高二物理 动量守恒定律 典型例题解析
高考物理动量守恒定律试题经典及解析
5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到 108K 时,可
以发生“氦燃烧”。
①完成“氦燃烧”的核反应方程:
4 2
He
___
8 4
Be
γ
。
②
8 4
Be
是一种不稳定的粒子,其半衰期为
2.6×10-16s。一定质量的
8 4
Be
,经
7.8×10-16s
后所剩下的
8 4
Be
占开始时的
械能守恒定律有 m1gh=
1 2
m1 v02
(1
分)v0=
2gh ,解得:v0=4.0 m/s(1 分)
②设物块 B 受到的滑动摩擦力为 f,摩擦力做功为 W,则 f=μm2g(1 分)
W=-μm2gx 解得:W=-1.6 J(1 分)
③设物块 A 与物块 B 碰撞后的速度为 v1,物块 B 受到碰撞后的速度为 v,碰撞损失的机械
关数学知识辅助分析、求解。
4.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对 一下简化模型的计算可以粗略说明其原因.质量为 2m、厚度为 2d 的钢板静止在水平光滑 桌面上.质量为 m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成 厚度均为 d、质量均为 m 的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同 的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深 度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影
E
1 2
mv02
1 2
Mv2
M
m mv02
2M
E mc2
解得
m
高二物理动量守恒定律试题答案及解析
高二物理动量守恒定律试题答案及解析1.如图所示,在光滑水平面上使滑块A以2 m/s的速度向右运动,滑块B以4 m/s的速度向左运动并与滑块A发生碰撞,已知滑块A、B的质量分别为1 kg、2 kg,滑块B的左侧连有轻弹簧,求:(1)当滑块A的速度减为0时,滑块B的速度大小;(2)两滑块相距最近时滑块B的速度大小.【答案】(1)(2)【解析】(1)根据动量守恒定律可得(3分)解得:(2分)(2)根据动量守恒定律可得:(3分)解得:(2分)【考点】考查了动量守恒定律的应用2.如图所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端.当两人同时相向运动时()A.若小车不动,两人速率一定相等B.若小车向左运动,A的动量一定比B的小C.若小车向左运动,A的动量一定比B的大D.若小车向右运动,A的动量一定比B的大【答案】C【解析】水平面光滑,把两个人和小车看做糸统,在水平方向不受外力,糸统动量守恒。
若小车不动,A、B两个动量相等,由于不知道两个质量大小,所以不能确定两个的速度,A不对。
若小车向左运动,A、B总动量向右,所以A动量大于B动量,故C正确。
若小车向右运动,A、B总动量向左,B动量大于A动量,D错。
【考点】动量守恒3.在2010年温哥华冬奥会上,首次参赛的中国女子冰壶队喜获铜牌,如图为中国队员投掷冰壶的镜头.在某次投掷中,冰壶运动一段时间后以0.4 m/s的速度与对方的静止冰壶发生正碰,碰后对方的冰壶以0.3 m/s的速度向前滑行.若两冰壶质量相等,规定向前运动的方向为正方向,则碰后中国队冰壶获得的速度为().A.0.1 m/s B.-0.1 m/s C.0.7 m/s D.-0.7 m/s【答案】A【解析】设冰壶质量为m,碰后中国队冰壶速度为vx ,由动量守恒定律得 mv=mv+mvx解得vx=0.1 m/s,故选项A正确。
【考点】动量守恒4.(10分)两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为,,它们的下底面光滑,上表面粗糙;另有一质量的滑块C(可视为质点),以的速度恰好水平地滑到A的上表面,如图所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0m/s,求:(1)木块A的最终速度(2)滑块C离开A时的速度【答案】(1)2.6m/s(2)4.2m/s【解析】(1)这是一个由A、B、C三个物体组成的系统,以这系统为研究对象,当C在A、B上滑动时,A、B、C三个物体间存在相互作用,但在水平方向不存在其他外力作用,因此系统的动量守恒。
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)及解析
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.2.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
高中物理动量守恒定律试题经典及解析
高中物理动量守恒定律试题经典及分析一、高考物理精讲专题动量守恒定律1. 水平搁置长为 L=4.5m 的传递带顺时针转动,速度为v=3m/s ,质量为 m 2=3kg 的小球被长为 l 1m 的轻质细线悬挂在 O 点,球的左边沿恰于传递带右端 B 对齐;质量为 m 1=1kg的物块自传递带上的左端A 点以初速度 v 0=5m/s 的速度水平向右运动,运动至B 点与球 m 2发生碰撞,在极短的时间内以碰撞前速率的1反弹,小球向右摇动一个小角度即被取走。
2已知物块与传递带间的滑动摩擦因数为μ,取重力加快度 g10m/s 2 。
求:( 1)碰撞后瞬时,小球遇到的拉力是多大?( 2)物块在传递带上运动的整个过程中,与传递带间摩擦而产生的内能是多少?【答案】( 1) 42N ( 2)【分析】【详解】解:设滑块 m1与小球碰撞前向来做匀减速运动,依据动能定理:m gL = 1mv 2 1 m v 2121 121 0解之可得: v 1 =4m/s因为 v 1v ,说明假定合理m 1v 1 = 12滑块与小球碰撞,由动量守恒定律: 2m 1v 1+m 2v 2解之得: v 2 =2m/s碰后,对小球,依据牛顿第二定律:F m 2 gm 2 v 22l小球遇到的拉力:F 42N(2)设滑块与小球碰撞前的运动时间为t 1 ,则 L1v 0 v 1 t 12解之得: t 1 1s在这过程中,传递带运转距离为: S 1 vt 1 3m 滑块与传递带的相对行程为:X 1LX 1设滑块与小球碰撞后不可以回到传递带左端,向左运动最大时间为 t 2则依据动量定理:m 1 gt 2m 11v 12解之得: t2 2s滑块向左运动最大位移: x m11v1 t 2=2m22因为 x m L ,说明假定建立,即滑块最后从传递带的右端走开传递带1再考虑到滑块与小球碰后的速度2 v1< v ,说明滑块与小球碰后在传递带上的总时间为2t2在滑块与传递带碰撞后的时间内,传递带与滑块间的相对行程X 22vt212m所以,整个过程中,因摩擦而产生的内能是Q m1 g x1 x22.以下图,质量M=1kg 的半圆弧形绝缘凹槽搁置在圆滑的水平面上,凹槽部分嵌有cd 和 ef 两个圆滑半圆形导轨, c 与 e 端由导线连结,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行 ce 由静止着落,并恰巧从 ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触优秀。
