2020届高三物理二轮复习第二篇题型分类练计算题标准练(三)

合集下载

高三物理二轮复习第二篇题型专项突破计算题标准练四word版本

高三物理二轮复习第二篇题型专项突破计算题标准练四word版本

计算题标准练(四)满分32分,实战模拟,20分钟拿下高考计算题高分!1.(12分)如图甲所示,有一倾角为30°的光滑固定斜面,斜面底端的水平面上放一质量为M 的木板,开始时质量为m=1kg的滑块在水平向左的力F作用下静止在斜面上,今将水平力F 变为水平向右,当滑块滑到木板上时撤去F(假设斜面与木板连接处用小圆弧平滑连接)。

此后滑块和木板在水平面上运动的v -t图象如图乙所示,g取10m/s2,求:(1)水平作用力F的大小。

(2)滑块开始下滑时的高度。

(3)木板的质量。

【解析】(1)开始F向左时,滑块受到水平推力F、重力mg和支持力N处于平衡,如图所示水平推力:F=mgtanθ=1×10×=N(2)由图乙知,滑块滑到木板上时速度为v1=10m/s由牛顿第二定律得mgsinθ+Fcosθ=ma代入数据得a=10m/s2则滑块下滑的位移为x==5m则下滑时的高度h=xsinθ=5×=2.5m(3)设在整个过程中,地面对木板的摩擦力为f,滑块与木板间的摩擦力为f1,由图乙知,滑块刚滑上木板时加速度为a1==-4m/s2对滑块:-f1=ma1①此时木板的加速度:a2==1m/s2对木板:f1-f=Ma2②当滑块和木板速度相等,均为2m/s之后,在一起做匀减速直线运动,加速度为a3==-1m/s2对整体:-f=(m+M)a3③联立①②③带入数据解得:M=1.5kg答案:(1)N (2)2.5m (3)1.5kg2.(20分)如图光滑的定滑轮上绕有轻质柔软细线,线的一端系一质量为3m的重物,另一端系一质量为m、电阻为r的金属杆。

在竖直平面内有间距为L的足够长的平行金属导轨PQ、EF,在QF之间连接有阻值为R的电阻,其余电阻不计,磁感应强度为B0的匀强磁场与导轨平面垂直,开始时金属杆置于导轨下端QF处,将重物由静止释放,当重物下降h时恰好达到稳定速度而匀速下降。

