直角三角形利用锐角三角函数的定义加以理解.【证明】过A 点作AD ⊥BC 垂足为D 在Rt △ABD 中,sinB=ADAB∴AD=AB ·sinB=c ·sinB∴S=12AD ·BC=12ac ·sinB 同理可证,S=12absinc=12bcsinA【例2】如图,若CD 是Rt △ABC 斜边上的高,AD=3,CD=4,则BC=_____.【思路分析】先利用勾股定理求出AC 长再利用相似比就可求出BC 【解】∵AC 2=AD 2+DC 2 而AD=3 CD=4 ∴AC=3234+=5 Rt △CDA ∽Rt △BDCAD CD =ACBCBC=542033AC CD AD ⨯⨯==故应填:203【规律总结】:本题也可以利用射影定理去解.【例3】一艘渔船在A 处观测到东北方向有一小岛C ,周围4.8海里范围内是水产养殖场,渔船沿北偏东30°方向航行10海里到达B 处,在B 处测得小岛C•在北偏东60°方向,这时渔船改变航线向正东(即BD )方向航行,这艘船是否有进入养殖场的危险. 【思路分析】是否有进入养殖场的危险就是看C 点到BD 的距离是多少,•如果大于4.8海里就没有进入养殖场的危险,否则就有危险.【解】过C 点作BD 的垂线与BD 交于E 点 ∠BAC=60°-45°=15° ∠BCA=45°-30°=15° 在Rt △CBE 中, sin ∠CBE=CEBCCE=BC·sin∠CBE=10×1 2=5(海里)∵4.8<5∴没有进入养殖场的危险.【规律总结】这种类型题关键是要构建直角三角形计算距离,再根据距离大小来判断是否有危险.中考试题集萃(一)填空题1.(2004,宁波)sin45°=________.2.(2004,衡阳)∠A为锐角,若cosA=13,则sin(90°-A)=_______.3.(2004,芜湖)在直角三角形ABC中,∠C=90°,已知sinA=35,则cosB=________.4.(2004,常州)若∠α′的余角是30°,则∠α′=_______°,sin∠α′=________. 5.(2004,江西)在△ABC中,若AC=2,BC=7,AB=3,则cosA=________.6.(2004,沈阳)在Rt△ABC中∠C=90°,tanA=23,AC=4,则BC=_______.7.(2004,上海)在△ABC中,∠A=90°,设∠B=θ,AC=b,则AB=______.(用b和θ的三角比表示)8.(2004,深圳)计算:3tan30°+cot45°-2tan45°+2cos60°=________.9.(2004,西宁)某人沿倾斜角为β的斜坡走了100m,则他上升的高度是______m. 10.(2004,潍坊)某落地钟钟摆的摆长为0.5m,来回摆动的最大夹角为20°,已知在钟摆的摆运过程中,摆锤离地面的最低高度为am,最大高度为bm,则b-a=_______m(不取近似值).(二)选择题1.小强和小明去测量一座古塔的高度(如图)他们在离古塔60m•的A处,用测角仪器测得塔顶的仰角为30°,已知测角仪器高AD=1.5m,则古塔BE的高为(• )A.(203-1.5)m B.(203+1.5)mC.31.5m D.28.5m2.在Rt△ABC中,如果各边长度都扩大为原来的2倍,则锐角A的正切值()A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没有变化3.用科学计算器计算锐角α的三角函数值时,•不能直接计算出来的三角函数值是( )A .cot αB .tan αC .cos αD .sin α 4.计算sin30°·cot45°的结果是( )A .12B .2C .6D .45.=( )A .1-3 B -1 C .3-1 D . 6.在Rt △ABC 中,∠C=90°,AC=12,cosA=1213,则tanA 等于( ) A .513 B .1312 C .125 D .5127.已知α为锐角,tan αcos α等于( )A .12B .2C 8.在△ABC 中,∠C=90°,sinA=,则cosB 的值为( )A .12B .2C .2D .39.在△ABC 中,∠C=90°,AB=5,BC=3,CA=4,那么sinA 等于( ) A .34 B .43 C .35 D .45(三)解答题1.(2004,芜湖)在△ABC 中,∠A 、∠B 都是锐角,且sinA=12,,AB=10,•求△ABC 的面积.2.(2004,大连)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,•中柱CD=1m,∠A=72°,求跨度AB的长(精确到0.01m).3.(2004,南京)如图,天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B点测得C点的仰角为60°,已知AB=20m,点C和直线AB在同一铅垂平面上,求气球离地面的高度.(结果保留根号).4.(2004,贵阳)某居民小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高6m的小区超市,超市以上是居民住房,在该楼的前面15m处要盖一栋高20m的新楼,当冬季正午的阳光与水平线的夹角为32°时,问:(1)超市以上的居民住房采光是否有影响?为什么?(2)若要使超市采光不受影响,两楼应相距多少米?(•结果保留整数,•参考数据:sin32°≈53100,cos32°≈106125,tan32°≈58)5.(2004,济南)如图表示一山坡路的横截面,•CM•是一段平路,•它高出水平地面24m,从A到B,从B到C是两段不同坡角的山坡路,山坡路AB的路面长100m,•把山坡路BC的坡角降到与AB的坡角相同,使得∠DBI=5°.(精确到0.01m)(1)求山坡路AB的高度BE.(2)降低坡度后,整个山坡的路面加长了多少米?(sin5°=0.0872,cos5°=0.9962,sin12°=0.2079,cos12°=0.9781)答案:一、填空题1.222.133.354.60°,325.236.837.b·cos或tanb83.100sinβ 10.12(1-cos10°)•二、选择题1.B 2.D 3.A 4.A 5.A 6.D 7.A 8.C 9.C 三、解答题1253 32.3.93m3.解:作CD⊥AB,垂足为D,设气球离地面的高度是xm在Rt△CBD中,∠CAD=45°∴AD=CD=x在Rt△CBD中,∠CBD=60°∴cot60°=BD CD∴BD=3 3∵AB=AD-BD,∴20=x-33x∴x=30+103.答:气球离地面的高度是(30+103)m.4.(1)如图设CE=x米,则AF=(20-x)米,tan32°=AFEF,即20-x=15·tan32°x=11∵11>6,∴居民住房的采光有影响.(2)如图:tan32°=ABBF,BF=20×85=32两楼应相距32米.5.(1)在Rt△ABE中BE=ABsin∠BAE=100sin5°=100×0.0872=8.72(米).(2)在Rt△CBH中CH=CF-HF=15.28BC=sin CH CBH ∠=15.28sin12︒≈73.497在Rt△DBI中DB=sin DIDBI∠=15.28sin5︒≈175.229∴DB-BC≈175.229-73.497=101.732≈101.73(米).。

直角三角形的边角关系的典型例题的解析

直角三角形的边角关系的典型例题的解析

8.在气象站台A的正西方向240km的B处有一台风中心,该台风中心 以50km/h的速度沿北偏东60°的BD方向移动,在距离台风中心 130km内的地方都要受到其影响。 (1)台风中心在移动过程中,与气象台A的最短距离是多少? (2)台风中心在移动过程中,气象台将受台风的影响,求台风影 响气象台的时间会持续多久?
小结 拓展 本章知识结构框架图
现实问题
数学抽象

锐角三角函数的定义

锐角三角函数的有关计算

存 在 30°,45°,60° 性 角的三角函数值
一般锐角的 三角函数值
由三角函 数值求锐 角
解直角三角形 方 法
逻辑推 理
达标检测
4.在一次夏令营活动中,小明同学从营地A出发,要到A 地的北偏东60°方向的C处.他先沿正东方向走了200 m 到达B地,再沿北偏东30°方向走,恰能到达目的地C, 那么,由此可知B、C两地相距________m.
[锐角三角函数考情分析] 1.直角三角形的边角关系中,已知某个角 的三角函数值求线段长,
2.解直角三角形的实际问题应用,以选择 题,填空题为主,设制题的背景有:方位
角,坡比(度)及坡角,设问的角度有: (1)求物体的高度;(2)求两点之间的 距离等。
知识点自主梳理与热身反馈 知识点一:锐角三角函数
9.路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与 灯柱BC成120°角,锥形灯罩的轴线AD与灯杆AB垂直,且灯罩 轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与 点D之间的距离为12米,求灯柱BC的高(结果保留根号).
(备用图)
课堂小结
通过本节课的学习谈收获、需要注意的 问题
余弦 cosA=______,cosB=______

中考数学直角三角形的边角关系(大题培优 易错 难题)及答案

中考数学直角三角形的边角关系(大题培优 易错 难题)及答案

在 Rt△ ABE 中,AE= AB2 BE 2 =6 ,
∴ coaA= AE 6 4 . AB 7.5 5
(2)如图 2 中,作 PH⊥AC 于 H.
∵ PA=5t,PH=3t,AH=4t,HQ=AC-AH-CQ=9-9t, ∴ PQ2=PH2+HQ2=9t2+(9-9t)2,
∵ S△ PQM= 9 S△ QCN, 5
∵ ∠ QOC+∠ QOG=90°,
∴ ∠ EOC=∠ QOG,
∴ tan∠ EOC=tan∠ QOG,
∴ EC GQ , OC OG
8 5t 3t

4 5 , 3 44t
5
整理得:5t2-66t+160=0,
解得 t 16 或 10(舍弃) 5
∴ 当 t 16 秒时,OE⊥OQ. 5
【点睛】
【答案】(1) t=4s ;(2) S四边形PEGO
3t2 8
15 t 8
6
, (0
t
5) ;(3) t
5 2
时,
S四边形PEGO
取得最大值;(4)
t
16 5
时,
OE
OQ
.
【解析】
【分析】
(1)当点 E 在∠ BAC 的平分线上时,因为 EP⊥AB,EC⊥AC,可得 PE=EC,由此构建方程
即可解决问题.
可解决问题.
【详解】
(1)在 Rt△ ABC 中,∵ ∠ ACB=90°,AB=10cm,BC=8cm,
∴ AC= 102 82 =6(cm),
∵ OD 垂直平分线段 AC, ∴ OC=OA=3(cm),∠ DOC=90°, ∵ CD∥ AB,
∴ ∠ BAC=∠ DCO,

直角三角形的边角关系(精简版)

直角三角形的边角关系(精简版)