高二物理动量定理试题答案及解析
高二物理动量定理试题答案及解析1.如图所示,篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以A.减小球的动量的变化量B.减小球对手作用力的冲量C.减小球的动量变化率D.延长接球过程的时间来减小动量的变化量【答案】C【解析】由动量定理,而接球时先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前为了延长时间,减小受力,即,也就是减小了球的动量变化率,故C正确。
【考点】动量定理2.在光滑的水平桌面上有等大的质量分别为M="0.6" kg,m="0.2" kg的两个小球,中间夹着一个被压缩的具有E="10.8" J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态.现突然p释放弹簧,球m脱离弹簧后滑向与水平面相切、半径为R="0.425" m的竖直放置的光滑半圆形轨道,如图所示.g取10 m/s2.则下列说法正确的是:A.球m从轨道底端A运动到顶端B的过程中所受合外力冲量大小为3.4 N·sB.M离开轻弹簧时获得的速度为9m/sC.若半圆轨道半径可调,则球m从B点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D.弹簧弹开过程,弹力对m的冲量大小为1.8 N·s【答案】AD【解析】据题意,由动量守恒定律可知:,即,又据能量守恒定律有:,求得,则弹簧对小球冲量为:,故选项B错误而选项D正确;球从A到B速度为:,计算得到:,则从A到B过程合外力冲量为:,故选项A正确;半径越大,飞行时间越长,而小球的速度越小,水平距离不一定越小,故选项C错误。
【考点】本题考查动量守恒定律、能量守恒定律和动量定理。
距离的B处放有一3.(10分). “┙”型滑板,(平面部分足够长),质量为4m,距滑板的A壁为L1质量为m,电量为+q的大小不计的小物体,小物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中,初始时刻,滑板与小物体都静止,试求:(1)释放小物体,第一次与滑板A壁碰前小物体的速度v多大?1(2)若小物体与A壁碰后相对水平面的速度大小为碰前的,碰撞时间极短,则碰撞后滑板速度多大?(均指对地速度)(3)若滑板足够长,小物体从开始运动到第二次碰撞前,电场力做功为多大?【答案】(1) (2) (3)【解析】(1)对物体,根据动能定理,有,得′;滑板的速度为v,(2)物体与滑板碰撞前后动量守恒,设物体第一次与滑板碰后的速度为v1则.若,则,因为,不符合实际,故应取,则.(3)在物体第一次与A壁碰后到第二次与A壁碰前,物体做匀变速运动,滑板做匀速运动,在这段时间内,两者相对于水平面的位移相同.∴即.对整个过程运用动能定理得;电场力做功.【考点】考查动量守恒定律和动能定理在碰撞问题中的综合应用.4.一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹。
高二物理 动量定理与动量守恒定律 典型例题解析
动量定理与动量守恒定律 典型例题解析【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为v 02,物体与盒子右壁相碰后即粘在右壁上,求:(1)物体在盒内滑行的时间;(2)物体与盒子右壁相碰过程中对盒子的冲量.解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右.v mv mv 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键.【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大?解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒.【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离?点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分.参考答案例例跟踪反馈...;;.×·3m M +m L 4 M +m MH [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.点拨:人和气球组成的系统总动量守恒,人沿绳子到达地面的过程中向下发生的位移为H ,此过程中气球向上发生位移为s ,两位移大小之和等于所求的绳长.参考答案例例跟踪反馈...;;.×·3m M +m L 4 M +m MH [] 1 C 2h 300v 49.110N s 04M m M 跟踪反馈1.如图55-5所示,质量为m 的小球悬挂在质量为M 的小车上,小车静止在光滑的水平面上,现将小球拉到悬线呈水平位置时自由释放,小球向下摆动后陷入固定在车上的一块橡皮泥中,则此后小车的状态是[ ]A .向右匀速运动B .向左匀速运动C .静止不动D .左右来回运动2.质量为m 的木块和质量为M 的金属块用细线系在一起,悬浮在深水中的某一位置处于静止状态,若细线断裂,木块向上浮起h 的高度时与金属块之间的距离为_______.3.在光滑的水平面上有三个完全相同的小球排成一条直线,第2、3两个小球静止并靠在一起,如图55-6所示:第1个小球以速度v 0,射向它们并发生正碰,已知在不存在第3个球时第一个球与静止的第二个球碰后第一个球的速度为零,第二个球速度为v 0,现存在第三个球,则正碰后三球的速度分别为_______、_______、_______.4.质量为130t ,速度为2m/s 的机车,与一节静止在水平轨道上的质量为70t 的车厢挂接,求挂接过程中车厢所受的冲量多大.参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M。
