函数在闭区间上的最值问题

合集下载

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题

龙源期刊网
二次函数在闭区间上的最值问题
作者:宋验兵
来源:《新课程·教研版》2011年第14期
摘要:二次函数f(x)=ax2+bx+c(a≠0)在闭区间[p,q]上的最值问题实质是利用函
数的单调性,就对称轴与区间的“定”“动”关系,分类解析
关键词:定轴定区间;定轴动区间;动轴定区间;动轴动区间
二次函数f(x)=ax2+bx+c(a≠0)在闭区间[p,q]上的最值问题是二次函数的重要题
型之一,求解的关键是判断对称轴和区间的位置关系,其实质是利用函数的单调性。

现就对称轴与区间的“定”“动”关系,分类解析如下:
一、定轴定区间
例1.已知函数f(x)=2x2+x-3,求f(x)在[-1,2]上的最值。

函数专题:二次函数在闭区间上的最值问题-【题型分类归纳】

函数专题:二次函数在闭区间上的最值问题-【题型分类归纳】

函数专题:二次函数在闭区间上的最值问题一、二次函数的三种形式1、一般式:()()20=++≠f x ax bx c a2、顶点式:若二次函数的顶点为(),h k ,则其解析式为()()()20=-+≠f x a x h k a 3、两根式:若相应一元二次方程20++=ax bx c 的两个根为1x ,2x ,则其解析式为()()()()120=--≠f x a x x x x a二、二次函数在闭区间上的最值二次函数在区间上的最值,核心是函数对称轴与给定区间的相对位置讨论, 一般为:对称轴在区间的左边、中间、右边三种情况.设()()20=++≠f x ax bx c a ,求()f x 在[],∈x m n 上的最大值与最小值。

将()f x 配方,得顶点为24,24⎛⎫-- ⎪⎝⎭b ac b a a ,对称轴为2=-b x a (1)当[],2-∈bm n a时, ()f x 的最小值为2424-⎛⎫-=⎪⎝⎭b ac bf a a , ()f x 的最大值为()f m 与()f n 中的较大值; (2)[],2-∉bm n a时, 若2-<bm a,由()f x 在[],m n 上是增函数,则()f x 的最小值为()f m ,最大值为()f n ;若2->bn a,由()f x 在[],m n 上是减函数,则()f x 的最小值为()f n ,最大值为()f m ;三、二次函数在闭区间上的最值类型1、定轴定区间型:即定二次函数在定区间上的最值,其区间和对称轴都是确定的,要将函数配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求其最值(可结合图象);2、动轴定区间型:即动二次函数在定区间上的最值,其区间是确定的,而对称轴是变化的,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分类讨论,再利用二次函数的示意图,结合其单调性求解;3、定轴动区间型:即定二次函数在动区间上的最值,其对称轴确定而区间在变化,只需对动区间能否包含抛物线的定点横坐标进行分类讨论;4、动轴动区间型:即动二次函数在动区间上的最值,其区间和对称轴均在变化,根据对称轴在区间的左、右两侧和穿过区间这三种情况讨论,并结合图形和单调性处理。

高一数学复习考点知识与题型讲解12---二次函数在闭区间上的最值问题

高一数学复习考点知识与题型讲解12---二次函数在闭区间上的最值问题

高一数学复习考点知识与题型讲解第12讲二次函数在闭区间上的最值问题二次函数在闭区间上的最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论.一般分为:对称轴在区间的左边,中间,右边三种情况.设,求在上的最大值与最小值.分析:将配方,得顶点为、对称轴为;当时,它的图象是开口向上的抛物线,数形结合可得在上的最值:(1)当时,的最小值是的最大值是中的较大者.(2)当时,由在上是增函数,则的最小值是,最大值是.(3)当时,由在上是减函数,则的最大值是,最小值是.当时,可类比得结论.【题型一】定轴动区间已知是二次函数,不等式的解集是,且在区间上的最大值是.(1)求的解析式;(2)设函数在上的最小值为,求的表达式.【解析】(1)是二次函数,且的解集是,可设-.(待定系数法,二次函数设为交点式)在区间-上的最大值是.由已知得,,-.(2)由(1)得,函数图象的开口向上,对称轴为(讨论对称轴与闭区间的相对位置)①当时,即时,在上单调递减,(对称轴在区间右侧)此时的最小值;②当时,在上单调递增,(对称轴在区间左侧)此时的最小值;③当时,函数在对称轴处取得最小值(对称轴在区间中间)此时,-综上所述,得的表达式为:.【点拨】①利用待定系数法求函数解析式;②对于二次函数,对称轴是确定的,而函数的定义域不确定,则按照对称轴在区间的“左、中、右”分成三种情况进行讨论.【题型二】动轴定区间求在区间上的最大值和最小值.【解析】的对称轴为.①当时,如图①可知,在上递增,,.②当时,在上递减,在上递增,而,(此时最大值为和中较大者)当时,,如图,当时,,如图③,③当时,由图④可知,在上递减,,.综上所述,当时,,;当时,,;当时,,;当时,,.【点拨】①题目中的函数的对称轴是不确定的,定义域是确定的,在求最小值时与“定轴动区间”的思考一样分对称轴在区间的“左、中、右”分成三种情况(即)进行讨论.②在求最大值时,当,还需要判断和时谁离对称轴更远些,才能确定、哪个是最大值,则还有分类;【题型三】逆向题型已知函数在区间上最大值为,求实数的值.【解析】若,(注意函数不一定是二次函数)则而在上的最大值,(2)若则的对称轴为,则的最大值必定是、、这三数之一,若,解得,此时而为最大值与为最大值矛盾,故此情况不成立.若,解得,此时而距右端点较远,最大值符合条件,.若,解得,当时,,则最大值不可能是;当时,此时最大值为,;综上所述或【点拨】本题没有按照分对称轴在定义域的“左、中、右”分离讨论,否则计算量会很大,还要考虑开口方向呢.思路是最大值必定是、、这三数之一,那逐一讨论求出值后再检验就行.巩固练习1 (★★) 已知函数.当时,求函数在区间上的值域;当时,求函数在区间上的最大值;求在上的最大值与最小值.【答案】(1) (2) ;(3)时, 最小值为,最大值为;时,最小值为,最大值为.时,最大值为,最小值为.【解析】(1)当时,,函数在--上单调递减,在-上单调递增,-,,,,函数在区间上的值域是;(2)当时,,,函数在区间上的最大值;,函数在区间上的最大值;函数在区间上的最大值;(3)函数的对称轴为,①当,即时,函数在-上是增函数,当时,函数y取得最小值为;当时,函数取得最大值为.②当,即时,当时,函数取得最小值为;当时,函数取得最大值为.③当-,即-时,-a时,函数取得最小值为-;当-时,函数取得最大值为-.④当-,即-时,函数在-上是减函数,故当-时,函数取得最大值为-;当时,函数取得最小值为.2(★★) 已知函数.(1)若,求在上的最大值和最小值;(2)若在为单调函数,求的值;(3)在区间上的最大值为4,求实数的值.【答案】(1)最大值是,最小值(2)或(3)或【解析】(1)时,;在-上的最大值是,最小值是-;(2)在为单调函数;区间-在f(x)对称轴-的一边,即--,或-;或-;-(3)-,中必有一个最大值;若---;--,符合-最大;若,;,符合最大;或.3(★★) 已知函数在上恒大于或等于,其中实数求实数的范围.【答案】【解析】若时,在上是减函数,即则条件成立,令(Ⅰ)当时,即则函数在上是增函数,=即,解得或,(Ⅱ)当即若解得与矛盾;(2)若时即解得与矛盾;综上述:.4(★★★)已知函数在区间上的最小值是,最大值是,求的值.【答案】【解析】解法1:讨论对称轴中与的位置关系。

最大值最小值问题

最大值最小值问题

bx o a
bx o a
bx
(3) y f ( x)的最大值、最小值一定在 f ' ( x) 0或f ' ( x)不存在的点及区间的端 点取得;
(4) 极大值、极小值是局部的概念,而 最大值、最小值是全局的概念。
步骤:
1.求驻点和不可导点;
2.求区间端点及驻点和不可导点的函数值,比 较大小,那个大那个就是最大值,那个小那个就 是最小值;
0.5公里
s(t ) A
B 4公里
解 (1)建立敌我相距函数关系
设 t 为我军从B处发起 追击至射击的时间(分).
0.5公里
s(t ) A
敌我相距函数 s(t)
B
s(t) (0.5 t)2 (4 2t)2
4公里
(2) 求s s(t)的最小值点.
s(t)
5t 7.5 .
(0.5 t)2 (4 2t)2
令s(t) 0,
得唯一驻点 t 1.5. 故得我军从B处发起追击后 1.5 分钟射击最好.
实际问题求最值应注意:
(1)建立目标函数; (2)求最值;
若目标函数只有唯一驻点,则该点的 函数值即为所求的最大(或最小)值.
例3 某房地产公司有50套公寓要出租,当租金定 为每月180元时,公寓会全部租出去.当租 金每月增加10元时,就有一套公寓租不出去, 而租出去的房子每月需花费20元的整修维护 费.试问房租定为多少可获得最大收入?
f (2) 34;
f (1) 7;
f (4) 142;
y 2x3 3x2 12x 14
比较得 最大值 f (4) 142,最小值 f (1) 7.
例2 敌人乘汽车从河的北岸A处以1千米/分钟 的速度向正北逃窜,同时我军摩托车从河的 南岸B处向正东追击,速度为2千米/分钟.问 我军摩托车何时射击最好(相距最近射击最 好)?

人教高中数学必修一3.《二次函数在闭区间上的最值问题》课件

人教高中数学必修一3.《二次函数在闭区间上的最值问题》课件
二次函数在闭区间上的最值问题
【教学过程】
一、复习旧知,导入新课
1、二次函数的图像是什么形状?
( 请

2、二次函数的性质有哪些?