直角三角形的边角关系知识点1:锐角三角函数一、知识点讲解: 1.锐角三角函数的概念:锐角三角函数包括正弦函数,余弦函数,和正切函数,如图1-1-1,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b ,c . ∠A 的正弦=A asin A=c∠的对边,即斜边;∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tan=A b∠的对边,即∠的邻边注:三角函数值是一个比值.2.特殊角是指0°,30°,45°,60°,90°的角. 3.特殊角的三角函数值.4.互为余角的三角函数关系.sin (90○-A )=cosA , cos (90○-A )=sin A tan (90○-A )= cotA cot (90○-A )=tanA 5.同角的三角函数关系. ①平方关系:sin 2 A+cos 2A=l ②倒数关系:tanA ×cotA=1③商数关系:sin cos tan ,cot cos sin A AA A A A==④sin cos 12sin cos a a a a +=+ ⑤222tan cot (tan cot )2a a a a +=+- 二、经典例题讲解: 类型一、关于特殊的函数值 例题1、计算:()()013222sin 60-︒-+-+⋅(结果保留根号......)中考典练1: 024cos 458(3)(1)π-+++-分值6分中考典练2:2(tan 301)____-= 中考典练3:13tan 60|2|22-+-+例题2、 2sin60°-cos30°·tan45°的结果为( ) A 、 3 33. .22B C -D .0 例题3、等腰直角三角形一个锐角的余弦为( ) A 、12 32. .22B C D .l 例4、点M(tan60°,-cos60°)关于x 轴的对称点M ′的坐标是( ) 1111.(3,); .(3,); .(3,) .(3,)2222A B C D ----例5、在锐角△ABC 中,如果2sinC=sin90°,则∠C=__。

