五种常见的屈服准则及其适 用范围

合集下载

五种常见的屈服准则

五种常见的屈服准则

五种常见的屈服准则及其优缺点、适用范围屈服准则表示在复杂应力状态下材料开始进入屈服的条件,它的作用是控制塑性变形的开始阶段。

屈服条件在主应力空间中为屈服方程。

一、几种常用的屈服准则五种常用的屈服准则,它们分别是Tresca准则,Von-Mises准则,Mnhr-Coulomb准则,Drucker Prager准则,Zienkiewicz-Pande准则。

其中后三种适用于混凝土和岩土材料的准则。

1. Tresca屈服准则当最大剪应力达到一定数值时,材料开始屈服。

这就是Tresca屈服条件,也称为最大剪应力条件。

规定σ1≥σ2≥σ3时,上式可表示为:如果不知道σ1、σ2、σ3的大小顺序,则屈服条件可写为:换言之当变形体或质点中的最大切应力达到某一定值时,材料就发生屈服。

或者说,材料处于塑性状态时,其最大切应力是一个不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。

所以Tresca屈服准则又称为最大切应力不变条件。

这种模型与静水压力无关,也不考虑中间应力的影响。

在平面上屈服条件为一个正六边形,在主应力空间内,屈服曲面为一个正六面柱体。

Tresca屈服准则不足之处就是不包含中间主应力,没有反映中间主应力对材料屈服的影响。

2. Mises屈服准则当与物体中的一点应力状态对应的畸变能达到某一极限值时,该点便产生屈服,其表达式为:或其中,k为常数,可根据简单拉伸试验求得:或根据纯剪切试验来确定:它所代表的屈服面是一个以空间对角线为轴的圆柱体,在平面上屈服条件是一个圆。

这时有:换言之当等效应力达到定值时,材料质点发生屈服,该定值与应力状态无关。

或者说,材料处于塑性状态时,其等效应力是不变的定值,该定值取决于材料变形时的性质,而与应力状态无关。

Mises屈服准则的物理意义:当材料的单位体积形状改变的弹性能达到某一常数时,质点就发生屈服。

故Mises屈服准则又称为能量准则。

3. Mnhr Coulomb准则Tresca屈服条件和Mises屈服条件主要是对金属材料成立的两个屈服条件,但是这两个屈服条件如果简单地应用于岩土材料,会引起不可忽视的偏差。

(完整版)五种常见的屈服准则及其适用范围

(完整版)五种常见的屈服准则及其适用范围

五种常见的屈服准则及其适用范围屈服准则表示在复杂应力状态下材料开始进入屈服的条件,它的作用是控制塑性变形的开始阶段。

屈服条件在主应力空间中为屈服方程。

1。

几种常用的屈服准则五种常用的屈服准则,它们分别是Tresca 准则,Von-Mises 准则 ,Mnhr — Coulomb 准则,Drucker Prager 准则,Zienkiewicz —Pande 准则.其中后三种适用于混凝土和岩土材料的准则1.1 Tresca 屈服准则当最大剪应力达到一定数值时,材料开始屈服.这就是Tresca 屈服条件,也称为最大剪应力条件。

k =max τ规定时321σσσ≥≥,上式可表示为:k 2-31=σσ如果不知道321、、σσσ的大小顺序,则屈服条件可写为:0]4)][(4)][(4)[(221322322221=------k k k σσσσσσ换言之当变形体或质点中的最大切应力达到某一定值时,材料就发生屈服。

或者说,材料处于塑性状态时,其最大切应力是一个不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。

所以Tresca 屈服准则又称为最大切应力不变条件。

这种模型与静水压力无关,也不考虑中间应力的影响。

在平面上屈服条件为一个正六边形,在主应力空间内,屈服曲面为一个正六面柱体。

Tresca 屈服准则不足之处就是不包含中间主应力,没有反映中间主应力对材料屈服的影响。

1.2 Mises 屈服准则当与物体中的一点应力状态对应的畸变能达到某一极限值时,该点便产生屈服,其表达式为22k J =或22132322216)()()(k =-+-+-σσσσσσ其中, k 为常数,可根据简单拉伸试验求得3/222s k J σ==,或根据纯剪切试验来确定,222s k J τ==它所代表的屈服面是一个以空间对角线为轴的圆柱体,在平面上屈服条件是一个圆。