高二物理 动量守恒定律的应用典型例题解析
【例1】如图53-1所示,质量相同的两木块从同一高度同时开始自由下落,至某一位置时A 被水平飞来的子弹击中(未穿出),则A 、B 两木块的落地时间t A 、t B 的比较,正确的是[ ]A .t A =t BB .t A >t BC .t A <t BD .无法判断解析:正确答案为B点拨:子弹与木块A 作用过程中,在水平方向的总动量守恒,在竖直方向上由于满足子弹与木块作用力的冲量远大于重力的冲量,所以在竖直方向上总动量也守恒,取向下为正有:m A v A =(m A +m)v ′A y ,显然′=<,即由于子弹的射入,使木块在极短的时间v y v v A A AA m m m A A 内竖直方向的速度由v A 减小到v ′A y ,因而使得它比木块B 迟到达地面.【例2】 A 、B 两辆车在光滑的水平面上相向滑行,A 车的总质量m A =1000kg ,B 车的总质量m B =500kg ,当各自从对方的侧旁相遇而过时,各自把m =50kg 的重物转移到对方的车上,结果A 车停止运动,B 车以v B ′=8.5m/s 的速度继续按原方向前进,求A 、B 两车原来的速度大小.解析:设A 、B 两车原来的速度大小为v A 和v B ,以B 车的运动方向为正.对A 、B 两车这一系统,总动量守恒,m B v B -m A v A =m A ·0+m B v B ′,500v B -1000v A =500×8.5.对B 车(除要移动的50kg)和从A 车上移入的重物为系统,总动量守恒(m B -m)v B -mv A =m B v B ′,(500-50)v B -50v A =500×8.5.解得v A =0.5m/s ,v B =9.5m/s .点拨:应用动量守恒定律时,灵活地选取研究对象作为系统是解题必须具备的能力,本例若选取A 车(不包括要移动的50kg)和从B 车上移入的重物为系统,则有mv B -(m A -m)v A =0,50v B -(1000-50)v A =0,在这三次选取的系统中,只要选取三次中的任意两次便可得到问题的解.【例3】将质量为m 的铅球以大小为v 0,沿仰角为θ的方向抛入一个装着砂子的总质量为M 的静止砂车中,如图53-2所示,设车与地面间的摩擦可忽略,则球落入砂车后,车的速度多大?点拨:对铅球和砂车所组成的系统,在相互作用过程中,总动量不守恒,因为铅球进入砂车后竖直方向的动量减为零,但系统在水平方向不受外力作用,在水平方向总动量守恒.【例4】如图53-3所示,质量为m 的玩具蛙蹲在质量为M 的小车上的细杆顶端,小车与地面的接触光滑,车长为l ,细杆高h ,直立于小车的中点,求玩具蛙至少以多大的对地水平速度跳出才能落到地面上?点拨:将玩具蛙和小车作为系统,蛙在跳离车的过程中,系统水平方向的总动量守恒,蛙离开杆后,作平抛运动,小车作向后匀速直线运动,在蛙下降高度h 的过程中,车通过的距离与蛙在水平方向通过的距离之和等于l /2时,蛙恰能落到地面上.参考答案例=θ;方向水平向右例=3 v 4v m mv M m M M m g h022cos ()++l 跟踪反馈1.一只小船停止在湖面上,一个人从小船的一端走到另一端,不计水的阻力,下列说法正确的是[ ] A.人在船上行走时,人对船的冲量比船对人的冲量小,所以人走得快,船后退得慢.B.人在船上行走时,人和船的动量等值反向,由于人的质量较小,所以人走得快,船后退得慢.C.当人停止走动时,因船的惯性大,所以船将继续后退.D.当人停止走动时,因总动量守恒,所以船将停止后退.2.斜面上一只质量为M的砂箱沿斜面匀速下滑,质量为m的小球从砂箱的上方轻轻地放入砂箱,随后小球与砂箱相对静止,则小球和砂箱这一系统的运动情况是[ ] A.立即停止运动B.减速下滑,直至逐渐停止运动C.加速下滑D.仍匀速下滑,但下滑的速度减小3.在水平轨道上有一门大炮,炮身质量M=2000kg,炮弹质量m=10kg,炮弹以对地速度v=800m/s,与水平方向成α=60°的夹角斜向上飞出炮口,则由于发射这颗炮弹,炮身获得的反冲速度大小为_______m/s.4.质量为100kg的甲车连同质量为50kg的人一起以2m/s的速度在光滑的水平面上向前运动,质量为150kg的乙车以7m/s的速度由后面追来,为避免相撞,当两车接近时甲车上的人至少应以多大的对地水平速度跳上乙车?参考答案1.BD 2.D 3.2m/s 4.3m/s;方向与原方向相同。
高二物理 动量守恒定律的应用 典型例题解析
动量守恒定律的应用 典型例题解析【例1】 如图53-1所示,质量相同的两木块从同一高度同时开始自由下落,至某一位置时A 被水平飞来的子弹击中(未穿出),则A 、B 两木块的落地时间t A 、t B 的比较,正确的是[ ]A .t A =t BB .t A >t BC .t A <t BD .无法判断解析:正确答案为B点拨:子弹与木块A 作用过程中,在水平方向的总动量守恒,在竖直方向上由于满足子弹与木块作用力的冲量远大于重力的冲量,所以在竖直方向上总动量也守恒,取向下为正有:m A v A =(m A +m)v ′A y ,显然′=<,即由于子弹的射入,使木块在极短的时间v y v v A A AA m m m A A 内竖直方向的速度由v A 减小到v ′A y ,因而使得它比木块B 迟到达地面.【例2】 A 、B 两辆车在光滑的水平面上相向滑行,A 车的总质量m A =1000kg ,B 车的总质量m B =500kg ,当各自从对方的侧旁相遇而过时,各自把m =50kg 的重物转移到对方的车上,结果A 车停止运动,B 车以v B ′=8.5m/s 的速度继续按原方向前进,求A 、B 两车原来的速度大小.解析:设A 、B 两车原来的速度大小为v A 和v B ,以B 车的运动方向为正.对A、B两车这一系统,总动量守恒,m B v B-m A v A=m A·0+m B v B′,500v B-1000v A=500×8.5.对B车(除要移动的50kg)和从A车上移入的重物为系统,总动量守恒(m B -m)v B-mv A=m B v B′,(500-50)v B-50v A=500×8.5.解得v A=0.5m/s,v B=9.5m/s.点拨:应用动量守恒定律时,灵活地选取研究对象作为系统是解题必须具备的能力,本例若选取A车(不包括要移动的50kg)和从B车上移入的重物为系统,则有mv B-(m A-m)v A=0,50v B-(1000-50)v A=0,在这三次选取的系统中,只要选取三次中的任意两次便可得到问题的解.