中考数学直角三角形的边角关系-经典压轴题附详细答案

中考数学直角三角形的边角关系-经典压轴题附详细答案

中考数学直角三角形的边角关系-经典压轴题附详细答案一、直角三角形的边角关系1.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC=,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数2.如图①,抛物线y=ax2+bx+c经过点A(﹣2,0)、B(4,0)、C(0,3)三点.(1)试求抛物线的解析式;(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式.【答案】(1)233384y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334y x =--. 【解析】【分析】(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=45PC ,所以5PA+4PC =5(PA+45PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=185,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可【详解】解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0)∴y =a (x+2)(x ﹣4)把点C (0,3)代入得:﹣8a =3∴a =﹣38∴抛物线解析式为y =﹣38(x+2)(x ﹣4)=﹣38x 2+34x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D∴∠CDP =∠COB =90°∵∠DCP =∠OCB∴△CDP ∽△COB ∴PC PD BC OB= ∵B (4,0),C (0,3)∴OB =4,OC =3,BC∴PD =45PC∴5PA+4PC =5(PA+45PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小∵A (﹣2,0),OC ⊥AB ,AE ⊥BC∴S △ABC =12AB•OC =12BC•AE ∴AE =631855AB OC BC ⨯==n ∴5AE =18∴5PA+4PC 的最小值为18.(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90°∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个此时,连接FQ ,过点Q 作QG ⊥x 轴于点G∴∠FQT =90°∵F 为A (﹣2,0)、B (4,0)的中点∴F (1,0),FQ =FA =3∵T (﹣4,0)∴TF =5,cos ∠QFT =35FQ TF = ∵Rt △FGQ 中,cos ∠QFT =35FG FQ = ∴FG =35FQ =95∴x Q =1﹣9455=-,QG125== ①若点Q 在x 轴上方,则Q (41255-,)设直线l 解析式为:y =kx+b ∴4041255k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧=⎪⎨⎪=⎩ ∴直线l :334y x =+ ②若点Q 在x 轴下方,则Q (41255--,)∴直线l :334y x =-- 综上所述,直线l 的解析式为334y x =+或334y x =--【点睛】本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q 点是关键,同时不要忘记需要分情况讨论3.在△ABC 中,∠B =45°,∠C =30°,点D 是边BC 上一点,连接AD ,将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接DE .(1)如图①,当点E 落在边BA 的延长线上时,∠EDC = 度(直接填空); (2)如图②,当点E 落在边AC 上时,求证:BD =12EC ; (3)当AB =22,且点E 到AC 的距离等于3﹣1时,直接写出tan ∠CAE 的值.【答案】(1)90;(2)详见解析;(3)633 tan EAC-∠=【解析】【分析】(1)利用三角形的外角的性质即可解决问题;(2)如图2中,作PA⊥AB交BC于P,连接PE.只要证明△BAD≌△PAE(SAS),提出BD=PE,再证明EC=2PE即可;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,可得EP=3x,EH=2PH=2x,由此FH=2x+3﹣1,CF=23x+3﹣3,由△BAD≌△PAE,得BD=EP=3x,AE=AD,在Rt△ABG中, AG=GB=2,在Rt△AGC中,AC=2AG=4,故AE2=AD2=AF2+EF2,由勾股定理得AF=1+3,由此tan∠EAF=2﹣3,根据对称性可得tan∠EAC=6-3311.【详解】(1)如图1中,∵∠EDC=∠B+∠BED,∠B=∠BED=45°,∴∠EDC=90°,故答案为90;(2)如图2中,作PA⊥AB交BC于P,连接PE.∵∠DAE=∠BAP=90°,∴∠BAD=∠PAE,∵∠B=45°,∴∠B=∠APB=45°,∴AB=AP,∵AD=AE,∴△BAD≌△PAE(SAS),∴BD=PE,∠APE=∠B=45°,∴∠EPD=∠EPC=90°,∵∠C=30°,∴EC=2PE=2BD;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,∵∠EPH=90°,∠EHP=60°,∴EP3,EH=2PH=2x,∴FH=31,CF3FH=33∵△BAD≌△PAE,∴BD=EP3,AE=AD,在Rt△ABG中,∵AB=2∴AG=GB=2,在Rt△AGC中,AC=2AG=4,∵AE2=AD2=AF2+EF2,∴22+(23)231)2+(4﹣3﹣32,整理得:9x2﹣12x=0,解得x=43(舍弃)或0∴PH=0,此时E,P,H共点,∴AF=3∴tan∠EAF=EFAF 3131-+=23根据对称性可知当点E在AC的上方时,同法可得tan∠EAC=6-33 11.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.4.如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,40),直线AB:y=13x+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作EF⊥x轴交直线AB于点F,以EF为一边向右作正方形EFGH.(1)求边EF的长;(2)将正方形EFGH沿射线FB的方向以每秒10个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t>0).①当点F1移动到点B时,求t的值;②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE 重叠部分的面积.【答案】(1)EF=15;(2)①10;②120;【解析】【分析】(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-43x+40,可求出P点坐标,进而求出F点坐标即可;(2)①易求B(0,5),当点F1移动到点B时,1010=10;②F点移动到F'10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE上时,在Rt△F'NF中,NFNF'=13,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,43MHEM'=,t=4,S=12×(12+454)×11=10238;当点G运动到直线DE上时,在Rt△F'PK中,PKF K'=13,PK=t-3,F'K=3t-9,在Rt△PKG'中,PKKG'=31539tt--+=43,t=7,S=15×(15-7)=120.【详解】(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),∴30040k bb+=⎧⎨=⎩,∴4340 kb⎧=-⎪⎨⎪=⎩,∴y=﹣43x+40,直线AB与直线DE的交点P(21,12),由题意知F(30,15),∴EF=15;(2)①易求B(0,5),∴BF=1010,∴当点F1移动到点B时,t=101010÷=10;②当点H运动到直线DE上时,F点移动到F'10,在Rt△F'NF中,NFNF'=13,∴FN=t,F'N=3t,∵MH'=FN=t,EM=NG'=15﹣F'N=15﹣3t,在Rt△DMH'中,43MHEM'=,∴41533tt=-,∴t=4,∴EM=3,MH'=4,∴S=1451023(12)11248⨯+⨯=;当点G运动到直线DE上时,F 点移动到F'的距离是10t , ∵PF =310,∴PF'=10t ﹣310,在Rt △F'PK 中,13PK F K =', ∴PK =t ﹣3,F'K =3t ﹣9,在Rt △PKG'中,PK KG '=31539t t --+=43, ∴t =7,∴S =15×(15﹣7)=120.【点睛】本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.5.如图所示的是一个地球仪及它的平面图,在平面图中,点A 、B 分别为地球仪的南、北极点,直线AB 与放置地球仪的平面交于点D ,所夹的角度约为67°,半径OC 所在的直线与放置它的平面垂直,垂足为点E ,DE =15cm ,AD =14cm .(1)求半径OA 的长(结果精确到0.1cm ,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)(2)求扇形BOC 的面积(π取3.14,结果精确到1cm )【答案】(1)半径OA 的长约为24.5cm ;(2)扇形BOC 的面积约为2822cm .【解析】【分析】(1)在Rt △ODE 中,DE=15,∠ODE=67°,根据∠ODE 的余弦值,即可求得OD 长,减去AD即为OA .(2)用扇形面积公式即可求得.【详解】(1)在Rt △ODE 中,15cm DE =,67ODE ∠=︒. ∵cos DE ODE DO ∠=, ∴150.39OD ≈, ∴()384614245cm OA OD AD =-≈-≈.., 答:半径OA 的长约为24.5cm .(2)∵67ODE ∠=︒,∴157BOC ∠=︒, ∴2360BOC n r S π=扇形 2157 3.1424.52360⨯⨯≈ ()2822cm ≈.答:扇形BOC 的面积约为2822cm .【点睛】此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.6.如图①,在菱形ABCD 中,60B ︒∠= ,4AB =.点P 从点A 出发以每秒2个单位的速度沿边AD 向终点D 运动,过点P 作PQ AC ⊥交边AB 于点Q ,过点P 向上作//PN AC ,且2PN PQ =,以PN 、PQ 为边作矩形PQMN .设点P 的运动时间为t (秒),矩形PQMN 与菱形ABCD 重叠部分图形的面积为S .(1)用含t 的代数式表示线段PQ 的长.(2)当点M 落在边BC 上时,求t 的值.(3)当0t 1<<时,求S 与t 之间的函数关系式,(4)如图②,若点O 是AC 的中点,作直线OM .当直线OM 将矩形PQMN 分成两部分图形的面积比为12:时,直接写出t 的值【答案】(1)23PQ t =;(2)45;(3)2193403163t t -+-;(4) 23t = 或87t = . 【解析】【分析】(1)由菱形性质得∠D=∠B=60°,AD=AB=CD=4,△ACD 是等边三角形,证出△APQ 是等腰三角形,得出PF=QF ,3,即可得出结果;(2)当点M 落在边BC 上时,由题意得:△PDN 是等边三角形,得出PD=PN ,由已知得3,得出PD=3t ,由题意得出方程,解方程即可; (3)当0<t≤45时,3t ,PN=32PQ=3t ,S=矩形PQMN 的面积=PQ×PN ,即可得出结果;当45<t <1时,△PDN 是等边三角形,得出PE=PD=AD-PA=4-2t ,∠FEN=∠PED=60°,得出NE=PN-PE=5t-4,33(5t-4),S=矩形PQMN 的面积-2△EFN 的面积,即可得出结果;(4)分两种情况:当0<t≤45时,△ACD 是等边三角形,AC=AD=4,得出OA=2,OG 是△MNH 的中位线,得出OG=4t-2,NH=2OG=8t-4,由面积关系得出方程,解方程即可; 当45<t≤2时,由平行线得出△OEF ∽△MEQ ,得出EF OF EQ MQ =233t t EF t -=+,解得EF=243232t t t -,得出2332234t t t t -+,由三角形面积关系得出方程,解方程即可.【详解】(1)∵在菱形ABCD 中,∠B=60°,∴∠D=∠B=60°,AD=AB=CD=4,△ACD 是等边三角形,∴∠CAD=60°,∵PQ ⊥AC ,∴△APQ 是等腰三角形,∴PF=QF,PF=PA•sin60°=2t×32=3t,∴PQ=23t;(2)当点M落在边BC上时,如图2所示:由题意得:△PDN是等边三角形,∴PD=PN,∵PN=32PQ=32×23t=3t,∴PD=3t,∵PA+PD=AD,即2t+3t=4,解得:t=45.(3)当0<t≤45时,如图1所示:PQ=23t,PN=32PQ=32×23t=3t,S=矩形PQMN的面积=PQ×PN=23t×3t=63t2;当45<t<1时,如图3所示:∵△PDN是等边三角形,∴PE=PD=AD-PA=4-2t,∠FEN=∠PED=60°,∴NE=PN-PE=3t-(4-2t)=5t-4,∴FN=3NE=3(5t-4),∴S=矩形PQMN的面积-2△EFN的面积=63t2-2×12×3(5t-4)2=-19t2+403t-163,即S=-19t2+403t-163;(4)分两种情况:当0<t≤45时,如图4所示:∵△ACD是等边三角形,∴AC=AD=4,∵O是AC的中点,∴OA=2,OG是△MNH的中位线,∴OG=3t-(2-t)=4t-2,NH=2OG=8t-4,∴△MNH的面积=12MN×NH=12×23t×(8t-4)=13×63t2,解得:t=23;当45<t≤2时,如图5所示:∵AC∥QM,∴△OEF∽△MEQ,∴EF OFEQ MQ=233ttEF t-=+,解得:2332t t-,∴EQ=2332234t t t t --+, ∴△MEQ 的面积=12×3t×(23323t t t -+)=13×63t 2, 解得:t=87; 综上所述,当直线OM 将矩形PQMN 分成两部分图形的面积比为1:2时,t 的值为23或87. 【点睛】本题是四边形综合题目,考查了菱形的性质、矩形的性质、等边三角形的判定与性质、勾股定理、相似三角形的判定与性质、三角形中位线定理等知识;本题综合性强,难度较大,熟练掌握菱形和矩形的性质,综合运用知识,进行分类讨论是解题的关键.7.如图,在ABC △中,10AC BC ==,3cos 5C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P e 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .()1当P e 与边BC 相切时,求P e 的半径;()2联结BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围;()3在()2的条件下,当以PE 长为直径的Q e 与P e 相交于AC 边上的点G 时,求相交所得的公共弦的长.【答案】(1)409;(2))25880010320x x y x x -+=<<+;(3)105- 【解析】【分析】(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=35,则sinC=45,sinC=HP CP =R 10R -=45,即可求解;(2)PD∥BE,则EBPD=BFPF,即:2248805x x x yx y--+-=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=35,sinC=HPCP=R10R-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,5tan∠()2284x+-2880x x-+25,则525,如下图所示,PA=PD ,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ=5,sinβ=5, EB=BDcosβ=(45-25x )×5=4-25x , ∴PD ∥BE ,∴EB PD =BF PF ,即:2248805x x x y x --+-=, 整理得:y=()25x x 8x 800x 103x 20-+<<+; (3)以EP 为直径作圆Q 如下图所示,两个圆交于点G ,则PG=PQ ,即两个圆的半径相等,则两圆另外一个交点为D ,GD 为相交所得的公共弦,∵点Q 时弧GD 的中点,∴DG ⊥EP ,∵AG 是圆P 的直径,∴∠GDA=90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形,∴AG=EP=BD ,∴5设圆的半径为r,在△ADG中,AD=2rcosβ=5,DG=5,AG=2r,5+2r=45,解得:2r=51,则:DG=5=10-25,相交所得的公共弦的长为10-25.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.8.抛物线y=ax²+bx+4(a≠0)过点A(1, ﹣1),B(5, ﹣1),与y轴交于点C.(1)求抛物线表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC下方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,①求点P坐标;②过此二点的直线交y轴于F, 此直线上一动点G,当GB+2GF最小时,求点G坐标.(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值【答案】(1)y=x²﹣6x+4(2)①P(2, -4)或P(3, -5) ②G(0, -2)(3)313【解析】【分析】(1)把点A(1,-1),B(5,-1)代入抛物线y=ax2+bx+4解析式,即可得出抛物线的表达式;(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,可求得直线BC的解析式为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),因为▱CBPQ的面积为30,所以S△PBC=1 2×(−t+4−t2+6t−4)×5=15,解得t的值,即可得出点P的坐标;②当点P为(2,-4)时,求得直线QP的解析式为:y=-x-2,得F(0,-2),∠GOR=45°,因为GB+2 2GF=GB+GR,所以当G于F重合时,GB+GR最小,即可得出点G的坐标;当点P为(3,-5)时,同理可求;(3)先用面积法求出sin∠ACB=213,tan∠ACB=23,在Rt△ABE中,求得圆的直径,因为MB⊥NB,可得∠N=∠AEB=∠ACB,因为tanN=MBBN=23,所以BN=32MB,当MB为直径时,BN的长度最大.【详解】(1) 解:(1)∵抛物线y=ax2+bx+4(a≠0)过点A(1,-1),B(5,-1),∴1412554a ba b-++⎧⎨-++⎩=,=解得16ab⎧⎨-⎩=,=∴抛物线表达式为y=x²﹣6x+4.(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,设直线BC的解析式为y=kx+m,∵B(5,-1),C(0,4),∴154k mm-+⎧⎨⎩==,解得14km=,=-⎧⎨⎩∴直线BC的解析式为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),∵▱CBPQ的面积为30,∴S△PBC=12×(−t+4−t2+6t−4)×5=15,解得t=2或t=3,当t=2时,y=-4当t=3时,y=-5,∴点P坐标为(2,-4)或(3,-5);②当点P为(2,-4)时,∵直线BC解析式为:y=-x+4, QP∥BC,设直线QP的解析式为:y=-x+n,将点P代入,得-4=-2+n,n=-2,∴直线QP的解析式为:y=-x-2,∴F(0,-2),∠GOR=45°,∴GB+2GF=GB+GR当G于F重合时,GB+GR最小,此时点G的坐标为(0,-2),同理,当点P为(3,-5)时,直线QP的解析式为:y=-x-2,同理可得点G的坐标为(0,-2),(3) )∵A(1,-1),B(5,-1)C(0,4),∴AC=26,BC=52,∵S△ABC=12AC×BCsin∠ACB=12AB×5,∴sin∠ACB=213,tan∠ACB=23,∵AE为直径,AB=4,∴∠ABE=90°,∵sin∠AEB=sin∠ACB=213=4AE,∴AE=213,∵MB⊥NB,∠NMB=∠EAB,∴∠N=∠AEB=∠ACB,∴tanN=MBBN =23,∴BN=32MB,当MB为直径时,BN的长度最大,为313.【点睛】题考查用到待定系数法求二次函数解析式和一次函数解析式,圆周角定理,锐角三角函数定义,平行四边形性质.解决(3)问的关键是找到BN与BM之间的数量关系.9.已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=3A,D两点作⊙O,交AB于点E,(1)求弦AD的长;(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON 等于多少时,三点D、E、M组成的三角形是等腰三角形?(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP﹣DQ的值变不变?若不变,请求出其值;若变化,请说明理由.【答案】(1)23(2)当ON等于13﹣1时,三点D、E、M组成的三角形是等腰三角形(3)不变,理由见解析【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长;(2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后根据含30°的直角三角形三边的关系得DN=1233;当MD=ME,DE为底边,作DH⊥AE,由于3∠DAE=30°,得到3,∠DEA=60°,DE=2,于是OE=DE=2,OH=1,又∠M=∠DAE=30°,MD=ME,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到∠DNO=45°,根据等腰直角三角形的性质得到33;(3)连AP、AQ,DP⊥AB,得AC∥DP,则∠PDB=∠C=60°,再根据圆周角定理得∠PAQ=∠PDB,∠AQC=∠P,则∠PAQ=60°,∠CAQ=∠PAD,易证得△AQC≌△APD,得到DP=CQ,则DP-DQ=CQ-DQ=CD,而△ADC为等边三角形,3DP-DQ的值.【详解】解:(1)∵∠BAC=90°,点D是BC中点,BC=3∴AD=12BC=3(2)连DE、ME,如图,∵DM>DE,当ED和EM为等腰三角形EDM的两腰,∴OE⊥DM,又∵AD =AC ,∴△ADC 为等边三角形,∴∠CAD =60°,∴∠DAO =30°,∴∠DON =60°,在Rt △ADN 中,DN =12AD ,在Rt △ODN 中,ON =3DN =1, ∴当ON 等于1时,三点D 、E 、M 组成的三角形是等腰三角形;当MD =ME ,DE 为底边,如图3,作DH ⊥AE ,∵AD =∠DAE =30°,∴DH ∠DEA =60°,DE =2,∴△ODE 为等边三角形,∴OE =DE =2,OH =1,∵∠M =∠DAE =30°,而MD =ME ,∴∠MDE =75°,∴∠ADM =90°﹣75°=15°,∴∠DNO =45°,∴△NDH 为等腰直角三角形,∴NH=DH∴ON ﹣1;综上所述,当ON 等于11时,三点D 、E 、M 组成的三角形是等腰三角形;(3)当⊙O 变动时DP ﹣DQ 的值不变,DP ﹣DQ =.理由如下:连AP 、AQ ,如图2,∵∠C =∠CAD =60°,而DP ⊥AB ,∴AC ∥DP ,∴∠PDB =∠C =60°,又∵∠PAQ =∠PDB ,∴∠PAQ =60°,∴∠CAQ =∠PAD ,∵AC =AD ,∠AQC =∠P ,∴△AQC ≌△APD ,∴DP =CQ ,∴DP ﹣DQ =CQ ﹣DQ =CD =【点睛】本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.10.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°,①如图1,∠DCB等于多少度;②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.【详解】(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴△CDB 是等边三角形,∴∠DCB =60°.②如图1,结论:CP =BF .理由如下:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠DCB =60°,∴△CDB 为等边三角形.∴∠CDB =60°∵线段DP 绕点D 逆时针旋转60°得到线段DF ,∵∠PDF =60°,DP =DF ,∴∠FDB =∠CDP ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,在Rt△CDE中,∠DEC=90°,∴tan∠CDE=CE,DE∴CE=DEtanα,∴BC=2CE=2DEtanα,即BF﹣BP=2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP≌△DBF是解此题的关键,综合性比较强,证明过程类似.11.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).【答案】拦截点D处到公路的距离是(500+500)米.【解析】试题分析:过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.解Rt△BCE,求出BE=BC=×1000=500米;解Rt△CDF,求出CF=CD=500米,则DA=BE+CF=(500+500)米.试题解析:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.在Rt△BCE中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=BC=×1000=500米;在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=BC=1000米,∴CF=CD=500米,∴DA=BE+CF=(500+500)米,故拦截点D处到公路的距离是(500+500)米.考点:解直角三角形的应用-方向角问题.12.如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,33),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).【答案】(1)D(032)C(12﹣33﹣18);(3)B'(13 0),(2130).【解析】【分析】(1)设OD为x,则3x,在RT△ODA中应用勾股定理即可求解;(2)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为2,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.【详解】(Ⅰ)设OD为x,∵点A(3,0),点B(0,33),∴AO=3,BO=33∴AB=6∵折叠在Rt △ADO 中,OA2+OD2=DA2.∴9+OD2=(33﹣OD )2. ∴OD=3 ∴D (0,3)(Ⅱ)∵折叠∴∠BDC=∠CDO=90°∴CD ∥OA∴BD BC BO AB =且BD=AC , ∴6633BD -= ∴BD=123﹣18∴OD=33﹣(123﹣18)=18﹣93∵tan ∠ABO=3OB AO =, ∴∠ABC=30°,即∠BAO=60° ∵tan ∠ABO=3BD 3CD =, ∴CD=12﹣63∴D (12﹣63,123﹣18)(Ⅲ)如图:过点C 作CE ⊥AO 于E∵CE ⊥AO∴OE=2,且AO=3∴AE=1,∵CE ⊥AO ,∠CAE=60°∴∠ACE=30°且CE ⊥AO∴AC=2,3∵BC=AB ﹣AC∴BC=6﹣2=4若点B'落在A 点右边,∴BC=B'C=4,CE⊥OA∴=∴∴B'(0)若点B'落在A点左边,∵折叠∴BC=B'C=4,CE⊥OA∴=∴2∴B'(20)综上所述:B'(0),(20)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.。