这时有:const k J r ===222σ 换言之当等效应力达到定值时,材料质点发生屈服,该定值与应力状态无关。

岩土力学屈服准则及其特点

岩土力学屈服准则及其特点

岩土力学屈服准则及其特点岩土力学是土木工程领域中的重要学科之一,研究土体和岩石在外力作用下的力学性质和行为。

岩土力学中的屈服准则是指在应力条件下,土体或岩石的屈服发生的准则,也被称为破坏准则或破坏判据。

不同的屈服准则适用于不同的材料和应变条件,常用的几种屈服准则包括摩尔—库仑准则、穆克—库仑准则、德里奇—龙格准则和麦克考利准则等。

1. 摩尔—库仑准则:摩尔—库仑准则是最常用的岩土力学屈服准则之一,适用于岩石和混凝土等脆性材料。

该准则认为,当材料中最大主应力达到其抗压强度时,材料发生屈服和破坏。

2. 穆克—库仑准则:穆克—库仑准则适用于黏塑性土体,认为土体的屈服和破坏是由于主应力差异引起的。

当土体中最大主应力差异达到一定程度时,土体发生屈服和破坏。

3. 德里奇—龙格准则:德里奇—龙格准则适用于砂土和黏土等细粒土体,认为土体的屈服和破坏是由于应力路径引起的。

当土体中的应力路径达到一定条件时,土体发生屈服和破坏。

4. 麦克考利准则:麦克考利准则适用于岩石和土体,认为材料的屈服和破坏是由于剪切应变能达到一定程度引起的。

当剪切应变能达到一定条件时,材料发生屈服和破坏。

这些屈服准则具有以下特点:1. 适用性广泛:不同的屈服准则适用于不同类型的土体和岩石,能够满足不同材料的力学性质和行为。

2. 简单易用:这些屈服准则通常基于简化的假设和实验数据得出,具有较高的实用性和可操作性。

3. 数学表达简洁:这些屈服准则通过简洁的数学表达式描述材料的屈服和破坏条件,便于工程应用和计算。

4. 实验验证可靠:这些屈服准则的提出和应用通常基于大量的实验数据,经过多次验证和修正,具有较高的可靠性和准确性。

5. 工程应用广泛:这些屈服准则在土木工程领域广泛应用于岩土工程设计、施工和安全评估等方面,对工程实践具有重要意义。

岩土力学中的屈服准则是研究土体和岩石在外力作用下的力学性质和行为的基础,不同的屈服准则适用于不同材料和应变条件,具有广泛的适用性和工程应用价值。

abaqus 屈服准则

abaqus 屈服准则

abaqus 屈服准则Abaqus屈服准则引言:在工程领域,材料的屈服准则是用来描述和预测材料在受力过程中的变形和破坏行为的重要理论基础。

Abaqus是一种广泛应用于工程领域的有限元分析软件,它提供了多种可供选择的屈服准则,用于模拟和预测材料的力学性能。

本文将介绍Abaqus中常用的几种屈服准则及其特点。

一、线性弹性准则(Linear Elastic)线性弹性准则是最简单的屈服准则之一,它假设材料在受力过程中的应力和应变呈线性关系。

这意味着材料的应力随应变的增加而线性增加,直到达到最大强度值。

当应力超过最大强度值时,材料会发生破坏。

线性弹性准则适用于许多金属和合金材料,在许多工程领域得到广泛应用。

二、von Mises屈服准则von Mises屈服准则是一种常用的屈服准则,适用于金属材料的屈服行为。

它基于von Mises应力理论,通过计算等效应力(von Mises应力)来判断材料是否屈服。

等效应力是一种将正应力和剪应力组合为一个单一值的方法,通过对材料的应力状态进行综合评估,而不仅仅关注于某一方向的应力。

当等效应力超过材料的屈服强度时,材料会发生屈服。

三、Tresca屈服准则Tresca屈服准则也是一种常用的屈服准则,适用于金属和合金材料的屈服行为。

它基于Tresca应力理论,通过计算最大主应力和最小主应力之间的差值来判断材料是否屈服。

最大主应力是材料在受力过程中的最大应力值,最小主应力是材料在受力过程中的最小应力值。

当最大主应力和最小主应力之差超过材料的屈服强度时,材料会发生屈服。

四、Mohr-Coulomb屈服准则Mohr-Coulomb屈服准则是一种适用于岩土材料的屈服准则,它考虑了材料的强度和摩擦特性。

该准则基于Mohr-Coulomb理论,通过计算主应力差与摩擦系数的乘积来判断材料是否屈服。

主应力差是最大主应力和最小主应力之差,摩擦系数是材料的内摩擦特性。

当主应力差与摩擦系数的乘积超过材料的强度时,材料会发生屈服。

五种常见的屈服准则及其适用范围

五种常见的屈服准则及其适用范围

五种常见的屈服准则及其适用范围屈服准则表示在复杂应力状态下材料开始进入屈服的条件,它的作用是控制塑性变形的开始阶段。

屈服条件在主应力空间中为屈服方程。

1.几种常用的屈服准则五种常用的屈服准则,它们分别是Tresca 准则,Von-Mises 准则 ,Mnhr- Coulomb 准则,Drucker Prager 准则,Zienkiewicz-Pande 准则。

其中后三种适用于混凝土和岩土材料的准则1.1 Tresca 屈服准则当最大剪应力达到一定数值时,材料开始屈服。

这就是Tresca 屈服条件,也称为最大剪应力条件。

k =max τ规定时321σσσ≥≥,上式可表示为:k 2-31=σσ 如果不知道321、、σσσ的大小顺序,则屈服条件可写为:0]4)][(4)][(4)[(221322322221=------k k k σσσσσσ换言之当变形体或质点中的最大切应力达到某一定值时,材料就发生屈服。

