第一章空间几何体综合检测-附答案

合集下载

第一章空间几何体第一章检测(B)Word版含解析

第一章空间几何体第一章检测(B)Word版含解析

第一章检测 (B)(时间:90分钟 满分 :120分)一、选择题 (本大题共 10小题,每小题 5分,共 50分.在每小题给出的四个选项中 ,只有一 项是符合题目要求的 )1.下列说法正确的是 ( ) A.棱柱的侧面可以是三角形 B.正方体和长方体都是特殊的四棱柱 C.所有的几何体的表面都能展成平面图形 D. 棱柱的各条棱都相等解析 :棱柱的侧面为平行四边形 ,且各侧棱长都相等 ,故 A 不正确 ,易知 C,D 不正确 .B 正确 . ☆答案☆ :B2. 若一个几何体的三个视图都是面积为 2 的圆 ,则这个几何体的表面积是 ( )A. 4 C.8 D.16解析 :由题意知该几何体为球 ,设其半径为 r,则 S= πr 2,所以 r=. 故 S 表=4πr 2=4π×=8. ☆答案☆ :C3. 若一个几何体的直观图如图所示 ,则下列给出的四个俯视图正确的是( )解析 :俯视图为几何体在底面上的投影 ,应为 B 中图形 . ☆答案☆ :B4. 已知一个几何体的三视图如图所示 ,则该几何体的体积为 ( )B.2已知水平放置的 △ABC 按斜二测画法得到如图所示的直观图 ,其中 B'O'=C'O'= 1,A'O'= ,则△ABC 是一 个( )A.等边三角形B.直角三角形 C.三边中只有两边相等的等腰三角形 D. 三边互不相等的三角形解析 :由斜二测画法的规则可得 BC=B'C'= 2,AO=2A'O'=2×.因为 AO ⊥ BC ,所以 AB=AC= 2.故△ABC 是 等边三角形 .☆答案☆ :A6.已知棱长为 1 的正方体的俯视图是一个面积为 1的正方形 ,则该正方体的正视图的面积不可能等于()A.1B.C.D.解析 :由题意知正方体的棱长为 1,正视图的高为 1,宽在区间 [1,] 上,所以正视图的面积在区间 [1,] 上变 化,而<1,故选 C.☆答案☆ :C7.如果圆锥的表面积是底面面积的 3倍,那么该圆锥的侧面展开图 (扇形 )的圆心角的度数为 ( )A.120°B.150°C.180° D .240°解析 :设圆锥的底面半径为 R,母线长为 l.由题意知 πR 2+ πRl= 3πR 2,所以 l=2R,扇形的弧长为 2πR=πl.而扇形所在圆的周长为 2πl ,所以该扇形是半圆 ,即所求圆心角的度数A.200+9πB .200+ 18π C.140+ 9π D .140+ 18π解析 :与三视图对应的直观图是下面一个长、宽、高依次为 2 的半个圆柱的组合体 .☆答案☆ :A5.10,4,5 的长方体和上面是半径为 3,高为为180°.☆答案☆ :C8.如图,已知△A'B'C' 表示水平放置的△ABC在斜二测画法下的直观图,A'B'在x'轴上,B'C'与x'轴垂直,且B'C'= 3,则△ABC的边AB上的高为( )A.6B.3C.3D.3则2C'D'是△ABC的边AB上的高. 由于△B'C'D' 是等腰直角三角形,则C'D'=B'C'= 3.所以△ABC 的边AB 上的高等于2×3= 6. ☆答案☆ :A9.已知圆柱的侧面展开图(矩形)的面积为S,底面周长为C,则它的体积是(A. B.解析: 设圆柱的底面半径为☆答案☆ :DC. D.r,母线长为l,2πrl=S ,2πr=C ,所以V= πr 2l=.10.某三棱锥的三视图如图所示A. B.,则该三棱锥的体积为( )解析:由三视图可得,三棱锥的直观图如图所示,则该三棱锥的体积V=×1×1×1=,故选 A.☆答案☆ :A二、填空题(本大题共5小题,每小题5分,共25分.把☆答案☆填在题中的横线上)11. 若把长、宽分别为2a,a 的矩形卷成一个圆柱的侧面,且圆柱的体积为,则a= .解析: 设圆柱的底面半径为r,母线长为l.①当2πr=a ,l= 2a 时,则r= ,h=l= 2a,所以V 圆柱= πr2h= π××2a= ,解得a=.②当2πr= 2a,l=a 时,则r= ,h=l=a ,所以V 圆柱= πr2h= π×× a,= 解得a=2.故所求 a 的值为或 2.☆答案☆ :或212. 已知三棱锥的侧棱PA ,PB,PC两两垂直且相等,若AB= ,则三棱锥P-ABC 的外接球的表面积是.解析:由题意知该三棱锥为正方体的一部分,如图所示.因为AB= ,所以PA=PB=PC= 1,即外接球的半径为. 故球的表面积为4πr2=4π×=3π.☆答案☆ :3π13. 如图,若一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,则圆柱、圆锥、球的体积之比为.解析:设球的半径为R,则V柱= πR2·(2R)= 2πR3,V 锥= πR2·2R= πR3,V 球=πR3, 故V 柱∶V 锥∶V 球=2πR3∶πR3∶πR3=3∶1∶2.☆答案☆ :3∶1∶214. 一个横放的圆柱形水桶,桶内的水占底面周长的四分之一,当桶直立时,水面的高度与桶的高度之比为.解析: 设桶直立时,水面的高度为x,桶的高度为h,桶的底面半径为R,则横放时水桶底面在水内的面积为,V 水=h. 直立时,V 水= πR2x, 所以x∶h= (π-2)∶ 4π.☆答案☆ :( π-2)∶4π15. 在具有如图所示的正视图和俯视图的几何体中 ,体积最大的几何体的表面积为解析 :由正视图和俯视图可知该几何体可能是四棱柱或者是水平放置的三棱柱 ,或水平放置的圆柱图形可知四棱柱的体积最大 .四棱柱的高为 1,底面边长分别为 1,3,所以表面积为2(1×3+1×1+3×1)=14.☆答案☆ :14 三、解答题 (本大题共 5小题,共 45分.解答时应写出文字说明、证明过程或演算步骤 )16.(8 分)如图 ,一个圆锥形的空杯子上面放着一个半球形的冰激凌,如果冰激凌融化了 ,会溢出杯子吗 ?请用你的计算数据说明理由 . 解 : 因为 V 半球= πR 3=×43=(cm 3),V 圆锥=πr 2h= π×42×10=(cm 3), 又因为 V 半球 <V 圆锥,所以冰激凌融化了 ,不会溢出杯子17. (8 分) 如图所示的是一个长方体截去一个角所得多面体的直观图及其正视图和侧视图(1) 在正视图下面 ,按照画三视图的要求画出该多面体的俯视图(2) 按照给出的数据 ,求该多面体的体积解:(1)加上俯视图后的三视图如图所示.由(单位:cm).(2)所求多面体的体积V=V 长方体-V 三棱锥= 4×4×6- ×2=(cm3).18. (9 分)如图①为一个几何体的表面展开图.(1) 沿图中虚线将它们折叠起来,是哪一种几何体?画出它的直观图;(2) 需要几个这样的几何体才能拼成一个棱长为6 cm 的正方体?若图②是棱长为 6 cm 的正方体,试在图中画出这几个几何体的一种组合情况.解:(1)几何体是四棱锥,它的直观图如图所示(2)需要3个这样的四棱锥才能拼成一个棱长为 6 cm的正方体,四棱锥 D 1-ABCD ,四棱锥D1-BCC1B1,四棱锥D1-ABB1A1,如图所示.19. (10分)已知三角形ABC的三边长分别是AC= 3,BC= 4,AB= 5,以AB所在直线为轴,将此三角形旋转一周,求所得旋转体的表面积和体积.解:如图, 由题易知旋转体是由底面重合的两个圆锥拼接而成.设上面圆锥的母线长为l1,下面圆锥的母线长为l2,重合底面的半径为r.因为△ABC 为直角三角形,所以r= ,S表= πrl 1+ πrl2= πr (l1+l 2)= π××7=.设重合底面面积为S,则V=V 上+V 下=S·5=×π×.20. (10分)若E,F分别是三棱柱ABC-A 1B1C1侧棱BB1和CC1上的点,且B1E=CF,三棱柱的体积为m, 求四棱锥A-BEFC 的体积.解: 如图,连接AB1,AC1. 由于B1E=CF , 则梯形BEFC 的面积等于梯形B1EFC 1 的面积. ∵四棱锥A-BEFC 的高与四棱锥A-B1EFC1 的高相等, ∴V A-BEFC=设三棱柱的高为h,∵·h,= ·h=m,=m,∴V A-BEFC=m即四棱锥A-BEFC 的体积是.。