直角三角形的边角关系练习题及答案

直角三角形的边角关系练习题及答案

一、选择题(每小题3分,共36分)1.(2022河口模拟)在△ABC中,∠A=90°,∠A,∠B,∠C的对边分别为a,b,c,则下列选项中不正确的是( C )A.sin B=ba B.sin C=caC.cos B=bc D.tan B=bc2.在Rt△ABC中,∠C=90°,AC=4,tan A=12,则AB的长是( C )A.2B.8C.2√5D.4√53.若锐角A满足sin A=√32,则∠A的度数是( C )A.30°B.45°C.60°D.75°4.(2022张店模拟)在Rt△ABC中,∠C=90°,tan A=512,则cos A等于( D )A.512B.125C.513D.12135.在正方形网格中,△ABC的位置如图所示,则cos B的值为( B )第5题图A.12B.√22C.√32D.√336.(2022福山模拟)按如图所示的运算程序,能使输出y 值为12的是( C )第6题图A.α=60°,β=45°B.α=30°,β=45°C.α=30°,β=30°D.α=45°,β=30°7.在△ABC 中,∠A 和∠B 都是锐角,且sin A=12,cos B=√22,则△ABC 三个内角的大小关系为( D ) A.∠C>∠A>∠B B.∠B>∠C>∠A C.∠A>∠B>∠C D.∠C>∠B>∠A8.一辆小车沿着斜坡向上行驶了100 m,其铅直高度上升了15 m,在用科学计算器求坡角α的度数时,其按键顺序是( A )9.如图所示,一艘海轮位于灯塔P 的南偏东45°方向,距离灯塔 60 n mile 的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东30°方向上的B 处,这时,B 处与灯塔P 的距离为( B )A.60√3 n mileB.60√2 n mileC.30√3 n mileD.30√2 n mile10.如图所示,△ABC,△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的夹角为∠PBE=43°,视线PE与地面BE的夹角为∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE,若A点到B 点的距离AB=1.6 m,则盲区中DE的长度是(参考数据:sin 43°≈0.7,tan 43°≈0.9,sin 20°≈0.3,tan 20°≈0.4)( B )A.2.6 mB.2.8 mC.3.4 mD.4.5 m11.如图所示,在矩形ABCD中,点E在DC上,将矩形沿直线AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为( D )A.12B.920C.25D.1312.因为cos 60°=12,cos 240°=-12,所以cos 240°=cos(180°+60°)=-cos 60°;由此猜想、推理知:当α为锐角时有cos(180°+α)=-cos α,由此可知cos 210°的值为( C )A.-12B.-√22C.-√32D.-√3二、填空题(每小题3分,共18分)13.已知在Rt△ACB中,∠C=90°,AB=13,AC=12,则cos B 的值为5.1314.如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥,则AD的长度是10 .CD,若sin∠ACB=13第14题图15.平放在地面上的三角形铁板ABC的一部分被沙堆掩埋,其示意图如图所示,量得∠A为54°,∠B为36°,边AB的长为2.1 m,BC边上露出部分BD的长为0.9 m,则铁板BC边被掩埋部分CD的长为0.8 m.(结果精确到0.1 m.参考数据:sin 54°≈0.81,cos 54°≈0.59,tan 54°≈1.38)第15题图16.(2021东营期末)直角三角形纸片ABC的两直角边长分别为6,8,现将△ABC按如图所示方式折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值为7.24第16题图17.如图所示,小明在距离地面30 m 的P 处测得小山山顶A 处的俯角为15°,山脚B 处的俯角为60°.若山坡AB 的坡度为1∶√3,则小山的高度为 10√3 m.(结果保留根号)第17题图18.(2022任城模拟)规定:sin(-x)=-sin x,cos(-x)=cos x, sin(x+y)=sin x ·cos y+cos x ·sin y.据此判断下列等式成立的是 ②③④ .(写出所有正确的序号) ①cos(-60°)=-12;②sin 75°=√6+√24; ③sin 2x=2sin x ·cos x;④sin(x-y)=sin x ·cos y-cos x ·sin y. 三、解答题(共46分) 19.(6分)计算:(1)sin 60°-cos 60°·tan 45°+12√1-2tan30°+tan 230°; (2)sin 245°+cos 230°-tan 260°.解:(1)原式=√32-12×1+12√(1-tan30°)2=√32-12+12×(1-√33) =√33.(2)原式=(√22)2+(√32)2-(√3)2=12+34-3=-74.20.(8分)如图所示,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,sin B=13,AD=1.(1)求BC 的长; (2)求tan ∠DAE 的值. 解:(1)∵AD 是BC 边上的高, ∴AD ⊥BC.在Rt △ABD 中,sin B=AD AB =13,AD=1,∴AB=3,∴BD=√AB 2-AD 2=√32-12=2√2. 在Rt △ADC 中,∵∠C=45°,∴CD=AD=1. ∴BC=BD+CD=2√2+1. ∴BC 的长为2√2+1.(2)∵AE 是BC 边上的中线,∴CE=12BC=2√2+12, ∴DE=CE-CD=2√2+12-1=√2-12, ∴tan ∠DAE=DE AD=√2-121=√2-12.21.(10分)汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200 m 且横断面为梯形的大坝用土石进行加固.如图所示,加固前大坝背水坡坡面从A 至B 共有30级阶梯,平均每级阶梯高 30 cm,斜坡AB 的坡度为1∶1;加固后,坝顶宽度增加2 m,斜坡EF 的坡度为1∶√5,求BF 的长.(结果保留根号)解:如图所示,过点A作AH⊥BC于点H,过点E作EG⊥BC于点G,则四边形EGHA是矩形.∴EG=AH,GH=AE=2 m.∵斜坡AB的坡度为1∶1,∴AH=BH=30×30=900 cm=9 m.∴BG=BH-HG=9-2=7(m).∵斜坡EF的坡度为1∶√5,∴FG=9√5 m.∴BF=FG-BG=(9√5-7)m.∴BF的长为(9√5-7)m.22.(12分)(2020包头)如图所示,一个人骑自行车由A地到C地途经B地,当他由A地出发时,发现他的北偏东45°方向有一电视塔P.他由A地向正北方向骑行了3√2 km到达B地,发现电视塔P在他北偏东75°方向,然后他由B地向北偏东15°方向骑行了6 km到达C地.(1)求A地与电视塔P的距离;(2)求C地与电视塔P的距离.解:(1)如图所示,过点B 作BD ⊥AP 于点D. 在Rt △ABD 中,∠BAD=45°,AB=3√2 km,∴AD=BD=AB ×sin ∠BAD=3√2×sin 45°=3√2×√22=3(km). ∵∠PBN=75°,∴∠APB=∠PBN-∠PAB=75°-45°=30°. ∴在Rt △BDP 中,PD=BDtan∠APB =3tan30°=√33=3√3(km),PB=2BD=2×3=6(km). ∴AP=AD+PD=(3+3√3)km.∴A 地与电视塔P 的距离为(3+3√3)km. (2)∵∠PBN=75°,∠CBN=15°, ∴∠CBP=60°. ∵BP=BC=6 km, ∴△BPC 为等边三角形. ∴PC=6 km.∴C 地与电视塔P 的距离为6 km.23.(10分)(2022垦利模拟)数学活动课上,小明和小红要测量小河对岸大树BC 的高度,小红在点A 测得大树顶端B 的仰角为45°,小明从A点出发沿斜坡走3√5 m到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1∶2.(1)求小明从点A到点D的过程中,他上升的高度;(2)依据他们测量的数据能否求出大树BC的高度?若能,请计算;若不能,请说明理由.(参考数据:sin 31°≈0.52,cos 31°≈0.86, tan 31°≈0.60)解:(1)如图所示,过点D作DH⊥AE于H.在Rt△ADH中,∵DHAH =12,∴AH=2DH.∵AH2+DH2=AD2,∴(2DH)2+DH2=(3√5)2,解得DH=3,故小明从点A到点D的过程中,他上升的高度为3 m.(2)如图所示,延长BD交AE于点G,设BC=x m,由题意得∠G=31°,∴GH=DHtanG ≈30.60=5.∵AH=2DH=6,∴GA=GH+AH=5+6=11.在Rt△BGC中,tan G=BCGC ,∴CG=BCtanG≈x0.60=53x.在Rt△BAC中,∠BAC=45°,∴AC=BC=x.∵GC-AC=AG,∴53x-x=11,解得x=16.5.故大树的高度约为16.5 m.。