或者说,材料处于塑性状态时,其最大切应力是一个不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。

所以Tresca 屈服准则又称为最大切应力不变条件。

这种模型与静水压力无关,也不考虑中间应力的影响。

在平面上屈服条件为一个正六边形,在主应力空间内,屈服曲面为一个正六面柱体。

Tresca 屈服准则不足之处就是不包含中间主应力,没有反映中间主应力对材料屈服的影响。

1.2 Mises 屈服准则当与物体中的一点应力状态对应的畸变能达到某一极限值时,该点便产生屈服,其表达式为22k J =或22132322216)()()(k =-+-+-σσσσσσ其中, k 为常数,可根据简单拉伸试验求得3/222s k J σ==,或根据纯剪切试验来确定, 222s k J τ==它所代表的屈服面是一个以空间对角线为轴的圆柱体,在平面上屈服条件是一个圆。

这时有:const k J r ===222σ 换言之当等效应力达到定值时,材料质点发生屈服,该定值与应力状态无关。

05_屈服准则

05_屈服准则

两向应力状态的屈服轨
这六个点的中间应力等于平均应力,它们既表示平面应 力状态又表示平面应变状态,两个屈服准则相差达到15.5%
三、平面上的屈服轨迹
平面:在主应力空间中,通过坐标原点,并垂直于等倾 线ON 的平面称为平面。其方程为
1 2 3 0
平面与两个屈服表面都 垂直,屈服表面在平面上 2 的投影是半径为 3 S 的圆 及其内接正六边形,这就 是平面上的屈服轨迹。
屈服准则

屈服准则:又称屈服条件或塑性条件,是判断材 料从弹性状态进入塑性状态的判据。 不同应力状态下,变形体某点进入塑性状态并 使塑性变形继续进行,各应力分量与材料性能之 间必须符合一定的关系,这种关系称为屈服准则。 金属材料最常用的两个屈服准则——屈雷斯加 屈服准则和密塞斯屈服准则。


理想塑性材料的屈服准则
其中:
2 3 σ
2
,为中间主应力影响系数,或称应力修正
系数,=1~1.155。
注:Mises屈服准则与Tresca屈服准则在形式上仅差一个应力 修正系数。 对于圆柱体应力状态,
σ 1
σ 0
1
两准则一致,有两向主应力相等
1.155 两准则相差最大,为15.5%, 对应平面应变
屈服准则的几何表达 —屈服表面和屈服轨迹
屈服准则的数学表达式可以用几何图形形象地表 示出来。
在主应力空间是空间曲面,称为屈服曲面; 在主应力坐标平面是封闭曲线,称为屈服轨迹。
一、(三向应力状态)主应力空间中的屈服表面
图 16-6 间
主应力空
图 16-7 主应力空间中的屈服
主应力空间:以应力主轴为坐标系的空间称为主应力空间。 在主应力空间中,三向应力状态对应于该空间上的一点P,并 用矢量OP来表示。

五种常见的屈服准则及其适用范围

五种常见的屈服准则及其适用范围

五种常见的屈服准则及其适用范围 屈服准则表示在复杂应力状态下材料开始进入屈服的条件,它的作用是控制塑性变形的开始阶段。

屈服条件在主应力空间中为屈服方程。

1.几种常用的屈服准则五种常用的屈服准则,它们分别是Tresca 准则,Von-Mises 准则 ,Mnhr- Coulomb 准则,Drucker Prager 准则,Zienkiewicz-Pande 准则。

其中后三种适用于混凝土和岩土材料的准则1.1 Tresca 屈服准则当最大剪应力达到一定数值时,材料开始屈服。

这就是Tresca 屈服条件,也称为最大剪应力条件。

k =max τ规定时321σσσ≥≥,上式可表示为:k 2-31=σσ 如果不知道321、、σσσ的大小顺序,则屈服条件可写为:0]4)][(4)][(4)[(221322322221=------k k k σσσσσσ换言之当变形体或质点中的最大切应力达到某一定值时,材料就发生屈服。

或者说,材料处于塑性状态时,其最大切应力是一个不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。

所以Tresca 屈服准则又称为最大切应力不变条件。

这种模型与静水压力无关,也不考虑中间应力的影响。

在平面上屈服条件为一个正六边形,在主应力空间内,屈服曲面为一个正六面柱体。

Tresca 屈服准则不足之处就是不包含中间主应力,没有反映中间主应力对材料屈服的影响。

1.2 Mises 屈服准则当与物体中的一点应力状态对应的畸变能达到某一极限值时,该点便产生屈服,其表达式为22k J =或22132322216)()()(k =-+-+-σσσσσσ其中, k 为常数,可根据简单拉伸试验求得3/222s k J σ==,或根据纯剪切试验来确定, 222s k J τ==它所代表的屈服面是一个以空间对角线为轴的圆柱体,在平面上屈服条件是一个圆。