【例3】将质量为m的铅球以大小为v0,沿仰角为θ的方向抛入一个装着砂子的总质量为M的静止砂车中,如图53-2所示,设车与地面间的摩擦可忽略,则球落入砂车后,车的速度多大?点拨:对铅球和砂车所组成的系统,在相互作用过程中,总动量不守恒,因为铅球进入砂车后竖直方向的动量减为零,但系统在水平方向不受外力作用,在水平方向总动量守恒.【例4】如图53-3所示,质量为m的玩具蛙蹲在质量为M的小车上的细杆顶端,小车与地面的接触光滑,车长为l,细杆高h,直立于小车的中点,求玩具蛙至少以多大的对地水平速度跳出才能落到地面上?点拨:将玩具蛙和小车作为系统,蛙在跳离车的过程中,系统水平方向的总动量守恒,蛙离开杆后,作平抛运动,小车作向后匀速直线运动,在蛙下降高度h的过程中,车通过的距离与蛙在水平方向通过的距离之和等于l/2时,蛙恰能落到地面上.参考答案例=θ;方向水平向右例=3 v 4v m mv M m M M m g h022cos ()++l跟踪反馈1.一只小船停止在湖面上,一个人从小船的一端走到另一端,不计水的阻力,下列说法正确的是[ ]A .人在船上行走时,人对船的冲量比船对人的冲量小,所以人走得快,船后退得慢.B .人在船上行走时,人和船的动量等值反向,由于人的质量较小,所以人走得快,船后退得慢.C .当人停止走动时,因船的惯性大,所以船将继续后退.D .当人停止走动时,因总动量守恒,所以船将停止后退.2.斜面上一只质量为M 的砂箱沿斜面匀速下滑,质量为m 的小球从砂箱的上方轻轻地放入砂箱,随后小球与砂箱相对静止,则小球和砂箱这一系统的运动情况是[ ]A .立即停止运动B .减速下滑,直至逐渐停止运动C .加速下滑D .仍匀速下滑,但下滑的速度减小3.在水平轨道上有一门大炮,炮身质量M =2000kg ,炮弹质量m =10kg ,炮弹以对地速度v =800m/s ,与水平方向成α=60°的夹角斜向上飞出炮口,则由于发射这颗炮弹,炮身获得的反冲速度大小为_______m/s .4.质量为100kg 的甲车连同质量为50kg 的人一起以2m/s 的速度在光滑的水平面上向前运动,质量为150kg 的乙车以7m/s 的速度由后面追来,为避免相撞,当两车接近时甲车上的人至少应以多大的对地水平速度跳上乙车?参考答案1.BD 2.D 3.2m/s 4.3m/s ;方向与原方向相同。
高二物理动量守恒定律典型例题解析.doc
【例 1】如图 52- 1 所示,在光滑的水平面上,质量为m 的小球以速度1v1 追逐质量为 m ,速 度为 v2 的小球,追及并发生相碰后速度分别为v ′和21v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律.解析:在两球相互作用过程中,根据牛顿第二定律,对小球 1 有:F=m a =m1v 1,对 m 有F ′= m a = m2v 2.由牛顿第三定律得 F =1 1t22 2t- F ′,所以 F ·Δ t =- F ′·Δ t , m v =- mv ,即 m (1 12 2 1v ′- v ) =- m (v 2 ′- v ) ,整理后得: m v + m v = m v ′+1 12 2 1 1 2 21 1m2v2′,这表 明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒.点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化.【例 2】把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是[ ]A .枪和子弹组成的系统动量守恒B .枪和车组成的系统动量守恒C .子弹、枪、小车这三者组成的系统动量守恒D .子弹的动量 变化与枪和车的动量变化相同 解析:正确答案为C点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪 和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统 的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关.【例 3】如图 52-2 所示, 设车厢的长度为l ,质量为 M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度 v 0 向右运动,与车厢壁来回碰撞 n 次后,静止在车厢中,这时车厢的速度为_______,方向与 v 0 的方向_______.点拨:不论物体与车厢怎样发生作用,碰撞多少次,将物体与车厢作为系统,物体与车厢间作用力是内力,不改变系统的总动量,同时这一系统所受的合外力为零,系统的总动量守恒,以v0为正方向,有mv0= (M+m)v′.【例 4】一辆列车的总质量为M,在平直的水平轨道上以速度v 匀速行驶,突然最后一节质量为m的车厢脱钩,假设列车所受的阻力与车的重量成正比,机车的牵引力不变,当脱钩的车厢刚好停止运动时,前面列车的速度为多大?点拨:以整列列车为系统,不管最后一节车厢是否脱钩,系统所受的外力在竖直方向上重力与轨道给系统的弹力相平衡,在运动方向上牵引力与系统所受的总的阻力相平衡,即系统所受的外力为零,总动量守恒.参考答案例 3 mv 0,相同例 4 M vM + m M - m跟踪反馈1.在光滑水平面上有两个质量不等的物体,它们之间夹一被压缩的弹簧,开始时两物用细绳相连,烧断细绳后两物体[ ] A.在任何时刻加速度大小相等B.在任何时刻速度大小相等C.在任何时刻动量大小相等D.在任意一段时间内,弹簧对两物体的冲量相同2.沿一直线相向运动的甲、乙两质点,作用前动量分别是P1=10kg·m/s ,P2=- 18kg· m/s,作用后甲的动量为-1kg· m/s ,不计任何外界阻力,则作用后乙的动量为[ ] A.- 29kg· m/sB. 29kg· m/sC.- 7kg· m/sD. 7kg· m/s3.质量为 490 g 的木块静止在光滑水平面上,质量为 10g 的子弹以 500m/s 的速度水平射入木块并嵌在其中,从子弹刚射入木块至与木块相对静止的过程中,木块增加的动量为_______kg· m/s ,它们的共同运动速度为4.质量为 120t 的机车,向右匀速滑行与静止的质量均为挂接在一起运动,由于四节车厢的挂接,使机车的速度减小了挂接前的速度._______m/s.60t 的四节车厢3m/s,求机车在参考答案1. C 2 . C 3 .4.9 ; 10 4 . 4.5m/s ;方向向右。