3、二次函数一般式如何转化为顶点式?
答 )
上节课我们学习了定义域为实数的函数的最
值问题。如果我们遇到指定闭区间上的函数求最值 或值域应该如何来做,这节课我们来研究这个问题。
的最值。
人教高中数学必修一3.《二次函数在 闭区间 上的最 值问题 》课件
人教高中数学必修一3.《二次函数在 闭区间 上的最 值问题 》课件
课堂小结
二次函数在闭区间上最值问题有三类: (1)定轴定区间;(2)定轴动区间;
(3)动轴定区间。本节课我们主要学习了 前两类,第一类一般要根据二次函数的图 像及单调性来求最值,第二类问题通常要 分对称轴在区间左、中、右三种情况讨论 来求最值。
学生观察并说出结果:
1
3
2
2
–1 0 1 2 3 4 x
当x= 1时, f(x)有最小值–4;
当x=
1 2
时,f(x)有最大值
7 4

例1、已知函数f(x)= x2 – 2x – 3.
(1)若x∈[–2,0],求函数f(x)的最值;
(2)若x∈[ 2,4],求函数f(x)的最值;
15
(3)若x∈[ , ],求函数f(x)的最值;
22 (4)若x∈[ 1 , 3 ],求
y
22
函数f(x)的最值;
三、知识深化,拓展研究
例1中将知识进行深化、迁移
t
t +2
–1 0 1 2 3 4 x
(5)若 x∈[t,t+2]时, 求函数f(x)的最小值.

例谈二次函数在闭区间上的最值问题

例谈二次函数在闭区间上的最值问题

例谈二次函数在闭区间上的最值问题作者:何英林来源:《中学教学参考·理科版》2010年第03期二次函数是高中数学中最基本也最重要的内容之一,而二次函数在某一区间上的最值问题,是初中二次函数内容的继续,随着区间的确定或变化,以及系数中参变数的变化,它又成为高考数学的热点.一、求定二次函数在定区间上的最值当二次函数的区间和对称轴都确定时,要将函数式配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求其最值.【例1】已知2x2≤3x,求函数f(x)=x2-x+1的最值.解:由已知2x2≤3x,可得0≤x≤32,即函数f(x)是定义在区间[0,32]上的二次函数,将二次函数配方得f(x)=(x-12)2+34,其图象开口向上,且对称轴方程x=12∈[0,32],故二、求动二次函数在定区间上的最值当二次函数的区间确定而对称轴变化时,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分别讨论,再利用二次函数的示意图,结合其单调性求解.【例2】已知二次函数f(x)=ax2+4ax+a2-1在区间[-4,1]上的最大值是5,求实数a的值.解:将二次函数配方得f(x)=a(x+2)2+a2-4a-1,其对称轴方程为x=-2,顶点坐标为(-2,a2-4a-1),图象开口方向由a决定,很明显,其顶点横坐标在区间[-4,1]上.若a2-4a-1=5,解得a=2-10(a=2+10舍去);若a>0,则函数图象开口向上,当x=1时,函数取得最大值5,即f(1)=5a+a2-1=5,解得a=1(a=-6舍去).综上讨论,函数f(x)在区间[-4,1]上取得最大值5时,a=2-10或a=1.三、求定二次函数在动区间上的最值当二次函数的对称轴确定而区间在变化时,只需对动区间能否包含抛物线的顶点的横坐标进行分类讨论.【例3】已知函数f(x)=-x2+8x,求f(x)在区间[t,t+1]上的最大值g(t).解:函数f(x)=-x2+8x=-(x-4)2+16,其对称轴方程为x=4,顶点坐标为(4,16),其图象开口向下.(1)当顶点横坐标在区间[t,t+1]右侧时,有t+12+8(t+1)=-t2+6t+7.(2)当顶点横坐标在区间[t,t+1]上时,有t≤4≤t+1,即3≤t≤4,当x=4时,g(t)=f(4)=16.(3)当顶点横坐标在区间[t,t+1]左侧时,有t>4,当x=t时,g(t)=f(t)=-t2+8t.综上,g(t)=-t2+6t+7,当t2+8t,当t>4时.四、求动二次函数在动区间上的最值当二次函数的区间和对称轴均在变化时,亦可根据对称轴在区间的左、右两侧及穿过区间三种情况讨论,并结合其图形和单调性处理.【例4】已知y2=4a(x-a)(a>0),且当x≥a时,S=(x-3)2+y2的最小值为4,求参数a的值.解:将y2=4a(x-a)代入S的表达式得S=(x-3)2+4a(x-a)=[x-(3-2a)]2+12a-8a2.S是关于x的二次函数,其定义域为x∈[a,+∞),对称轴方程为x=3-2a,顶点坐标为(3-2a,12a-8a2),图象开口向上.若3-2a≥a,即02=4,此时a=1或a=12.若3-2a1,则当x=a时-(3-2a)]2+12a-8a2=4,此时a=5(a=1舍去).综上讨论,参变数a的取值为a=1或a=12或a=5.(责任编辑金铃)。

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题

第三讲 二次函数在闭区间上的最值问题 一.知识点介绍1.区间的概念设a 、b 是两个实数,且a<b ,规定:说明:① 对于[a,b],(a,b),[a,b),(a,b]都称数a 和数b 为区间的端点,其中a 为左端点,b 为右端点,称b-a 为区间长度;②在数轴上,这些区间都可以用一条以a 和b 为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点;③实数集R 也可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”,还可以把满足x ≥a, x>a, x ≤b, x<b 的实数x 的全体分别表示为[a,+∞)、(a,+∞)、(-∞,b]、(-∞,b)。

我们把以上区间记为A ,若x 是A 中的一个数,就说x 属于A ,记作x ∈A 。

否则就说x 不属于A ,记作x ∉A 。

2. 二次函数f(x)=ax 2+bx+c(a≠0)在x ∈[α,β]上的最值: 当a>0时,有三种情况:从上述a>0的三种情况可得结论:(1)若[,]2baαβ-∈,则当2b x a =-时,2min4()24b ac b y f a a-=-=,它的最大值为()f α与()f β中较大的一个。

(2) 若[,]2baαβ-∉,则最大值为()f α与()f β中较大的一个,另一个即为最小值。

当a<0可作同样处理。

二.例题讲解:类型一“轴定区间定”例1:已知f(x)=x 2-x+2,当x 在以下区间内取值时,求f(x)的最大值与最小值。

(1) x ∈[-1,0] (2) x ∈[0,1] (3) x ∈[1,2]变式1:求y =的最值。

变式2:已知0≤x≤1,求y =的最值。

变式3:求函数y x =+的最小值。

类型二“轴变区间定”例2:求函数f(x)=2x 2-2ax+3在区间[-1,1]上的最小值。

含参数的二次函数在闭区间上的最值问题

含参数的二次函数在闭区间上的最值问题

含参数的二次函数在闭区间上的最值问题在数学中,含参数的二次函数在闭区间上的最值问题是一个常见且重要的数学概念。

这个问题涉及到求解一个含参数的二次函数在指定闭区间内的最大值或最小值,并且需要考虑参数对函数图像的影响。

在本文中,我们将深入探讨这个问题,并根据不同的参数取值情况给出具体的解决方法和结论。

1. 含参数的二次函数的一般形式我们来回顾一下含参数的二次函数的一般形式。

一个含参数的二次函数通常可以写成如下形式:\[ f(x) = ax^2 + bx + c \]其中,\(a\)、\(b\) 和 \(c\) 分别是函数的参数,\(x\) 是自变量。

在这个函数中,参数 \(a\) 的取值会对函数的开口方向产生影响,参数 \(b\) 会对函数的位置产生影响,而参数 \(c\) 则会对函数的纵向平移产生影响。

在求解含参数的二次函数在闭区间上的最值问题时,我们需要关注这些参数的取值对函数图像的影响。

2. 含参数的二次函数在闭区间上的最值问题的求解方法接下来,我们将按照从简到繁、由浅入深的方式来讨论含参数的二次函数在闭区间上的最值问题的求解方法。

我们将分析当参数 \(a\) 的取值为正、负和零时,函数图像的特点及最值的情况。

2.1 当参数 \(a\) 的取值为正时当参数 \(a\) 的取值为正时,函数的图像是一个开口向上的抛物线。

在闭区间上,这样的抛物线的最小值一定在抛物线的顶点处取得。

要求解函数在闭区间上的最小值,只需要找到抛物线的顶点,并判断这个顶点是否在给定的闭区间内。

2.2 当参数 \(a\) 的取值为负时当参数 \(a\) 的取值为负时,函数的图像是一个开口向下的抛物线。

同样地,在闭区间上,这样的抛物线的最大值一定在抛物线的顶点处取得。

要求解函数在闭区间上的最大值,也只需要找到抛物线的顶点,并判断这个顶点是否在给定的闭区间内。

2.3 当参数 \(a\) 的取值为零时当参数 \(a\) 的取值为零时,函数退化成一次函数或常数函数,最值情况可以直接通过函数的表达式和给定的闭区间进行分析和判断。

含参数的二次函数在闭区间上的最值问题

含参数的二次函数在闭区间上的最值问题

含参数的二次函数在闭区间上的最值问题含参数的二次函数在闭区间上的最值问题导语:含参数的二次函数在闭区间上的最值问题是数学中常见的优化问题之一。

通过分析函数的性质和求导,我们可以找到函数在给定闭区间上的最大值或最小值。

本文将从简单到复杂的方式,深入探讨这个主题,并提供一些实际例子来帮助读者更好地理解。

引言: 含参数的二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为实数且a≠0。

在闭区间[a, b]上求函数的最值,可以通过以下步骤进行。

一、函数的性质分析1. 我们可以观察函数的开口方向。

如果a>0,函数开口向上,最值为最小值;如果a<0,函数开口向下,最值为最大值。

这个性质对于我们确定最值的区间非常重要。

2. 我们可以通过求导来确定函数的驻点。

驻点是指函数斜率为零的点,可能是最值点的候选。

对于f(x) = ax^2 + bx + c,求导得到f'(x) =2ax + b。

令f'(x) = 0,解得x = -b/2a。

这个x值就是函数的驻点,我们需要判断它是否在闭区间[a, b]上。

3. 我们可以通过比较函数在闭区间的端点值和驻点值来确定最值。

根据前述观察,如果a>0,我们比较f(x)在[a, b]的端点值和驻点值,取较小的值作为最小值;如果a<0,我们比较f(x)在[a, b]的端点值和驻点值,取较大的值作为最大值。