这时有:const k J r ===222σ 换言之当等效应力达到定值时,材料质点发生屈服,该定值与应力状态无关。

几种屈服准则的差异性和适用性

几种屈服准则的差异性和适用性

几种屈服准则的差异性和适用性
屈服准则是衡量材料或结构出现变形或破坏的标准,是通过对结构的受力状态和破坏机制的分析,从而确定结构安全性的方法。

不同的屈服准则基于不同的假设和条件,因此在不同的应用环境下具有差异性和适用性。

以下是几种常见的屈服准则的差异性和适用性:
1.极限强度理论:极限强度理论认为,当材料或结构达到其最大强度时,即为屈服。

该理论假设材料的应变和应力之间存在线性的关系,并且强度在材料的全截面上都是均匀分布的。

这种屈服准则比较简单且易于计算,适用于强度均匀且线性的材料,如金属材料。

2.钢铁理论:钢铁理论是一种屈服准则,用于考虑材料的塑性变形。

该理论假设材料在达到屈服点时,继续加载会导致材料的塑性变形,直到出现破坏。

这种屈服准则适用于大多数金属材料,尤其是钢铁。

3.衰减理论:衰减理论是一种屈服准则,考虑了材料在长期加载下的疲劳破坏。

衰减理论假设材料的疲劳寿命是基于它的强度随时间的衰减。

这种屈服准则适用于需要经历长期加载的结构,如桥梁和飞机。

4.弹性准则:弹性准则是一种屈服准则,假设材料在达到其弹性极限时发生屈服。

这种准则适用于弹性材料,如橡胶和塑料。

弹性准则也可以用于计算结构在正常工作条件下的应力和变形。

不同的屈服准则具有不同的适用性,可根据具体的工程需求和材料特性选择。

需要考虑材料的强度、刚度、加载方式、应变速率等因素。

在实践中,通常会使用组合屈服准则,以综合考虑材料的多个方面和应对复杂加载条件。

几种屈服准则的差异性和适用性

几种屈服准则的差异性和适用性

常用屈服准则的差异性,及其适用条件1 屈服物体受到荷载作用后,随着荷载增大,由弹性状态到塑性状态的这种过渡,叫做屈服。

而屈服条件就是判断材料处于弹性还是塑性的准则,即物体内某一点开始产生塑性应变时,应力或应变所必需满足的条件,称之为屈服条件。

2 五种常用的屈服准则:历时近两个世纪的发展,到上世纪时,先后出现了五种常用的屈服准则,它们分别是Tresca 准则,Von Mises 准则 ,Mnhr Coulomb 准则,Drucker Prager 准则,Zienkiewicz-Pande 准则。

其中后三种适用于混凝土和岩土材料的准则2.1 Tresca 屈服准则Tresca (1864) 在一系列的挤压实验,发现金属材料在屈服时,可以看到有很细的痕纹;而这些痕纹的方向接近于最大剪应力方向,于是假设当最大剪应力达到某一极限值k 时,材料发生屈服:(2.1) 换言之当变形体或质点中的最大切应力达到某一定值时,材料就发生屈服。

或者说,材料处于塑性状态时,其最大切应力是一个不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。

所以Tresca 屈服准则又称为最大切应力不变条件。

2.2 Mises屈服准则Mises 指出Tresca 试验结果在π平面上得到六个点,六个点之间的连线是直线,曲线,还是圆?Mises 采用了圆形,并为金属材料试验所证实,并提出了Mises 屈服条件:(2.2) 换言之当等效应力达到定值时,材料质点发生屈服,该定值与应力状态无关。

或者说,材料处于塑性状态时,其等效应力是不变的定值,该定值取决于材料变形时的性质,而与应力状态无关。

Mises 屈服准则的物理意义:当材料的单位体积形状改变的弹性能达到某一常数时,质点就发生屈服。

故Mises 屈服准则又称为能量准则。

2.3 Mnhr Coulomb 准则Tresca 屈服条件和Mises 屈服条件主要是对金属材料成立的两个屈服条件,但是这两个屈服条件如果简单地应用于岩土材料,会引起不可忽视的偏差。

基本概念(2):屈服准则

基本概念(2):屈服准则

基本概念(2):屈服准则本期,给大家介绍一下有限元计算中经常遇到的一个概念:屈服准则。

上期讲的屈服强度属于材料特性。

屈服准则是一个计算概念。

一、屈服准则的含义屈服准则表示在复杂应力状态下材料开始进入屈服的条件,它的作用是控制塑性变形的开始阶段。

屈服条件在主应力空间中为屈服方程。

物体力在外载荷(通常为外力)作用下发生的变形有二种形态:(1)弹性变形。

弹性变形是可逆的,当外载荷卸去后物体可以恢复到初始状态,物体中任何二个质点之间的距离都恢复到初始值,物体内无任何残余变形。

(2)塑性变形。

塑性变形是不可逆的,物体中任何二个质点之间的距离不可能全部恢复到初始值,从而使得变形永久地保留在物体中,一般说来,在外载荷的作用下,物体中的任一质点开始时都只发生弹性变形,但是随着外载荷的增大使得该质点处的应力张量达到某一临界值时,该质点才能发生塑性变形受力物体内质点处于单向应力状态时,只要单向应力大到材料的屈服点时,则该质点开始由弹性状态进入塑性状态,即处于屈服。