运动过程中金属杆始终与导轨垂直且接触良好,(忽略所有摩擦,重力加速度为g),求:(1)电阻R中的感应电流方向。

2020届高考物理二轮复习 专题强化练(含解析)【共18套150页】

2020届高考物理二轮复习 专题强化练(含解析)【共18套150页】

本套资源目录2020届高考物理二轮复习专题强化练一力与物体的平衡含解析2020届高考物理二轮复习专题强化练七碰撞与动量守恒定律含解析2020届高考物理二轮复习专题强化练三力与曲线运动含解析2020届高考物理二轮复习专题强化练九磁场及带电粒子在磁场中的运动含解析2020届高考物理二轮复习专题强化练二力与直线运动含解析2020届高考物理二轮复习专题强化练五功和功率动能定理含解析2020届高考物理二轮复习专题强化练八电场及带电粒子在电场中的运动含解析2020届高考物理二轮复习专题强化练六机械能守恒定律功能关系含解析2020届高考物理二轮复习专题强化练十一直流电路与交流电路含解析2020届高考物理二轮复习专题强化练十七选修模块含解析2020届高考物理二轮复习专题强化练十三三大观点解决电磁感应问题含解析2020届高考物理二轮复习专题强化练十二电磁感应规律及其应用含解析2020届高考物理二轮复习专题强化练十五力学实验含解析2020届高考物理二轮复习专题强化练十八选修模块含解析2020届高考物理二轮复习专题强化练十六电学实验含解析2020届高考物理二轮复习专题强化练十四近代物理初步含解析2020届高考物理二轮复习专题强化练十带电粒子在复合场中的运动含解析2020届高考物理二轮复习专题强化练四万有引力定律与航天含解析专题强化练(一)考点1 物体的受力分析1.(2019·浙江卷)如图所示,小明撑杆使船离岸,则下列说法正确的是( )A.小明与船之间存在摩擦力B.杆的弯曲是由于受到杆对小明的力C.杆对岸的力大于岸对杆的力D.小明对杆的力和岸对杆的力是一对相互作用力解析:小明与船之间存在静摩擦力,A正确;杆的弯曲是由于受到小明对杆的作用力,B错误;杆对岸的力与岸对杆的力是作用力与反作用力,大小相等,C错误;小明对杆的力和岸对杆的力受力物体都是杆,两者不是作用力与反作用力,故D错误.答案:A2.(2018·商丘一模)如图所示,物体B与竖直墙面接触,在竖直向上的力F的作用下,A、B均保持静止,则物体B的受力个数为( )A.2个B.3个C.4个D.5个解析:物体A处于静止状态,其受到的合外力为零,受力分析如甲图所示;对物体A、B整体受力分析如图乙所示,竖直墙面对物体B没有弹力作用,则墙面也不会提供静摩擦力;对物体B受力分析,如图丙所示,则物体B受到4个力的作用,选项C正确.答案:C3.(2019·柳州模拟)两个质量相同的直角楔形物体a和b,分别在垂直于斜边的恒力F1和F2作用下静止在竖直墙面上,如图所示,下列说法正确的是( )A.a、b一定都受四个力的作用B.a、b所受摩擦力的方向都是竖直向上C.F2一定小于F1D.F1、F2大小可能相等解析:对a受力分析如图甲:除摩擦力外的三个力不可能平衡,故一定有摩擦力,摩擦力方向竖直向上,故a受四个力;除摩擦力外对b受力分析如图乙:除摩擦力外,F N、F2、mg三力有可能平衡,沿竖直方向和水平方向分解F2,设F2与竖直方向夹角为α则有:F2cos α=mg,F2sin α=F N,解得F2=mgcos α;(1)若F2=mgcos α没有摩擦力,此时b受3个力;(2)若F2>mgcos α,摩擦力向下,b受四个力;(3)若F2<mgcos α,摩擦力向上,b受四个力;F1和F2没有必然的联系,有可能相等,但也有可能不等,故D正确,A、B、C错误.答案:D考点2 共点力的平衡4.(2019·江苏卷)如图所示,一只气球在风中处于静止状态,风对气球的作用力水平向右.细绳与竖直方向的夹角为α,绳的拉力为T,则风对气球作用力的大小为( )A.F Tsin αB.F Tcos αC .F T sin αD .F T cos α解析:以气球为研究对象,受力分析如图所示,则由力的平衡条件可知,气球在水平方向的合力为零,即风对气球作用力的大小为F =F T sin α,C 正确,A 、B 、D 错误.答案:C5.(多选)(2019·烟台调研)如图所示,将一劲度系数为k 的轻弹簧一端固定在内壁光滑的半球形容器底部O ′处(O 为球心),弹簧另一端与质量为m 的小球相连,小球静止于P 点.已知容器半径为R 、与水平地面之间的动摩擦因数为μ,OP 与水平方向的夹角为θ=30°.下列说法正确的是( )A .轻弹簧对小球的作用力大小为32mg B .容器相对于水平地面有向左的运动趋势 C .容器和弹簧对小球的作用力的合力竖直向上 D .弹簧原长为R +mgk解析:对小球受力分析,如图所示,因为θ=30°,所以三角形OO ′P 为等边三角形,由相似三角形法得F N =F =mg ,所以A 项错误;由整体法得,容器与地面间没有相对运动趋势,B 项错误;小球处于平衡状态,容器和弹簧对小球的作用力的合力与重力平衡,故C 项正确;由胡克定律有F =mg =k (L 0-R ),解得弹簧原长L 0=R +mg k,D 项正确.答案:CD考点3 动态平衡6.(多选)(2019·新乡模拟)如图所示,木板P下端通过光滑铰链固定于水平地面上的O点,物体A、B叠放在木板上且处于静止状态,此时物体B的上表面水平.现使木板P 绕O点缓慢旋转到虚线所示位置,物体A、B仍保持静止,与原位置的情况相比( )A.B对A的支持力不变B.B对A的支持力减小C.木板对B的支持力增大D.木板对B的摩擦力增大解析:开始时,A只受到重力和支持力作用而处于平衡状态,所以B对A的支持力与A的重力大小相等、方向相反,A不受B的摩擦力作用,P转动后,A受到重力、B对A的支持力和摩擦力作用而平衡,此时B对A的支持力和摩擦力的合力与A的重力大小相等,所以B对A的支持力一定减小了,B正确,A错误;以整体为研究对象,受到总重力G、板的支持力F N和摩擦力F f作用,设板的倾角为θ,由平衡条件有F N=G cos θ,F f=G sin θ,θ减小,F N增大,F f减小,C正确,D错误.答案:BC7.(多选)(2019·潍坊调研)如图所示,倾角为θ的斜面体c置于水平地面上,小物块b置于斜面上,通过细绳跨过光滑的定滑轮与沙漏a连接,连接b的一段细绳与斜面平行.在a中的沙子缓慢流出的过程中,a、b、c都处于静止状态,则( )A.b对c的摩擦力一定减小B.b对c的摩擦力方向可能平行斜面向上C.地面对c的摩擦力方向一定向右D.地面对c的摩擦力一定减小解析:若m a g>m b g sin θ,则b对c的摩擦力平行于斜面向上,且随a中的沙子缓慢流出,b对c的摩擦力减小;若m a g<m b g sin θ,则b对c的摩擦力平行于斜面向下,且随a中的沙子缓慢流出,b对c的摩擦力增大,A错误,B正确;以b、c为整体受力分析,应用平衡条件可得,地面对c的摩擦力方向一定水平向左,且F f=m a g cos θ,随m a的减小而减小,C错误,D正确.答案:BD8.(多选)(2019·西安模拟)如图所示,一根绳子一端固定于竖直墙上的A 点,另一端绕过动滑轮P 悬挂一重物B ,其中绳子的PA 段处于水平状态,另一根绳子一端与动滑轮P 的轴相连,在绕过光滑的定滑轮Q 后在其端点O 施加一水平向左的外力F ,使整个系统处于平衡状态,滑轮均光滑、轻质,且均可看作质点,现拉动绳子的端点O 使其向左缓慢移动一小段距离后达到新的平衡状态,则该平衡状态与原平衡状态相比较( )A .拉力F 增大B .拉力F 减小C .角θ不变D .角θ减小解析:以动滑轮P 为研究对象,AP 、BP 段绳子受的力始终等于B 的重力,两绳子拉力的合力在∠APB 的角平分线上,拉动绳子后,滑轮向上运动,两绳子夹角减小,两拉力的合力增大,故F 增大,A 项正确,B 项错误;PQ 与竖直方向夹角等于∠APB 的一半,故拉动绳子后角θ减小,C 项错误,D 项正确.答案:AD9.(2019·商丘模拟)如图所示,固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔.质量为m 的小球套在圆环上.一根细线的下端系着小球,上端穿过小孔用手拉住.现拉动细线,使小球沿圆环缓慢上移.在移动过程中手对线的拉力F 和轨道对小球的弹力F N 的大小变化情况是( )A .F 不变,F N 增大B .F 不变,F N 减小C .F 减小,F N 不变D .F 增大,F N 减小解析:小球沿圆环缓慢上移过程中,受重力G 、拉力F 、弹力F N 三个力处于平衡状态.小球受力如图所示,由图可知△OAB ∽△F N AF ,即:G R =F AB =F NR,当A 点上移时,半径R 不变,AB 长度减小,故F 减小,F N 不变,故选项C 正确.答案:C10.(多选)(2019·威海一中摸底)如图所示,质量均为m 的小球A 、B 用劲度系数为k 1的轻弹簧相连,B 球用长为L 的细绳悬于O 点,A 球固定在O 点正下方,当小球B 平衡时,所受绳子的拉力为F T 1,弹簧的弹力为F 1;现把A 、B 间的弹簧换成原长相同但劲度系数为k 2(k 2>k 1)的另一轻弹簧,在其他条件不变的情况下仍使系统平衡,此时小球B 所受绳子的拉力为F T 2,弹簧的弹力为F 2.则下列关于F T 1与F T 2、F 1与F 2大小之间的关系,正确的是( )A .F T 1>F T 2B .F T 1=F T 2C .F 1<F 2D .F 1=F 2解析:以小球B 为研究对象,分析受力情况,如图所示.由平衡条件可知,弹簧的弹力F 和绳子的拉力T 的合力F 合与重力mg 大小相等,方向相反,即F 合=mg ,作出力的合成图如图,由力三角形与几何三角形相似得:mg AO =F AB =F TOB.当弹簧劲度系数变大时,弹簧的压缩量减小,故AB 长度增加,而OB 、OA 的长度不变,故F T 1=F T 2,F 2>F 1,A 、D 错误,B 、C 正确.答案:BC考点4 电学中的平衡问题11.(2018·重庆高三测试)如图所示,在倾角为30°的光滑斜面上,垂直纸面放置一根长为L 、质量为m 的直导体棒,导体棒中电流为I .要使导体棒静止在斜面上,需要外加匀强磁场的磁感应强度B 的最小值为( )A.mg 2ILB.3mg 2ILC.mg ILD.3mg IL解析:平衡状态下导体棒受三个力,重力为恒力,支持力的方向不变,安培力的大小和方向不确定;由动态平衡知当安培力F 平行于斜面向上时安培力最小,则B 最小,即BIL =mg sin 30°,B =mg2IL,由左手定则知B 的方向垂直于斜面向下.答案:A12.(2019·青岛模拟)如图,绝缘光滑圆环竖直放置,a 、b 、c 为三个套在圆环上可自由滑动的空心带电小球,已知小球c 位于圆环最高点,ac 连线与竖直方向成60°角,bc 连线与竖直方向成30°角,三个小球均处于静止状态.下列说法正确的是( )A .a 、b 、c 小球带同种电荷B .a 、b 小球带异种电荷,b 、c 小球带同种电荷C .a 、b 小球电量之比为36D .a 、b 小球电量之比为39解析:对c 小球受力分析可得,a 、b 小球必须带同种电荷,c 小球才能平衡.对b 小球受力分析可得,b 、c 小球带异种电荷,b 小球才能平衡.故A 、B 项错误;对c 小球受力分析,将力正交分解后可得:kq a q c r 2ac sin 60°=k q b q cr 2bcsin 30°,又r ac ∶r bc =1∶3,解得q a ∶q b =3∶9.故C 项错误,D 项正确.答案:D专题强化练(七)考点1 冲量与动量定理的应用1.(2019·太原模拟)如图所示是一种弹射装置,弹丸的质量为m ,底座的质量为3m ,开始时均处于静止状态.当弹丸以速度v (相对于地面)发射出去后,底座的速度大小为v4,在发射弹丸过程中,底座受地面的摩擦力的冲量为( )A .零 B.mv4,方向向右C.mv3,方向向右D.3mv4,方向向左 解析:设向右为正方向,对弹丸,根据动量定理:I =mv ,力的作用是相互的,则弹丸对底座的作用力的冲量为:-mv ,对底座,根据动量定理:I f +(-mv )=-3m ·v4得:I f=mv4,为正表示方向向右,故B 正确,A 、C 、D 错误. 答案:B2.(多选)(2018·福建四校二次联考)如图所示,足够长的固定光滑斜面倾角为θ,质量为m 的物体以速度v 从斜面底端冲上斜面,达到最高点后又滑回原处,所用时间为t .对于这一过程,下列判断正确的是( )A .斜面对物体的弹力的冲量为零B .物体受到的重力的冲量大小为mgtC .物体受到的合力的冲量大小为零D .物体动量的变化量大小为mg sin θ·t解析:斜面对物体的弹力的冲量大小为:I =F N t =mg cos θ·t ,弹力的冲量不为零,故A 错误;物体所受重力的冲量大小为:I G =mg ·t ,物体受到的重力的冲量大小不为零,故B 正确;物体受到的合力的冲量大小为mgt sin θ,不为零,C 错误;由动量定理得,动量的变化量大小Δp =I 合=mg sin θ·t ,D 正确.答案:BD3.(多选)(2019·曲靖模拟)如图所示,木板B 放在光滑的水平面上,滑块A 在木板上从右向左运动,刚滑上木板B的最右端时,其动能为E1,动量大小为p1;滑到木板B的最左端时,其动能为E2,动量大小为p2;A、B间动摩擦因数恒定,则该过程中,滑块A的平均速度大小为()A.E1+E2p1+p2B.E2-E1p2-p1C.E1p1+E2p2D.E1p1-E2p2解析:设当滑块A从木板右端滑到左端时,经过的时间为t,发生的位移为x,则由动能定理得E2-E1=-F f x;由动量定理得p2-p1=-F f t,解得v=xt=E2-E1p2-p1;选项B正确,A错误;因E1p1=12mv21mv1=v12,E2p2=12mv22mv2=v22,因滑块A做匀变速直线运动,则平均速度v=v1+v22=E1p1+E2p2,选项C正确,D错误.答案:BC4.(2018·马鞍山模拟)质量为2 kg的小物块静止于光滑水平面上,从某一时刻开始,小物块所受的水平冲量与时间的关系如图所示,则在6 s内物块的位移为( )A.0 B.3 m C.6 m D.12 m解析:由图可知0~3 s内以及3~6 s内物块受到的冲量都是与时间成线性关系,可知在0~3 s内和3~6 s内物块受到的力都不变,物体做匀变速直线运动,在0~3 s内物块做初速度等于0的匀加速直线运动,在3~6 s内物块做匀减速直线运动,由运动的对称性可知,6 s末物块的速度又等于0.在0~3 s末,根据动量定理可得I=Δp=mv,所以v=Im=42m/s=2 m/s,所以小物块在6 s内的位移x=v2t1+v2·t2=v2·t=22×6 m=6 m.故C正确.答案:C考点2 碰撞和动量守恒定律的应用5.(2019·惠州模拟)质量为1 kg 的物体从距地面5 m 高处自由下落,落在正以5 m/s 的速度沿水平方向匀速前进的小车上,车上装有沙子,车与沙的总质量为4 kg ,地面光滑,则车后来的速度为(g 取10 m/s 2)( )A .4 m/sB .5 m/sC .6 m/sD .7 m/s解析:物体和车作用过程中,两者组成的系统水平方向不受外力,水平方向系统的动量守恒.已知两者作用前,车在水平方向的速度v 0=5 m/s ,物体水平方向的速度v =0;设当物体与小车相对静止后,小车的速度为v ′,取原来小车速度方向为正方向,则根据水平方向系统的动量守恒得:mv +Mv 0=(M +m )v ′,解得:v ′=mv +Mv 0M +m =4×51+4m/s =4 m/s ,故选项A 正确,B 、C 、D 错误.答案:A6.(2019·烟台模拟)在光滑水平面上有三个弹性小钢球a 、b 、c 处于静止状态.质量分别为2m 、m 和2m .其中a 、b 两球间夹一被压缩了的弹簧,两球通过左右两边的光滑挡板束缚着.若某时刻将挡板撤掉,弹簧便把a 、b 两球弹出,两球脱离弹簧后,a 球获得的速度大小为v ,若b 、c 两球相距足够远,则b 、c 两球相碰后( )A .b 球的速度大小为13v ,运动方向与原来相反B .b 球的速度大小为23v ,运动方向与原来相反C .c 球的速度大小为83vD .c 球的速度大小为23v解析:设b 球脱离弹簧的速度为v 0,b 、c 两球相碰后b 、c 的速度分别为v b 和v c ,取向右为正方向,弹簧将a 、b 两球弹出过程,由动量守恒定律得0=-2mv +mv 0,解得v 0=2v ,b 、c 两球相碰过程,由动量守恒定律和机械能守恒得mv 0=mv b +2mv c ,12mv 20=12mv 2b +12·2mv 2c ,联立解得v b =-23v (负号表示方向向左,与原来相反),v c =43v ,故B 正确.答案:B7.(多选)(2019·肇庆模拟)如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞前后A 球动量变化量为-4 kg·m/s,则( )A .左方是A 球,碰前两球均向右运动B .右方是A 球,碰前两球均向左运动C .碰撞后A 、B 两球速度大小之比为2∶5D .经过验证两球发生的碰撞不是弹性碰撞解析:大小相同的A 、B 两球在光滑水平面上发生碰撞,规定向右为正方向,由动量守恒定律可得Δp A =-Δp B ,由题知Δp A =-4 kg·m/s,则得Δp B =4 kg·m/s.由于碰撞前两球均向右运动,所以左方是A 球,右边是B 球,故A 正确,B 错误;碰撞后,两球的动量分别为p A ′=p A +Δp A =6 kg·m/s-4 kg·m/s=2 kg·m/s,p B ′=p B +Δp B =6 kg·m/s +4 kg·m/s=10 kg·m/s,由于两球质量关系为m B =2m A ,那么碰撞后A 、B 两球速度大小之比为v ′A v ′B =p A ′m Ap B ′m B =25,故C 正确;碰撞前系统的总动能为E k =p 2A 2m A +p 2B2m B =18m A +362×2m A =27m A,碰撞后系统的总动能为E ′k =p ′2A 2m A +p 2B2m B =2m A +1002×2m A =27m A,可知碰撞过程系统的动能守恒,所以两球发生的碰撞是弹性碰撞,故D 错误.答案:AC8.(2018·宜昌模拟)如图所示,质量为M 的小车静止在光滑的水平面上,小车AB 段是半径为R 的四分之一光滑圆弧轨道,BC 段是长为L 的水平粗糙轨道,两段轨道相切于B 点,一质量为m 的滑块在小车上从A 点静止开始沿AB 轨道滑下,然后滑入BC 轨道,最后恰好停在C 点.已知小车质量M =3m ,滑块与轨道BC 间的动摩擦因数为μ,重力加速度为g .则( )A .全程滑块水平方向相对地面的位移R +LB .全程小车相对地面的位移大小x =14(R +L )C .滑块m 运动过程中的最大速度v m =2gRD .μ、L 、R 三者之间的关系为R =4μL解析:设全程小车相对地面的位移大小为x ′,则滑块水平方向相对地面的位移x =R +L -x ′.取水平向右为正方向,由水平方向动量守恒得m xt -Mx ′t =0,即m R +L -x ′t -M x ′t=0,结合M =3m ,解得x ′=14(R +L ),x =34(R +L ),故A 错误,B 正确;滑块刚滑到B 点时速度最大,取水平向右为正方向,由动量守恒定律和机械能守恒分别得0=mv m -Mv 、mgR =12mv 2m +12Mv 2.联立解得v m = 32gR ,故C 错误;对整个过程,由动量守恒定律得0=(m +M )v ′,得v ′=0,由能量守恒定律得mgR =μmgL ,得R =μgL ,故D 错误.答案:B考点3 动量和能量的综合应用9.(2019·株洲质检)如图,长l 的轻杆两端固定两个质量相等的小球甲和乙,初始时它们直立在光滑的水平地面上.后由于受到微小扰动,系统从图示位置开始倾倒.当小球甲刚要落地时,其速度大小为( )A.2glB.glC.2gl 2D .0解析:两球组成的系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得:mv -mv ′=0,即v =v ′;由机械能守恒定律得:12mv 2+12mv ′2=mgl ,解得:v=gl ,故B 正确.答案:B10.(多选)(2019·铜川模拟)如图所示,质量为M 的楔形物体静止在光滑的水平地面上,其斜面光滑且足够长,与水平方向的夹角为θ.一个质量为m 的小物块从斜面底端沿斜面向上以初速度v 0开始运动.当小物块沿斜面向上运动到最高点时,速度大小为v ,距地面高度为h ,则下列关系式中正确的是( )A .mv 0=(m +M )vB .mv 0cos θ=(m +M )vC .mgh +12(m +M )v 2=12mv 20D .mgh =12m (v 0sin θ)2解析:小物块上升到最高点时,速度与楔形物体的速度相同,系统水平方向动量守恒,全过程机械能也守恒.以向右为正方向,在小物块上升过程中,由水平方向系统动量守恒得:mv 0cos θ=(m +M )v ,故A 错误,B 正确;系统机械能守恒,由机械能守恒定律得:mgh +12(m+M )v 2=12mv 20,故C 正确,D 错误.答案:BC11.(2019·南昌模拟)有人对鞭炮中炸药爆炸的威力产生了浓厚的兴趣,他设计如下实验,在一光滑水平面上放置两个可视为质点的紧挨着的A 、B 两个物体,它们的质量分别为m 1=1 kg ,m 2=3 kg 并在它们之间放少量炸药,水平面左方有一弹性的挡板,水平面右方接一光滑的14竖直圆轨道.开始A 、B 两物体静止,点燃炸药让其爆炸,物体A 向左运动与挡板碰后原速返回,在水平面上追上物体B 并与其碰撞后粘在一起,最后恰能到达圆弧最高点,已知圆弧的半径为R =0.2 m ,g 取10 m/s 2.求炸药爆炸时对A 、B 两物体所做的功.解析:炸药爆炸后,设A 的速度大小为v 1,B 的速度大小为v 2.取向左为正方向,由动量守恒定律得m 1v 1-m 2v 2=0,A 物体与挡板碰后追上B 物体,碰后两物体共同速度设为v ,取向右为正方向,由动量守恒定律得m 1v 1+m 2v 2=(m 1+m 2)v ,两物体上升到圆弧的最高点时速度为0,两物体的动能转化为重力势能,由机械能守恒定律得12(m 1+m 2)v 2=(m 1+m 2)gR , 炸药爆炸时对A 、B 两物体所做的功W =12m 1v 21+12m 2v 22,联立解得W =10.7 J. 答案:10.7 J12.(2019·廊坊模拟)如图所示,质量M =0.3 kg 的长木板A 放在光滑的水平面上,板长L =1.5 m ,在其左端放一质量m =0.1 kg 的物块B .现给A 和B 以大小相等、方向相反的水平初速度v 0=2 m/s ,使A 开始向左运动、B 开始向右运动.物块与木板间的动摩擦因数为μ,g 取10 m/s 2.(1)要使物块B 不从长木板A 的右端滑落,求动摩擦因数μ的取值范围;(2)若B 恰好不从长木板A 的右端滑落,求B 相对长木板A 滑动过程中发生的对地位移大小.解析:(1)当物块B 滑到木板A 的最右端与木板有共同速度v 时,取水平向左为正方向,根据动量守恒定律得Mv 0-mv 0=(M +m )v ,根据能量守恒定律知12Mv 20+12mv 20=12(M +m )v 2+μmgL , 联立解得v =1 m/s ,μ=0.4,所以要使物块B 不从长木板A 的右端滑落,动摩擦因数μ的取值范围为μ≥0.4; (2)B 相对于A 滑动过程中的加速度大小a =μmg m=μg =4 m/s 2,由运动学公式有2ax =v 20-v 2,解得B 相对长木板A 滑动过程中发生的对地位移x =0.375 m. 答案:(1)μ≥0.4 (2)0.375 m专题强化练(三)考点1 运动的合成与分解1.(2019·六安模拟)小船在400米宽的河中横渡,河水流速是2 m/s ,船在静水中的航速是4 m/s ,要使船的航程最短,则船头的指向和渡河的时间t 分别为( )A .船头应垂直指向对岸,t =100 sB .船头应与上游河岸成60°角,t =20033 sC .船头应垂直指向对岸,t =20033 sD .船头应与下游河岸成60°角,t =100 s解析:当合速度的方向与河岸垂直时,渡河位移最短,设船头与上游河岸方向的夹角为θ,则cos θ=v 水v 船=12,所以θ=60°,渡河的位移x =d =400 m ,根据矢量合成法则有v 合=v 2船-v 2水=42-22m/s =2 3 m/s ,渡河时间t =d v 合=40023 s =20033s ,故B 正确,A 、C 、D 错误.答案:B2.(2019·济宁模拟)如图所示,细线一端固定在天花板上的O 点,另一端穿过一张CD 光盘的中央小孔后拴着一个橡胶球,橡胶球静止时,竖直悬线刚好挨着水平桌面的边缘.现将CD 光盘按在桌面上,并沿桌面边缘以速度v 匀速移动,移动过程中,CD 光盘中央小孔始终紧挨桌面边线,当悬线与竖直方向的夹角为θ时,小球上升的速度大小为( )A .v sin θB .v cos θC .v tan θ D.vtan θ解析:将光盘水平向右移动的速度v 分解为沿细线方向的速度和垂直于细线方向的速度,而小球上升的速度大小与速度v 沿细线方向的分速度大小相等,故可得:v 球=v sin θ,A 正确.答案:A3.(2019·临汾模拟)一物体由静止开始自由下落,一小段时间后突然受一恒定水平向右的风力的影响,但着地前一段时间内风力突然停止,则其运动的轨迹可能是( )解析:当有水平向右的风时,会产生水平向右的加速度,轨迹向右弯曲,风力停止时,合力向下,且轨迹不能急折,故C 项正确.答案:C考点2 平抛运动4.(多选)(2019·株洲模拟)将一小球以水平速度v 0=10 m/s 从O 点向右抛出,经 3 s 小球恰好垂直落到斜面上的A 点,不计空气阻力,g 取10 m/s 2,B 点是小球做自由落体运动在斜面上的落点,如图所示,以下判断正确的是( )A .斜面的倾角约是30°B .小球的抛出点距斜面的竖直高度约是15 mC .若将小球以水平速度v ′0=5 m/s 向右抛出,它一定落在AB 的中点P 的上方D .若将小球以水平速度v ′0=5 m/s 向右抛出,它一定落在AB 的中点P 处 解析:设斜面倾角为θ,对小球在A 点的速度进行分解有tan θ=v 0gt,解得θ=30°,A 项正确;小球距过A 点水平面的距离为h =12gt 2=15 m ,所以小球的抛出点距斜面的竖直高度肯定大于15 m ,B 项错误;若小球的初速度为v 0′=5 m/s ,过A 点作水平面,小球落到水平面的水平位移是小球以初速度v 0=10 m/s 抛出时的一半,延长小球运动的轨迹线,得到小球应该落在P 、A 之间,C 项正确,D 项错误.答案:AC5.(2019·广东四校联考)从同一高度同时将a 、b 两个完全相同的小球分别竖直上抛和斜上抛,它们的初速度大小相同;若不计空气阻力,则以下说法中正确的是( )A .在空中运动的过程中,两球的加速度相同B .两球触地时的瞬时速率不同C .两球在空中运动的时间相同D .两球运动的位移相同解析:两球在空中都只受重力作用,两球的加速度都为重力加速度g ,A 项正确;因两球都只受重力,则机械能均守恒,据机械能守恒定律有12mv 20+mgh =12mv 2t ,可知两球触地时的速率相同,B 项错误;因两球以相同的速率分别竖直上抛和斜上抛,则知两球在空中运动时间不同,C 项错误;因两球初始时运动方向不同,则它们发生的位移不同,D 项错误.答案:A6.(多选)(2018·天水二模)如图所示,某一运动员从弧形雪坡上沿水平方向飞出后,又落回到斜面雪坡上.若斜面雪坡的倾角为θ,飞出时的速度大小为v 0,不计空气阻力.运动员飞出后在空中的姿势保持不变.重力加速度为g ,则()A .如果v 0不同,则该运动员落到雪坡时的速度方向也就不同B .不论v 0多大,该运动员落到雪坡时的速度方向都是相同的C .运动员在空中经历的时间是2v 0tan θg D.运动员落到雪坡时的速度大小是v 0cos θ解析:设在空中飞行时间为t ,运动员竖直位移与水平位移之比y x =12gt 2v 0t =gt 2v 0=tan θ,则有飞行的时间t =2v 0tan θg,故C 正确;竖直方向的速度大小为v y =gt =2v 0tan θ,运动员落回雪坡时的速度大小v =v 20+v 2y =v 01+4tan 2θ,故D 错误;设运动员落到雪坡时的速度方向与水平方向夹角为α,则tan α=v y v x =2v 0tan θv 0=2tan θ,由此可知,运动员落到雪坡时的速度方向与初速度方向无关,初速度不同,运动员落到雪坡时的速度方向相同,故A 错误,B 正确.答案:BC考点3 圆周运动7.(2019·惠州模拟)如图所示,一个菱形框架绕着过对角线的竖直轴匀速转动,在两条边上各有一个质量相等的小球套在上面,整个过程小球相对框架没有发生滑动,A 与B 到轴的距离相等,则下列说法正确的是( )A .框架对A 的弹力方向垂直框架向下B .框架对B 的弹力方向可能垂直框架向下。