二、实际例子假设我们要找到函数f(x) = x^2 + bx + c在闭区间[1, 3]上的最小值。

1. 观察函数的开口方向。

由于a=1>0,说明函数开口向上,最值为最小值。

2. 求导。

对函数f(x)求导得f'(x) = 2x + b。

令f'(x) = 0,解得x = -b/2。

这个x值就是函数的驻点。

3. 比较端点值和驻点值。

在闭区间[1, 3]中,我们计算f(1),f(3)和f(-b/2)的值。

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题

所以,当t=50时,h(t)取得区间[0 ,200]上的最大值100;
当 200<t≤300时,配方整理得
1 t 3502 100 ht 200
所以,当t=300时,h(t)取得区间[200,300]上的最大值87.5 综上,由100>87.5可知, h(t)在区间[0,300]上可以取最大值 100,此时,t=50 ,即从二月一日开始的第50天时,上市的西 红柿纯收益最大。
∴ 当1<a时, f(x)min=f(a)=a2-2a+3 f(x)max=f(3)=6
∴ 当-1<a≦1时, f(x)min=f(1)=2 f(x)max=f(3)=6 ∴ 当a≦-1时, f(x)min=f(1)=2 f(x)max=f(a)=a2-2a+3
3 2 1 -2
1 2 3
1 2 1 175 t t , 0 t 200 , 200 2 2 ht 1 t 2 7 t 1025 , 200 t 300 . 2 2 200
当0≤t≤200时,配方整理得
1 t 502 100 ht 200
(I)写出图一表示的市场售价与时间的函数关系式P=f(t);
写出图二表示的种植成本与时间的函数关系式Q=g(t);
( II )认定市场售价减去种植成本为纯收益,问何时上市的西 红柿收益最大?
(注:市场售价和种植成本的单位:元/102kg,时间单位:天)
解:(I)由图一可得市场售价与时间的函数关系为

b 2a
(2)二次函数y=ax² +bx+c (a<0)
b 4ac b 2 顶点坐标 , 2 a 4 a 在(-∞, 2ba )上,单调递增;在( 2ba ,+ ∞)上,单调递减。

二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题必修一二次函数在闭区间上的最值一、知识要点:对于一元二次函数在闭区间上的最值问题,关键在于讨论函数的对称轴与区间的相对位置关系。

一般分为对称轴在区间左侧、中间和右侧三种情况。

例如,对于函数f(x) = ax^2 + bx + c (a ≠ 0),求其在闭区间[x1.x2]上的最大值和最小值。

分析:将函数f(x)配方,得到其顶点为(-b/2a。

c - b^2/4a)。

因此,对称轴为x = -b/2a。

当a。

0时,函数f(x)的图像为开口向上的抛物线。

结合数形结合可得在闭区间[x1.x2]上f(x)的最值:1)当对称轴在[x1.x2]之外时,f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者。

2)当对称轴在[x1.x2]之间时,若x1 ≤ -b/2a ≤ x2,则f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者;若x1.-b/2a或x2 < -b/2a,则f(x)在闭区间[x1.x2]上单调递增或单调递减,最小值为f(x1),最大值为f(x2)。

当a < 0时,情况类似。

二、例题分析归类:一)正向型此类问题是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1.轴定区间定二次函数和定义域区间都是给定的,我们称这种情况是“定二次函数在定区间上的最值”。

例如,对于函数y = -x^2 + 4x - 2在区间[0.3]上的最大值为2,最小值为-2.2.轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例如,对于函数f(x) = (x-1)^2 + 1,在区间[t。

t+1]上的最值为f(t)和f(t+1)中的较大者。

考点08 二次函数在闭区间上的最值(值域)问题的解法(解析版)

考点08  二次函数在闭区间上的最值(值域)问题的解法(解析版)

专题二函数考点8 二次函数在闭区间上的最值(值域)问题的解法【方法点拨】一、知识梳理二、二次函数在闭区间上的最值(值域)问题的解法【高考模拟】1.已知函数()bf x ax x=+,若存在两相异实数,m n 使()()f m f n c ==,且40a b c ++=,则||m n -的最小值为( )A .22B 3C 2D 3【答案】B 【分析】由题设可得20(0)ax cx b x -+=≠,又()()f m f n c ==即,m n 为方程两个不等的实根,即有,c bm n mn a a+==,结合2||()4m n m n mn -=+-40a b c ++=得2||16()41b bm n a a-=⋅+⋅+.【解析】由题意知:当()bf x ax c x=+=有20(0)ax cx b x -+=≠, ∵()()f m f n c ==知:,m n 是20(0,0,0)ax cx b x a b -+=≠≠≠两个不等的实根.∴,c b m n mn a a +==,而2224||()4c ab m n m n mn a--=+-= ∵40a b c ++=,即4c b a =--,∴||m n -=b t a =,则||m n -==∴当18t =-时,||m n -故选:B 【点睛】关键点点睛:由已知条件将函数转化为一元二次方程的两个不同实根为,m n ,结合韦达定理以及||m n -=.2.已知函数2()f x ax bx c =++,满足(3)(3)f x f x +=-,且(4)(5)f f <,则不等式(1)(1) f x f -<的解集为( )A .(0,)+∞B .(2,)-+∞C .(4,0)-D .(2,4)【答案】C 【分析】由题设知()f x 关于3x =对称且开口向上,根据二次函数的对称性(1)(1)f x f -<有115x <-<,求解集. 【解析】依题意,有二次函数关于3x =对称且开口向上,∴根据二次函数的对称性:若(1)(1)f x f -<,即有115x <-<, ∴40x -<<. 故选:C 【点睛】关键点点睛:由题设可得()f x 关于3x =对称且开口向上,根据对称性求函数不等式的解集即可. 3.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为( ) A .1-B .0C .1D .2【答案】A 【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈ 使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥, 利用导数判断()g x 的单调性求最小值即可. 【解析】由()sin f x x x =+可得()1cos 0f x x '=+≥, 所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-, 所以sin cos m x x x ≥+对于[0,]x π∈有解, 令()sin cos g x x x x =+,只需()min m g x ≥, 则()sin cos sin cos g x x x x x x x '=+-=, 当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增, 当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减, ()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-, 所以1m ≥-,整数m 的最小值为1-, 故选:A. 【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.4.已知函数2()26f x x ax =+--,若存在a R ∈,使得()f x 在[2,]b 上恰有两个零点,则实数b的最小值为( )A .B .4C .2+D .2+【答案】C 【分析】由函数在[2,]b 上恰好有2个零点可得,可得零点必在区间的端点,讨论零点为2和b 时,解得a 的值,将a 的值代入使得函数值f (b )0=求出b 的值即可. 【解析】因为函数2())|2|6f x x ax =+--在[2,]b 上恰有两个零点,所以在2x =与x b =时恰好取到零点的最小值和最大值时,实数b 取最小值, 若2x =,()f x 的零点满足f (2)2|222|60a =+--=,解得2a =,或4a =-,当2a =,2()|22|6f x x x =+--,满足()f x 在[2,]b 上恰好有2个零点,则f (b )2|22|60b b =+--=,且2b >,解得2b =(舍)或4b =-(舍),当4a =-时,2()|42|6f x x x =---且2b >,满足()f x 在[2,]b 上恰好有2个零点, 则f (b )2|42|60b b =---=,2b >,所以2|42|6b b --=,即2426b b --=-整理2440b b -+=,解得2b =(舍),或2480b b --=解得:2b =-(舍)或2b =+综上所述,当2b =+()f x 在[2,]b 上恰好有2个零点.故答案为:2+ 【点睛】本题考查函数的零点和方程根的关系,考查了计算能力,同时考查了转化思想与分类讨论思想的应用,属于难题.5.已知数列{}n a 的前n 项和为n S ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则19m n+的最小值为( ) A .145B .114C .83D .103【答案】B【分析】运用数列的递推式和等比数列的定义、通项公式可得2nn a =.求得6m n +=,()19119191066m m n m n n n m n m ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭,运用基本不等式,检验等号成立的条件,根据单调性即可得出结果. 【解析】解:22n n S a =-,可得11122a S a ==-,即12a =,2n ≥时,1122n n S a --=-,又22n n S a =-,相减可得1122n n n n n a S S a a =-=-﹣﹣,即12n n a a -=,{}n a 是首项为2,公比为2的等比数列.所以2nn a =.64m n a a =,即2264m n ⋅=,得6m n +=,所以()191191911010666m m n m n m n m n n ⎛⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝ 181663=⨯=, 当且仅当9n m m n=时取等号,即为32m =,92n =.因为m ,n 取整数,所以均值不等式等号条件取不到,则1983m n +>, 因为19196m n y m m +=+=-,在30,2⎛⎫⎪⎝⎭上单调递减,在3(,)2+∞上单调递增,所以当2m =,4n =时,19m n+取得最小值为114.故选:B. 【点睛】本题考查数列的通项公式的求法,运用数列的递推式和等比数列的定义、通项公式,考查基本不等式的运用,考查化简运算能力,属于中档题.6.已知函数()11,021,232x x x f x x -⎧-≤≤⎪=⎨⎛⎫<≤⎪ ⎪⎝⎭⎩,若存在实数123,,x x x ,当12303x x x ≤<<≤时,()()()123f x f x f x ==,则()2312x f x x x +的最小值是( ).A .58B .516C .532D .564【答案】C 【分析】作出分段函数的图像,结合图像确定123,,x x x 的范围及等量关系,再将所求式子转化为关于3x 的函数,利用函数的单调性求解最小值. 【解析】 如图:122x x += ,312112x x -⎛⎫-= ⎪⎝⎭即312112x x -⎛⎫=+ ⎪⎝⎭,()33112312111222x x x f x x x --⎡⎤⎛⎫⎛⎫+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=+ 令311,2x t t -⎛⎫=∈ ⎪⎝⎭1142⎡⎫⎪⎢⎣⎭,,则()()2321212x f x t t x x =++ 当14t =时取得最小值532. 故选C【点睛】本题主要考查分段函数图像、函数零点、函数最小值的应用,解题中主要应用了数形结合的思想、换元思想、函数思想,属于中档题;解题的关键有两个:一是准确作出分段函数图像,利用已知条件确定出123,,x x x 范围以及122x x +=;二是将所求式子转化为关于3x 的函数,利用函数的性质求最小值.7.已知实数x 、y 满足{24 2y xx y y ≤+≤≥-,若存在x 、y 满足()()22211(0)x y r r ++-=>,则r 的最小值为( )A .1B .2C .423D .523【答案】B【解析】试题分析:可行域为直线,24,2y x x y y =+==-围成的三角形区域, (),x y 到点()1,1-的距离最小值为2,所以r 的最小值为2考点:线性规划问题8.若实数a 、b 、c +∈R ,且2256ab ac bc a +++=-,则2a b c ++的最小值为( ) A .51- B .51+C .252+D .252-【答案】D 【解析】因为2256ab ac bc a +++=-,所以2ab a ac bc +++()()a a b c a b =+++()()a c a b =++()262551=-=- ,所以()()()()22a b c a c a b a c a b ++=+++≥++=252-,当且仅当()()a c a b +=+时,等号成立. 故选D.点睛:本题主要考查均值不等式的灵活应用,关键是对已知等式分解为()()()2=51a c a b ++-.9.已知圆和两点,若圆上存在点,使得,则的最小值为( )A .B .C .D . 【答案】D 【解析】试题分析:由题意以为直径的圆与圆有公共点,则,解得.所以的最小值为1,故选D .考点:两圆的位置关系.【名师点睛】1.两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到. 10.已知函数()1ln ax f x xe x ax -=--,21,a e ⎛⎤∈-∞- ⎥⎝⎦,函数()f x 的最小值M ,则实数M 的最小值是() A .1- B .1e-C .0D .31e-【答案】C 【分析】求得()()11'1ax f x ax e x -⎛⎫=+- ⎪⎝⎭,先证明110ax e x --≤,可得当10,x a ⎛⎫∈- ⎪⎝⎭时,()f x 单调递减,当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,(),f x 单调递增,则()2min 1111ln f x f e a a a -⎛⎫⎛⎫=-=-+-- ⎪ ⎪⎝⎭⎝⎭,设(2210,,1ln t e M t e t a -⎤-=∈=-+⎦,()()22ln 10,t h t t t e e=-+<≤可证明()h t 在(20,e ⎤⎦上单调递减,()()20h t h e ≥=,从而可得结果.【解析】 求得()()()1111111'11ax ax ax ax ax f x eaxe a e ax ax e x x x ----+⎛⎫=+--=+-=+- ⎪⎝⎭ 考察11ax y ex -=-是否有零点,令0y =, 可得1ln x a x -=,记()1ln xx xϕ-=,()2ln 2'x x xϕ-=,()x ϕ在()20,e 上递减,在()2,e +∞上递增, 所以()min x ϕ= ()2e ϕ 21e =-,即21ln 1x x e-≥-, 因为21a e ≤-,所以11ln 10ax x a e x x--≤⇔-≤, 故可知,当10,x a ⎛⎫∈-⎪⎝⎭时,()()10,'0,ax f x f x +>≤单调递减, 当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()()10,'0,ax f x f x +<≥单调递增,从而由上知()2min 1111ln f x f e a a a -⎛⎫⎛⎫=-=-+-- ⎪ ⎪⎝⎭⎝⎭, 设(()222210,,1ln 10t t e M t e t lnt t e a e -⎤-=∈=-+=-+<≤⎦, 记()()()22211ln 10,'0,t h t t t e h t e e t=-+<≤=-≤()h t 在(20,e ⎤⎦上单调递减,()()20h t h e ∴≥=,M ∴的最小值为0.故选C.【点睛】本题主要考查利用导数判断函数的单调性以及函数的最值,属于难题.求函数()f x 最值步骤:(1) 求导数()f x ';(2)判断函数的单调性;(3)若函数单调递增函数或单调递减,利用单调性求最值;(4) 如果只有一个极值点,则在该处即是极值也是最值;(5)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小. 11.已知函数()1f x x a =+,若存在,42ππϕ⎛⎫∈ ⎪⎝⎭,使()()sin cos 0f f ϕϕ+=,则实数a 的取值范围是( )A .1,22⎛⎝⎭B .122⎛⎫-- ⎪ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,02⎛⎫-⎪⎝⎭【答案】B【解析】 由题意,110sin cos aaφφ+=++ 有解∴sinφ+a+cosφ+a=0∴-(φ+4π) ∵φ∈(4π,2π), ∴φ+4π∈(2π,34π),∴sin (φ+4π)∈(2,1)(φ+4π)∈(1∴-2a ∈(1∴a ∈12⎛⎫- ⎪ ⎪⎝⎭。