受力物体内质点处于多向应力状态时,必须同时考虑所有的应力分量。

在一定的变形条件(变形温度、变形速度等)下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性状态,这种关系称为屈服准则,也称塑性条件。

简而言之,屈服准则,就是将实际结构的多轴应力状态与材料试验的单轴屈服应力等效转换的方法。

二、常用的屈服准则1.Tresca屈服准则当材料的最大剪应力达到材料屈服强度时,这判断材料在多轴应力状态下发生屈服。

换言之当变形体或质点中的最大切应力达到某一定值时,材料就发生屈服。

或者说,材料处于塑性状态时,其最大切应力是一个不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。

所以Tresca 屈服准则又称为最大切应力不变条件。

这种模型与静水压力无关,也不考虑中间应力的影响。

在平面上屈服条件为一个正六边形,在主应力空间内,屈服曲面为一个正六面柱体。

Tresca 屈服准则不足之处就是不包含中间主应力,没有反映中间主应力对材料屈服的影响优点:当知道主应力的大小顺序,应用简单方便缺点:(1)没有考虑正应力和静水压力对屈服的影响。

五种常见的屈服准则

五种常见的屈服准则

五种常见的屈服准则在社会交往中,人们往往会表现出不同的行为,这些行为受到各种因素的影响。

在心理学中,屈服准则是指人们因为各种原因而产生屈服或顺从的心理倾向。

下面将介绍五种常见的屈服准则。

1.权威准则:权威准则是指人们对权威人物、组织或机构的顺从行为。

人们往往认为权威的意见是正确和合理的,因此会主动遵从权威的指令或建议。

这种屈服准则在各个领域都存在,例如,在工作场所中,员工往往会听从管理者的指导;在军队中,士兵会服从上级的命令。

2.社会认同准则:社会认同准则是指人们因为希望符合群体规范而产生屈服行为。

当人们感觉自己与群体思想观点一致时,会更加愿意顺从群体的决策或行为。

这种屈服准则在群体行为中特别显著,例如,在示威游行中,人们可能会由于社会认同而参与其中。

3.礼貌准则:礼貌准则是指人们因为其中一种社会规则或礼节而产生屈服行为。

人们普遍认为应该尊重他人或遵守其中一种礼貌规定,因此会屈服于这种规则而改变自己的行为。

例如,在餐桌上,人们会在进食时保持安静,不会说话或无节制地进食,这一点就是礼貌准则的体现。

4.互惠准则:互惠准则是指人们因为期望获得回报而产生屈服行为。

当人们感受到他人的好意或帮助时,往往会产生一种回报的欲望,这种欲望会促使人们屈服于他人的要求或期待。

例如,当他人帮助自己时,人们会愿意回报对方。

5.亲和准则:亲和准则是指人们因为对他人感情的需求而产生屈服行为。

人们往往需要与他人建立积极的关系,并获得彼此的认可与赞同,因此会在一些情况下屈服于他人的意见或期望。

例如,为了维护友谊关系,人们可能会妥协或放弃自己的意见。

以上是五种常见的屈服准则。

这些准则在社会交往中起着重要的作用,影响着人们的行为和决策。

了解这些准则对于理解人们的行为动机和社会互动有着重要的意义。

同时,对于个人而言,也需要在适当的时候分辨和权衡自己的需求和他人的期望,避免过度的屈服与顺从。

05 屈服准则

05 屈服准则

π平面与两个屈服表面都 垂直,屈服表面在π平面上 π 2 的投影是半径为 3σ S 的圆 及其内接正六边形,这就 是π平面上的屈服轨迹。
π平面上的屈服轨迹
π平面通过坐标原点并与ON垂直(d=0),该平面上
σ m=0
则π平面上任一点无应力球张量的影响,其上任一点的应力 矢量均表示偏张量。 π平面的屈服轨迹更清楚地表示屈服准则的性质。 三根主轴在π平面上的投影互成120°,标出负向时,把π平 面及其面上的屈服轨迹等分成60°的六个区间,每个区间 内的应力大小次序互不相同: • 三根主轴上的点都表示(减去了球张量)单向应力状态; • 与主轴成30°交角线上的点表示纯切应力状态; 六个区间轨迹一样,只用一个区间(如图σ 1>σ2>σ3 中)就 可以表示出整个屈服轨迹的性质。
ቤተ መጻሕፍቲ ባይዱ
σρ沿壁厚为线性分布, 在内表面 在外表面
σρ = p
σρ =0
l=m=n= 1 3

线上任一点的三个坐标分量均相等,即
σ1 = σ 2 = σ 3
• 由P点引一直线PM⊥ON,则矢量OP可分解为: 应力球张量OM:
OM = σ 1l + σ 2 m + σ 3 n = 1 3
(σ 1 +σ 2+σ 3 )
应力偏张量MP:
| MP |= | OP | 2 − | OM | 2 = σ 1 + σ 2 + σ 3 −
σ1 −σ 3
2
=C
式中:常数C 可由单向拉伸实验来确定。
由σ1=σs,σ2 = σ3=0 得 ,则Tresca屈服准则写成
σ1 −σ 3 = σ S
若不知主应力大小顺序,则Tresca屈服准则写成

72. 材料的屈服准则有哪些,如何选择?