整理直角三角形的边角关系(经典)

整理直角三角形的边角关系(经典)
(画出图形、化为直角三角形问题) (2)选择适当的三角函数解直角三角形; (3)将数学答案写为实际问题答案。
概念反馈
在解直角三角形及应用时经常接触到的一些概念
(1)仰角和俯角
(2)坡度tan
α=
视线 铅 垂 线 仰角
h
l
水平线
俯角

α为坡角
视线
h α
A
(3)方向角
西
30°
l
B
O 45°



1
某人在A处测得建筑物的仰角∠BAC为 300 ,沿AC方向行20m至D处,测得仰角∠BDC 为450,求此建筑物的高度BC.
y
则OP= y 则sinα= r x cosα= r
x y r
2 2
P
y tanα= x
O α
C
x
2.海中有一个小岛A,它的周围8海里范围内有暗礁, 渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏 东60°方向上,航行12海里到达D点,这时测得小岛A 在北偏东30°方向上,如果渔船不改变航线继续向东 航行,有没有触礁的危险?
A
B
练习2.请观察:小山的高为h,为了测的小山顶上铁塔
AB的高x,在平地上选择一点P, 在P点处测得B点的仰角 为a, A点的仰角为β .(见表中测量目标图)
题目 测 量 目 标 测量山顶铁塔的高 A X B
h
a β
P 山高BC 仰角a 仰角β C h=150米 a=45º β =30º
已 知 数 据
2. 选择题,(1)下列等式中,成立的是( D )
A. tan45°5′< 1
C. tan60°1′<
B. sin29°59′>

九下数学15直角三角形的边角关系经典练习题

九下数学15直角三角形的边角关系经典练习题

九下数学15直角三角形的边角关系经典练习题
1、(2022鞍山)如图,某幼儿园为了加强安全管理,决定将园内的
滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)
(第2题)
(第1题)
2、A、B两市相距150千米,分别从A、B处测得国家级风景区中心C
处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,
tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB
两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.
3、(2022衡阳)如图,一段河坝的横截面为梯形ABCD,试根据图中
数据,求出坝底宽AD.(单位:m)
4、如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现
一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这
只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底部D与树的底
部A的距离为2.7米,猫头鹰从C点观测F点的俯角为53°,老鼠躲藏
处M(点M在DE上)距D点3米.
(参考数据:in37°≈0.60,co37°≈0.80,tan37°≈0.75)
(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?
(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米(精确到0.1米)?。

直角三角形边角关系10套题

直角三角形边角关系10套题

三角形边角关系11.已知Α为锐角,3cos 5A =,则tan Α= .2.在周长12的Rt A B C ∆中, sin B =0.5,则b= ,c= .3.在Rt A B C ∆中,05090,10,33A B C C a S ∆∠===, 则b= ,c= .4.已知在Rt A B C ∆中,090,,,sin C AC b AB c A ∠====那么 ,sin B = .5.在A B C ∆中,090,65,615C a b ∠===,则c= ,B ∠= .6.在Rt ∆MNP 中,若NP 是斜边,MN=15,NP=17,那么tanN + cotP= .7. √2×sin45°+√3×cos30°-3/2= .8.已知某大坝横截面为梯形,坝顶宽10米,坝高160米,且大坝迎水面坡度i 1=1:3,背水面坡度i 2=2:3,求大坝截面积.三角形边角关系21.在Rt A B C ∆中,0090,10,55C AC B ∠==∠=,则AB 上的高CD 的长可表示为 .2.在A B C ∆中,若cosB=0,b=21,c:a=5:3则BC 边上的中线AD 的长为 .3. 点Α在O 点北偏西035方位上,点B 在O 点北偏东055的方位上且O Α长80m,OB 长60m,那么ΑB 间的距离是 .4. 在Rt A B C ∆中,斜边上的高CD 把ΑB 分成ΑD 和BD,若ΑD:BD=34,则sin B = .5.在A B C ∆中,0490,sin ,8,5C B A B B C A C ∠==+==则 .6.在梯形ΑBCD 中,ΑD//BC,ΑB=CD,ΑD=4,BC=6,1cos ,4B S =梯则= .7. 已知tan α=3.则1/(sin²α+sinαcosα+cos²α) 的值为?8.从高24米的甲楼顶部Α处测得乙楼顶部B 的仰角α=300,测得乙楼底部C 的俯角β=600,求乙楼的高.三角形边角关系31.如图9-8,在A B C ∆中,D 是ΑB 的中点, DC ⊥ΑC,B C D ∠的正切值是13,则A ∠的正弦值是 .2.在A B C ∆中,1,2,12tgA tgC AC ===,那么BC 的值是 .3.在A B C ∆中,090,2,4,cos ABC C AC S A ∆∠===则= .4.如图9-9,在电视塔ΑD 的正东方向有两个地面观测点B 、C,在B 、C,两点测得塔顶Α的仰角分别为αβ,B 、C 两地相距α米,则ΑD 的高为 .5.飞机在离地面1200m 上空测得地面目标的俯角为060,那么此时飞机距目标 m.6.已知在A B C ∆中,ΑB=ΑC=10,BC=12,那么c o s B = ,tgC = ,sin A = .7. 3/5cosβ-4/5sinβ=5/13,求sinβ?8.在Rt ΔΑBC 中,∠ΑCB=900,sinB=35,D 是BC 边上的一点,DE ⊥ΑB ,垂足为E ,CD=DE ,ΑC+CD=9,求(1)BC 的长;(2)CE 的长.三角形边角关系41.A B C ∆中,05120,21,,3A B C c B b S a ∆∠===且则= .2.如图9-10,在四边形ΑBCD 中,ΑD=CD,ΑB=7,tg Α=2,090B D ∠=∠=,那么BC 的长为 .3.在ΔΑBC 中,∠C=900,CD ⊥ΑB ,垂足为D ,则比值B CC D B D A CA B A C B C B C、、、中等sin Α的个数有( ).(Α)4个 (B )3个 (C )2个 (D )1个4.如图9-11,在ΔΑBC 中,∠Α=300,E 为ΑC 上一点,且ΑE :EC=3:1,EF ⊥ΑB ,F 为垂足,连结FC ,则cot ∠CFB 的值等于( ).(Α)36(B )32(C )433 (D )1345.在ΑBC 中,∠Α=750,∠C=450,ΑB=2,则ΑC 的长等于( ).(Α)22 (B )23 (C )6 (D )2636.在Rt ΔΑBC 中,∠C=900,CD ⊥ΑB 于D ,若14B D A D=,则tan ∠BCD 的值是( ).(Α)14(B )13(C )12(D )27.在ΔΑBC 中,已知∠B=2倍等于其他两角的和,最长边与最短边的和是8,积是15,求这个三角形的面积及∠B 所对边的长.三角形边角关系51.在ΔΑBC 中,∠B=600,ΑB=6,BC=8,则ΑBC 的面积是( ). (Α)123 (B )12 (C )243 (D )1222.如图9-12,在矩形ΑBCD 中,BC=2,ΑE ⊥BD ,垂足为E ,∠B ΑE=300,则ΔECD 的面积是( ).(Α)23 (B )3 (C )32(D )333.如图9-13,∠ΑOP=∠BOP=150,PC ∥ΑO ,PD ⊥O Α,若PC=4,则PD 等于( ). (Α)4 (B )3 (C )2 (D )14.在ΔΑBC 中,∠Α=300,tgB=13,BC=10,那么ΑB 的长为( ).【2】(Α)3 (B )3 (C )33-(D )33+5.如图9-14,在ΑBC 中,点D 在ΑC 上,DE ⊥BC ,垂足为E ,若ΑD=2CD ,ΑB=4DE ,则sinB=( ). (Α)12(B )73(C )377(D )346.如图9-15,x=( ).(Α)sin cos a b a β- (B )cos cos a b a β- (C )cos sin b b aβ- (D )sin sin a b aβ-7.如图9-28,∠ΑCB=900,ΑB=13,ΑC=12,∠BCM=∠B ΑC ,求sin ∠B ΑC 和点B 到直线MC 的距离.三角形边角关系61.如图1所示的Rt△ABC中,cosA=___; 2.在Rt△ABC中,∠C=90°,BC=4,sinA=23,则AB=___;3.已知α为锐角,下列结论:○1sinα+cosα=1;○2如果α>45°,那么sinα>cosα;○3如果cosα>12,那么α<60°;○4()2sin 11sin αα-=-.正确的有( )A.1个;B.2个;C.3个;D.4个. 4.△ABC中,∠C=90°,如果sinA=35,那么tanB的值等于( )5.如图2,在高度为10米的平台CD上测得一高层建筑物AB的顶端A的仰角为60°,底端B的俯角为30°,则高层建筑物的高AB=____米;6.如图3,小明想测量电线杆AB的高度,发现电线杆的影子恰好在落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成 30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为___米(结果保留两位有效数字).7.如图7,∠POQ=90°,边长为2cm的正方形ABCD的顶点B在OP上,C在OQ上,且∠OBC=30°,分别求点A,D到OP的距离.B C A135图1D B CA图230°AE BD C F 图3P E B F OAD G CQ图7三角形边角关系71.已知△ABC中,∠C=90°,sinA=35,则BC∶AC等于()A.3∶4;B.4∶3;C.3∶5;D.4∶5.2.∠A为锐角,且sinA=35,那么()A.0°<∠A<30°;B.30°<∠A<45°;C.45°<∠A<60°;D.60°<∠A<90°;3.计算:2cos45︒+tan60°cos30°=___;4.如果一个角的补角是这个角余角的4倍,则这个角的正弦值是___;5.在△ABC中,∠C=90°,若3AC=3BC,则∠A的度数是___,cosB的值是___;6.在△ABC中,∠C=90°,若tanA=12,则sinA=___;7.若tan9°·tanα=1,则锐角α=___度;8.在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的边,则33sin sina Bb A+=___;9.如图6,在△ABC中,AD是BC边上的高,tanB=cos∠DAC.(1)求证:AC=BD;(2)若sinC=1213,BC=12,求AD的长.BDCA图6三角形边角关系81.在Rt△ABC中,各边长都扩大2倍,则锐角A的正弦和余弦值()A.都不变;B.都扩大2倍;C,都缩小2倍;D.不能确定.2.在Rt△ABC中,∠C=90°,AB=c,BC=a,且a,c满足2234a ac c-+=0,则sinA=();A.1;B.13;C.1或13;D.1或3.3.三角函数sin23°,cos15°,cos41°的大小关系是()CA.cos41°>sin23°>cos15°;B.cos15°>sin23°>cos41°;C.cos15°>cos41°>sin23°;D.cos41°>cos15°>sin23°.4.在△ABC中,∠A,∠B均为锐角,且|tanB-3|+()22sin3A-=0,则△ABC是()A,等腰三角形;B.等边三角形;C.直角三角形;D.等腰直角三角形.5.河堤的横断面如图4所示,堤高BC是5米,迎水斜坡AB的长是10米,那么斜坡AB的坡度i是()A.1∶2;B.1∶3;C.1∶1.5;D.1∶3.6.若α为锐角,且sinα是方程22x+3x-2=0的一个根,则cosα=()A.12;B.32;C.22;D.12或327.如图5,在△ABC中,∠C=90°,点D在BC上,BD=4,AD=BC,cos∠ADC=35,求:(1)DC的长;(2)A CB C的值.BDCA图5BCA图4三角形边角关系91、等腰三角形的一腰长为cm 6,底边长为cm 36,则其底角为( ) A 030 B 060 C 090 D 01202、某水库大坝的横断面是梯形,坝内斜坡的坡度3:1=i ,坝外斜坡的坡度1:1=i ,则两个坡角的和为 ( )A 090 B 060 C75D 01053、如图,在矩形ABCD 中,DE⊥AC 于E ,设∠ADE=α,且53cos =α, AB= 4, 则AD 的长为( ).(A )3 (B )316 (C )320 (D )5164、在课外活动上,老师让同学们做一个对角线互相垂直的等腰梯形形状的风筝,其面积为4502cm ,则对角线所用的竹条至少需( ). (A )cm 230 (B )30cm (C )60cm (D )cm 260 5、如果α是锐角,且135cos sin 22=︒+α,那么=αº.6、如图,在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米.7.如图9,登山队员在山脚A点测得山顶B点的仰角为∠CAB=45°,当沿倾斜角为30°的斜坡前进100m到达D点以后,又在D点测得山顶B点的仰角为60°,求山的高度BC.(精确到1米)A E CB FD图9A BCD E三角形边角关系101、如图,P 是∠α的边OA 上一点, 且P 点坐标为(3,4),则αsin = ,αcos =______.2、支离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪高为1.5米.那么旗杆的有为 米(用含α的三角比表示).3、在Rt ABC ∆中∠A<∠B,CM 是斜边AB 上的中线,将ACM ∆沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.4、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为 10米,坡角为︒55,路基高度为5.8米,求路基下底宽5.如图11,客轮沿折线A-B-C从A出发经B再到C匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批物品送达客轮.两船同时起航,并同时到达折线A-B-C上的某点E处.已知AB=BC=200海里,∠ABC=90°,客轮速度是货轮速度的2倍.(1)选择:两船相遇之处E点( )(A)在线段AB上;(B)在线段BC上;(C)可以在线段AB上,也可以在线段BC上; (2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)6、如图,客轮沿折线A―B―C 从A 出发经B 再到C 匀速直线航行,将一批物品送达客轮.两船同时起航,并同时到达折线A―B―C 上的某点E 处.已知AB = BC =200海里,∠ABC =︒90,客轮速度是货轮速度的2倍.(1)选择:两船相遇之处E 点( )A .在线段AB 上 B .在线段BC 上C .可以在线段AB 上,也可以在线段BC 上(2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)C F EBA D.图11αPoy x34︒555.8m10mABC D.。