大学数学_3_4 函数的最大值与最小值

大学数学_3_4 函数的最大值与最小值

例5 3 甲船以 20nmile / h 的速度向东行驶,同一时间 乙船在甲船的正北 82nmile 处以16nmile / h 的速度向南行 驶,问经过多少时间,甲乙两船相距最近. y 82 解 设在时刻 t 0 时甲船位于 O 点, 16t 乙船位于甲船正北82nmile 处,在时刻 t B (单位:h)甲船由点 O 出发向东行驶了 20t (单位:nmile)至A点,乙船向南行驶 O 20t A x 了16t (单位:nmile)至B点(图 3-7) 图3-7 甲乙两船的距离为
内容小结
1. 最值点应在极值点和边界点上找
2. 应用题可根据问题的实际意义判别
作业
P134 1(1), (5), 2, 3, 4
由这个例子看出,为什么我们经常用n次测量值的算 术平均值作为所测量值的近似值. 例题中x-xi代表第i次的 测量值xi与真值x的误差,由于x-xi(i=1,2, …,n)可为正 也可为负,不能用它们的和作为n次测量值的总误差,以 免正负误差相抵消,因此一般采用n次测量误差的平方和 作为总误差,寻求如何取近似值能使这个总误差最小. 这 就是通常所谓的最小二乘法.
2 ( x 差平方和 1
x1 x2 n
xn
( x x2 )2 ( x xn ) 2 为最小. 2 2 2 y ( x x ) ( x x ) ( x x ) 证 记 1 2 n . 现求y的最小
值.
y 2[( x x1 ) ( x x2 ) ( x xn )] 2[nx ( x1 x2 xn )]. 令 y 0 得唯一驻点 1 x ( x1 x2 xn ). n 1 又y一定存在最小值,故当x ( x1 x2 xn ).时误差平 n 方和最小.

中考热点,二次函数区间范围的最值问题

中考热点,二次函数区间范围的最值问题

中考热点,二次函数区间范围的最值问题二次函数最值问题的重要性毋庸置疑,其贯穿了整个中学数学,是中学数学的重要内容之一,也是学好中学数学必须攻克的极为重要的问题之一。

二次函数在闭区间上的最值问题是二次函数最值问题的典型代表,其问题类型通常包括不含参数和含参数二次函数在闭区间上的最值问题、二次函数在闭区间上的最值逆向性问题以及可转化为二次函数在闭区间上最值的问题,在此类问题的解决过程中,涉及数形结合、分类讨论等重要数学思想与方法。

中考中多涉及到含参数二次函数在闭区间上的最值问题,很多学生不习惯数形结合及分类讨论思想的运用,导致解题失误或错误。

类型1 求解自变量在不同区间里二次函数最值1.(2019•大兴区一模)已知二次函数y=x2﹣2x+3,当自变量x满足﹣1≤x≤2时,函数y的最大值是.【解析】先根据二次函数的已知条件,得出二次函数的图象开口向上,再根据变量x在﹣2≤x≤1的范围内变化,再分别进行讨论,即可得出函数y的最大值.∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴该抛物线的对称轴为x=1,且a=1>0,∴当x=1时,函数有最小值2,当x=﹣1时,二次函数有最大值为:(﹣1﹣1)2+2=6,故答案为6.2.(2019•新华区校级自主招生)已知函数y=x2﹣2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是()A.m≥1 B.0≤m≤2 C.1≤m≤2 D.m≤2【解析】:∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴抛物线开口向上,对称轴为x=1,顶点坐标为(1,2),与y轴的交点为(0,3).其大致图象如图所示:由对称性可知,当y=3时,x=0或x=2,∵二次函数y=x2﹣2x+3在闭区间[0,m]上有最大值3,最小值2,∴1≤m≤2.故选:C.3.(2019•郑州模拟)二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.【解析】:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4,∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,﹣2≤x≤3,y随x的增大而增大,∴a﹣4=﹣3,∴a=1,故答案为1.4.(2019•邯郸模拟)对于题目“二次函数y=3/4(x﹣m)2+m,当2m﹣3≤x≤2m时,y的最小值是1,求m的值.”甲的结果是m=1,乙的结果是m =﹣2,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【解析】根据对称轴的位置,分三种情况讨论求解即可求得答案,然后判断即可.二次函数的对称轴为直线x=m,①m<2m﹣3时,即m>3,y的最小值是当x=2m﹣3时的函数值,此时3/4(2m﹣3﹣m)2+m=1,因为方程无解,故m值不存在;②当2m﹣3≤m≤2m时,即0≤m≤3时,二次函数有最小值1,此时,m=1,③当m>2m时,即m<0,y的最小值是当x=2m时的函数值,此时,3/4(2m﹣m)2+m=1,解得m=﹣2或m=2/3,∵m<0,∴m=﹣2,所以甲、乙的结果合在一起正确,故选:C.类型2 二次函数区间最值解决实际问题利用二次函数解决实际问题,最常见的为利润问题和费用最低等问题,首先根据题中常见的等量关系建立二次函数模型,然后利用二次函数确定最值,注意要考虑自变量在实际问题中的取值范围。

一元二次函数在闭区间上的最值问题

一元二次函数在闭区间上的最值问题

一元二次函数在闭区间上的最值问题作者:魏常安来源:《新课程·上旬》 2013年第21期一元二次函数在闭区间上的最值问题文/魏常安摘要:针对部分中学生对二次函数最值问题的困惑,从方法上给予了归纳,结合具体的例题讲解,希望能解除学生对这类问题的困惑,提高学生学好数学的信心。