72. 材料的屈服准则有哪些,如何选择?

72. 材料的屈服准则有哪些,如何选择?72、材料的屈服准则有哪些,如何选择?在材料力学和工程领域中,屈服准则是一个至关重要的概念。

它用于确定材料在受力情况下何时开始发生塑性变形,对于材料的设计、分析和应用具有重要意义。

那么,材料的屈服准则都有哪些?在实际应用中又该如何进行选择呢?常见的材料屈服准则主要包括以下几种:首先是 Tresca 屈服准则。

Tresca 准则认为,当材料中的最大剪应力达到某一极限值时,材料开始屈服。

这个极限值通常是材料在简单拉伸试验中屈服应力的一半。

Tresca 屈服准则的数学表达式相对简单,在一些简单的受力情况下,计算较为方便。

其次是 von Mises 屈服准则。

与 Tresca 准则不同,von Mises 准则基于材料的畸变能。

它指出当材料的畸变能达到某一特定值时,材料发生屈服。

von Mises 屈服准则在数学形式上更为复杂,但在处理复杂应力状态时,具有更好的适用性和准确性。

还有 MohrCoulomb 屈服准则。

该准则主要适用于岩土等摩擦型材料。

它考虑了材料的内摩擦角和黏聚力等因素,能较好地描述岩土材料在剪切作用下的屈服行为。

此外,DruckerPrager 屈服准则是对 MohrCoulomb 准则的一种扩展和改进,使其在数值计算中更便于应用。

那么在实际工程中,如何选择合适的屈服准则呢?这需要综合考虑多个因素。

首先要考虑材料的类型。

不同的材料具有不同的力学性能和变形特点。

例如,金属材料通常更适合采用 von Mises 屈服准则,而岩土类材料则多采用 MohrCoulomb 或 DruckerPrager 屈服准则。

其次,受力状态也是一个重要的考量因素。

如果材料处于简单的单向或双向受力状态,Tresca 屈服准则可能就足够准确和简便。

但对于复杂的多向应力状态,von Mises 屈服准则往往能提供更可靠的结果。

再者,工程问题的复杂程度也会影响屈服准则的选择。

五种常见的屈服准则及其适用范围

五种常见的屈服准则及其适用范围

五种常见的屈服准则及其适用范围屈服准则是指人们在面对社会压力时,根据其中一种原因而放弃自我意见、观点或行为,并遵循他人意见、观点或行为的倾向。

下面将介绍五种常见的屈服准则及其适用范围。

1.权威准则:指个体由于对权威人物或机构的尊重或敬畏而放弃自己的意见。

这种准则适用于在权威人物或机构的领导下工作或学习的环境中。

例如,员工在工作中往往会按照上级的要求来执行任务,学生在学校会按照老师的指导来学习和做事。

2.社会规范准则:指个体出于对社会规范的遵循而放弃自己的意见。

社会规范可以是行为的期望或者认同,个体为了获得他人的接受与认同而屈服于这些规范。

这种准则适用于各种社交场合,如家庭、朋友圈、工作场所等。

例如,当他人的行为与社会规范相违背时,个体常常会选择屈服于规范并按照规范来行事。

3.一致性准则:指个体由于希望与他人保持一致而放弃自己的意见。

个体在与他人产生意见分歧时,为了避免或减轻冲突而屈服于他人的意见。

这种准则适用于许多社交情境,如团队项目、群体决策等。

例如,在团队合作中,个体常常会调整自己的观点以与团队其他成员保持一致。

4.互惠准则:指个体基于期望得到回报而放弃自己的意见。

个体希望通过提供帮助或服务获得他人的回报,因此在行为上屈从于他人的意见。

这种准则适用于人际关系的建立和维持过程中。

例如,当需要他人的帮助时,个体可能会先提供一些帮助,以期待得到对方的回报。

5.厌恶争议准则:指个体由于厌恶争议或冲突而放弃自己的意见。

个体为了避免冲突或争吵,而选择与他人和解并屈服于他人的意见。

这种准则适用于避免冲突的情境,如家庭内部问题、团队合作中的意见分歧等。

例如,当遇到争议性问题时,个体可能会选择妥协或调整自己的观点,以避免争论。

每个屈服准则都有其适用范围和局限性,需要根据具体情境和个体特点进行分析和判断。

有时,屈服准则可能会导致个体放弃自己的意见,从而影响决策的质量和个体的自主性。

因此,在实际应用中,需要权衡各种因素,保持适度的屈服与保护个体自主性之间的平衡。

屈服准则介绍

屈服准则介绍

4 3
2 S
或 3
1
2
2
1 2
2 3
S
轴对称应力状态下 z 0,且
z
2