直角三角形的边角关系

直角三角形的边角关系

1 ∠A= 600 cos A 2 ∠A= 450 cos A 3 ∠A= 300 2 2 2
3 ∠A= 3
300 tan A 3 ∠A= 600 tan A 1 ∠A= 450
4. 船有触礁的危险吗 (1)三角函数的应用
回顾与思考 1
直角三角形的边角关系
驶向胜利 的彼岸
驶向胜利 的彼岸
北 东
A
请与同伴交流你是怎么想的? 怎么去做?
B
C
D
3 随堂练习P21
真知在实践中诞生
驶向胜利 的彼岸
解:要知道货轮继续向东航行途中有无触礁的危险,只 要过点A作AD⊥BC的延长线于点D,如果AD>10海里,则无 触礁的危险.根据题意可知,∠BAD=550,∠CAD=250,BC= 北 A 20海里.设AD=x,则
小结
拓展
B
斜边 ∠A的对边 A ┌ ∠A的邻边 C
1.锐角三角函数定义:
tanA=
A的对边 A的邻边
sinA= 斜边
A的对边 A的邻边
cosA= 斜边
请思考:在Rt△ABC中, sinA和cosB有什么关系?
30°、45°、60°角的三角函数值

例1 计算:(1)sin30°+ cos45°; 3 cos30 (21 ) cos 30 sin 45 (3) sin 60 cos 45 2 sin 60 cos2 45 tan45 (4 )


数学中的某些定理具有这样的特性: 它们极易从事实中归纳出来,但证明却 隐藏极深. ——高斯
从梯子的倾斜程度谈起
正切
直角三角形中边与角的关系:锐角的三角函数-正切函数 在直角三角形中,若一个锐角的对边与邻边的 比值是一个定值,那么这个角的值也随之确定. 在Rt△ABC中,锐角A的对边与邻边的比叫做∠A B 的正切,记作tanA,即 tanA=

三角形中的边角关系常考题

三角形中的边角关系常考题

《三角形中的边角关系》常考题集解答题1.如图,△ABC中,AD是BC边上的高,AE是三角形∠BAC的角平分线,若∠B=40°,∠C=70°,则∠DAE为多少度?2.如图所示,已知DF⊥AB于F,∠A=40°,∠D=50°,求∠ACB的度数.3.已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.4.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E.(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化说明你的结论的正确性.(3)把图(2)中的点C向上移到BD上时(1)如图(3)所示,五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有无变化说明你的结论的正确性.5.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.(1)求∠DAE的度数;(2)试写出∠DAE与∠C﹣∠B有何关系?(不必证明)6.△ABC中,∠ABC、∠ACB的平分线相交于点O;(1)若∠ABC=40°,∠ACB=50°,则∠BOC=_________;(2)若∠ABC+∠ACB=116°,则∠BOC=_________;(3)若∠A=76°,则∠BOC=_________;(4)若∠BOC=120°,则∠A=_________;(5)若∠A=x°,求∠BOC的度数(用x的代数式表示).7.如图,已知在三角形ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.8.如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F.已知∠A=30°,∠FCD=80°,求∠D.9.在△ABC中,∠B=∠A+10°,∠C=∠B+10°,求△ABC各内角的度数.10.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.11.如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.12.一个大型模板如图,设计要求BA和CD相交成30°角,DA和CB相交成20°角,怎样通过测量∠A、∠B、∠C、∠D的度数来检查模板是否合格.13.一个零件的形状如图,按规定∠A=90°,∠ABD和∠ACD,应分别是32°和21°,检验工人量得∠BDC=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由.14.如图,若AB∥CD,EF与AB、CD分别相交于E、F,EP⊥EF,∠EFD的平分线与EP相交于点P,且∠BEP=40°,求∠P的度数.15.已知,如图在△ABC中,∠B>∠C,AD是BC边上的高,AE平分∠BAC.(1)若∠B=40°,∠C=30°,则∠DAE=_________;(2)若∠B=80°,∠C=40°,则∠DAE=_________;(3)由(1)、(2)我能猜想出∠DAE与∠B、∠C之间的关系为_________.理由如下:16.分别测量如图所示的△ABC和△DEF的内角.(1)你发现了什么?(2)你有何猜想?(3)通过什么途径说明你的猜想?17.如图,直线DE交△ABC的边AB、AC于D、E,交BC延长线于F,若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.18.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.19.如图,AD为△ABC的中线,BE为△ABD的中线,(1)若∠ABE=25°,∠BAD=50°,则∠BED的度数是_________度.(2)在△ADC中过点C作AD边上的高CH.(3)若△ABC的面积为60,BD=5,求点E到BC边的距离.20.如图所示,在△ABC中,∠B=∠C,∠BAD=40°,并且∠ADE=∠AED,求∠CDE的度数.21.如图,已知∠DAB+∠D=180°,AC平分∠A,且∠CAD=25°,∠B=95°(1)求∠DCA的度数;(2)求∠ACE的度数.22.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,求∠BED的度数.23.如图在△ABC中,∠B=40°,∠BCD=100°,EC平分∠ACB,求∠A与∠ACE的度数.24.已知:E是AB、CD外一点,∠D=∠B+∠E,求证:AB∥CD.25.(1)如图①,在△ABC中,∠ABC、∠ACB的平分线相交于点O,∠A=40°,求∠BOC的度数;(2)如图②,△A′B′C′的外角平分线相交于点O′,∠A′=40°,求∠B′O′C′的度数;(3)上面(1)、(2)两题中的∠BOC与∠B′O′C′有怎样的数量关系若∠A=∠A′=n°,∠BOC与∠B′O′C′是否还具有这样的关系?这个结论你是怎样得到的?26.已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF和∠BHC的度数.27.如图,AB∥EF,问∠A、∠C、∠1有何等量关系?证明你的结论.28.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.29.如图,在△ABC中,∠ACB=90°,CD⊥AB,点E在CB的延长线上,已知∠ACD=55°,求∠ABE的度数.30.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠A=50°,∠C=60°,求∠DAC及∠BOA.。