关键词:二次函数;闭区间;最值一元二次函数在闭区间上的最值是函数中最常见、最基本、最重要的一类问题。

它不完全由顶点的纵坐标决定,需要根据抛物线的对称轴与区间的位置关系以及开口方向采用分类讨论的方式解决。

首先是弄清对称轴与区间的相互位置,进而利用图象,结合单调性求解。

图像的指导性在这里显得尤为突出,是数形结合解决问题的一个典范。

一、方法归纳设f (x)=ax2+bx+c=0(a>0),则二次函数在闭区间[m,n]上的最大、最小值有如下的分布情况:对称轴在区间内的情况,比较端点m、n与对称轴的距离,距离越远,函数值越大。

在解题中,为了让主体更加突出,清晰明了,可隐藏坐标系,直接画示意图见例题。

二、类型归纳基于以上分析,分为四种类型,分别为定轴定区间、定轴动区间、动轴定区间和动轴动区间四种基本类型。

由于定轴定区间比较简单,动轴动区间情况太复杂,这里就不做详细说明了,重点探讨另外两种情况。

1.定值定区间例1.函数f (x)=ax2-2ax+2+b(a≠0)在[2,3]上有最大值5和最小值2,求a,b的值。

解:对称轴x0=1?埸[2,3],故函数f (x)在区间[2,3]上单调。

(1)当a>0时,草图为:函数f (x)在区间[2,3]上是增函数,故(2)当a<0时,草图为:函数f (x)在区间[2,3]上是减函数,故2.动轴定动区间如果我们把对称轴比喻成一个人,区间比喻成一列火车,这种情况就像一个人从一列火车旁边经过,从接近火车到见到火车到走到火车中间再慢慢地离开火车。

类似的,这种类型二次函数图象也有如下几种情况:例2.求函数f (x)=x2-2ax+1,x∈[1,3]的最小值。

微分中值定理及导数的应用-最值问题模型

微分中值定理及导数的应用-最值问题模型
4. 如果 x > 0, f ( x ) = 5 x 2 + Ax 5 , 其中 A为一正数, 求最小的A值, 使得 f ( x ) ≥ 24.
5. 设 f ( x ), g ( x )在( ∞ ,+∞ )内有定义, f ′( x ),
且满足f ′′( x ) + f ′( x ) g( x ) f ( x ) = 0, f ′′( x ) 存在,
第三章
第八节 最值问题模型
一、主要内容 二、典型例题 三、同步练习 四、同步练习解答
一、 主要内容
(一 ) 函数在闭区间上的最值 若函数 f ( x )在闭区间[a , b]上连续,除有限 且至多在有限个点处导数为零,则 个点外可导, f ( x )在[a , b]上必定存在着最大值和最小值; 最大(最小)值可能在端点处取得; 最大(最小)值可能在开区间(a , b)内取得, 此时最大(最小)值必是 f ( x ) 的一个极大 (极小)值,而且相应的点必是 f ( x ) 的驻点 或不可导点;
3 2
1 5 2 f ( x ) ∈ C [ , ] , 且 f ( x ) = x ( 2 x 9 x + 12 ) . 解 易知 4 2
Q Δ = ( 9)2 4 2 12 = 81 96 < 0,
∴ 2 x 9 x + 12 > 0,
2
1 ( 2 x 9 x + 12 x ) , 4 ≤ x ≤ 0, f ( x) = 5 2 x 3 9 x 2 + 12 x , 0< x≤ , 2
2
2
2
a . 2
a b , ) 2 2
即为所求 .
A= a 3b 2 x a2 x2

含参二次函数在闭区间上最值问题的解题策略

含参二次函数在闭区间上最值问题的解题策略

含参二次函数在闭区间上最值问题的解题策

含参二次函数在闭区间上最值问题是高中数学中比较常见的一类
应用题型,解题需要一定的技巧和策略。

以下是解决这类问题的步骤
和方法:
一、列出含参二次函数的解析式
在解决含参二次函数在闭区间上最值问题前,首先要列出函数的
解析式。

一般来说,含参二次函数可表示为 f(x)=ax^2+bx+c(a≠0)。

其中,a、b、c为常数,x为自变量,f(x)为函数值。

二、确定闭区间
在这一步骤中,需要根据问题描述,确定函数所在的闭区间,常
见的闭区间如[0,1],[1,2]等,不同的闭区间对所求的解有直接影响。

三、确定函数的最值
确定函数的最值是整个求解过程中最重要的一步,需要按照以下
几个步骤来处理:
1. 求出函数的极值点
通过求导数并将函数的导数等于0来计算函数的极值点。


f'(x)=2ax+b=0。

解出x的值,即可得到函数的极值点。

2. 判断极值点是否在所求的闭区间内
将极值点带入原函数来计算函数值,判断函数的最值是否在所求
的闭区间内。

3. 比较区间端点和极值点的函数值
求出闭区间端点的函数值f(a)和f(b),并将它们与极值点的函
数值进行比较。

找出函数值最大或最小的点,即为所求的最值。

四、解答问题
最后,将求得的函数最值带入题目中,解答出最终问题。

总结:在解决含参二次函数在闭区间上最值的问题时,需要先列
出含参二次函数的解析式,确定闭区间,进而求出函数的最值,最后将所求的函数最值带入题目中进行解答。

二次函数在闭区间上的最值问题例析

二次函数在闭区间上的最值问题例析

解 : 区间[ ,。 上 ,( =£± 在 1 。) 厂 )
>0恒
成立等价于 + +n> 2 0恒成立 。设 Y: +2 +o ∈[ , )其 图象的对称轴 =一1 1 ) , 1 , ∈[ , 。 又 函数 '= +2 , +口在 ∈[ , ) 1 上单调递增 ,
下 面 就 所 给 区 间 和对 称 轴 的相 互 关 系进 行 讨 论 。 1所给区间确定 , . 对称轴位置也确定 若所给 区间是确定的 , 其对称轴位 置也确定 , 则 只要先考虑其对称轴 横坐标是否 在给定 区间 内, 当



对称轴横坐标在给定 区间 内时 , 其一个 最值在 顶点 取得 , 另一个最值 在与顶点横 坐标距离 较远 的端 点 取得 ; 当对称轴横 坐标不在给定区问时 , 可利用函数 单 调性确定其最值 。 例 I 已知 Y= —2 x+3 当 ∈[ ,] , , 一3 2 时 求函数 的最大值和最小值。 解: 由题 意知 , 函数 的图象开 口向上 , 函数 图 且 象的对称轴为 :1 一32 , ∈[ ,] 当 =一3 , ( 取得 最 大值 , 大值 为 时 f ) 最 厂 一3 :1 , =1 f ) ( ) 8 当 时,( 取得最小值 , 小值为 最 , 1 =2 () 。



r : () 3 a r ,1= + , I i I l
当且仅 当 ) :3 , +n> 0时 , ) 恒成立 。 >0 解之 , 。的取值范 围是 ( , 。 得 一3 *) 2 所给区间变化 , . 对称轴位置确定 若所给 区间是变化的 , 而对称 轴位置是确定 的, 则 对于区间变化时是否包含对称轴 的横坐标必须进 行分类讨论 , 其分类标准为 : 变化 区间中包含对称轴 的横坐标 ; 变化区间 中不包含对称轴 的横坐标 。 例 3 求 函数 厂 : +2 ( ) +1 区间 [, + , 在 tt