重庆2020人教高考物理二轮实验和计算题选练三及答案

重庆2020人教高考物理二轮实验和计算题选练三及答案

重庆2020人教高考物理二轮实验和计算题选练三及答案1、现有一电池,电动势E 约为5 V,内阻r 约为50 Ω,允许通过的最大电流为50 mA.为测定该电池的电动势和内阻,某同学利用如图甲所示的电路进行实验.图中R为电阻箱,阻值范围为0~999.9 Ω,R0为定值电阻,V为理想电压表.(1)可供选用的R0有以下几种规格,本实验应选用的R0的规格为________(填选项序号字母).A.15 Ω 1.0 W B.50 Ω0.01 WC.60 Ω 1.0 W D.1 500 Ω 6.0 W(2)按照图甲所示的电路图,将图乙所示的实物连接成实验电路.(3)连接好电路,闭合开关S,调节电阻箱的阻值,记录阻值R和相应的电压表示数U,测得多组实验数据,并作出如图丙所示的1U-1R关系图象,则电动势E=________V,内阻r=________Ω.(结果均保留2位有效数字) 【参考答案】(1)C(2)见解析(3)5.0 V53 Ω解析:(1)分析题意可知,电路中允许通过的最大电流为50 mA,根据闭合电路欧姆定律可知,电路中的最小电阻R min=EI m=100 Ω,则定值电阻R0的最小阻值为50 Ω,B选项中额定功率太小,导致额定电流过小,故C选项正确.(2)根据原理图,连接实物图如图所示:(3)根据闭合电路欧姆定律可知,U =R R +R 0+r·E. 整理为1U =r +R 0E ·1R +1E .图象的截距为1E =0.20.解得,E =5.0 V .图象的斜率为r +R 0E =22.5,解得,r ≈53 Ω.2、低空跳伞大赛受到各国运动员的喜爱.如图所示为某次跳伞大赛运动员在一座高为H =179 m 的悬崖边跳伞时的情景.运动员离开悬崖时先做自由落体运动,一段时间后,展开降落伞,以a =8 m/s 2的加速度匀减速下降,已知运动员和伞包的总质量为80 kg ,为了运动员的安全,运动员落地时的速度不能超过4 m/s ,求:(1)运动员(含伞包)展开降落伞后所受的空气阻力f ;(2)为了运动员的安全,展开伞时的最大速度是多少?(3)如果以下落的快慢决定比赛的胜负,为了赢得比赛的胜利,运动员在空中运动的最短时间是多大?【参考答案】(1)1 440 N ,方向向上 (2)40 m/s (3)8.5 s解析:(1)展开降落伞后,分析运动员(含伞包)的受力情况,根据牛顿第二定律可知,f -Mg =Ma.解得,f =1 440 N ,方向竖直向上.(2)展开降落伞之前,运动员做自由落体运动,根据运动学公式可知,v 20=2gx.展开降落伞之后,v 2-v 20=-2a(H -x).联立解得,v 0=40 m/s.(3)运动员在空中先做自由落体运动,后做匀减速直线运动时,在空中时间最短.自由落体运动过程中,t 1=v 0g =4 s.匀减速直线运动的时间t 2=v 0-v a =4.5 s.最短时间t =t 1+t 2=8.5 s.3、如图甲所示,加在A 、B 间的电压U AB 做周期性变化,其正向电压为U 0,反向电压为-54U 0,电压变化的周期为2T ,如图乙所示.在t =0时,有一个质量为m 、电荷量为e 的电子以初速度v 0垂直电场方向从两极板正中间射入电场,在运动过程中未与极板相撞,且不考虑重力的作用.如果电子恰好在2T 时刻射出电场,则板间距离d 应满足什么条件?【参考答案】 d ≥ 9eU 0T 25m解析:分析电子的运动情况,在竖直方向上,0~T 时间内,电子向A 板做匀加速直线运动,在0~T 时间内,加速度a 1=eU 0md , 位移y 1=12a 1T 2,速度v 1=a 1T.在T ~2T 时间内,电子先做匀减速直线运动再反向向B 板做匀加速直线运动.在匀减速直线运动过程中,加速度a 2=5eU 04md ,位移y 2=v 212a 2. 分析题意可知,y 1+y 2=d 2,联立解得,d ≥ 9eU 0T 25m .4、如图所示,甲和乙是放在水平地面上的两个小物块(可视为质点),质量分别为m 1=2 kg 、m 2=3 kg ,与地面间的动摩擦因数相同,初始距离L =170 m .两者分别以v 1=10 m/s 和v 2=2 m/s 的初速度同时相向运动,经过t =20 s 的时间两者发生碰撞,求物块与地面间的动摩擦因数μ.某同学解法如下:因动摩擦因数相同,故它们在摩擦力作用下加速度的大小是相同的,由牛顿第二定律得到加速度的大小:a =μg ,设两物体在t =20 s 的时间内运动路程分别为s 1和s 2,则有:s 1=v 1t -12at 2,s 2=v 2t -12at 2,考虑到s 1+s 2=L 即可联立解出μ.你认为该同学的解答是否合理?若合理,请解出最后结果;若不合理,请说明理由,并用你自己的方法算出正确结果.【参考答案】该同学解法不合理,因为未考虑物体是否停止.物块与地面间的动摩擦因数为0.02解析:解答与评分标准:该同学的解答不合理因为四式联立,代入数据后解得a =0.175 m/s 2经过时间t =20 s ,两物块的速度分别为v ′1=v 1-at ,v ′2=v 2-at代入数据得v ′1=6.5 m/s ,v ′2=-1.5 m/sv ′2<0,表明物块乙在20 s 之前就已经停止运动,故该同学解答不合理.正确解答:物块2停止运动前滑行的距离s 2=v 222a将相碰之前的位移关系s 1+s 2=L 具体为(v 1t -12at 2)+v 222a =L ,代入数据得:100a 2-15a -1=0解得a =0.2 m/s 2和a =-0.05 m/s 2(舍去),再由a =μg 得μ=0.025、如图所示,空间中存在一个矩形区域MNPQ ,PQ 的长度为MQ 长度的两倍,有一个带正电的带电粒子从M 点以某一初速度沿MN 射入,若矩形区域MNPQ中加上竖直方向且场强大小为E的匀强电场,则带电粒子将从P点射出,若在矩形区域MNPQ中加上垂直于纸面且磁感应强度大小为B的匀强磁场,则带电粒子仍从P点射出,不计带电粒子的重力,求:带电粒子的初速度的大小.【参考答案】4E 5B解析:带电粒子在电场中做类平抛运动,设MQ长度为L,根据运动的合成与分解法则可知,竖直方向上,L=12×qEm t2.水平方向上,2L=v0t.带电粒子在磁场中做匀速圆周运动,画出轨迹如图所示:洛伦兹力提供向心力,q v B=m v20r,根据几何关系可知,(r-L)2+(2L)2=r2.联立上述各式可知,v=4E5B.。

2020届人教版高考物理二轮基础实验+计算练习(三)含答案

2020届人教版高考物理二轮基础实验+计算练习(三)含答案

2020届人教版高考物理二轮基础实验+计算练习(三)含答案1、为了探究弹力F和弹簧伸长量x的关系,某同学选了甲、乙两根规格不同的弹簧进行测试,根据测得的数据作出的x-F图象如图所示。

(1)甲、乙弹簧的劲度系数分别为_________N/m和_________N/m(结果保留三位有效数字);若要制作一个精确度较高的弹簧测力计,应选弹簧_________(选填“甲”或“乙”)。

(2)根据图线和数据进行分析,请对这个研究课题提出一个有价值的建议。

【解析】(1)由题图可知,弹簧的劲度系数分别为k甲= N/m=66.7 N/m,k乙=N/m=200 N/m;甲弹簧的劲度系数较小,受力相同时弹簧的形变量更大,减小了测量的误差。

(2)如题图,两弹簧的图线末端都弯曲了,说明弹簧受力过大,超过了弹性限度,进行研究时应避免这个问题。

答案:(1)66.7200甲(2)实验中弹簧受力应控制在弹性限度内2、如图所示,光滑斜面倾角为30°,A、B物体与水平面间的动摩擦因数均为μ=0.4,现将A、B两物体(可视为质点)同时由静止释放,两物体初始位置距斜面底端O的距离为LA =2.5 m,LB=10 m。

不考虑两物体在转折O处的能量损失。

(g取10 m/s2)(1)求两物体滑到O点的时间差。

(2)B从开始释放,需经过多长时间追上A?(结果可用根号表示) 【解题指导】解答本题应注意以下两点:(1)两物体的下滑高度不同,到达底端的时间和速度不同;(2)B追上A时,A可能已经停止运动,也可能仍在运动。

【解析】(1)物体在光滑斜面上的加速度a=gsin θ=5 m/s2A到达底端时间t A==1 sB到达底端时间t B==2 sA、B到达底端时间差Δt AB=2 s-1 s=1 s(2)A到达底端速度v A==5 m/s,经过分析B追上A前,A已停止运动A在水平面上运动的总位移s A==mB在水平面上运动的总位移s B=v B t-μgt2其中v B==10 m/s又s A=s B得t=s则B从释放到追上A用时t总=t B+t=s=2.33 s。

【最新推荐】2020高考物理二轮课标通用综合能力训练(三) Word版含解析

【最新推荐】2020高考物理二轮课标通用综合能力训练(三) Word版含解析

综合能力训练(三)(时间:60分钟满分:110分)综合能力训练第62页第Ⅰ卷一、选择题(本题共8小题,每小题6分,共48分。

在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分)1.关于近代物理学,下列说法正确的是()A.一群处于n=4能级的氢原子向低能级跃迁时能辐射出4种不同频率的光B.重核裂变过程生成中等质量的核,反应前后质量数守恒,但质量不一定减少C.10个放射性元素的原子核在经一个半衰期后,一定有5个原子核发生衰变D.光电效应和康普顿效应的实验都表明光具有粒子性答案:D2.一个物体沿直线运动,从t=0时刻开始,物体的x-t图像如图所示,图线与纵横坐标轴的t交点分别为0.5 m/s和-1 s,由此可知()A.物体做匀速直线运动B.物体做变加速直线运动C.物体的初速度大小为0.5 m/sD.物体的初速度大小为1 m/s答案:C-t图像(即v-t图像)是一条直线,物体做匀加速运动,选项A、B错误;图线在解析:物体的xt纵轴的截距是初速度的大小,等于0.5 m/s,选项C正确,D错误。

3.人造卫星a的圆形轨道离地面高度为h,地球同步卫星b离地面高度为H,h<H,两卫星共面且运行方向相同。

某时刻卫星a恰好出现在赤道上某建筑物c的正上方,设地球赤道半径为R,地面重力加速度为g,则()A.a、b线速度大小之比为√R+ℎR+HB.a、c角速度之比为√R3(R+ℎ)3C.b、c向心加速度大小之比为R+HRD.a 下一次通过c 正上方所需时间t=2π√(R+ℎ)3gR 2答案:C解析:人造地球卫星绕地球做匀速圆周运动,由地球的万有引力提供向心力,根据牛顿运动定律求解卫星的角速度。