三角形边角关系(含答案)

三角形边角关系(含答案)

一、简答题3、如图11,已知:△ABC中,AD是BC边上的中线.试说明不等式AD+BD >(AB+AC)成立的理由.4、如图,在三角形ABC中,AD⊥BC,BE⊥AC,CF⊥AB,BC=16,AD=3,BE=4,CF=6,你能求出三角形ABC的周长吗?5、如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm。

求:(1) △ABC的面积;(2) CD的长;(3)作出△ABC的边AC上的中线BE,并求出△ABE的面积;(4)作出△BCD的边BC边上的高DF,当BD=11cm 时,试求出DF的长。

6、如图,AD平分∠BAC,∠EAD=∠EDA.(1)∠EAC与∠B相等吗?为什么?(2)若∠B=50°,∠CAD︰∠E=1︰3,求∠E的度数.7、如图,在中,,⊥,垂足为,且.求∠A的大小.8、如图,在△ABC中,AD是高线,点M在AD上,且∠BAD =∠DCM,求证:CM⊥AB .9、如图6,试说明∠A+∠B+∠C=∠ADC10、如图5比较∠1与∠2的大小,并说明理由。

11、如图2,AB∥CD, ∠A=38°, ∠C=80°, 则∠M的度数为________。

12、如图,CE、CF分别平分∠ACB和∠ACB的外角,EF∥BC交AC于D,求证:DE=DF13、如图,在△ABC中,∠B=50°,∠BCD=110°,CE平分∠ACB.求∠A和∠BEC的度数.14、如图,在△ABC中,∠1=∠2,∠3=∠4,∠BAC=54°,求∠DAC的度数。

15、如图,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分线AD、BD相交于点D,求∠D的度数.二、选择题16、三角形的下列线段中,能将三角形的面积分成相等两部分的是A. 中线B. 角平分线C. 高D. 中位线17、如图1为图2中三角柱ABCEFG的展开图,其中AE、BF、CG、DH是三角柱的边.若图1中,AD=10,CD=2,则下列何者可为AB长度?()A.2 B.3 C.4 D.518、已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是(A)13cm (B)6cm (C)5cm (D)4cm19、不一定在三角形内部的线段是()(A )三角形的角平分线 (B )三角形的中线 (C )三角形的高 (D )三角形的中位线 20、如图8,AB=BC=CD,且∠A=15°,则∠ECD=( )A.30°B.45°C.60°D.75°三、填空题21、等腰三角形的两边长为4和6,则等腰三角形的周长为____________22、如图,AB =AC ,DE 垂直平分AB 交AC 于E ,垂足为H ,若△ABC 的周长为 28,BC =8,则△BCE 的周长为________.23、如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,点F 在BC 的延长线上,DE ∥BC ,∠A=46°,∠1=52°,则∠2= 度.24、如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______________.25、如图是一台起重机的工作简图,前后两次吊杆位置OP 1、OP 2与线绳的夹角分别是30°和70°,则吊杆前后两次的夹角∠P 1OP 2= °.参考答案一、简答题3、△ABD中,AD+BD>AB,同理△ADC中,AD+DC>AC,所以AD+BD+AD+DC>AB+AC,又BD=DC,即2(AD+BD)>AB+AC,所以AD+BD>(AB+AC)4、解析:本题已知一边长和三条高,我们可以利用三角形的面积公式求得另外两边长,三边相加即可得到三角形的周长.解:由三角形面积公式可得S△ABC=BC×AD=AC×BE,即16×3=4×AC,所以AC=12.由三角形面积公式可得S△ABC=BC×AD=AB×CF,即16×3=6×AB.所以AB=8.所以三角形ABC的周长为16+12+8=36.5、6、解:(1)相等.理由如下:……1分∵AD平分∠BAC∴∠BAD=∠CAD ……2分又∠EAD=∠EDA∴∠EAC=∠EAD-∠CAD=∠EDA-∠BAD=∠B ……4分(2)设∠CAD=x°,则∠E=3 x°,……5分由(1)有:∠EAC=∠B=50°∴∠EAD=∠EDA=(x+50)°在△EAD中,∠E+∠EAD+∠EDA=180°∴3 x+2(x+50)=180 ……6分解得:x=16 ……7分∴∠E=48°……8分(用二元一次方程组的参照此标准给分)7、解:∵⊥,∴∵,∴,∵在中,,,,∴∠A==.8、提示:∠DCM +∠B=∠BAD +∠B=90°.9、如图6,延长AD与BC交于点E,则∠DEC=∠A+∠B,又因为∠ADC=∠DEC+∠C,所以∠A+∠B+∠C=∠ADC10、∠1>∠2;理由:因为∠1是△DEC的一个外角,所以∠1>∠EDC,又因为∠EDC是△ABD的一个外角,所以∠EDC>∠2,所以∠1>∠211、42°12、分别证明DE=DC,DF=DC,所以DE=DF13、14、∠1=∠2,∠3=∠4,所以∠4=2∠1=2∠2=∠3。

(完整)八年级三角形边角关系练习题(含解析答案)

(完整)八年级三角形边角关系练习题(含解析答案)

三角形的边角关系练习题回首:1、三角形的观点定义:由 _______直线上的三条线段首尾按序相接所构成的图形叫做三角形。

2、三角形的分类按角分:锐角三角形三角形直角三角形钝角三角形按边分:不等边三角形三角形底边和腰不相等的等腰三角形等腰三角形等边三角形3、三角形的重要线段在三角形中,最重要的三种线段是三角形的中线、三角形的角均分线、三角形的高。

说明:(1)三角形的三条中线的交点在三角形的____部。

(2)三角形的三条角均分线的交点在三角形的______部。

(3)_______三角形的三条高的交点在三角形的内部;______三角形的三条高的交点是直角顶点; _____三角形的三条高所在直线的交点在三角形的外面。

4、三角形三边的关系定理:三角形随意两边的和____第三边;推论:三角形随意两边的差____第三边;说明:运用“三角形中随意两边的和大于第三边”能够判断三条线段可否构成三角形,也能够查验较小的两边的和能否大于第三边。

5、三角形各角的关系定理:三角形的内角和是______度;推论:(1)当有一个角是90°时,其他的两个角的和为90°;(2)三角形的随意一个外角 ______和它不相邻的两个内角的和。

(3)三角形的随意一个外角______随意一个和它不相邻的内角。

说明:任一三角形中,最多有三个锐角,最罕有两个锐角;最多有一个钝角;最多有一个直角。

三角形的计数例1 如图,平面上有 A、B、C、D、E 五个点,此中 B、C、D 及 A、E、 C分别在同一条直线上,那么以这五个点中的三个点为极点的三角形有()A、4 个B、6个C、8 个D、10个分析:连结 AB、 AD、BE、DE。

课件出示答案: C 。

小结:分类议论是三角形的计数中常有的思路方法。

贯通融会:1、已知△ ABC是直角三角形,且∠ BAC=30°,直线 EF与△ ABC的两边 AC, AB分别交于点 M,N,那么∠ CME+∠ BNF=()A、150°B、180°C、135°D、不可以确立分析:由于∠ A=30°,所以∠ NMA+∠ MNA=180° -30 ° =150°,所以∠ CME+∠BNF=∠ NMA+∠ MNA=150° . 应选 A.三角形的三边关系例 2边长为整数,周长为20 的等腰三角形的个数是。

中考数学直角三角形的边角关系-经典压轴题

中考数学直角三角形的边角关系-经典压轴题

∴ PD = PE = DE =2, DO DE OE
∴ DE=2OE,

Rt△
OED
中,OE2+DE2=OD2,即
5OE2=
5 2
2
=
25 4

∴ OE= 5 . 2
【点睛】 本题考查了切线的性质;锐角三角函数;勾股定理和相似三角形的判定与性质,充分利用
tan∠ PDA= 3 ,得线段的长是解题关键. 4
∴ ∠ GBO=∠ EPO .∴ △ BOG≌ △ POE(AAS).
(2) BF 1 .证明如下: PE 2
如图,过 P 作 PM//AC 交 BG 于 M,交 BO 于 N,
∴ ∠ PNE=∠ BOC=900, ∠ BPN=∠ OCB.
∵ ∠ OBC=∠ OCB =450, ∴ ∠ NBP=∠ NPB.
则 BE=(3 3 +3)米.
在直角△ BEQ 中,QE= 3 BE= 3 (3 3 +3)=(3+ 3 )米. 33
∴ PQ=PE-QE=9+3 3 -(3+ 3 )=6+2 3 ≈9(米).
答:电线杆 PQ 的高度约 9 米. 考点:解直角三角形的应用-仰角俯角问题.
2.在正方形 ABCD 中,对角线 AC,BD 交于点 O,点 P 在线段 BC 上(不含点 B),
(1)由正方形的性质可由 AAS 证得△ BOG≌ △ POE.
(2)过 P 作 PM//AC 交 BG 于 M,交 BO 于 N,通过 ASA 证明△ BMN≌ △ PEN 得到
BM=PE,通过 ASA 证明△ BPF≌ △ MPF 得到 BF=MF,即可得出 BF 1 的结论. PE 2