【高中数学过关练习】过关练13-二次函数在闭区间上的最值问题

【高中数学过关练习】过关练13-二次函数在闭区间上的最值问题

过关练13 二次函数在闭区间上的最值问题一、单选题1.(2022·山西运城·高一期末)已知二次函数()()2f x ax x c x =-+∈R 的值域为[)0,∞+,则41a c+的最小值为( ) A .16 B .12 C .10 D .8【解析】由题意知0a >,140ac ∆=-=, ∴14ac =且0c >, ∴4148a c ac+≥=, 当且仅当41a c=,即1a =,14c =时取等号.故选:D.2.(2022·全国·高一期末)若不等式220ax bx ++>的解集为{}21x x -<<,则二次函数224y bx x a =++在区间[]0,3上的最大值、最小值分别为( )A .-1,-7B .0,-8C .1,-1D .1,-7【解析】220ax bx ++>的解集为{}21x x -<<, 2∴-,1是方程220ax bx ++=的根,且0a <,∴21221b a a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,1a ∴=-,1b =-,则二次函数2224241y bx x a x x =++=-+-开口向下,对称轴1x =,在区间[]0,3上,当1x =时,函数取得最大值1,当3x =时,函数取得最小值7- 故选:D .3.(2022·河南·信阳高中高一期末(理))函数()(||1)f x x x =-在[,]m n 上的最小值为14-,最大值为2,则n m -的最大值为( ) A .52B .522+C .32D .2【解析】当x ≥0时,()()221111()244f x x x x x x ==-=--≥-﹣, 当x <0时,()()22111()24f x x x x x x =-=--=-++,作出函数()f x 的图象如图:当0x ≥时,由()f x =22x x -=,解得x =2. 当12x =时,()1124f =-.当x <0时,由21()4f x x x =--=-,即24410x x +=﹣,解得x 2444443244212-±+⨯-±-±-±===∴此时x 12-- ∵[,m n ]上的最小值为14-,最大值为2,∴n =21212m --≤≤, ∴n m -的最大值为1252222--=+, 故选:B .4.(2022·重庆巫山·高一期末)若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范围是( ) A .(]0,4 B .3,42⎡⎤⎢⎥⎣⎦C .3,32⎡⎤⎢⎥⎣⎦D .3,2⎡⎫+∞⎪⎢⎣⎭【解析】234y x x =--为开口方向向上,对称轴为32x =的二次函数 min 99254424y ∴=--=- 令2344x x --=-,解得:10x =,23x = 332m ∴≤≤即实数m 的取值范围为3,32⎡⎤⎢⎥⎣⎦故选:C5.(2022·浙江台州·高一期末)已知函数()22f x ax x =+的定义域为区间[m ,n ],其中,,a m n R ∈,若f (x )的值域为[-4,4],则n m -的取值范围是( )A .[4,42]B .[22,82]C .[4,82]D .[42,8]【解析】若0a =,()2f x x =,函数为增函数,[,]x m n ∈时,则()24,()24f m m f n n ==-==,所以2(2)4n m -=--=, 当0a >时,作图如下,为使n m -取最大,应使n 尽量大,m 尽量小,此时14a =, 由22()424()424f n am m f m an n =⎧+=⎧⇒⎨⎨=+=⎩⎩,即2240ax x +-=, 所以24,m n mn a a+=-=-,所以()22416482n m m n mn a a-=+-=+=82n m -≤ 当14a -<-时,即104a <<时,此时,m n 在对称轴同侧时n m -最小,由抛物线的对称性,不妨设,n m 都在对称轴右侧,则由22()24,()24f n an n f m am m =+==+=-, 解得24162416a an m -++-+-==416416141441414141422a a a a n m a aa a+--+--∴-===++-++-, 当且仅当1414a a +=- ,即0a =时取等号,但0a >,等号取不到,4n m ∴->,0a <时,同理,当14a =-时,max ()82n m -=14a >-时,()min 4n m ->, 综上,n m -的取值范围是[4,82], 故选:C6.(2022·广东茂名·高一期末)已知函数2,02()34,23x x f x x x ⎧≤≤=⎨-<≤⎩,若存在实数1x ,2x (12x x <)满足12()()f x f x =,则21x x -的最小值为( ) A .712B .22C .23D .1【解析】当0≤x ≤2时,0≤x 2≤4,当2<x ≤3时,2<3x -4≤5, 则[0,4]∩(2,5]=(2,4],令12()()f x f x ==t ∈(2,4], 则1x t 243t x +=, ∴2214143333t x x t tt -==, 32t ,即94t =时,21x x -有最小值712,故选:A.二、多选题7.(2022·新疆巴音郭楞·高一期末)定义在R 上的奇函数()f x 在(),0∞-上的解析式()()1f x x x =+,则()f x 在[)0,∞+上正确的结论是( )A .()00f =B .()10f =C .最大值14D .最小值14-【解析】由题可知,函数()f x 为定义在R 上的奇函数,则()()f x f x -=-, 已知()f x 在(),0∞-上的解析式()()1f x x x =+, 则当0x >时,0x -<,则()()()1f x x x f x -=--=-,所以当[)0,x ∈+∞时,()()2211124f x x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭,可知()00f =,()10f =,且最大值为14,无最小值,所以()f x 在[)0,∞+上正确的结论是ABC. 故选:ABC.8.(2022·贵州遵义·高一期末)设函数()21,21,ax x a f x x ax x a -<⎧=⎨-+≥⎩,()f x 存在最小值时,实数a 的值可能是( )A .2B .-1C .0D .1【解析】当x a ≥时,()()222211f x x ax x a a =-+=--+,所以当x a ≥时,()()2min 1f x f a a ==-+,若0a =,则()21,01,0x f x x x -<⎧=⎨+≥⎩,所以此时()min 1f x =-,即()f x 存在最小值, 若0a >,则当x a <时,()1f x ax =-,无最小值, 若0a <,则当x a <时,()1f x ax =-为减函数, 则要使()f x 存在最小值时,则22110a a a ⎧-+≤-⎨<⎩,解得1a ≤-,综上0a =或1a ≤-. 故选:BC.三、填空题9.(2022·广西南宁·高一期末)已知函数2()25,[1,5]f x x x x =-+∈-.则函数的最大值和最小值之积为______【解析】因为22()25(1)4f x x x x =-+=-+,所以当1x =时,min ()(1)4f x f ==,当5x =时,2max ()(5)(51)420f x f ==-+=,所以最大值和最小值之积为42080⨯=.故答案为:8010.(2022·广东汕头·高一期末)函数()()()2f x x a bx a =++是偶函数,且它的值域为(],2-∞,则2a b +=__________.【解析】()()()()22222f x x a bx a bx a ab x a =++=+++为偶函数,所以20a ab +=,即0a =或2b =-,当0a =时,()2f x bx =值域不符合(],2-∞,所以0a =不成立;当2b =-时,()2222f x x a =-+,若值域为(],2-∞,则21a =,所以21a b +=-.故答案为:1-.11.(2022·广东·华南师大附中高一期末)对x ∀∈R ,不等式2430mx x m ++->恒成立,则m 的取值范围是___________;若2430mx x m ++->在()1,1-上有解,则m 的取值范围是___________.【解析】(1)关于x 的不等式函数2430mx x m ++->对于任意实数x 恒成立,则()204430m m m >⎧⎨∆=--<⎩,解得m 的取值范围是()4,+∞.(2)若2430mx x m ++->在()1,1-上有解, 则2341x m x ->+在()1,1-上有解,易知当314x -<≤时23401xx -≥+, 当314x <<时23401x x -<+,此时记34t x =-, 则104t <<,()244253311624t g t t t t --==⎛⎫++++ ⎪⎝⎭,在10,4⎛⎫ ⎪⎝⎭上单调递减,故()12g t >-, 综上可知,234112x x ->-+,故m 的取值范围是1,2⎛⎫-+∞ ⎪⎝⎭.故答案为:()4,+∞;1,2⎛⎫-+∞ ⎪⎝⎭四、解答题12.(2022·河南安阳·高一期末(文))已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式; (2)求()f x 在区间[]1,2-上的值域. 【解析】(1)解:由()02f =可得2c =,()()()()221112f x a x b x c ax a b x a b c +=++++=+++++,由()()121f x f x x +-=-得221ax a b x ++=-,所以221a a b =⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩,所以()222f x x x =-+.(2)解:由(1)可得:()()222211f x x x x =-+=-+, 则()f x 的图象的对称轴方程为1x =,()11f =, 又因为()15f -=,()22f =,所以,()f x 在区间[]1,2-上的值域为[]1,5.13.(2022·广东潮州·高一期末)()2f x x bx c =++,不等式()0f x ≤的解集为[]1,3.(1)求实数b ,c 的值;(2)[]0,3x ∈时,求()f x 的值域.【解析】(1)解:由题意,1和3是方程20x bx c ++=的两根,所以1313b c +=-⎧⎨⨯=⎩,解得4,3b c =-=;(2)解:由(1)知,22()43(2)1f x x x x =-+=--,所以当[]0,2x ∈时,()f x 单调递减,当[]2,3x ∈时,()f x 单调递增, 所以min ()(2)1f x f ==-,max ()(0)3f x f ==, 所以()f x 的值域为[1,3]-.14.(2022·广东湛江·高一期末)已知函数()223f x x ax =++,[]4,6x ∈-.(1)当2a =-时,求()f x 的最值;(2)若()f x 在区间[]4,6-上是单调函数,求实数a 的取值范围. 【解析】(1)当2a =-时,()()224321f x x x x =-+=--, ∴()f x 在[]4,2-上单凋递减,在2,6上单调递增,∴()()min 21f x f ==-,()()()()2max 4444335f x f =-=--⨯-+=.(2)()()222233f x x ax x a a =++=++-,∴要使()f x 在[]4,6-上为单调函数,只需4a -≤-或6a -≥,解得4a ≥或6a ≤-. ∴实数a 的取值范围为(][),64,-∞-+∞.15.(2022·北京通州·高一期末)已知二次函数2()21f x ax ax =-+. (1)求()f x 的对称轴;(2)若(1)7f -=,求a 的值及()f x 的最值.【解析】(1)解:因为二次函数2()21f x ax ax =-+, 所以对称轴212ax a-=-=. (2)解:因为(1)7f -=,所以217a a ++=. 所以2a =.所以2()241f x x x =-+. 因为20a =>, 所以()f x 开口向上,又2()241f x x x =-+对称轴为1x =,所以最小值为(1)1f =-,无最大值. 16.(2022·陕西·长安一中高一期末)函数2()22f x x x =-- (1)当[2,2]x ∈-时,求函数()f x 的值域; (2)当[,1]x t t ∈+时,求函数()f x 的最小值.【解析】(1)解:由题意,函数()22()2213f x x x x =--=--,可得函数()f x 在[]2,1-上单调递减,在[]12,上单调递增,所以函数()f x 在区间[]22-,上的最大值为(2)6f -=,最小值为(1)3f -=-, 综上函数()f x 在上的值域为[]3,6-.(2)解:①当0t ≤时,函数在区间[],1t t +上单调递减,最小值为2(1)3f t t +=-; ②当01t <<时,函数在区间[],1t 上单调递减, 在区间[]1,+1t 上单调递增,最小值为(1)3f =-;③当1t ≥时,函数在区间[],1t t +上单调递增,最小值为2()22f t t t =--,综上可得:当0t ≤时,函数()f x 的最小值为23t -;当01t <<,函数()f x 的最小值为3-;当1t ≥时,函数()f x 的最小值为222t t --.17.(2022·福建泉州·高一期末)已知函数2()4(0)f x ax ax b a =-+>在[0,3]上的最大值为3,最小值为1-. (1)求()f x 的解析式;(2)若(1,)∃∈+∞x ,使得()f x mx <,求实数m 的取值范围. 【解析】(1)()f x 的开口向上,对称轴为2x =, 所以在区间[]0,3上有:()()()()min max 2,0f x f f x f ==,即481133a a b a b b -+=-=⎧⎧⇒⎨⎨==⎩⎩,所以()243f x x x =-+.(2)依题意(1,)∃∈+∞x ,使得()f x mx <,即2343,4x x mx m x x-+<>+-, 由于1x >,33424234x x x x+-≥⋅=, 当且仅当33x x x=⇒=. 所以234m >.18.(2022·吉林·梅河口市第五中学高一期末)已知函数()()220f x mx mx n m =-+<在区间[]0,3上的最大值为5,最小值为1.(1)求m ,n 的值;(2)若正实数a ,b 满足2na mb -=,求114a b+的最小值.【解析】(1)由()()220f x mx mx n m =-+<,可得其对称轴方程为212mx m-=-=,所以由题意有(1)25(3)961f m m n f m m n =-+=⎧⎨=-+=⎩,解得1,4m n =-=.(2)由(1)2na mb -=为42a b +=,则111111171171725()()()(2)14242424848b a b a a b a b a b a b a b +=++=++≥+⨯=+=, (当且仅当25a b ==时等号成立). 所以114a b +的最小值为258.19.(2022·山东日照·高一期末)已知函数()223f x x ax =--.(1)若1a =,求不等式()0f x ≥的解集;(2)已知()f x 在[)3,+∞上单调递增,求a 的取值范围; (3)求()f x 在[]1,2-上的最小值.【解析】(1)当1a =时,函数()223f x x x =--,不等式()0f x ≥,即223(1)(3)0x x x x --=+-≥,解得1x ≤-或3x ≥, 即不等式()0f x ≥的解集为(,1][3,)-∞-+∞.(2)由函数()223f x x ax =--,可得()f x 的图象开口向上,且对称轴为x a =,要使得()f x 在[)3,+∞上单调递增,则满足3a ≤, 所以a 的取值范围为(,3]-∞.(3)由函数()223f x x ax =--,可得()f x 的图象开口向上,且对称轴为x a =,当1a <-时,函数()f x 在[]1,2-上单调递增,所以()f x 最小值为()122f a -=-; 当12a -≤≤时,函数()f x 在[]1,a -递减,在[],2a 上递增,所以()f x 最小值为()23f a a =--;当2a >时,函数()f x 在[]1,2-上单调递减,所以()f x 最小值为()214f a =-, 综上可得,()f x 在[]1,2-上的最小值为()2min22,13,1214,2a a f x a a a a -<-⎧⎪=---≤≤⎨⎪->⎩. 20.(2022·江苏苏州·高一期末)已知函数f (x )=x |x ﹣m |+n . (1)当f (x )为奇函数,求实数m 的值;(2)当m =1,n >1时,求函数y =f (x )在[0,n ]上的最大值. 【解析】(1)因为f (x )为奇函数,所以f (﹣0)=﹣f (0), 所以f (0)=0,即n =0,所以f (x )=x |x ﹣m |, 又f (﹣1)=﹣f (1),所以|1﹣m |=|1+m |,解得m =0,此时f (x )=x |x |,对∀x ∈R ,f (﹣x )=﹣x |x |=﹣f (x ), 所以f (x )为奇函数,故m =0.