卫星绕地球做匀速圆周运动,建筑物随地球自转做匀速圆周运动,当卫星转过的角度与建筑物转过的角度之差等于2π时,卫星再次出现在建筑物上空。

绕地球运行的卫星,万有引力提供向心力,设卫星的线速度为v ,则G Mmr 2=m v 2r ,所以v=√GM r,可知a 、b 卫星的线速度大小之比为√R+HR+ℎ,故A 错误;设卫星的角速度为ω,G Mmr =m ω2r ,得ω=√GMr ,所以有ωa ωb=√(R+ℎR+H ) 3,又由于卫星b 的角速度与物体c 的角速度相同,所以ωa ωc=√(R+ℎR+H ) 3,故B 错误;根据a=ω2r 可得a b a c=R+H R,故C 正确;设经过时间t卫星a 再次通过建筑物c 上方,有(ωa -ωc )t=2π,得t=2πωa -ωc=√(R+ℎ)3GM -√(R+H )3GM=2π√gR 2√(R+ℎ)-√(R+H ),故D 错误。

新课标2020高考物理二轮复习综合模拟滚动三含解析

新课标2020高考物理二轮复习综合模拟滚动三含解析

高考物理二轮复习综合模拟滚动:综合模拟滚动小卷(三)(建议用时:45分钟)一、单项选择题1.目前,在居家装修中,经常用到花岗岩、大理石等装修材料,这些岩石都不同程度地含有放射性元素,比如有些含有铀钍的花岗岩等岩石都会释放出放射性惰性气体氡,而氡会发生放射性衰变,放出α、β、γ射线,这些射线会导致细胞发生癌变及呼吸道方面的疾病,根据有关放射性知识可知,下列说法正确的是( )A .β衰变所释放的电子是原子核内的中子转化成质子时产生并发射出来的B .β射线是原子核外电子电离形成的质子流,它具有很强的穿透能力C .已知氡的半衰期为3.8天,若取1 g 氡放在天平左盘上,砝码放于右盘,左右两边恰好平衡,则3.8天后,需取走0.5 g 砝码天平才能再次平衡D .发生α衰变时,生成核与原来的原子核相比,中子数减少了4 2.半径为R 的半圆柱形介质截面如图所示,O 为圆心,AB 为直径,Q 是半圆上的一点,从Q 点平行于AB 射入半圆柱介质的光线刚好从B 点射出,已知∠QBO =30°,现有一条光线从距离O 点32R 处垂直于AB 边射入半圆柱形介质,已知光在真空中的传播速度为c ,则该半圆柱形介质的折射率为( )A .2 B. 3 C. 2D.223.2018年12月8日我国嫦娥四号探测器成功发射,实现人类首次在月球背面无人软着陆.通过多次调速让探月卫星从近地环绕轨道经地月转移轨道进入近月环绕轨道.已知地球与月球的质量之比及半径之比分别为a 、b ,则下列关于近地卫星与近月卫星做匀速圆周运动的判断正确的是( )A .加速度之比约为b aB .周期之比约为 b 3aC .线速度之比约为b aD .从近地轨道进入到地月转移轨道,卫星必须减速4.如图所示,半径为r 的金属圆环放在垂直纸面向外的匀强磁场中,环面与磁感应强度方向垂直,磁场的磁感应强度为B 0,保持圆环不动,将磁场的磁感应强度随时间均匀增大,经过时间t ,磁场的磁感应强度增大到B 1,此时圆环中产生的焦耳热为Q ;保持磁场的磁感应强度B 1不变,将圆环绕对称轴(图中虚线)匀速转动,经时间2t 圆环转过90°,圆环中电流大小按正弦规律变化,圆环中产生的焦耳热也为Q ,则磁感应强度B 0和B 1的比值为( )A.4-π4 B.5-π5 C.42-π42 D.52-π52二、多项选择题5.A 、B 两质点在同一平面内同时向同一方向做直线运动,它们的位移时间图象如图所示,其中①是顶点过原点的抛物线的一部分,②是通过(0,3)的一条直线,两图象相交于坐标为(3,9)的P 点,则下列说法不正确是( )A .质点A 做初速度为零,加速度为2 m/s 2的匀加速直线运动 B .质点B 以3 m/s 的速度做匀速直线运动 C .在前3 s 内,质点A 比B 向前多前进了6 m D .在前3 s 内,某时刻A 、B 速度相等6.如图所示,M 、N 是组成电容器的两块水平放置的平行金属极板,M 中间有一小孔.M 、N 分别接到电压恒定的电源上(图中未画出).小孔正上方的A 点与极板M 相距h .与极板N 相距3h .某时刻一质量为m 、电荷量为q的微粒从A 点由静止下落,到达极板N 时速度刚好为零(不计空气阻力),重力加速度为g .则( )A .带电微粒在M 、N 两极板间往复运动B .两极板间电场强度大小为3mg2qC .若将M 向下平移h3,微粒仍从A 点由静止下落,进入电场后速度为零的位置与N 的距离为54hD .若将N 向上平移h 3微粒仍从A 由静止下落,进入电场后速度为零的位置与M 的距离为54h三、非选择题7.某同学从实验室天花板处自由释放一钢球,用频闪摄影手段验证机械能守恒.频闪仪每隔相等时间短暂闪光一次,照片上记录了钢球在各个时刻的位置.(1)操作时比较合理的做法是________.A .先打开频闪仪再释放钢球B .先释放钢球再打开频闪仪(2)频闪仪闪光频率为f ,拍到整个下落过程中的频闪照片如图所示,结合实验场景估算f 可能值为________.A .0.1 HzB .1 HzC .10 HzD .100 Hz(3)用刻度尺在照片上测量钢球各位置到释放点O 的距离分别为s 1、s 2、s 3、s 4、s 5、s 6、s 7、s 8及钢球直径,重力加速度为g .用游标卡尺测出钢球实际直径D ,如图所示,则D =________cm.已知实际直径与照片上钢球直径之比为k .(4)选用以上各物理量符号,验证从O 到A 过程中钢球机械能守恒成立的关系式为:2gs 5=__________.8.某物理社团受“蛟龙号”的启发,设计了一个测定水深的深度计.如图,导热性能良好的汽缸Ⅰ、Ⅱ内径相同,长度均为L ,内部分别有轻质薄活塞A 、B ,活塞密封性良好且可无摩擦左右滑动,汽缸Ⅰ左端开口.外界大气压强为p 0,汽缸Ⅰ内通过A 封有压强为p 0的气体,汽缸Ⅱ内通过B 封有压强为2p 0的气体,一细管连通两汽缸,初始状态A 、B 均位于汽缸最左端.该装置放入水下后,通过A 向右移动的距离可测定水的深度.已知p 0相当于10 m 高的水产生的压强,不计水温变化,被封闭气体视为理想气体,求:(1)当A 向右移动L4时,水的深度h ;(2)该深度计能测量的最大水深h m .9.如图所示,质量均为m=4 kg的两个小物块A、B(均可视为质点)放置在水平地面上,竖直平面内半径R=0.4 m的光滑半圆形轨道与水平地面相切于C,弹簧左端固定.移动物块A压缩弹簧到某一位置(弹簧在弹性限度内),由静止释放物块A,物块A离开弹簧后与物块B 碰撞并粘在一起以共同速度v=5 m/s向右运动,运动过程中经过一段长为s,动摩擦因数μ=0.2的水平面后,冲上圆轨道,除s段外的其他水平面摩擦力不计.求:(g取10 m/s2)(1)若s=1 m,两物块刚过C点时对轨道的压力大小;(2)刚释放物块A时,弹簧的弹性势能;(3)若两物块能冲上圆形轨道,且不脱离圆形轨道,s应满足什么条件.综合模拟滚动小卷(三)1.解析:选A.β衰变所释放的电子是原子核内的中子转化成质子时产生并发射出来的,故A 正确;β射线是电子流,并不是质子流,它的穿透能力强于α射线,弱于γ射线,穿透能力中等,故B 错误;氡的半衰期为3.8天,经3.8天后,有0.5克衰变成新核,新的原子核仍然留在天平左盘中,故取走的砝码应小于0.5克,天平才能再次平衡,故C 错误;发生α衰变时,电荷数减少2(即质子数减少2),质量数减少4,则中子数减少2,故D 错误.2.解析:选B.作出光路图:由几何关系可知,从Q 点射入的光线的入射角为i =60°由折射定律有:n =sin isin r=3,B 正确.3.解析:选B.根据a =GM r 2可知,a 地a 月=M 地R 2月M 月R 2地=a b 2,选项A 错误;由T =2πr 3GM 可得,T 地T 月=R 3地M 月R 3月M 地=b 3a,选项B 正确;根据v =GM r 可得v 地v 月=M 地R 月M 月R 地=ab,选项C 错误;从近地轨道进入到地月转移轨道,卫星必须要多次加速变轨,选项D 错误.4.解析:选A.保持圆环不动时,产生的感应电动势恒定,为E 1=(B 1-B 0)πr2t,则Q=E 21R t =(B 1-B 0)2π2r 4tR ①;线圈转动时,产生的感应电动势最大值:E 2m =B 1ωS =B 1π22t ·πr 2=π2r 2B 14t ,有效值E 2=π2r 2B 142t ,产生的热量Q =E 22R ×2t =π4r 4B 2116tR ②,联立①②式可得:B 0B 1=4-π4,故选A.5.解析:选BC.质点A 的图象是抛物线,说明质点A 做匀变速直线运动,将(0,0)、(3 s ,9 m)代入公式,x =v 0t +12at 2,解得:v 0=0,a =2 m/s 2,即质点A 做初速度为零加速度为2 m/s2的匀加速直线运动,故A 正确;质点B 做匀速直线运动,速度为:v B =Δx Δt =9-33 m/s =2 m/s ,故B 错误;在前3 s 内,质点A 前进位移为9 m ,质点B 前进位移为6 m ,所以质点A 比B 向前多前进3 m ,故C 错误;根据x -t 图象的斜率等于速度,知在3 s 前某时刻质点A 、B 速度相等,故D 正确.6.解析:选BD.由于粒子在电场中和在电场外受到的力都是恒力,可知粒子将在A 点和下极板之间往复运动,选项A 错误;由动能定理:mg ·3h =Eq ·2h ,解得E =3mg2q,选项B 正确;若将M 向下平移h 3,则板间场强变为E 1=U 53h =3U 5h =65E ,则当粒子速度为零时,由动能定理:mg ·(3h -Δh )=E 1q ·⎝ ⎛⎭⎪⎫5h 3-Δh ,可知方程无解,选项C 错误;若将N 向上平移h 3,则板间场强变为E 2=U 53h =3U 5h =65E ,设当粒子速度为零时的位置与M 极板相距Δh ′,由动能定理:mg ·(h+Δh ′)=E 2q ·Δh ′,解得Δh ′=54h ,选项D 正确.7.解析:(1)为了记录完整的过程,应该先打开闪频仪再释放钢球,A 正确.(2)天花板到地板的高度约为3 m ,小球做自由落体运动,从图中可知经过8次闪光到达地面,故有12g ×(8T )2=3 m ,解得T ≈0.1 s ,即f =1T=10 Hz ,C 正确.(3)游标卡尺的读数为D =45 mm +5×0.1 mm =45.5 mm =4.55 cm. (4)到A 点的速度为v A =s 6-s 42T =(s 6-s 4)f2,根据比例关系可知,到A 点的实际速度为v =k (s 6-s 4)f2,因为小球下落实际高度为H s 5=D d =k ,代入mgH =12mv 2可得2gs 5=14kf 2(s 6-s 4)2.答案:(1)A (2)C (3)4.55 (4)14kf 2(s 6-s 4)28.解析:(1)当A 向右移动L4时,设B 不移动对汽缸Ⅰ内气体,由玻意耳定律得:p 0SL =p 134SL解得:p 1=43p 0而此时B 中气体的压强为2p 0>p 1,故B 不动 由p 1=p 0+p h解得:水的深度p h =p 1-p 0=13p 0,故h ≈3.33 m.(2)该装置放入水下后,由于水的压力A 向右移动,汽缸Ⅰ内气体压强逐渐增大,当压强增大到大于2p 0后B 开始向右移动,当A 恰好移动到缸底时所测深度最大,此时原汽缸Ⅰ内气体全部进入汽缸Ⅱ内,设B 向右移动x 距离,两部分气体压强为p 2,活塞横截面积为S对原 Ⅰ 内气体,由玻意耳定律得:p 0SL =p 2Sx 对原Ⅱ内气体,由玻意耳定律得:2p 0SL =p 2S (L -x ) 又p 2=p 0+p h m联立解得p h m =2p 0,故h m =20 m. 答案:(1)3.33 m (2)20 m9.解析:(1)设物块经过C 点时速度为v C ,物块受到轨道支持力为F N C 由功能关系得:12×2mv 2-2μmgs =12×2mv 2C又F N C -2mg =2m v 2CR代入解得:F N C =500 N由牛顿第三定律知,物块对轨道压力大小也为500 N.(2)设A 与B 碰撞前A 的速度为v 0,以向右为正方向,由动量守恒得:mv 0=2mv ,解得v 0=10 m/s则:E p =E k =12mv 20=200 J.(3)物块不脱离轨道有两种情况①能过轨道最高点,设物块经过半圆形轨道最高点最小速度为v 1,则2mg =2mv 21R得:v 1=gR =2 m/s物块从碰撞后到经过最高点过程中,由功能关系有 12×2mv 2-2μmgs -4mgR ≥12×2mv 21 代入解得s 满足条件:s ≤1.25 m. ②物块上滑最大高度不超过14圆弧设物块刚好到达14圆弧处速度为v 2=0物块从碰撞后到最高点,由功能关系有:1×2mv2-2μmgs≤2mgR2同时依题意,物块能滑出粗糙水平面,由功能关系:1×2mv2>2μmgs2代入解得s满足条件:4.25 m≤s<6.25 m.答案:(1)500 N (2)200 J(3)s≤1.25 m或4.25 m≤s<6.25 m。

全国通用2020年高考物理二轮复习精练二计算题32分标准练三

全国通用2020年高考物理二轮复习精练二计算题32分标准练三

计算题32分标准练(三)24.(12分)如图1所示,水平光滑的平行金属导轨,左端与电阻R 相连接,匀强磁场B 竖直向下分布在导轨所在的空间内,质量一定的金属棒在垂直导轨的方向上搁在导轨上。