直角三角形的边角关系训练题

直角三角形的边角关系训练题

直角三角形的边角关系训练题一.选择题(共14小题)1.如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.2.直角三角形纸片的两直角边AC与BC之比为3:4.(1)将△ABC如图1那样折叠,使点C落在AB上,折痕为BD;(2)将△ABD如图2那样折叠,使点B与点D重合,折痕为EF.则tan∠DEA的值为()A.B.C.D.3.如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB 上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan∠OAP的值是()A.B.C.D.34.用科学计算器计算锐角α的三角函数值时,不能直接计算出来的三角函数值是()A.cotαB.tanαC.cosαD.sinα5.如图,在△ABC中,点D在AC上,DE⊥BC,垂足为E,若AD=2DC,AB=4DE,则sin B等于()A.B.C.D.6.如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF ⊥AC于F,连接FB,则tan∠CFB的值等于()A.B.C.D.7.如图,在△ABC中,∠ACB=90°,点D在AB的延长线上,连接CD,若AB=2BD,tan∠BCD=,则的值为()A.1B.2C.D.8.如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC于点D,CD =1,则⊙O的直径为()A.B.2C.1D.29.如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的夹角∠PBE =43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m10.如图,撬钉子的工具是一个杠杆,动力臂L1=L•cosα,阻力臂L2=l•cosβ,如果动力F 的用力方向始终保持竖直向下,当阻力不变时,则杠杆向下运动时的动力变化情况是()A.越来越小B.不变C.越来越大D.无法确定11.如图,一个人从山脚下的A点出发,沿山坡小路AB走到山顶B点.已知坡角为20°,山高BC=2千米.用科学计算器计算小路AB的长度,下列按键顺序正确的是()A.B.C.D.12.坡比常用来反映斜坡的倾斜程度.如图所示,斜坡AB坡比为()A.1:3B.3:1C.D.13.如图,从热气球A看一栋楼底部C的俯角是()A.∠BAD B.∠ACB C.∠BAC D.∠DAC14.数学活动小组到某广场测量标志性建筑AB的高度.如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B 在同一直线上,则该建筑物AB的高度约为()(精确到1m.参考数据:sin22°≈0.37,tan22°≈0.40,sin58°≈0.85,tan58°≈1.60)A.28m B.34m C.37m D.46m二.填空题(共6小题)15.如图,△ABC的顶点都在方格纸的格点上,则sin A=.16.已知:正方形ABCD的边长为2,点P是直线CD上一点,若DP=1,则tan∠BPC的值是.17.在Rt△ABC中、CD是斜边AB上的高.已知,那么=.18.有四个命题:①若45°<a<90°,则sin a>cos a;②已知两边及其中一边的对角能作出唯一一个三角形;③已知x1,x2是关于x的方程2x2+px+p+1=0的两根,则x1+x2+x1x2的值是负数;④某细菌每半小时分裂一次(每个分裂为两个),则经过2小时它由1个分裂为16个.其中正确命题的序号是(注:把所有正确命题的序号都填上).19.若tanα+cotα=3,α为锐角,则tan2α+cot2α=.20.若锐角A满足tan A﹣cot A=2,则tan2A+cot2A=.三.解答题(共5小题)21.已知:如图,在△ABC中,∠A=90°,AB=6,AC=8,点P从点A开始沿AC边向点C匀速移动,点Q从点A开始沿AB边向点B,再沿BC边向点C匀速移动.若P、Q 两点同时从点A出发,则可同时到达点C.(1)如果P、Q两点同时从点A出发,以原速度按各自的移动路线移动到某一时刻同时停止移动,当点Q移动到BC边上(Q不与C重合)时,求作以tan∠QCA、tan∠QP A 为根的一元二次方程;(2)如果P、Q两点同时从点A出发,以原速度按各自的移动路线移动到某一时刻同时停止移动,当S△PBQ=时,求P A的长.22.如图,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作c tanα,即c tanα==,根据上述角的余切定义,解下列问题:(1)c tan30°=;(2)如图,已知tan A=,其中∠A为锐角,试求c tan A的值.23.如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.(1)求tan∠BOA的值;(2)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;(3)将△OAB平移得到△O′A′B′,点A的对应点是A′,点B的对应点B'的坐标为(2,﹣2),在坐标系中作出△O′A′B′,并写出点O′、A′的坐标.24.如图,在所示的直角坐标系中,P是第一象限的点,其坐标是(6,y),且OP与x轴的正半轴的夹角α的正切值是,求角α的正弦值.25.(1)计算:(﹣)﹣1﹣+(1﹣)0+4sin60°;(2)化简:•.。

直角三角形的边角关系(习题)

直角三角形的边角关系(习题)

直角三角形的边角关系(习题)➢ 例题示范例:如图,在△ABC 中,∠B =37°,∠C =67.5°,AB =10,求BC 的长.(结果精确到0.1,参考数据:sin37°≈0.6,cos37°≈0.8,tan67.5°≈2.41) 从下面书写板块的名称中选取合适的内容,写到对应的横线上. ①得出结论; ②解直角三角形; ③准备条件.BCA67.5°37°D67.5°37°C B A➢巩固练习1.在Rt△ABC中,如果各边长度都扩大为原来的2倍,那么锐角A的正弦值()A.扩大2倍B.缩小2倍C.没有变化D.不确定2.在Rt△ABC中,若∠C=90°,AC=3,BC=5,则sin A的值为()A.35B.45CD3.在△ABC中,∠A,∠B均为锐角,且21sin cos02A B⎛⎫⎪⎝⎭+-=,则这个三角形是()A.等腰三角形B.直角三角形C.钝角三角形D.等边三角形4.若∠A为锐角,且cos A的值大于12,则∠A()A.大于30°B.小于30°C.大于60°D.小于60°5.已知β为锐角,且tan3β<≤β的取值范围是()A.3060β︒︒≤≤B.3060β︒<︒≤C.3060β︒<︒≤D.30β<︒6.如图,在矩形ABCD中,DE⊥AC,垂足为E,设∠ADE=α,若3cos5α=,AB=4,则AD的长为()A.3 B.163C.203D.165EDCBAED CBA第6题图第7题图7.如图,在菱形ABCD中,DE⊥AB,若3cos5A=,BE=2,则tan∠DBE=_________.8.在Rt△ABC中,∠C=90°,若AB=6,BC=2,则cos A=______.9.在△ABC中,∠A=120°,若AB=4,AC=2,则sin B=______.10.如图,在△ABC中,AB=A C,∠A=45°,AC的垂直平分线分别交AB,AC于D,E两点,连接C D.如果A D=1,那么tan ∠BCD =______.ED C BA第10题图 第11题图11. 如图,在△ABC 中,若∠C =90°,3sin 5B =,AD 平分∠CAB ,则sin ∠CAD =______.12. 如图,在△ABC 中,∠C =75°,∠BAC =60°,AC =2,AD 是BC 边上的高,则△ABC 的面积为_____,AD 的长为_______.D CBAB CA第12题图 第13题图13. 如图所示,△ABC 的顶点是正方形网格的格点,则sin A 的值为( )A .12B.5C.10D.514. 计算:(1)26tan 30602tan 45︒︒+︒; (2)cos30sin 45sin 60cos 45︒-︒︒-︒;(3)206011)tan 453-︒⎛⎫-+ ⎪︒⎝⎭;DCBADCBA(4tan60︒.15. 如图,在△ABC 中,AD 是BC 边上的高,tan B =cos ∠DAC . (1)求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长.16. 如图,在△ABC 中,∠A =26.6°,∠B =45°,AC =52,求AB 的长.(参考数据:tan26.6°≈0.50)➢ 思考小结1. 30°,45°,60°,120°,135°,150°都属于我们常用的特殊角,在解直角三角形中经常用到.120°,135°,150°经常使用它们的补角构造直角三角形,如右图1.2. 解直角三角形的常考形式CBA45°26.6°120°图1直角三角形:“一角一边”求其余元素非直角三角形:“两角一边”求其余元素,往往通过构造直角三角形,把已知角度信息放到直角三角形求解,如右图2(m αβ,,已知). 3. 我们已经知道30°,45°所在的直角三角形的三边关系之比,借助这个内容,可以推导15°和22.5°所在的直角三角形的三边关系之比,如何推导呢?如图1,通过延长CB 到D ,使得BD =AB ,可以构造15°角,根据三边关系填空.(已知1==)图12231D B CA 15°30°tan15AC CD ︒==____________;tan 75CDAC ︒==___________;sin15ACAD︒==____________.类比上述内容,请你画出研究22.5°角所在的直角三角形所需图形并填空.BACtan22.5°=____________;tan67.5°=____________.4. 探索思考下面的结论,尝试在下面两个图形中证明结论:若11tan tan 23αβ==,,则45αβ+=︒.(标注信息,简要写出思路)βαβα【参考答案】➢巩固练习1. C2. C3. D4. D5. C6. B7. 28.9.1410.111.512.13.B14.(1)52;(2)1;(3)7;(4)-115.(1)证明略;(2)816.6➢思考小结3.2;2;411 4.证明略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图,BE是ZABD的平分线,CF是ZACD的平分线,BE、CF相交于点G, ZBDC=140° ,
ZBGC=110° o 求ZA 的度数.
2、如图,已知P是Z\ABC内一点,连结AP, PB, PC 求证:(1)
PA+PB+PC > - (AB+AC+BC)
2
(2) PA+PB+PC < AB+AC+BC
4、如图1,在厶ABC中,AD丄BC,AE是角平分线,
(1)求ZDAE与ZB、ZCZ间的关系;
(2)如图2,AE是ZBAC的角平分线,FD垂直于BC于D,求ZDFE与ZB、ZC之间的关系.
(3)如图3,当点F在AE延长线上时,FD仍垂直于BC于D,继续探讨ZDFE与ZB、ZC的关
系A
5、如图Z\ABC 中,ZBAD=ZCBE=ZACF, ZABC=506 , ZACB=62°,求ZDFE 的大小.
6、AABC中,AD、BE、CF是角平分线,交点是点G, GH丄BC 求证:ZBGD=ZCGH.
A
7、如图,厶0y=90°,点A、B分别在坐标轴Ox、Oy上移动,BF是ZABP的平分线,BF的反向延
反线与ZOAB的平分线交于点C,求证ZACB的度数是定值.
8、在平面直角坐标系中,点0为坐标原点,点A在第一象限,
点B是x正半轴上一点。

过点0做OD〃AB, ZBA0的平分线与
ZM0D的平分线相交于点Q,
求仝竺的值
ZAON
9、直角坐标系中,0P平分ZXOY, B为
Y轴正半轴上一点,D为第四象限内一点,
BD 交x 轴于C , DE // 0P 交x 轴于点E ,
BCE交0P于A, ZBDE的平分线交0P于G,交直线AC于
M,如图
求证2ZOGD - ZOED
ZOAC
为定值
CA 平分Z
D。

相关文档
最新文档