(2)f (x )=x |x ﹣1|+n =22,1,1x x n x x x n x ⎧-++⎨-+>⎩所以f (x )在10,2⎡⎤⎢⎥⎣⎦和[1,n ]上单调递增,在1,12⎡⎤⎢⎥⎣⎦上单调递减,其中211(),()24f n f n n =+=,2111212()()()24f n f n n n n +--=--=,令214n n >+得,12n +>12n +>1()()2f n f >,2max ()f x n =.121n +<≤时1()()2f n f ≤,所以max 1()4f x n =+,因此y =f (x )在[0,n ]上的最大值为2112,14212,n n n n ⎧++⎪⎪⎨+⎪⎪⎩. 21.(2022·天津市武清区杨村第一中学高一期末)已知函数()22f x x mx n =++的图象过点()1,1-,且满足()()23f f -=.(1)求函数()f x 的解析式:(2)求函数()f x 在[],2a a +上的最小值;(3)若0x 满足()00f x x =,则称0x 为函数()y f x =的不动点,函数()()g x f x tx t =-+有两个不相等且正的不动点,求t 的取值范围. 【解析】(1)∵()f x 的图象过点()1,1-, ∴21m n ++=-① 又()()23f f -=, ∴82183m n m n -+=++② 由①②解2m =-,1n =-,∴()2221f x x x =--;(2)()2213221222f x x x x ⎛⎫=--=-- ⎪⎝⎭,[],2x a a ∈+,当122a +≤,即32a ≤-时,函数()f x 在[],2a a +上单调递减,∴()()2min 2263f x f a a a ⎡⎤=+=++⎣⎦;当122a a <<+,即3122a -<<时,函数()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在1,22a ⎡⎤+⎢⎥⎣⎦单调递增,∴()min1322f x f ⎛⎫⎡⎤==- ⎪⎣⎦⎝⎭; 当12a ≥时,函数()f x 在[],2a a +上单调递增, ∴()()2min 221f x f a a a ⎡⎤==--⎣⎦.综上,()2min23263,,2331,,2221221,2a a a f x a a a a ⎧++≤-⎪⎪⎪⎡⎤=--<<⎨⎣⎦⎪⎪--≥⎪⎩.(3)设()()g x f x tx t =-+有两个不相等的不动点1x 、2x ,且1>0x ,20x >,∴()g x x =,即方程()22310x t x t -++-=有两个不相等的正实根1x 、2x .∴()()21212Δ3810,30,2102t t t x x t x x ⎧⎪=+-->⎪+⎪+=>⎨⎪-⎪=>⎪⎩,解得1t >. 22.(2022·安徽合肥·高一期末)已知函数()22f x x mx =--.(1)若0m >且()f x 的最小值为3-,求不等式()1f x <的解集; (2)若当21x ≤时,不等式()20f x x -<恒成立,求实数m 的取值范围. 【解析】(1)解:()f x 的图象是对称轴为2mx =,开口向上的抛物线,所以,()222min2232424m m mm f x f ⎛⎫==--=--=- ⎪⎝⎭,因为0m >,解得2m =,由()1f x <得2230x x --<,即()()310x x -+<,得13x ,因此,不等式()1f x <的解集为()1,3-.(2)解:由21x ≤得11x -≤≤,设函数()()()2222g x f x x x m x =-=-+-,因为函数()g x 的图象是开口向上的抛物线,要使当21x ≤时,不等式()20f x x -<恒成立,即()0g x <在[]1,1-上恒成立,则()()1010g g⎧<⎪⎨-<⎪⎩,可得122010m m ---<⎧⎨+<⎩,解得3<1m -<-. 23.(2022·贵州毕节·高一期末)已知函数2()2(0)f x x ax a =->. (1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值.【解析】(1)当3a =时,不等式5()7f x -<<, 即为2567x x -<-<,即226756⎧-<⎪⎨-<-⎪⎩x x x x ,所以171,5或-<<⎧⎨<>⎩x x x , 所以11x -<<或57x <<,所以原不等式的解集为(1,1)(5,7)-⋃. (2)(0)(2)0f f a ==,由题意0=t 或22t a +=,这时24a -≤-解得2a ≥, 若0=t ,则2t a +≤,所以()()2242f t f a +==-⇒=;若22t a +=,即22t a a =-≥, 所以()()422f t f a =-=-,则2a =,综上,0,2t a ==或2,2t a ==.24.(2022·贵州·赫章县教育研究室高一期末)已知函数()2623f x ax x b =+-+(,a b 为常数),在1x =时取得最大值2. (1)求()f x 的解析式; (2)求函数()f x 在3,2上的单调区间和最小值.【解析】(1)由题意知6126232a ab ⎧-=⎪⎨⎪+-+=⎩,∴32a b =-⎧⎨=⎩ , ∴ ()2361f x x x =-+-.(2)∵()()()22321312f x x x x =---=--+,∴当[]3,2x ∈-时,()f x 的单调增区间为[]3,1-,单调减区间为[]1,2,又()()32718146,2121211f f -=---=-=-+-=-, ∴ ()f x 最小值为46-.25.(2022·广东·化州市第三中学高一期末)已知函数()22f x x mx =-+.(1)若()f x 在区间(],1-∞上有最小值为1-,求实数m 的值;(2)若4m ≥时,对任意的12,1,12m x x ⎡⎤∈+⎢⎥⎣⎦,总有()()21244mf x f x -≤-,求实数m 的取值范围.【解析】(1)可知()f x 的对称轴为2m,开口向上, 当12m ≤,即2m ≤时,()2min 2124m m f x f ⎛⎫==-=- ⎪⎝⎭, 解得23m =-23,∴23m =- 当12m>,即2m >时,()()min 131f x f m ==-=-, 解得4m =,∴4m =. 综上,23m =-4m =.(2)由题意得,对1,12m x ⎡⎤∈+⎢⎥⎣⎦,()()2max min 44m f x f x -≤-. ∵1,122m m ⎡⎤∈+⎢⎥⎣⎦,11222m m m⎛⎫-≥+- ⎪⎝⎭,∴()2min224m m f x f ⎛⎫==- ⎪⎝⎭,()()max 13f x f m ==-.∴()()22max min1444m m f x f x m -=-+≤-, 解得5m ≥,∴5m ≥.26.(2022·黑龙江·鹤岗一中高一期末)已知二次函数()f x 满足()()12f x f x x +-=,且()01f =.(1)求函数()f x 在区间[]1,1-上的值域;(2)当x ∈R 时,函数y a =-与()3y f x x =-的图像没有公共点,求实数a 的取值范围.【解析】(1)解:设()()20f x ax bx c a =++≠、∴()1()22f x f x ax a b x +-=++=,∴220a a b =⎧⎨+=⎩,∴1a =,1b =-,又()01f =,∴1c =,∴()21f x x x =-+.∵对称轴为直线12x =,11x -≤≤,1324f ⎛⎫= ⎪⎝⎭,()13f -=, ∴函数的值域3,34⎡⎤⎢⎥⎣⎦.(2)解:由(1)可得:()2341y f x x x x =-=-+∵直线y a =-与函数()3y f x x =-的图像没有公共点∴()2min 41a x x -<-+, 当2x =时,()2min 41=3x x -+-∴3a -<-,∴3a >.27.(2022·陕西安康·高一期末)已知二次函数()[]21,1,2f x x ax x =++∈-.(1)当1a =时,求()f x 的最大值和最小值,并指出此时x 的取值; (2)求()f x 的最小值,并表示为关于a 的函数()H a .【解析】(1)当1a =时,()21f x x x =++,对称轴为12x =-,开口向上,所以()f x 在11,2⎡⎤--⎢⎥⎣⎦上单调递减,在1,22⎡⎤-⎢⎥⎣⎦上单调递增,()2min111312224f x f ⎛⎫⎛⎫⎛⎫=-=-+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()2max 22217f x f ==++=.所以当12x =-时,()f x 的最小值为34,当2x =时()f x 的最大值为7.(2)()21f x x ax =++的对称轴为2a x =-,开口向上,当12a-≤-即2a ≥时,()21f x x ax =++在[]1,2-上单调递增, ()()()2min 1112f x f a a =-=--+=-,当122a -<-<即42a -<<时,()21f x x ax =++在1,2a ⎡⎤--⎢⎥⎣⎦上单调递减,在,22a ⎡⎤-⎢⎥⎣⎦上单调递增,此时()22min 112224a a a a f x f a ⎛⎫⎛⎫⎛⎫=-=-+⋅-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当22a-≥即4a ≤-时,()21f x x ax =++在[]1,2-上单调递减, ()()2min 222152f x f a a ==++=+,所以252,4()1,4242,2a a a H a a a a +≤-⎧⎪⎪=--<<⎨⎪-≥⎪⎩.28.(2022·北京平谷·高一期末)已知二次函数()()211f x ax a x =-++.(1)当对称轴为1x =-时, (i )求实数a 的值;(ii )求f (x )在区间[]22-,上的值域. (2)解不等式()0f x ≥. 【解析】(1)解:(i )由题得(1)(1)11,12,223a a a a a a a -++-==-∴+=-∴=-; (ii )()212133f x x x =--+,对称轴为1x =-, 所以当[]2,2x ∈-时,max 124()(1)1333f x f =-=-++=.min 445()(2)1333f x f ==--+=-.所以f (x )在区间[]22-,上的值域为54[,]33-. (2)解:()2110ax a x -++≥,当0a =时,10,1x x -+≥∴≤;当0a >时,121(1)(1)0,0,1ax x x x a--≥∴=>=, 当01a <<时,不等式的解集为1{|x x a≥或1}x ≤; 当1a =时,不等式的解集为R ;当1a >时,不等式的解集为{|1x x ≥或1}x a≤;当0a <时,121(1)(1)0,0,1ax x x x a--+≤∴=<=, 所以不等式的解集为1{|1}x x a≤≤. 综上,当0a =时,不等式的解集为{|1}x x ≤; 当01a <<时,不等式的解集为1{|x x a≥或1}x ≤; 当1a =时,不等式的解集为R ;当1a >时,不等式的解集为{|1x x ≥或1}x a≤;当0a <时, 不等式的解集为1{|1}x x a≤≤. 29.(2022·重庆·高一期末)已知函数()29f x x ax a =-+-,a R ∈.(1)若()f x 在[]0,1上的值域为[]4,6,求a 的值;(2)若关于x 的不等式()0f x <只有一个正整数解,求a 的取值范围. 【解析】(1)解:因为函数()29f x x ax a =-+-,a R ∈,对称轴2ax =,且()09f a =-,()1102f a =-,21924a f a a ⎛⎫=--+ ⎪⎝⎭,当02a<时,函数()f x 在0,1上单调递增,所以 ()()0416f f ⎧=⎪⎨=⎪⎩,即941026a a -=⎧⎨-=⎩,此时无解; 当>12a时,函数()f x 在0,1上单调递减,所以 ()()0614f f ⎧=⎪⎨=⎪⎩,即961024a a -=⎧⎨-=⎩,解得3a =; 当012a ≤≤,即02a ≤≤时,函数()f x 在2a x =取得最小值,所以42a f ⎛⎫= ⎪⎝⎭,即21944a a --+=,方程在02a ≤≤上无解, 综上得:3a =;(2)解:关于x 的不等式()0f x <只有一个正整数解,等价于2+9>+1x a x 只有一个正整数解,令()2+9+1x g x x =,则()()()2+91010+1+22+12102+1+1+1g x x x x x x x ==-≥⋅=,当且仅当10+1+1x x =,即101x =, ()2+9+1x g x x =在(101⎤-⎦,上递减,在)101,⎡+∞⎣递增, 而21013<,()21+9151+1g ==,()29g =,()2+913222+13g ==,()2+999133,5>>3+12233g ==,当a 13932⎛⎤∈ ⎥⎝⎦,不等式只有一个正整数解2x =,所以a 的取值范围为13932⎛⎤⎥⎝⎦,.30.(2022·河北秦皇岛·高一期末)已知函数()1f x x x=+,()21g x x ax a =-+-. (1)若()g x 的值域为[)0,∞+,求a 的值.(2)证明:对任意[]11,2x ∈,总存在[]21,3x ∈-,使得()()12f x g x =成立.【解析】(1)解:因为()g x 的值域为[)0,∞+,所以()()222414420a a a a a ∆=--=-+=-=,解得2a =.(2)证明:由题意,根据对勾函数的单调性可得()1111f x x x =+在[]1,2上单调递增,所以()152,2f x ⎡⎤∈⎢⎥⎣⎦.设()21g x x ax a =-+-在[]1,3-上的值域为M ,当12a≤-,即2a -时,()g x 在[1,3]-上单调递增,因为max ()(3)8212g x g a =-=,min ()(1)24g x g a -==-,所以2,52M ⎡⎤⊆⎢⎥⎣⎦;当32a,即6a 时,()g x 在[1,3]-上单调递减,因为max ()(1)212g x g a -==,min ()(3) 824g x g a =--=,所以2,52M ⎡⎤⊆⎢⎥⎣⎦;当132a -<<,即26a -<<时,22min 11()1(2)(4,0]244a g x g a a a ⎛⎫==-+-=--∈- ⎪⎝⎭,max ()max{2, 82}[4,12)g x a a =-∈,所以52,2M ⎡⎤⊆⎢⎥⎣⎦;综上,52,2M ⎡⎤⊆⎢⎥⎣⎦恒成立,即()f x 在[1,2]上的值域是()g x 在[1,3]-上值域的子集恒成立,所以对任意1[1,2]x ∈总存在2[1,3]x ∈-,使得()()12f x g x =成立.31.(2022·内蒙古赤峰·高一期末)已知函数2()21f x ax x a =-+-(a 为实常数). (1)若0a >,设()f x 在区间[1,2]的最小值为()g a ,求()g a 的表达式: (2)设()()f x h x x=,若函数()h x 在区间[1,2]上是增函数,求实数a 的取值范围. 【解析】(1)由于0a >,当[1,2]x ∈时,2211()212124f x ax x a a x a a a ⎛⎫=-+-=-+-- ⎪⎝⎭①若1012a <<,即12a >,则()f x 在[1,2]为增函数 ,()(1)32g a f a ==-; ②若1122a ≤≤,即1142a ≤≤时,11()2124g a f a a a ⎛⎫==-- ⎪⎝⎭;③若122a >,即104a <<时,()f x 在[1,2]上是减函数,()(2)63g a f a ==-; 综上可得163,04111()21,442132,2a a g a a a a a a ⎧-<<⎪⎪⎪=--≤≤⎨⎪⎪->⎪⎩; (2)21()1a h x ax x-=+-在区间[1,2]上任取1212x x ≤<≤, ()()()212121211221212111a a a h x h x ax ax x x a x x x x ⎛⎫⎛⎫⎛⎫----=+--+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭[]211212(21)x x ax x a x x -=--(*) ()h x 在[1,2]上是增函数 ()()210h x h x ∴->∴(*)可转化为12(21)0ax x a -->对任意12,[1,2]x x ∈且12x x <都成立,即1221ax x a >- ①当0a =时,上式显然成立 ②12210,a a x x a ->>,由1214x x <<得211a a-≤,解得01a <≤; ③12210,a a x x a-<<,由1214x x <<得,214a a -≥,得102a -≤<, 所以实数a 的取值范围是1,02⎡⎫-⎪⎢⎣⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数在闭区间上的最值问题
教学目标:
① 掌握二次函数在闭区间上的最值的求法。