今使棒以一定的初速度向右运动,当其通过位置a 时速率为v a ,通过位置b 时速率为v b ,到位置c 时棒刚好静止。

设导轨与棒的电阻均不计,a 、b 与b 、c 的间距相等,则金属棒在由a ―→b 和由b ―→c 的两个过程中,回路中产生的电能E ab 与E bc 之比为多大?图1解析 金属棒向右运动时,切割磁感线,回路中产生感应电流。

根据左手定则可知,金属棒所受安培力阻碍其运动。

假设金属棒由a 到b 过程中,所受平均安培力为F 1,时间为t 1;由b 到c 过程中,所受平均安培力为F 2,时间为t 2;导轨之间距离为d 。

则F 1=BI 1d =B BL ab d Rt 1d =B 2d 2L ab Rt 1(2分) 同理F 2=B 2d 2L bc Rt 2(1分) 根据动量定理得-F 1t 1=mv b -mv a ,即B 2d 2L ab R=mv a -mv b ①(2分) -F 2t 2=0-mv b ,即B 2d 2L bc R=mv b ②(2分) 又因为L ab =L bc ③据①②③式得 mv a -mv b =mv b (1分)所以v a =2v b (1分)根据能量守恒有E ab =12mv 2a -12mv 2b =32mv 2b (1分) E bc =12mv 2b (1分)则E ab E bc =32mv 2b 12mv 2b =3∶1(1分) 答案 3∶125.(20分)在某项娱乐活动中,要求参与者通过一光滑的斜面将质量为m 的物块送上高处的水平传送带后运送到网兜内。

斜面长度为l ,倾角θ=30°,传送带距地面高度为l ,传送带的长度为3l ,传送带表面的动摩擦因数μ=0.5,传送带一直以速度v =3gl 2顺时针运动。

(课标版)2020高考物理二轮复习计算题规范练3课件

(课标版)2020高考物理二轮复习计算题规范练3课件
(1)金属棒 a、b 的最终速度; (2)整个过程通过金属棒 a 的电量. 答案:(1)15v0 25v0 (2)45mBvL0
解析:(1)给棒 a 一初速度 v0 向右运动,则 a 的电流指向外, b 的电流指向里,a 所受安培力指向左,b 所受安培力指向右, 所以棒 a 向右做减速运动,棒 b 向右做加速运动,两者产生的 感应电动势方向相反,当两者产生的感应电动势大小相等时, 电流为零,达到稳定平衡状态.AB 与 EF 宽为 L,是 CD 与 GH 宽的 2 倍,所以 CD 与 GH 宽为12L
(1)物块轻放在传送带上且加上拉力的一瞬间,物块的加速 度大小;
(2)物块从传送带底端运动到顶端所用的时间.
答案:(1)a1=12 m/s2
(2)t=t1+t2=
102-5 6s
解析:(1)物块放上传送带并加上拉力后的一瞬间,设物块 运动的加速度大小为 a1.
根据牛顿第二定律有 F+μmgcosθ-mgsinθ=ma1 求得 a1=12 m/s2. (2)第一段加速的时间 t1=av1=16 s 这段加速的位移 x1=2va21=16 m
计算题规范练3
时间:45 分钟
1.如图所示,长为 2 m、倾斜放置的传送带以 2 m/s 的速 度沿顺时针方向匀速转动,传送带与水平方向的夹角为 30°, 将一个质量为 1 kg 的物块轻放在传送带的底部,同时给物块 施加一个平行传送带向上、大小为 12 N 的恒力 F,物块与传 送带间的动摩擦因数为 μ= 33,重力加速度 g=10 m/s2,最大 静摩擦力等于滑动摩擦力.求:
解析:(1)B 点与 O 点等高,由几何关系得:小猫竖直位移 y=Rsin37°=0.8 m
B、O 间水平距离 x1=x+Rcos37° 小猫做平抛运动,x=v0t,y=12gt2 vy=gt,v0=vytan37° 解得 v0=3 m/s,x=1.2 m,x1=2.27 m. (2)从 P 到 C,对小猫,由能量守恒定律得 ΔE=12mv2P+mgR(1 -sinθ)-12mv2C,vP=sivn0θ

2020届人教版高考物理二轮实验+计算题练习题及答案

2020届人教版高考物理二轮实验+计算题练习题及答案

2020届人教版高考物理二轮实验+计算题练习题及答案1、在“测定匀变速直线运动加速度”的实验中:(1)除打点计时器(含纸带、复写纸)、小车、一端附有滑轮的长木板、细绳、钩码、导线及开关外,在下面的仪器和器材中,必须使用的有_______。

(填选项代号)A.电压合适的50 Hz交流电源B.电压可调的直流电源C.刻度尺D.秒表E.天平(2)实验过程中,下列做法正确的是_______。

(填选项代号)A.先接通电源,再使纸带运动B.先使纸带运动,再接通电源C.将接好纸带的小车停在靠近滑轮处D.将接好纸带的小车停在靠近打点计时器处【解析】(1)本实验需要的电源是电压合适的交流电源,还需要用刻度尺测量纸带点迹间的距离,故选A、C。

(2)实验过程中,要先接通电源,等到打点稳定后,再使纸带运动,要将接好纸带的小车停在靠近打点计时器处,这样可以打出较多的点,故选A、D。

答案:(1)A、C (2)A、D2、如图为两个足球运动员在赛前练习助攻进球的过程,其中BP在一条直线上,假设甲运动员在B处将足球以11 m/s 的速度沿直线的方向踢出,足球沿着地面向球门P处运动,足球运动的加速度大小为1 m/s2,在A位置的乙运动员发现甲运动员将足球踢出去后,经过1 s的反应时间,开始匀加速向连线上的C处奔去,乙运动员的最大速度为9 m/s,已知B、C两点间的距离为60.5 m,A、C两点间的距离为63 m。

(1)乙运动员以多大的加速度做匀加速运动,才能与足球同时运动到C位置?(2)乙运动员运动到C处后以一定的速度将足球沿CP方向踢出,已知足球从C向P做匀减速运动,足球运动的加速度大小仍然为1 m/s2,假设C点到P点的距离为9.5 m,守门员看到运动员在C处将足球沿CP方向水平踢出后,能够到达P 处扑球的时间为1 s,那么乙运动员在C处给足球的速度至少为多大,足球才能射进球门?【解析】(1)对于足球:x BC=v0t-at2代入数据得t=11 s=t-1 s=10 s乙运动员的运动时间t乙乙运动员的最大速度为9 m/s,乙运动员先加速后匀速到C处,设加速时间为t′,则x AC=t′+v m乙(t乙-t′)==1.5 m/s2代入数据求得t′=6 s,a乙(2)由题意知,足球从C到P时间最多为1 s,乙运动员给足球的速度最少为v,此时足球位移x CP=vt″-at″2,代入数据可得v=10 m/s答案:(1)1.5 m/s2(2)10 m/s3、如图所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数μ=,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点。

2020届高三物理二轮专题03牛顿运动定律及应用精品卷

2020届高三物理二轮专题03牛顿运动定律及应用精品卷

2020届高三物理二轮精品专题卷3物理考试范围:牛顿运动定律、牛顿定律的应用;超重和失重一、选择题(本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,有的只有一个选项符合题目要求,有的有多个选项符合题目要求。

全部选对的得4分,选对但不全的得2分,有选错的得0分。

)1•“扳手腕”是中学生课余非常喜爱的一项游戏。

如右图,甲、乙两同学正在进行“扳手腕”游戏,下列关于他们的手之间的力,说法正确的是( )A. 甲扳赢了乙,是因为甲手对乙手的作用力大于乙手对甲手的作用力B. 只有当甲乙僵持不分胜负时,甲手对乙手的作用力才等于乙手对甲手的作用力C. 甲、乙比赛对抗时,无法比较甲手对乙手的作用力和乙手对甲手的作用力的大小关系D. 无论谁胜谁负,甲手对乙手的作用力大小等于乙手对甲手的作用力大小2•在一次学校田径运动会上,小明同学以背越式成功地跳过了 1.90米的高度,打破校运会记录,如右图。

若忽略空气阻力,g取10m/s2。

则下列说法正确的是( )A. 小明下降过程中处于失重状态B. 小明起跳以后在上升过程中处于超重状态C•小明起跳时地面对他的支持力大于他的重力D.小明起跳以后在下降过程中重力消失了3. 据《新消息》报道,在北塔公园门前,李师傅用牙齿死死咬住长绳的一端,将停放着的一辆卡车缓慢拉动。

小华同学看完表演后做了如下思考,其中正确的是( )A. 李师傅选择斜向上拉可以减少车对地面的正压力,从而减少车与地面间的摩擦力B. 若将绳系在车顶斜向下拉,要拉动汽车将更容易C•车被拉动的过程中,绳对车的拉力大于车对绳的拉力D.当车由静止被拉动时,绳对车的拉力大于车受到的摩擦阻力4. 如右图所示,物块A放在倾斜的木板上,木板的倾角a为30°和45°时物块所受摩擦力的大小恰好相同,则()A. 物块和木板间的动摩擦因数为0.5B. 物块和木板间的动摩擦因数为-2C. 木板的倾角a为45°时物块可能在斜面上做匀速运动D.木板的倾角a为45°时物块的加速等于5,2 1m/s25. 一皮带传送装置如右图所示,皮带的速度V足够大,轻弹簧一端固定,另一端连接一个质量为m的滑块,已知滑块与皮带之间存在摩擦,当滑块放在皮带上时,弹簧的轴线恰好水平,若滑块放到皮带的瞬间,滑块的速度为零,且弹簧正好处于自由长度,则当弹簧从自由长度到第一次达最长这一过程中,物体的速度和加速度变化的情况是()出A. 速度增大,加速度增大B. 速度增大,加速度减小C. 速度先增大后减小,加速度先增大后减小D. 速度先增大后减小,加速度先减小后增大6 .如右图所示,A、B两人用安全带连接在一起,从飞机上跳下进行双人跳伞运动,最后安全着陆,降落伞未打开时不计空气阻力。

2020届人教版高考物理二轮实验+计算题练习三及答案

2020届人教版高考物理二轮实验+计算题练习三及答案

2020届人教版高考物理二轮实验+计算题练习三及答案1、(2019·唐山模拟)现用频闪照相方法来研究物块的变速运动。

在一小物块沿斜面向下运动的过程中,用频闪相机拍摄的不同时刻物块的位置如图所示,拍摄时频闪频率是10 Hz;通过斜面上固定的刻度尺读取的5个连续影像间的距离依次为x1、x2、x3、x4。

已知斜面顶端的高度h和斜面的长度s数据如表所示。

重力加速度大小g取9.80 m/s2。

单位: cmx 1x2x3x4h s10.76 15.05 19.34 23.65 48.00 80.00根据表中数据,完成下列填空:(1)物块的加速度a=_______m/s2(保留3位有效数字)。

(2)因为___________ ,可知斜面是粗糙的。

【解析】(1)根据逐差法求出加速度a==4.30 m/s2。

(2)设斜面倾角为θ,根据牛顿第二定律,物块沿光滑斜面下滑的加速度a′=gsin θ=g=5.88 m/s2,由于a<a′,可知斜面是粗糙的。

答案:(1)4.30(2)物块加速度小于g=5.88 m/s2(或:物块加速度小于物块沿光滑斜面下滑的加速度)2、(2019·唐山模拟)在平直的测试汽车加速性能的场地上,每隔100 m有一个醒目的标志杆。

两名测试员驾车由某个标志杆从静止开始匀加速启动,当汽车通过第二个标志杆开始计时,t1=10 s时,恰好经过第5个标志杆,t2=20 s时,恰好经过第10个标志杆,汽车运动过程中可视为质点,如图所示。

求:(1)汽车的加速度。

(2)若汽车匀加速达到最大速度64 m/s后立即保持该速度匀速行驶,则汽车从20 s末到30 s末经过几个标志杆?【解析】(1)设汽车的加速度为a,经过第二个标志杆的速度为v0在0~10 s内,3L=v0t1+a在0~20 s内,8L=v0t2+a解得a=2 m/s2。

(2)由(1)解得v0=20 m/s,由v=v0+at2=60 m/s到达最大速度v′=v+aΔtΔt=2 s t3=30 s在t2~t3内汽车位移x=Δt+v′(t3-t2-Δt)=636 m则经过的标志杆数n==6.36个,即6个。

2020届高考物理课标版二轮复习训练题:专题二第3讲 功和能 Word版含解析

2020届高考物理课标版二轮复习训练题:专题二第3讲 功和能 Word版含解析

第3讲 功和能一、单项选择题1.(2019安徽宿州教学质量检测)如图,一质量为m 、电荷量为q 的带正电粒子在竖直向下的匀强电场中运动,M 、N 为其运动轨迹上的两点。

已知该粒子在M 点的速度大小为v 0,方向与水平方向的夹角为60°,N 点为轨迹的最高点,不计重力。

则M 、N 两点间的电势差为( )A.3mv 028qB.-3mv 028qC.-mv 028qD.mv 028q 答案 B 从M 点到N 点利用动能定理有qU MN =12m v N 2-12m v M 2=12m(v 0 cos 60°)2-12m v 02,解得U MN =-3mv 028q ,故B 正确。

2.(2019山东淄博三模)如图所示,质量均为m 的木块A 和B,用一个劲度系数为k 的竖直轻质弹簧连接,最初系统静止,现在用力F 缓慢拉A 直到B 刚好离开地面,则这一过程中力F 做的功至少为( )A.m 2g 2kB.2m 2g 2kC.3m 2g 2kD.4m 2g 2k答案 B 最初系统静止时,弹力等于A 的重力,由胡克定律得,弹簧被压缩的长度x 1=mg k ,最后B 刚好离开地面时,弹力等于B 的重力,此时弹簧伸长的长度x 2=mg k,此过程缓慢进行,所以力F 做的功等于系统增加的重力势能,根据功能关系可知W=mg(x 1+x 2)=2m 2g 2k,故B 正确。