高中物理动量守恒定律试题经典及解析
高中物理动量守恒定律试题经典及解析一、高考物理精讲专题动量守恒定律1.如图所示,光滑水平直导轨上有三个质量均为m的物块A、B、C,物块B、C静止,物块B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计);让物块A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C 碰撞过程时间极短.那么从A开始压缩弹簧直至与弹簧分离的过程中,求.(1)A、B第一次速度相同时的速度大小;(2)A、B第二次速度相同时的速度大小;(3)弹簧被压缩到最短时的弹性势能大小【答案】(1)v0(2)v0(3)【解析】试题分析:(1)对A、B接触的过程中,当第一次速度相同时,由动量守恒定律得,mv0=2mv1,解得v1=v0(2)设AB第二次速度相同时的速度大小v2,对ABC系统,根据动量守恒定律:mv0=3mv2解得v2=v0(3)B与C接触的瞬间,B、C组成的系统动量守恒,有:解得v3=v0系统损失的机械能为当A、B、C速度相同时,弹簧的弹性势能最大.此时v2=v0根据能量守恒定律得,弹簧的最大弹性势能.考点:动量守恒定律及能量守恒定律【名师点睛】本题综合考查了动量守恒定律和能量守恒定律,综合性较强,关键合理地选择研究的系统,运用动量守恒进行求解。
2.如图所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45m 的1/4圆弧面.A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑.小滑块P1和P2的质量均为m.滑板的质量M=4m,P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P2向左滑行距离:22222.25m2vsa'==所以P1、P2静止后距离:△S=L-S1-S2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.3.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV2=mv1(1分)损失的动能为:ΔE′=12mv21-12×2mV22(2分)联立解得:ΔE′=13(1)2×mv20因为ΔE′=f·x(1分),可解得射入第二钢板的深度x为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解4.如图所示,质量为m的由绝缘材料制成的球与质量为M=19m的金属球并排悬挂.现将绝缘球拉至与竖直方向成θ=600的位置自由释放,下摆后在最低点与金属球发生弹性碰撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于450.【答案】最多碰撞3次【解析】解:设小球m的摆线长度为l小球m在下落过程中与M相碰之前满足机械能守恒:①m和M碰撞过程是弹性碰撞,故满足:mv0=MV M+mv1 ②③联立②③得:④说明小球被反弹,且v1与v0成正比,而后小球又以反弹速度和小球M再次发生弹性碰撞,满足:mv1=MV M1+mv2 ⑤⑥解得:⑦整理得:⑧故可以得到发生n 次碰撞后的速度:⑨而偏离方向为450的临界速度满足:⑩联立①⑨⑩代入数据解得,当n=2时,v 2>v 临界 当n=3时,v 3<v 临界即发生3次碰撞后小球返回到最高点时与竖直方向的夹角将小于45°. 考点:动量守恒定律;机械能守恒定律. 专题:压轴题.分析:先根据机械能守恒定律求出小球返回最低点的速度,然后根据动量守恒定律和机械能守恒定律求出碰撞后小球的速度,对速度表达式分析,求出碰撞n 次后的速度表达式,再根据机械能守恒定律求出碰撞n 次后反弹的最大角度,结合题意讨论即可.点评:本题关键求出第一次反弹后的速度和反弹后细线与悬挂点的连线与竖直方向的最大角度,然后对结果表达式进行讨论,得到第n 次反弹后的速度和最大角度,再结合题意求解.5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
专题14 动量守恒定律(解析版)
高二物理寒假作业(章节补弱+自测提高)专题14 动量守恒定律1.《加油向未来》是中央电视台推出的科学实验节目。
在某期节目中有这样一个实验,主持人撒贝宁手拿两个球,使两个球的球心在一条竖直线上,从h 高处由静止释放,观察小球弹起的高度。
假设h 远大于两球的半径,下面篮球的质量是上面小球的3倍,所有碰撞皆为弹性碰撞,且碰撞时间极短,不考虑空气阻力的影响。
则小球弹起的高度为( )A .4hB .3hC .2hD .h【答案】A【详解】设上面小球的质量为m ,则下面篮球的质量为3m ,两球自由下落h 时的速度均为v 地后速度瞬间反向,大小不变,碰撞后小球、篮球的速度分别为v 1、v 2,以向上为正方向,由动量守恒及能量守恒分别可得1233mv mv mv mv -=+;22212111(3)3222m m v mv mv +=⋅+⋅联立解得1v =度为2142v H h g==,A 正确。
故选A 。
2.如图甲所示,物块A 、B 的质量分别是A 4.0kg m =和 3.0kg m =,用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙壁相接触,另有一物块C 从0=t 时以一定速度向右运动在4s t =时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v t -图象如图乙所示,墙壁对物块B 的弹力在4s 到12s 的时间内对B 的冲量I 的大小( )A .9N ·sB .18N ·sC .36N ·sD .72N ·s【答案】C 【详解】结合图乙,对C 与A 碰撞前后用动量守恒定律()001C C m v m m v =+碰撞后,AC 整体一起压缩弹簧,以向右为正方向,对A 、B 、C 及弹簧系统由动量定理可得()()()()11243N s 243N s 36N s C A C A I m m v m m v =-+-+=-+⨯⋅-+⨯⋅=-⋅弹即墙壁对A 、B 、C 及弹簧系统的冲量大小为36N s ⋅,由于墙壁的弹力作用在B 上,所以墙壁的弹力对B 的冲量大小为36N s ⋅,故C 正确。
高二物理动量守恒定律试题答案及解析
高二物理动量守恒定律试题答案及解析1.(9分)如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等,方向相反的初速度v,使A开始向左运动,B开始向右运动,如果A不滑离B,求:(ⅰ)A、B最后的速度大小和方向;(ⅱ)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。