② 对于其他类型的函数在闭区间上的最值问题,可转化为二次函数在闭区间上的最值问题。

③ 通过教学使学生掌握数形结合,分类讨论,数学建模等重要的数学思想。

重点和难点:
重点 :二次函数在闭区间上的最值的求法;其他类型函数在闭区间上的最值问题转化为
二次函数在闭区间上最值问题。

难点 :对参变量的分类讨论
教学过程:
一、知识回顾:
二次函数的一般形式:y=ax 2
+bx+c,(a ≠0)
对称轴:__________;顶点坐标____________;开口方向____________________; 当____________函数有最大值_________;当__________函数有最小值__________。

二、二次函数在闭区间上的最值问题:
1.不含参变量
例1.(1)求[]上的最值。

,在30x ,3x 4x 2-y 2∈++=
(2)求[]上的最值。

,在30x ,3x 4x 2y 2∈++=
2.含参变量
类型一:“轴变,区间定”
例2.求[]上的最值。

,在30x )R a (,a ax 2-x y 2∈∈+=
练习:求[]上的最值。

,在31x )R k (,3kx 4x -2y 2∈∈++=
变式训练:若函数[]的值。

,求上有最大值,在k 423-x )R k (,1kx 2x k y 2
∈∈++=
类型二:“轴定,区间变”
例3.讨论y=x 2-2x+2在x∈[m,m+1]上的最值。

练习:求函数y=-3x 2-6x+7,在区间[n-1,n]上的最值。

变式训练:对[],1x a a ∈+时,
恒为正,求实数a 的取值范围。

类型三:“轴变,区间变”
例4. 求函数
21(0)y tx x t =+-≠在(,1)x t t ∈+上的最值。

变式训练:已知()2
34()(0)y x a x a a =-+->,且当x a ≥时,y 的最小值为4,求参数a 的值。

总结:二次函数在闭区间上的最值的求法:
1.判断对称轴跟区间的关系;
2.若对称轴在区间内,则函数的最值在区间端点所对应的值和顶点函数值中取;
3.若对称轴在区间外,则函数的最值在区间端点上取。

三、三角函数中的最值问题
例5.若
2()122cos 2sin f x a a x x =---的最大值为g (a ),求g (a )表达式。

例6.已知当02πθ
≤≤时,对任意实数θ恒小于零,求实数m 的取值范
围。

四、其它类型的函数的最值问题: 例7.已知已知22log (24)y x ax =-+,
(1) 若定义域为R,求a 的取值范围;
(2) 试讨论该函数在[]2,4x ∈上的最值。

相关文档
最新文档