3.(2019河南平顶山模拟)质量m=20 kg的物体,在大小恒定的水平外力F的作用下,沿水平面做直线运动。

0~2 s内F与运动方向相反,2~4 s内F与运动方向相同,物体的v-t图像如图所示。

g取10 m/s2,则( )A.拉力F的大小为100 NB.在4 s时拉力的瞬时功率为120 WC.4 s内拉力所做的功为480 JD.4 s内物体克服摩擦力做的功为320 J答案 B 取物体初速度方向为正方向,由题图可知物体与水平面间存在摩擦力,由题图可知0~2 s内,-F-f=ma1,且a1=-5 m/s2;2~4 s内,-F+f=ma2,且a2=-1 m/s2,联立以上两式解得F=60 N,f=40 N,A错误;由P=Fv得4 s时拉力的瞬时功率为120W,B正确;由W=Fx,可知0~2 s内,W1=-Fx1,2~4 s内,W2=Fx2,由题图可知x1=10 m,x2=2m,代入数据解得,4 s内拉力所做的功为-480 J,C错误;摩擦力做功W'=fs,摩擦力始终与速度方向相反,故s为路程,由题图可解得总路程为12 m,4 s内物体克服摩擦力做的功为480 J,D错误。

2020届(人教)高考物理二轮提升练习计算题选(三)及答案

2020届(人教)高考物理二轮提升练习计算题选(三)及答案

2020届(人教)高考物理二轮提升练习计算题选(三)及答案1、如图所示,物块A、B、C的质量分别为2m、2m、m,并均可视为质点,三个物块用轻绳通过轻质滑轮连接,在外力作用下现处于静止状态,此时物块A置于地面,物块B到C、C到地面的距离均是L,现将三个物块由静止释放。

若C与地面、B到C相碰后速度立即减为零,A与滑轮间的距离足够大,且不计一切阻力,重力加速度为g。

求:(1)刚释放时A的加速度大小及轻绳对A的拉力大小。

(2)物块A由最初位置上升的最大高度。

(3)若改变A的质量使系统由静止释放后物块C能落地且物块B与C不相碰,则A的质量应满足的条件。

【解题指导】解答本题应注意以下三点:(1)整体法与隔离法结合牛顿第二定律求解加速度和轻绳的拉力。

(2)C落地前A、B、C三个物块组成的系统机械能守恒,C落地后A、B两物块组成的系统机械能守恒。

(3)由物块C能落地和物块B与C不相碰确定系统的两个临界状态。

【解析】(1)设刚释放时A、B、C的共同加速度大小为a,绳子对A拉力大小为F,由牛顿第二定律得:对A:F-2mg=2ma对于B、C整体:3mg-F=3ma,解得:a=F=2.4 mg(2)设C下落L落地时A的速度大小为v由v2=2aL得:v=C落地后,由于A、B的质量相等,故B匀速下落,A匀速上升,当A上升L 距离后再做竖直上抛运动,上抛过程由机械能守恒定律得:2mgh=·2mv2解得:h=0.2 L因此物块由最初位置上升的最大高度:H=2 L+h=2.2 L(3)若改变A的质量使系统由静止释放后物块C能落地,由题意可知A的质量需满足m A<3 m若B与C不相碰,即C落地后B减速下降到地面时速度为0,从释放到C落地的过程A、B、C系统机械能守恒,则:3mgL-m A gL= (3m+m A)v′2解得:v′=从C落地到B减速到地面速度为0的过程中,A、B系统机械能守恒,则:2mgL+ (2m+m A)v′2=m A gL解得:m A=m因此,系统由静止释放后物块C能落地且物块B与C不相碰的条件为:m<m A<3m答案:(1) 2.4 mg(2)2.2 L(3)m<m A<3m2、在交管部门强行推出了“电子眼”后,机动车擅自闯红灯的现象大幅度减少。