【答案】(1)(2)【解析】(1)A刚好没有滑离B板,表示当A滑到B板的最左端时,A、B具有相同的速度,设此速度为v,A和B的初速度的大小为v,则据动量守恒定律可得:Mv0-mv=(M+m)v解得:,方向向右(2)从地面上看,小木块向左运动到离出发点最远处时,木块速度为零,平板车速度为v',由动量守恒定律得 Mv0-mv=Mv'这一过程平板向右运动S,μmgs=MV2−Mv′2解得【考点】动量守恒及能量守恒定律。
2.一条小船长3米,船上站有一人。
人的质量为60kg,船的质量(不包括人)为240kg,开始时船静止在水面上,当该人从船头走向船尾的过程中(不计水的阻力),小船将后退的距离为:()A.0.4m B.0.5m C.0.6m D.0.7m【答案】C【解析】设船的质量为M,人的质量为m,船长为d,据题,水对船的阻力略不计,船和人组成的系统,在水平方向上动量守恒,人在船上行进,船向右退,取人相对地的速度为正,人和船的速度大小分别为v和V.有:.人从船头走到船尾,设船后退的距离为x,则人相对于地面的距离为.则,,则有:解得:.带入数据可得,故C正确,【考点】考查了动量守恒定律的应用3.如图所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端.当两人同时相向运动时()A.若小车不动,两人速率一定相等B.若小车向左运动,A的动量一定比B的小C.若小车向左运动,A的动量一定比B的大D.若小车向右运动,A的动量一定比B的大【答案】C【解析】水平面光滑,把两个人和小车看做糸统,在水平方向不受外力,糸统动量守恒。
高中物理动量守恒定律题20套(带答案)及解析
高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A 、B 、C 系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A 、B 在前,C 在后.此后C 向左加速,A 、B 的加速度沿杆向右,直到弹簧恢复原长,故A 、B 继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A 、B 的速度,C 的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数 ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A、B、C运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.4.28.如图所示,质量为m a=2kg的木块A静止在光滑水平面上。
动量守恒定律的典型例题.
动量守恒定律的典型例题【例1】把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有哪些?[]A.枪和子弹组成的系统动量守恒B.枪和车组成的系统动量守恒C.车、枪和子弹组成的系统动量守恒D.车、枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有摩擦力.且摩擦力的冲量甚小【分析】本题涉及如何选择系统,并判断系统是否动量守恒.物体间存在相互作用力是构成系统的必要条件,据此,本题中所涉及的桌子、小车、枪和子弹符合构成系统的条件.不仅如此,这些物体都跟地球有相互作用力.如果仅依据有相互作用就该纳入系统,那么推延下去只有把整个宇宙包括进去才能算是一个完整的体系,显然这对于分析、解决一些具体问题是没有意义的.选择体系的目的在于应用动量守恒定律去分析和解决问题,这样在选择物体构成体系的时候,除了物体间有相互作用之外,还必须考虑“由于物体的相互作用而改变了物体的动量”的条件.桌子和小车之间虽有相互作用力,但桌子的动量并没有发生变化.不应纳入系统内,小车、枪和子弹由于相互作用而改变了各自的动量,所以这三者构成了系统.分析系统是否动量守恒,则应区分内力和外力.对于选定的系统来说,重力和桌面的弹力是外力,由于其合力为零所以系统动量守恒.子弹与枪筒之间的摩擦力是系统的内力,只能影响子弹和枪各自的动量,不能改变系统的总动量.所以D的因果论述是错误的.【解】正确的是C.【例2】一个质量M=1kg的鸟在空中v0=6m/s沿水平方向飞行,离地面高度h=20m,忽被一颗质量m=20g沿水平方向同向飞来的子弹击中,子弹速度v=300m/s,击中后子弹留在鸟体内,鸟立即死去,g=10m/s2.求:鸟被击中后经多少时间落地;鸟落地处离被击中处的水平距离.【分析】子弹击中鸟的过程,水平方向动量守恒,接着两者一起作平抛运动。
【解】把子弹和鸟作为一个系统,水平方向动量守恒.设击中后的共同速度为u,取v0的方向为正方向,则由Mv0+mv=(m+M)u,得击中后,鸟带着子弹作平抛运动,运动时间为鸟落地处离击中处水平距离为S=ut=11.76×2m=23.52m.【例3】一列车沿平直轨道以速度v0匀速前进,途中最后一节质量为m的车厢突然脱钩,若前部列车的质量为M,脱钩后牵引力不变,且每一部分所受摩擦力均正比于它的重力,则当最后一节车厢滑行停止的时刻,前部列车的速度为[]【分析】列车原来做匀速直线运动,牵引力F等于摩擦力f,f=k(m+M)g(k为比例系数),因此,整个列车所受的合外力等于零.尾部车厢脱钩后,每一部分所受摩擦力仍正比于它们的重力.因此,如果把整个列车作为研究对象,脱钩前后所受合外力始终为零,在尾部车厢停止前的任何一个瞬间,整个列车(前部+尾部)的动量应该守恒.考虑刚脱钩和尾部车厢刚停止这两个瞬间,由(m+M)v0=0+Mv得此时前部列车的速度为【答】B.【说明】上述求解是根据列车受力的特点,恰当地选取研究对象,巧妙地运用了动量守恒定律,显得非常简单.如果把每一部分作为研究对象,就需用牛顿第二定律等规律求解.有兴趣的同学,请自行研究比较.【例4】质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球.第二个小球的质量为m2=50g,速率v2=10cm/s.碰撞后,小球m2恰好停止.那么,碰撞后小球m1的速度是多大,方向如何?【分析】取相互作用的两个小球为研究的系统。
高中物理动量守恒定律题20套(带答案)及解析
高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
高二物理动量守恒定律试题答案及解析