3 z2
2 S
1 3 S
例3-6 Mises屈服 准则的应用
受内压薄壁圆筒,
半径r =300mm,内压p=35Mpa,(1) S =700Mpa,求管处于
弹性变形的最小壁厚tmin 。
p2r 2t
平面应变状态和主应力异号的平面应力状态下
max
x
2
y
2
2 xy
x y
2
4 xy2
2
2 S
4K 2
例3-5 Tresca屈服 准则的应用
受内压薄壁圆筒,
半径r =300mm,内压p=35Mpa,(1) S =700Mpa,求管处
于弹性变形的最小壁厚tmin 。
z
p r2 2r t
UVe
1
6E
1
2
2
2
3
2
3
1
2
1
3E
2
Mises屈服准则 s
U
e F
1
3E
2 S
平面应力状态下 z yz zx 0; 或 3 0
2 x
2 y
x y
3 xy2
2 S
2 1
2 2
1 2
2 S
平面应变状态下
yz
zx
0, z
x y ;
2
x y
2
4 xy2
六、硬化材料的屈服准则简介
材料加工硬化类型
等向强化
2
随动强化
2
1
1

11屈服准则

11屈服准则

r 2 J 2
2C const
因此,在π 平面Mises屈服准则可用一个圆来表示。
在主应力空间中是一个母线平行于L直线的圆柱面。 常数C 一般由实验确定:
1 2 在单向拉伸时,J 2 S C 3
在纯剪切时,
2 S J2 C
比较这二者可知,采用Mises准则就意味着
2
1200
1200
3
0
1
二、Mises屈服准则
未考虑中间主应力的影响。 Tresca准则的局限:主应力未知时表达式过于复杂; Mises屈服条件假定屈服曲线的一般表达式 f ( J 2 , J3 ) 0具有如下的最简单形式: (11-12) 由上节可知,屈服曲线上的点在π平面上投影的向径
屈服曲线
主应力空间中任一点P代表一个应力状态,
向量 OP 可参照L直线和π平面分解:
L
P P
O
L
平面
P
OP OP OP
其中 OP 对应于应力状态的球张量 部分,即静水压力部分。
由于静水应力不影响屈服,即屈服与否与 OP无关。
因此当P点达到屈服时, 线上的任一点也都达到屈服。
ij , t , T 0 ij , ij ,
受六个应力分量、应变分量、应变速率、时间、温度等因素的综合影响。
当不考虑时间效应且接近常温时,
在初始屈服前材料处于弹性状态,应力和应变间有一一对应的关系,
上式简化为
F ij 0

(11 1)
几何意义
屈服条件 F ij 0 在以应力分量为坐标的应力空间中为一曲面。 称为屈服曲面。 屈服曲面是区分弹性和塑性的分界面。
在纯剪切时,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五种常见的屈服准则及其适用范围
屈服准则表示在复杂应力状态下材料开始进入屈服的条件,它的作用是控制塑性变形的开始阶段。

屈服条件在主应力空间中为屈服方程。

1.几种常用的屈服准则
五种常用的屈服准则,它们分别是Tresca准则,Von-Mises准则 ,Mnhr- Coulomb准则,Drucker Prager准则,Zienkiewicz-Pande准则。

其中后三种适用于混凝土和岩土材料的准则
1.1 Tresca屈服准则
当最大剪应力达到一定数值时,材料开始屈服。

这就是Tresca屈服条件,也称为最大剪应力条件。

规定时,上式可表示为:
如果不知道的大小顺序,则屈服条件可写为:
换言之当变形体或质点中的最大切应力达到某一定值时,材料就发生屈服。

或者说,材料处于塑性状态时,其最大切应力是一个不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。

所以Tresca屈服准则又称为最大切应力不变条件。

这种模型与静水压力无关,也不考虑中间应力的影响。

在平面上屈服条件为一个正六边形,在主应力空间内,屈服曲面为一个正六面柱体。

Tresca屈服准则不足之处就是不包含中间主应力,没有反映中间主应力对材料屈服的影响。

1.2 Mises屈服准则
当与物体中的一点应力状态对应的畸变能达到某一极限值时,该点
便产生屈服,其表达式为或
其中, 为常数,可根据简单拉伸试验求得,或根据纯剪切试验来确定, 它所代表的屈服面是一个以空间对角线为轴的圆柱体,在平面上
屈服条件是一个圆。