2020高考二轮总复习物理(教师)3 附答案解析

2020高考二轮总复习物理(教师)3 附答案解析

名师导学·高考二轮总复习·物理(教师用书)(这是双页眉,请据需要手工删加)专题三能量与动量(这是单页眉,请据需要手工删加)专题三能量与动量二、考向分析及备考建议功和功率、动能和动能定理、重力做功与重力势能、功能关系、机械能守恒定律及其应用,动量、动量定理、动量守恒定律及其应用,弹性碰撞和非弹性碰撞是历年高考的热点,2019年三套全国卷的25题进行了重点综合考查,以后还会这样.本专题命题点多,特别重视对考纲中5个Ⅱ级考点的考查,题型多变.在复习备考中要引起足够重视,对5个Ⅱ级考点逐一落实.加强对诸如:变力做功、动能定理的综合应用,弹簧、传送带模型中的能量关系,滑块-滑板模型中的动量和能量分析与计算,动量定理和动量守恒定律在生活中的应用、人船模型、动量守恒的多过程问题、弹性碰撞的理解和应用,以应对高考对理解能力、建模能力、综合分析能力、应用数学处理物理问题的能力的综合考查.第1讲功功率动能定理【p24】【p24】1.功和功率的计算方法(1) 功的计算:恒力做功,可用公式__W=Fl cos__α__进行计算.变力做功,可用以下几种方法进行求解:①功率法:W=Pt,注意P为恒定功率;②微元法;③图象法;④转化法;⑤动能定理法等.(2)功率的计算:区分瞬时功率和平均功率.P=Wt只能用来计算__平均功率__.P=Fv cosα中的v是__瞬时速度__时,计算出的功率是__瞬时功率__;v是__平均速度__时,计算出的功率是__平均功率__.2.机车的启动问题(1)机车输出功率:P=Fv,其中F为机车牵引力.(2)机车匀加速启动过程的最大速度v1及v m的求解方法.①求v1:由F牵-F阻=ma,P=F牵v1可求v1=__PF阻+ma__.②求v m:由P=F阻v m,可求v m=__PF阻__.3.动能定理的内容及表达式动能和动能定理错误!4.对动能定理的进一步理解(1)W总是所有外力对物体做的__总功__,这些力对物体所做功的__代数和__等于物体动能的增量.(2)动能定理与参考系的选取有关.中学物理中一般取__地面__为参考系.(3)动能定理既适用于物体的直线运动,也适用于__曲线__运动;既适用于恒力做的功,也适用于__变力__做的功.力可以是各种性质的力,既可以同时作用,也可以分段作用;只要求出在作用过程中各力做功的多少和正负即可.动能定理是计算物体的位移或速率的简捷公式,当题目中涉及到位移时可优先考虑__动能定理__.这些正是运用动能定理解题的优越性所在.(4)若物体的运动过程包含几个不同的过程,应用动能定理时,可以分段考虑,也可以全程作为一个整体考虑.【p25】考点一功和功率的分析与计算例1某一空间飞行器质量为m,从地面起飞时,恰好沿与水平方向成θ=30°角的直线斜向右上方匀加速飞行,此时,发动机提供的动力方向与水平方向夹角α=60°,经时间t后,将动力方向沿逆时针旋转60°,同时适当调节其大小,使飞行器沿原方向匀减速飞行,飞行器所受空气阻力不计,重力加速度为g,求:(1)t时刻飞行器的速率v;(2)t时刻发动机动力的功率P;(3)从起飞到上升到最大高度的整个过程中,飞行器发动机的动力做的总功W.【解析】(1)对飞行器进行受力分析如图,根据正弦定理F合sin(90°-α)=Fsin(90°+θ)=mgsin(α-θ)得F =3mg ,F 合=mg 根据牛顿第二定律有F 合=ma 得a =gt 时刻飞行器的速率v =at =gt.(2)设t 时刻发动机动力的功率为P ,则P =Fv cos (α-θ) 得P =32mg 2t(3)动力方向沿逆时针旋转60°,恰好与速度方向垂直,减速过程发动机动力做的功为零.飞行器从地面到最大高度的整个过程中发动机动力做的总功W =0+P 2t 得W =34mg 2t 2.【答案】(1)gt (2)32mg 2t (3)34mg 2t 2【方法总结】(1)计算恒力做功的流程图(2)计算功率的策略:先判后算.先判断功率为瞬时功率还是平均功率,然后进行相关运算. 变式训练1(2018·全国卷Ⅲ)(多选)地下矿井中的矿石装在矿车中,用电机通过竖井运送到地面.某竖井中矿车提升的速度大小v 随时间t 的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等.不考虑摩擦阻力和空气阻力.对于第①次和第②次提升过程( )A .矿车上升所用的时间之比为4∶5B .电机的最大牵引力之比为2∶1C .电机输出的最大功率之比为2∶1D .电机所做的功之比为4∶5【解析】设第②次所用时间为t ,根据速度图象的“面积”等于位移(此题中为提升的高度)可知,12×2t 0×v 0=12×(t +t -t 0)×12v 0,解得:t =5t 02,所以第①次和第②次提升过程所用时间之比为2t 0∶5t 02=4∶5,选项A 正确;由于两次提升变速阶段的加速度大小相同,在匀加速阶段,由牛顿第二定律,F -mg =ma ,可得提升的最大牵引力之比为1∶1,选项B 错误;由功率公式,P =Fv ,电机输出的最大功率之比等于最大速度之比,为2∶1,选项C 正确;由动能定理:W F -mgh =ΔE k =0,∴W F =mgh ;两次做功相同,选项D 错误.【答案】AC考点二 机车的启动问题 例2我国在改革开放的四十年内,各个行业都获得了巨大的进步,高铁技术更是成为国家名片.一列高铁列车的总质量为m ,运动过程中的阻力恒为f ,列车沿直线由静止启动过程中列车的输出功率与速度的关系图象如图所示,当列车的速度超过v 0后,列车的功率保持不变,恒为3fv 0.(1)求列车匀加速运动的时间t 1;(2)若列车从静止开始运动至刚好达到最大速度时位移为x ,求由静止开始至达到最大速度的过程列车的运动时间t.【解析】(1)在匀加速阶段,由图可知,牵引力F =3fv 0v 0=3f 根据牛顿第二定律可得:F -f =ma 根据速度时间关系可得:v 0=at 1 联立解得t 1=mv 02f ;(2)最大速度v m =3fv 0f =3v 0匀加速运动的位移x 1=12at 21=mv 204f恒定功率至达最大速度过程,根据动能定理可得: 3fv 0(t -t 1)-f(x -x 1)=12mv 2m -12mv 20 联立解得t =x 3v 0+7mv 04f .【答案】(1)mv 02f (2)x 3v 0+7mv 04f【方法总结】解决机车启动问题时注意以下四点:(1)分清是匀加速启动还是恒定功率启动.(2)匀加速启动过程中,机车功率不断增大,最大功率是额定功率.(3)以额定功率启动的过程中,牵引力不断减小,机车做加速度减小的加速运动,牵引力的最小值等于阻力.(4)无论哪种启动方式,最后达到最大速度时,均满足P =f 阻v m ,P 为机车的额定功率. 变式训练2 (多选)汽车在平直公路上以速度v 0匀速行驶,发动机功率为P ,牵引力为F 0,t 1时刻,司机减小了油门,使汽车的功率立即减为原来的一半,并保持该功率继续行驶,到t 2时刻,汽车又恢复了匀速直线运动.能正确表示这一过程中汽车牵引力F 和速度v 随时间t 变化的图象是( )A BC D【解析】由题,汽车以功率P 、速度v 0匀速行驶时,牵引力与阻力平衡.当司机减小油门,使汽车的功率减为一半时,速度不能突变,根据P =Fv 得知,汽车的牵引力突然减小到原来的一半,即为F =12F 0,而阻力没有变化,则汽车开始做减速运动,由于功率保持为P2,随着速度的减小,牵引力逐渐增大,根据牛顿第二定律得知,汽车的加速度逐渐减小,做加速度减小的变加速运动.当汽车再次匀速运动时,牵引力与阻力再次平衡,大小相等,由P =Fv 得知,此时汽车的速度为原来的一半.故选A 、D .【答案】AD考点三 动能定理及其应用例3 如图所示,水平轨道BC 的左端与固定的光滑竖直14圆轨道相切于B 点,右端与一倾角为30°的光滑斜面轨道在C 点平滑连接(即物体经过C 点时速度的大小不变),斜面顶端固定一轻质弹簧,一质量为2 kg 的滑块从圆弧轨道的顶端A 点由静止释放,经水平轨道后滑上斜面并压缩弹簧,第一次可将弹簧压缩至D 点,已知光滑圆轨道的半径R =0.45 m ,水平轨道BC 长为0.4 m ,与滑块间的动摩擦因数μ=0.2,光滑斜面轨道上CD 长为0.6 m ,g 取10 m /s 2,求:(1)滑块第一次经过B 点时对轨道的压力大小;(2)整个过程中弹簧具有的最大弹性势能;(3)滑块在水平轨道BC 上运动的总时间及滑块最终停在何处?【解析】(1)滑块从A 点到B 点,由动能定理可得:mgR =12mv 2B-0 解得:v B =3 m /s滑块在B 点:F -mg =m v 2B R解得:F =60 N由牛顿第三定律可得:物块经过B 点时对轨道的压力F′=F =60 N(2)滑块第一次到达D 点时,弹簧具有最大的弹性势能E p滑块从A 点到D 点,设该过程弹簧弹力对滑块做的功为W ,由动能定理可得: mgR -μmgL BC -mgL CD sin 30°+W =0E p =-W解得:E p =1.4 J(3)将滑块在BC 段的运动全程看做匀减速直线运动,加速度a =μg =2 m /s 2则滑块在水平轨道BC 上运动的总时间t =v B a=1.5 s 滑块最终停止在水平轨道BC 间,设滑块在BC 段运动的总路程为s ,从滑块第一次经过B 点到最终停下来的全过程,由动能定理可得:-μmgs =0-12mv 2B解得s =2.25 m结合BC 段的长度可知,滑块最终停止在BC 间距B 点0.15 m 处(或距C 点0.25 m 处).【答案】(1)60 N (2)1.4 J (3)1.5 s 最终停止在距B 点0.15 m 处【方法总结】1.应用动能定理解题的基本思路:(1)确定研究对象和研究过程;(2)进行运动分析和受力分析,确定初、末速度和各力做功情况,利用动能定理对全过程或者分过程列式.2.动能定理的应用:(1)动能定理是根据恒力做功和直线运动推导出来的,但是也适用于变力做功和曲线运动.(2)在涉及位移和速度而不涉及加速度和时间问题时,常选用动能定理分析.变式训练3(多选)如图所示,光滑水平面上放着足够长的木板B ,木板B 上放着木块A ,A 、B 接触面粗糙.现用一水平拉力F 作用在B 上,使其由静止开始运动,用f 1表示B 对A 的摩擦力,f 2表示A 对B 的摩擦力,下列说法正确的有( )A .F 做的功一定等于A 、B 系统动能的增加量B .F 做的功可能大于A 、B 系统动能的增加量C .f 1对A 做的功等于A 动能的增加量D .f 2对B 做的功等于B 动能的增加量【解析】由于开始运动后,A 是否会相对于B 发生运动,从题中给出的条件不能判断.如果两者发生相对运动,对整体分析可知,F 做功转化为两个物体的动能及系统的内能,故F 做的功会大于AB 系统动能的增加量,A 错误,B 正确;由动能定理可知,f 1对A 做的功等于A 动能的增加量,C 正确;f 2对B 做负功和拉力做功的总功等于B 动能的增加量,D错误.【答案】BC【方法总结】在分析A、B组成的系统的动能变化时,既要考虑外力做功,也要考虑内力做功,由于内力是一对相互作用的摩擦力,若为静摩擦力,对系统不做功.若为滑动摩擦力,对系统恒做负功.所以外力做功要加上一个负功,才等于系统的动能增量,故外力做功大于等于系统的动能增量.变式训练4课间,小白同学在足够大的水平桌面上竖直放置了一块直角三角板,然后将一长L=15 cm的直尺靠在三角板上距水平桌面高h=9 cm处的A点,下端放在水平桌面上的B点,让另一同学将一物块从直尺顶端由静止释放,最终物块停在水平桌面上的C点(图中未画出),测得B、C间的距离x1=13 cm.改变直尺一端在三角板上放着点的位置,物块仍从直尺顶端由静止释放,物块在水平桌面上停止的位置离三角板底端O的距离x会发生变化.已知物块与水平桌面间的动摩擦因数μ1=0.6,不计物块通过B点时的机械能损失,求:(1)物块与直尺间的动摩擦因数μ2;(2)改变直尺一端在三角板上放置点的位置,物块从直尺顶端由静止释放后在水平桌面上停止的位置离三角板底端O的最大距离x m.【解析】(1)由动能定理可知mgh=μ2mg cos∠ABO×L+μ1mgx1由几何关系可知cos∠ABO=AB2-AO2L=45解得物块与直尺之间的动摩擦因数μ2=0.1(2)设直尺与水平方向的夹角为θ,由动能定理可知,mg sinθ×L=μ2mg cosθ×L+μ1mgx2木块在水平桌面上停止的位置离三角板底端O的距离x=L cosθ+x2代入数据可得x =25⎝⎛⎭⎫sin θ+12cos θcm 可得最大距离x m =2552cm 【答案】(1)0.1 (2)2552cm 【p 123】A 组1.如图所示,两个完全相同的小球分别从水平地面上A 点和A 点正上方的O 点抛出,O 点抛出小球做平抛运动,A 点斜抛出的小球能达到的最高点与O 点等高,且两球同时落到水平面上的B 点,关于两球的运动,下列说法正确的是( )A .两小球应该是同时抛出B .两小球着地速度大小相等C .两小球着地前瞬间时刻,重力的瞬时功率相等D .两小球做抛体运动过程重力做功相等【解析】斜抛运动在竖直方向的分运动是竖直上抛运动,根据竖直上抛运动的时间对称性,可知斜抛物体的运动时间是下降时间的两倍,而由于斜抛物体的最高点与另一小球的抛出点的高度一样,则可知做斜抛运动的小球运动时间是做平抛运动的小球运动时间的两倍,要使两小球同时落地,两小球不能同时抛出,故A错误;由前面的分析可知两小球落地时竖直方向的分速度大小相等,由于水平方向均做匀速直线运动,且两小球水平的分位移一样,根据x=v t结合时间关系可知,做斜抛运动的小球在水平的分速度大小为做平抛运动的小球在水平方向的分速度的一半,根据v=v20+v2y可知两小球落地时速度大小不相等,故B错误;设小球落地时,速度与水平方向的夹角为α,根据瞬时功率公式可得小球落地时,重力的瞬时功率为P=mg v cos(90°-α)=mg v sin α=mg v y,由前面的分析可知,两小球落地时重力的瞬时功率相等,故C正确;做斜抛运动的小球初、末两位置的高度差为0,则可知重力做功为0,而做平抛运动的小球的初、末两位置的高度差不为0,即重力做功不为0,故两小球运动过程中重力做功不相等,故D错误.【答案】C2.(多选)如图所示,某中学科技小组制作了利用太阳能驱动小车的装置.当太阳光照射到小车上方的光电板时,光电板中产生的电流经电动机带动小车前进.小车在平直的公路上由静止开始匀加速行驶,经过时间t,速度为v时功率达到额定功率,并保持不变;小车又继续前进了距离s,达到最大速度v m.设小车的质量为m,运动过程所受阻力恒为f,则()A.小车的额定功率为f v mB .小车的额定功率为f vC .小车做匀加速直线运动时的牵引力为f +m v tD .小车速度由零至v m 的过程中,牵引力做功为12m v 2m +f ⎝⎛⎭⎫s +v t 2 【解析】小车匀加速行驶时,牵引力不变,电动机的功率随着小车速度的增大而增大,当达到额定功率时,以额定功率行驶,做加速度逐渐减小的加速运动,最终当牵引力等于阻力时,速度达到最大,所以额定功率P =f v m ,故A 正确,B 错误;小车做匀加速直线运动加速度a =v t ,根据牛顿第二定律知F -f =ma ,联立解得F =f +m v t,故C 正确;根据动能定理知:W -f (s +12v t )=12m v 2m-0,小车速度由零至v m 的过程中,牵引力做功为W =12m v 2m +f ⎝⎛⎭⎫s +v t 2,故D 正确. 【答案】ACD3.如图所示,某足球运动员在罚点球时,球被踢出后水平垂直击中球门横梁的中点,已知足球的质量为450 g ,罚球点离球门线的距离为11 m ,球门高2.44 m ,忽略空气的作用,g 取10 m/s 2,则该运动员在罚点球时对足球做的功最接近( )A .280 JB .200 JC .120 JD .70 J【解析】将运动视为逆向的平抛运动,则h =12gt 2,x =v 0t ,解得最高点速度v 0=x g 2h≈15.75 m/s ,此时机械能E =mgh +12m v 20=0.45×10×2.44 J +12×0.45×15.752 J ≈66.79 J ,根据功能关系知末状态机械能近似等于运动员做的功,故D 正确.【答案】D4.如图所示,一足够长的木板在光滑水平面上以速度v 向右匀速运动,现将质量为m 的物体竖直向下轻轻地放置在木板上的右端,已知物体和木板之间的动摩擦因数为μ.为保持木板的速度不变,须对木板施一水平向右的作用力F .从物体放到木板上到它相对木板静止的过程中,力F 做的功为( )A.m v 24B.m v 22C .m v 2D .2m v 2【解析】物体和木板之间的摩擦力f =μmg ,对于木板,要保持速度v 不变,有F =f =μmg .对于物体,根据牛顿第二定律:μmg =ma ,解得:a =μg ,物体做匀加速直线运动,有t =v a =v μg ,此时木板的位移s =v t =v 2μg ,水平向右的作用力F 做功:W =Fs =μmg ·v 2μg =m v 2,故C 正确,A 、B 、D 错误.【答案】C5.如图所示,一半径为R ,粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )A .W =12mgR ,质点恰好可以到达Q 点 B .W >12mgR ,质点不能到达Q 点 C .W =12mgR ,质点到达Q 后,继续上升一段距离 D .W <12mgR ,质点到达Q 后,继续上升一段距离【解析】根据动能定理可得P 点动能E k P =mgR ,经过N 点时,半径方向的合力提供向心力,可得4mg -mg =m v 2N R ,所以N 点动能为E k N =3mgR 2,从P 点到N 点根据动能定理可得mgR -W =3mgR 2-mgR ,即克服摩擦力做功W =mgR 2.质点运动过程,半径方向的合力提供向心力即F N -mg sin θ=ma =m v 2R,根据左右对称,在同一高度,由于摩擦力做功导致右半部分的速度小,轨道弹力变小,滑动摩擦力f =μF N 变小,所以摩擦力做功变小,那么从N 到Q ,根据动能定理,Q 点动能E k Q =3mgR 2-mgR -W ′,由于W ′<mgR 2,所以Q 点速度仍然没有减小到0,仍会继续向上运动一段距离,对照选项C 对.【答案】C6.(多选)2022年第24届冬季奥林匹克运动会将在中国举行,跳台滑雪是其中最具观赏性的项目之一.跳台滑雪赛道可简化为助滑道、着陆坡、停止区三部分,如图所示.一次比赛中,质量m 的运动员从A 处由静止下滑,运动到B 处后水平飞出,落在了着陆坡末端的C 点,滑入停止区后,在与C 等高的D 处速度减为零.已知B 、C 之间的高度差为h ,着陆坡的倾角为θ,重力加速度为g .只考虑运动员在停止区受到的阻力,不计其他能量损失.由以上信息可以求出( )A .运动员在空中飞行的时间B .A 、B 之间的高度差C .运动员在停止区运动过程中克服阻力做功D .C 、D 两点之间的水平距离【解析】设运动员在空中飞行的时间为t ,根据平抛运动的规律,y =h =12gt 2,解得:t =2h g ,故A 正确;水平方向x =v t ,由几何关系可得,y x =tan θ,代入数据解得v =1tan θgh 2,从A 到B 由动能定理得:mgh AB =12m v 2,h AB =h 4tan 2θ,故B 正确;设到C 的速度为v C ,从B 到C 的过程由动能定理得:mgh =12m v 2C -12m v 2,可求得到C 的速度v C ,从C 到D 的过程由动能定理得:-W 克f =0-12m v 2C,则克服阻力做功可求解,故C 正确;运动员在C 、D 两点之间做变速曲线运动,两点之间的水平距离无法求解,故D 错误.【答案】ABC7.如图所示,14圆弧轨道AB 被竖直固定,其下端点B 的切线水平.现将可视为质点的质量为m =1 kg 的小球从A 点由静止释放,小球从B 点冲出后,最终打在右方的竖直墙上的C 点(未画出),在C 点的速度方向与水平方向夹角为37°,已知B 端与墙壁的水平距离为l =0.3 m ,不计一切摩擦和阻力,g =10 m/s 2,则下列说法正确的是( )A .圆弧轨道的半径为0.02 mB .小球在轨道最低点B 对轨道的压力大小为10 NC .从A 到C 的整个过程中,重力的功率先减小后增加D .在C 点的动能为3.125 J【解析】设在B 点是速度为v B ,在C 点的速度为v C ,小球从B 点抛出后做平抛运动,水平方向有:l =v B t ,即 0.3=v B t ,竖直方向有:v Cy =gt ,根据速度夹角关系知:tan 37°=v Cy v B =gt 0.3t=gt 20.3=34,解得:t =320s ,v B =2 m/s ,由A 到B ,由机械能守恒定律可得mgR =12m v 2B ,R =v 2B 2g =2×220 m =0.2 m ,故A 错误;在B 点有N -mg =m v 2B R,所以小球对轨道的压力N =mg +m v 2B R =⎝⎛⎭⎫1×10+1×2×20.2N =30 N ,故B 错误;在A 点,因为速度为零,所以重力的功率为零,在B 点,速度和重力垂直,故在B 点重力的功率为零,所以A 到B 重力的功率先增大后减小,B 到C ,重力的功率逐渐增大,故C 错误.在C 点根据速度关系v C =v B cos 37°=20.8m/s =2.5 m/s ,动能E k =12m v 2C =12×1×2.5×2.5 J =3.125 J ,故D 正确. 【答案】DB 组8.(多选)质量为m 的小球穿在足够长的水平直杆上,小球与杆之间的动摩擦因数为μ,受到方向始终指向O 点的力F 作用,且F =ks ,k 为比例系数,s 为小球和O 点的距离.小球从a 点由静止出发恰好运动到d 点;小球在d 点以初速度v 0向a 点运动,恰好运动到b 点.已知Oc 垂直于杆且c 为垂足,b 点为ac 的中点,Oc =d ,cd =bc =l .不计小球的重力,下列说法正确的是( )A .小球从a 运动到d 的过程中只有两个位置F 的功率为零B .小球从a 运动到b 的过程与从b 运动到c 的过程克服摩擦力做功相等C .v 0=2μkdl mD .小球在d 的速度至少要2v 0才能运动到a 点【解析】小球从a 运动到d 的过程中,在a 点、d 点速度为零,拉力的功率为零,在c 点拉力的方向和速度方向垂直,功率为零,有三处,A 错误;因为不计小球的重力,所以F 在垂直杆方向上的分力即为小球与杆之间的正压力,N =F sin θ(θ为力F 与杆之间的夹角),故摩擦力F f =μN =μF sin θ,从a 到b 克服摩擦力做功为W f 1=μF sin θ·l =μk ()s ·sin θ·l =μkdl ,同理从b 到c 克服摩擦力做功为W f 2=μF sin θ·l =μk ()s ·sin θ·l =μkdl ,B 正确;根据动能定理可得μF sin θ·2l =2μk (s ·sin θ)·l =2μkdl =12m v 20,解得v 0=2μkdl m ,C 正确;设在d 点的速度为v ,恰好能运动到a 点,根据动能定理可得12m v 2=W F +3μkdl ,而W F =3μkdl ,联立v 0=2μkdl m,解得v =3v 0,D 错误.【答案】BC9.如图所示,某生产厂家为了测定该厂所生产的玩具车的性能,将两个完全相同的玩具车A 、B 并排放在两平行且水平的轨道上,分别通过挂钩连接另一个与玩具车等质量的货车(无牵引力),控制两车以相同的速度v 0做匀速直线运动.某时刻,通过控制器使两车的挂钩断开,玩具车A 保持原来的牵引力不变,玩具车B 保持原来的输出功率不变,当玩具车A 的速度为2v 0时,玩具车B 的速度为1.5v 0,则( )A .在这段时间内两车的位移之比为6∶5B .玩具车A 的功率变为原来的4倍C .两车克服阻力做功的比值为12∶11D .两车牵引力做功的比值为5∶1【解析】设挂钩断开瞬间的牵引力为F ,车受的摩擦力大小f =F 2,对玩具车A 分析有Fx 1-fx 1=12m (2v 0)2-12m v 20=32m v 20;对玩具车B 分析有Pt -fx 2=12m (1.5v 0)2-12m v 20=58m v 20,已知P =F v 0,对玩具车A 分析由动量定理得:(F -f )t =2m v 0-m v 0,x 1=v 0+2v 02t ,解得:x 1∶x 2=12∶11,故A 错;克服阻力做功W f =fx ,则W f 1W f 2=x 1x 2=1211,故C 正确;牵引力做功W A =Fx 1=3m v 20,W B =Pt =2m v 20,得W A W B =32,故D 错;由P A =F ·2v 0=2P ,故B 错. 【答案】C10.如图为某课外活动小组模拟高铁动车编组实验,假设动车组是由动车和拖车编组而成,只有动车提供动力.该模拟列动车组由10节车厢组成,其中第1节和第6节车厢为动车,每节动车的额定功率均为P ,每节车厢的总质量均为m ,动车组运行过程中所受阻力为车重的k 倍.若动车组以额定功率沿水平方向做直线运动,经时间t 速度达到最大.重力加速度为g ,求:(1)当动车组速度达到最大速度一半时的加速度大小和此时第7节车厢对第8节拉力大小;(2)动车组从启动至速度刚达到最大的过程中所通过的路程.【解析】(1)设动车组最大速度为v m ,则:2P =10kmg v m解得:v m =P 5kmg当v =v m 2时,2P =F v ,F =20kmg 由牛顿第二定律得:F -10kmg =10ma解得:a =kg ,以8、9、10三节车厢为研究对象,由牛顿第二定律得:F ′-3kmg =3ma ,解得:F ′=6kmg .(2)由动能定律得:2Pt -10kmgx =12×10m v 2m 解得:x =Pt 5kmg -P 250k 3m 2g 3. 【答案】(1)kg 6kmg (2)Pt 5kmg -P 250k 3m 2g 311.由学生组成的一个课题小组,在研究变力做功时,设计了如下的模型:如图甲,在水平地面上放置一个质量为m =5 kg 的物体,让其在随位移均匀减小的水平推力作用下运动,推力F 随位移x 变化的图象如图乙所示,已知物体与地面之间的动摩擦因数为μ=0.4,g =10 m/s 2.(1)画出0~4 m 内物体加速度a 随位移x 变化的图象;(2)物体速度最大时推力的功率为多少?(3)推力F 减为零后物体还能滑行多远?【解析】(1)由牛顿运动定律得:F -f =ma得:a =F -f m当F =100 N ,x =0时,a =16 m/s 2当F =f =20 N 时,a =0,x =3.2 mF =0 N 时,x =4 m ,a =-4 m/s 2图象如图所示.(2)由题图可得推力F 随位移x 的变化关系式为:F =100-25x (N)又当物体速度最大时,物体加速度为0所以:此时F ′=f =μmg解得:x =3.2 m 此时推力F ′=20 N物体从开始到速度最大时,由动能定理得:W F -μmgx =12m v 2m由F -x 图象的物理意义得:W F =S 面积=12×(20+100)×3.2 J =192 J 代入数据得:v m =1655 m/s 此时推力的功率:P =F ′v m =20×165 5 W =64 5 W (3)由题图可知推力为零时的位移x =4 m W 总=12×100×4 J =200 J 由动能定理得:W 总-fx 总=0-0解得x 总=10 mx ′=x 总-x =6 m故物体还能滑行6 m【答案】(1)见解析图 (2)64 5 W (3)6 m第2讲机械能守恒定律功能关系【p28】【p28】1.机械能守恒的判断(1)利用机械能守恒的定义判断;(2)利用做功判断;(3)利用能量转化判断;(4)对于绳突然绷紧和物体间非弹性碰撞问题,机械能往往不守恒.2.功能关系(1)重力的功等于__重力势能增量__的负值W G=-ΔE p;(2)电场力的功等于__电势能增量__的负值W电=-ΔE p′;(3)弹簧弹力的功等于__弹性势能增量__的负值W弹=-ΔE p″;(4)合外力的功等于__动能的变化__W合=ΔE k;(5)一对滑动摩擦力做的总功等于__系统内能__的变化fx相对=ΔE内=Q;(6)除重力和弹簧弹力之外的力做功等于__物体机械能__的变化,W其他=ΔE;(7)电流做的功等于其他能量的增量IUt=ΔE′;(8)安培力做功等于电能与机械能的转化.【p28】。