高二物理动量守恒定律试题答案及解析1. 如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为m A =4 kg ,m B =2 kg ,速度分别是v A =3 m/s(设为正方向),v B =-3 m/s.则它们发生正碰后,速度的可能值分别为( )A .v A ′=1 m/s ,vB ′=1 m/s B .v A ′=4 m/s ,v B ′=-5 m/sC .v A ′=2 m/s ,v B ′=-1 m/sD .v A ′=-1 m/s ,v B ′=-5 m/s 【答案】A【解析】两球碰撞过程系统动量守恒,碰撞过程中系统机械能不可能增加,碰撞后的系统总动能应该小于或等于碰撞前的系统总动能;同时,碰撞后A 球速度不大于B 球的速度. 碰前系统总动量为,碰前总动能为;若,则系统动量守恒,动能3J ,碰撞后A 球速度不大于B 球的速度,符合,故A 可能; 若,则系统动量守恒,动能大于碰撞前,不符合题意,故B 不可能; 若,则系统动量守恒,但不符合碰撞后A 球速度不大于B 球的速度,故C 不可能; 若,则系统动量不守恒,D 不可能。
【考点】考查了动量守恒定律的应用2. 木块a 和b 用一根轻弹簧连接起来,放在光滑水平面上,a 紧靠在墙壁上.在b 上施加向左的水平力F 使弹簧压缩,如图所示.当撤去外力F 后,下列说法中正确的是( )A .a 尚未离开墙壁前,a 和b 组成的系统动量守恒B .a 尚未离开墙壁前,a 和b 组成的系统动量不守恒C .a 离开墙壁后,a 、b 组成的系统动量守恒D .a 离开墙壁后,a 、b 组成的系统动量不守恒【答案】BC【解析】在a 离开墙壁前、弹簧伸长的过程中,对a 和b 构成的系统,由于受到墙给a 的弹力作用,所以a 、b 构成的系统动量不守恒,因此B 选项正确,A 选项错误;a 离开墙壁后,a 、b 构成的系统所受合外力为零,因此动量守恒,故C 选项正确,D 选项错误. 【考点】动量守恒条件的判断3. 如图所示,质量为m 的铅弹以大小为初速度射入一个装有砂子的总质量为M 的静止的砂车中并与车相对静止,砂车与水平地面间的摩擦可以忽略.求:(1)弹和砂车的共同速度;(2)弹和砂车获得共同速度后,砂车底部出现一小孔,砂子从小孔中流出,当漏出质量为的砂子时砂车的速度 【答案】(1)(2)【解析】:(1)以铅球、砂车为系统,水平方向动量守恒,,得球和砂车的共同速度.(2)球和砂车获得共同速度后漏砂过程中系统水平方向动量也守恒,设当漏出质量为的砂子时砂车的速度为,砂子漏出后做平抛运动,水平方向的速度仍为,由,得.【考点】考查了动量守恒定律的应用4.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动,两球质量关系为mB =2mA,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则左方是球,碰撞后A、B两球速度大小之比为。
高中物理动量守恒定律的技巧及练习题及练习题(含答案)含解析.docx
高中物理动量守恒定律的技巧及练习题及练习题( 含答案 ) 含解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、 m,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度v0向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能(2)第一次碰撞过程中甲对乙的冲量【答案】(1) 1 mv02; (2)4mv0【解析】【详解】解: (1)设第一次碰撞刚结束时甲、乙的速度分别为v1、 v2,之后甲做匀速直线运动,乙以v2初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速v2度相等,有: v12而第一次碰撞中系统动量守恒有:2mv02mv1 mv2由以上两式可得: v1v0, v2v0 2所以第一次碰撞中的机械能损失为:E 1g2mgv021g2mgv121mv221mv02 2224(2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:I mv20 mv02.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。
某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为 M=l kg,点火后全部压缩气体以 v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有m的压缩气体,每级总2质量均为M,点火后模型后部第一级内的全部压缩气体以速度v o从底部喷口在极短时间2内竖直向下喷出,喷出后经过2s时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。
喷气过程中的重力和整个过程中的空气阻力忽略不计, g 取 10 m / s2,求两种模型上升的最大高度之差。
【答案】 116.54m【解析】对模型甲:0 M m v甲mv0v甲21085m200.56 m h甲 =92g对模型乙第一级喷气:0M m v乙1m v022解得:v乙130ms2s 末:v乙‘1=v乙1gt10msh乙1= v乙21v '乙2140m2 g对模型乙第一级喷气:Mv乙‘1 =(M m)v乙2mv02222解得:v乙2=670 m9sh乙2= v乙2222445m277.10 m 2g81可得:h h乙1+h乙2h甲 =9440m116.54m 。
高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析
高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答4.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
高考物理动量守恒定律试题经典及解析
高考物理动量守恒定律试题经典及解析一、高考物理精讲专题动量守恒定律1.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