这时有: 换言之当等效应力达到定值时,材料质点发生屈服,该定值与应力状态
无关。

或者说,材料处于塑性状态时,其等效应力是不变的定值,该定
值取决于材料变形时的性质,而与应力状态无关。

Mises屈服准则的物
理意义:当材料的单位体积形状改变的弹性能达到某一常数时,质点就
发生屈服。

故Mises屈服准则又称为能量准则。

1.3 Mnhr Coulomb准则
Tresca屈服条件和Mises屈服条件主要是对金属材料成立的两个屈
服条件,但是这两个屈服条件如果简单地应用于岩土材料,会引起不可
忽视的偏差。

针对此,Mohr提出这样一个假设:当材料某个平面上的剪应力达到
某个极限值时,材料发生屈服。

这也是一种剪应力屈服条件,但是与Tresca屈服条件不同,Mohr假设的这个极限值不是一个常数值,而是与
该平面上的正应力有关,它可以表示为 上式中,是材料粘聚强度,是材料的内摩擦角。

这个函数关系式可
以通过实验确定。

一般情况下,材料的内摩擦角随着静水应力的增加而
逐渐减小,因而假定函数对应的曲线在平面上呈双曲线或抛物线或摆
线。

但在静水应力不大的情况下,屈服曲线常用等于常数的直线来代
替,它可以表示为
上式就称为Mohr—Coulomb屈服条件。

设主应力大小次序为,则上式可以写成用主应力表示的形式
1.4 Drucker Prager准则
Drucker-prager屈服准则是对Mohr-Coulomb准则的近似,它修正了Von Mises 屈服准则,即在Von Mises表达式中包含一个附加项。

其屈服面并不随着材料的逐渐屈服而改变,因此没有强化准则, 塑性行为被假定为理想弹塑性,然而其屈服强度随着侧限压力(静水应力)的增加而相应增加,另外,这种材料考虑了由于屈服而引起的体积膨胀,但不考虑温度变化的影响。

故此材料适用于混凝土、岩石和土壤等颗粒状材料。

在主应力空间中,D-P屈服面为一曲面,其表达式为:
上式:为塑性势函数,为应力张量第一不变量,为应力偏张量第二不变量,,k为材料常数,是材料c,的函数,c,分别为材料的粘聚力和内摩擦角。

1.5 Zienkiewicz-Pande准则
Zienkiewicz-Pande 屈服准则是 Mohr-Coulomb 准则的改进,在p-q 子午面和 π 平面上都是光滑曲线,不存在尖点,在数值迭代计算过程中易于处理,而且在一定程度上考虑了屈服曲线与静水压力的关系以及中主应力σ。

是由Zienkiewicz、Pande 等学者在1977 年对 M-C 准则进行了修正与推广时,形成了具有 3 种曲线形式的 Zienkiewicz-Pande 准则(简称 Z-P 准则)。

这主要是考虑到M-C 准则在角点处存在奇异性,即其屈服曲线在 π 平面上有尖点,使得计算过程中出现奇异,特别在有限元迭代过程中,在尖角处无法处理的问题。

2.常用的屈服准则的优缺点及其适用范围
2.1Tresca准则
优点:当知道主应力的大小顺序,应用简单方便
缺点:(1)没有考虑正应力和静水压力对屈服的影响。

(2)屈服面有转折点,棱角,不连续
适用:金属材料
2.2 Mises屈服准则
优点:(1)考虑了中主应力对屈服和破坏的影响
(2)简单实用,材料参数少,易于实验测定
(3)屈服曲面光滑,没有棱角,利于塑性应变增量方向的确定和数值计算
缺点:(1)没有考虑静水压力对屈服的影响
(2)没有考虑单纯静水压力p对岩土类材料屈服的影响及屈服与破坏的非线性特性
(3)没有考虑岩土类材料在偏平面上拉压强度不同的S-D效应
适用:金属材料
2.3 Mohr-Coulomb屈服准则
优点:(1)反映岩土类材料的抗压强度不同的S-D效应对正应力的敏感性,
(2)反映了静水压力三向等压的影响,
(3)简单实用,参数简单易测。

缺点:(1)没有反映中主应力对屈服和破坏的影响
(2)没有考虑单纯静水压力引起的岩土屈服的特性
(3)屈服面有转折点,棱角,不连续,不便于塑性应变增量的计
算。

适用范围:岩石、土和混凝土材料
2.4 Drucker-Prager屈服准则
优点:(1)考虑了中主应力对屈服和破坏的影响
(2)简单实用,材料参数少,可以由C-M准则材料常数换算
(3)屈服曲面光滑,没有棱角,利于塑性应变增量方向的确定和数值计算
(4)考虑了静水压力对屈服的影响
(5)更符合实际
缺点:(1)没有考虑单纯静水压力p对岩土类材料屈服的影响及屈服与破坏的非线性特性
(2)没有考虑岩土类材料在偏平面上拉压强度不同的S-D效应
适用范围:岩石、土和混凝土材料
2.5 Zienkiewice-Pande准则
优点:(1)三种曲线在子午面上都是光滑曲线,利于数值计算
(2)在一定程度上考虑了屈服曲线与静水压力的非线性关系(3)在一定程度上考虑了中主应力对屈服和破坏的影响适用范围:岩石、土和混凝土材料。

相关文档
最新文档