2020届高三物理二轮复习第二篇题型专项突破:计算题标准练(三):含解析

2020届高三物理二轮复习第二篇题型专项突破:计算题标准练(三):含解析

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

计算题标准练(三)满分32分,实战模拟,20分钟拿下高考计算题高分!1.(12分)两质量分别为M1和M2的劈A和B,高度相同,放在光滑水平面上,A和B的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示,一质量为m的物块位于劈A的倾斜面上,距水平面的高度为h。

物块从静止滑下,然后又滑上劈B。

求物块在B上能够达到的最大高度。

【解析】设物块到达劈A的底端时,物块和A的速度大小分别为v和V,由机械能守恒和动量守恒得mgh=mv2+M1V2①(2分)M1V=mv ②(2分)设物块在劈B上达到的最大高度为h',此时物块和B的共同速度大小为V',由机械能守恒和动量守恒得mgh'+(M2+m)V'2=mv2③(2分)mv=(M2+m)V' ④(2分)联立①②③④式得h'=h ⑤(4分)答案:h2.(20分)如图甲所示,灯丝K可以连续逸出不计初速度的电子,在KA间经大小为U的加速电压加速后,从A板中心小孔射出,再从M、N两极板的正中间以平行极板的方向进入偏转电场。

M、N两极板长为L,间距为L。

如果在两板间加上如图乙所示的电压U MN,电子恰能全部射入如图所示的匀强磁场中。

不考虑极板边缘的影响,电子穿过平行板的时间极短,穿越过程可认为板间电压不变,磁场垂直纸面向里且范围足够大,不考虑电场变化对磁场的影响。

已知电子的质量为m,电荷量为e,不计电子的重力及它们之间的相互作用力。

求:(1)偏转电场电压U MN的峰值。

(2)已知在t=时刻射入偏转电场的电子恰好能返回板间,求匀强磁场的磁感应强度B的大小。

(3)从电子进入偏转电场开始到离开磁场的最短时间是多少?【解析】(1)电子在经过加速电场过程中,根据动能定理可得eU=m①由题意可知在偏转电压出现峰值时进入的电子恰好沿极板边缘飞出电场L=at2②a=③L=v0t ④联立上式可得U m=U(2)设在t=时刻进入偏转电场的电子离开电场时速度大小为v,v与v0之间夹角为θ, tanθ==·=⑤所以θ=30°v0=vcosθ⑥电子垂直进入磁场洛伦兹力充当向心力evB=⑦根据几何关系2Rcosθ=L ⑧解得B=或B=⑨(3)电子在偏转电场中运动历时相等,设电子在磁场中做圆周运动的周期为T,经N板边缘飞出的电子在磁场中运动时间最短,在磁场中飞行时间为T=联立①④⑥⑧可得t min=+=L(1+)答案:(1)U (2)或(3)L(1+)关闭Word文档返回原板块。

高三物理二轮复习 第二篇 题型分类练 计算题标准练(四)

高三物理二轮复习 第二篇 题型分类练 计算题标准练(四)

计算题标准练(四)满分32分,实战模拟,20分钟拿到高考计算题高分!1.(12分)如图甲所示,弯曲部分AB和CD是两个半径相等的圆弧,中间的BC段是竖直的薄壁细圆管(细圆管内径略大于小球的直径),分别与上下圆弧轨道相切连接,BC段的长度L可作伸缩调节。

下圆弧轨道与地面相切,其中D、A分别是上下圆弧轨道的最高点与最低点,整个轨道固定在竖直平面内。

一小球多次以某一速度从A点水平进入轨道而从D点水平飞出。

今在A、D两点各放一个压力传感器,测试小球对轨道A、D 两点的压力,计算出压力差ΔF。

改变BC的长度L,重复上述实验,最后绘得的ΔF-L图像如图乙所示。

(不计一切摩擦阻力,g取10m/s2)(1)某一次调节后,D点的离地高度为0.8m,小球从D点飞出,落地点与D点的水平距离为2.4m,求小球经过D点时的速度大小。

(2)求小球的质量和弯曲圆弧轨道的半径。

【解析】(1)小球在竖直方向做自由落体运动,有:H D=gt2,在水平方向做匀速直线运动,有:x=v D t,得:v D===6m/s。

(2)设轨道半径为r,A到D过程机械能守恒,有:m=m+mg(2r+L), ①在A点:F A-mg=m, ②在D点:F D+mg=m, ③由①②③式得:ΔF=F A-F D=6mg+2mg;由图像纵截距得:6mg=12N,得m=0.2kg;当L=0.5m时,ΔF=17N,解得:r=0.4m。

答案:(1)6m/s(2)0.2kg 0.4m2.(20分)如图所示,质量为m的导体棒垂直放在光滑、足够长的U形导轨底端,导轨宽度和棒长相等且接触良好,导轨平面与水平面成θ角。

整个装置处在与导轨平面垂直的匀强磁场中。

现给导体棒沿导轨向上的初速度v0,经时间t0,导体棒到达最高点,然后开始返回,到达底端前已做匀速运动,速度大小为。

已知导体棒的电阻为R,其余电阻不计,重力加速度为g,忽略电路中感应电流之间的相互作用。

求:(1)导体棒从开始到返回底端的过程中回路中产生的电能E。

2020届高考物理课标版二轮复习训练题:基础回扣3三、功和能

2020届高考物理课标版二轮复习训练题:基础回扣3三、功和能

知识点 2 动能定理
基础回扣 1.公式 W 合=ΔEk 中“=”体现的三个关系
2.动能定理与图像结合的问题 (1)解决物理图像问题的基本步骤 ①观察题目给出的图像,弄清纵坐标、横坐标所对应的物理量及图线所表示 的物理意义。 ②根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式。 ③将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出 图线的斜率、截距、图线的交点、图线与坐标轴所围面积所对应的物理意义,根 据对应关系列式解答问题。 (2)四类图像所围“面积”的含义
三、功和能
知识点 1 功和功率
基础回扣 1.功的公式:W=Fl cos α,其中 F 为恒力,α 为 F 的方向与位移 l 方向的夹角;功
的单位:焦耳(J);功是标量。 2.功的正负判断 (1)根据力和位移方向之间的夹角判断。此法常用于恒力做功的判断。 (2)根据力和瞬时速度方向的夹角判断。此法常用于判断质点做曲线运动时
能量关系
对应的能量
变化情况
重力势能 Ep
减小 增加
弹性势能 Ep
减小 增加
电势能 Ep
减小 增加
内能 Q
增加
电能 E 电 动能 Ek 机械能 E
增加 减小பைடு நூலகம்增加 减小 增加
减小
数量 关系式 mgh=-ΔEp W 弹=-ΔEp qU=-ΔEp Ffs 相对= Q W 安=-ΔE 电 W 合=ΔEk
WF=ΔE
而出错。 3.应用机械能守恒定律时,不能正确理解三种表达方式的意义。
知识点 4 功能关系
基础回扣 1.功能关系
常见的几种力做功
力的种类
做功的正负
+ 重力 mg
-
弹簧的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算题标准练(三)
满分32分,实战模拟,20分钟拿到高考计算题高分!
1.(12分)如图所示,在倾角为θ=37°的足够长固定斜面底端,一质量m=1kg的小物块以某一初速度沿斜面上滑,一段时间后返回出发点。

物块上滑所用时间t1和下滑所用时间t2大小之比为t1∶t2=1∶,g取10m/s2,sin37°=0.6,cos37°=0.8。

求:
(1)物块由斜面底端上滑时的初速度v1与下滑到底端时的速度v2的大小之比。

(2)物块和斜面之间的动摩擦因数。

(3)若给物块施加一大小为5N、方向与斜面成适当角度的力,使物块沿斜面向上加速运动,求加速度的最大值。

【解析】(1)设物块上滑的最大位移为L,根据运动学公式,
上滑过程:L=t1;
下滑过程:L=t2;
整理得:v1∶v2=∶1
(2)设上滑时加速度为a1,下滑时加速度为a2,
根据牛顿第二定律得,上滑时:
mgsinθ+μmgcosθ=ma1;
下滑时:mgsinθ-μmgcosθ=ma2;
由位移时间公式得:L=a1=a2;
联立三式代入数据得:μ=0.5
(3)设F与斜面的夹角为α,加速度为a,由牛顿第二定律得:
Fcosα-mgsinθ-μ(mgcosθ-Fsinα)=ma,
即:F(cosα+μsinα)-mg(sinθ+μcosθ)= ma,整理得:
F(cosα+sinα)-mg(sinθ+μcosθ)=ma
令tanβ=,则:F sin(α+β)-mg(sinθ+μcosθ)=ma
当sin(α+β)的最大值为1时,加速度的值达到最大,设最大值为a m,
则F-mg(sinθ+μcosθ)=ma m;
代入数据得:a m=2.5m/s2。

答案:(1)∶1 (2)0.5 (3)2.5m/s2
2.(20分)如图所示,在xOy坐标系中,坐标原点O处有一点状的放射源,它向xOy平面内的x轴上方各个方向发射α粒子,α粒子的速度大小均为v0,在0<y<d的区域内分布有指向y轴正方向的匀强电场,场强大小
为E=,其中q与m分别为α粒子的电量和质量;在d<y<2d的区域内分布有垂直于xOy平面向里的匀强磁场,mn为电场和磁场的边界。

ab为一块很大的平面感光板垂直于xOy平面且平行于x轴,放置于y=2d 处,如图所示。

观察发现此时恰好无粒子打到ab板上(不考虑粒子的重力及粒子间的相互作用),求:
(1)α粒子通过电场和磁场边界mn时的速度大小及距y轴的最大距离。

(2)磁感应强度B的大小。

(3)将ab板至少向下平移多大距离才能使所有的粒子均能打到板上?此时ab板上被α粒子打中的区域的长度是多少?
【解析】(1)根据动能定理:qEd=mv2-m;可得:v=2v0
初速度方向与x轴平行的粒子通过边界mn时距y轴最远,由类平抛知识:d=at2;Eq=ma;x=v0t;
解得:x=d。

(2)根据上述结果可知:对于沿x轴正方向射出的粒子,进入磁场时与x轴正方向夹角θ=,
若此粒子不能打到ab板上,则所有粒子均不能打到ab板,因此此粒子轨迹必与ab板相切,
可得其圆周运动的半径:r=d;
又根据洛伦兹力提供向心力:qvB=m;
可得:B=
(3)由分析可知沿x轴负方向射出的粒子若能打到ab板上,则所有粒子均能打到板上;其临界情况就是此粒子轨迹恰好与ab板相切。

由分析可知此时磁场宽度为原来的;
则:ab板至少向下移动Δy=d。

沿x轴正方向射出的粒子,打在ab板区域的右边界,由几何知识可知:
ab板上被粒子打中区域的长度:
L=2x+r=d+d。

答案:(1)2v0 d
(2)(3) d d+ d。

相关文档
最新文档