【答案】(1)3m/s (2)0.1m 【解析】试题分析:(1)除锁定后弹簧的弹性势能转化为系统动能,根据动量守恒和能量守恒列出等式得 mv 1-Mv 2=022121122P E mv Mv =+ 代入数据解得:v 1=3m/s v 2=1m/s (2)根据动量守恒和各自位移关系得12x xm M t t=,x 1+x 2=L 代入数据联立解得:24Lx ==0.1m 考点:动量守恒定律;能量守恒定律.2.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.3.光滑水平轨道上有三个木块A 、B 、C ,质量分别为3A m m =、B C m m m ==,开始时B 、C 均静止,A 以初速度0v 向右运动,A 与B 相撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【答案】065B v v = 【解析】 【分析】 【详解】设A 与B 碰撞后,A 的速度为A v ,B 与C 碰撞前B 的速度为B V ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得: 对A 、B 木块:0A A A B B m v m v m v =+对B 、C 木块:()B B B C m v m m v =+由A 与B 间的距离保持不变可知A v v = 联立代入数据得:065B v v =.4.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
高中物理-动量守恒定律经典例题详解
高中物理-动量守恒定律经典例题详解篮球运动员接球时,通常会迅速收缩双手,以减小球对手的冲击力。
这是因为根据动量定理Ft=Δp,收缩双手可以延长手与球接触的时间,从而减小球的动量变化率,进而减小球对手的冲击力。
在弹丸爆炸的过程中,水平方向的动量守恒,根据m弹丸v=mv甲+mv乙,可以解得4v=3v甲+v乙。
爆炸后,甲、乙两块弹片均做平抛运动,竖直方向有h=gt²,水平方向对甲、乙两弹片分别有x甲=v甲t,x乙=v乙t。
根据数据,可以得出B图是正确的。
在竖直平面内的四分之一圆弧轨道下端与水平桌面相切的情况下,小滑块A和B分别静止在圆弧轨道的最高点和最低点。
将A无初速释放后,A与B碰撞后结合为一个整体,并沿桌面滑动。
根据机械能守恒定律,可以解得碰撞前瞬间A的速率为2m/s。
根据动量守恒定律,可以解得碰撞后瞬间A和B整体的速率为1m/s。
根据动能定理,可以解得A和B整体沿水平桌面滑动的距离为0.25m。
如果质量为2kg的小车以2m/s的速度沿光滑的水平面向右运动,而质量为0.5kg的砂袋以3m/s的水平速度迎面扔上小车,那么砂袋与小车一起运动的速度的大小和方向是1.0m/s,向右。
题目:一个质量为4kg的物块A,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计。
可视为质点的物块B置于A的最右端,B的质量为2kg。
现对A施加一个水平向右的恒力F=10N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6s,二者的速度达到vt=2m/s。
求:(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l。
解析:1)以A为研究对象,由牛顿第二定律F=ma,代入数据解得a=2.5m/s²。
2)对A、B碰撞后共同运动t=0.6s的过程,由动量定理Ft=(mA+mB)vt-(mA+mB)v,代入数据解得v=1m/s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒定律 典型例题解析
【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律.
解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222∆∆∆∆v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒.
点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化.
【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是
[ ]
A .枪和子弹组成的系统动量守恒
B .枪和车组成的系统动量守恒
C .子弹、枪、小车这三者组成的系统动量守恒
D .子弹的动量变化与枪和车的动量变化相同
解析:正确答案为C
点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关.
【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来
回碰撞n 次后,静止在车厢中,这时车厢的速度为_______,方向与v 0的方向_______.
点拨:不论物体与车厢怎样发生作用,碰撞多少次,将物体与车厢作为系统,物体与车厢间作用力是内力,不改变系统的总动量,同时这一系统所受的合外力为零,系统的总动量守恒,以v 0为正方向,有mv 0=(M +m)v ′.
【例4】 一辆列车的总质量为M ,在平直的水平轨道上以速度v 匀速行驶,突然最后一节质量为m 的车厢脱钩,假设列车所受的阻力与车的重量成正比,机车的牵引力不变,当脱钩的车厢刚好停止运动时,前面列车的速度为多大?
点拨:以整列列车为系统,不管最后一节车厢是否脱钩,系统所受的外力在竖直方向上重力与轨道给系统的弹力相平衡,在运动方向上牵引力与系统所受的总的阻力相平衡,即系统所受的外力为零,总动量守恒.
参考答案
例,相同例-3 mv M +m 4 M M m
v 0
跟踪反馈
1.在光滑水平面上有两个质量不等的物体,它们之间夹一被压缩的弹簧,开始时两物用细绳相连,烧断细绳后两物体
[ ]
A .在任何时刻加速度大小相等
B .在任何时刻速度大小相等
C .在任何时刻动量大小相等
D .在任意一段时间内,弹簧对两物体的冲量相同
2.沿一直线相向运动的甲、乙两质点,作用前动量分别是P 1=10kg ·m/s ,P 2=-18kg ·m/s ,作用后甲的动量为-1kg ·m/s ,不计任何外界阻力,则作用后乙的动量为
[ ]
A .-29kg ·m/s
B.29kg·m/s
C.-7kg·m/s
D.7kg·m/s
3.质量为490g的木块静止在光滑水平面上,质量为10g的子弹以500m/s 的速度水平射入木块并嵌在其中,从子弹刚射入木块至与木块相对静止的过程中,木块增加的动量为_______kg·m/s,它们的共同运动速度为_______m/s.4.质量为120t的机车,向右匀速滑行与静止的质量均为60t的四节车厢挂接在一起运动,由于四节车厢的挂接,使机车的速度减小了3m/s,求机车在挂接前的速度.
参考答案
1.C 2.C 3.4.9;10 4.4.5m/s;方向向右。