精品解析:人教版高一数学必修2第一章《空间几何体》专题检测(含答案)(解析版).docx

精品解析:人教版高一数学必修2第一章《空间几何体》专题检测(含答案)(解析版).docx

人教版高一数学必修2第一章《空间几何体》专题检测一.选择题1. 在三棱锥P-ABC 屮,PA = PB = AC = BC = 2,AB = 2A //3,PC= 1,则三棱锥P-ABC 的外接球的表而积为( )4兀 52兀 A. — B. 4兀 C. 12n D. ---------------------- 3 3【答案】D【解析】取AB 中点D,连接PD,CD,则AD = \$, PD = ^AP 2-AD 2 = h 所以ABZAPD = 60°, ^APB= 120°,设△ APB 外接圆圆心为0】,半径为「则2T = ------------ = 4 sinl20°所以r = 2.同理可得:CD = L ZACB = 120°, A ABC 的外接圆半径也为2,因为PC = PD = CD= 1,所以APCD 是等边三角形,ZPDC = 60%即二面角P-AB-C 为60。

,球心O 在平面PCD 上, 过平面PCD 的截血如图所示,则O 】D = L PD=1,所以001=^01D = —,所以OF 2 = OO J + O J F 2 = - 3 3 3D.【点睛】本小题主要考查儿何体外接球的表面积的求法,考查三角形外心的求解方法•在解决有关儿何体外 接球有关的问题时,主要的解题策略是找到球心,然后通过解三角形求得半径•找球心的方法是先找到一个 血的外心,再找另一个血的外心,球心就在两个外心垂线的交点位置.2.直三棱柱ABC ・AiB 】C ]的各顶点都在同一球面上,若AB=AC=AA 1=2,则此球的表面积等于()52兀52兀 A. ---- B. 20兀 C- 10n D. 9 ・ 13 _ + 4 =—— ; 3 即R 2 = -,所以外接球的表而积S = 4TT R 2 = —.故选【答案】B【解析】设三角形BAC 外接圆半径为「,则= 盂=薯・•・「= 2・・・球的半径等于、夕+ 1 = “5,表面积等于4HR 2 = 20n.选B ・3. 某几何体的三视图如图所示,则此几何体的体积为(—2—H —2T【答案】C【解析】该儿何体为三棱锥,其直观图如图所示,体枳V = 1x (lx2 ><2卜2=±.故选C.4. 已知正四棱锥P-ABCD 的顶点均在球0上,且该正四棱锥的各个棱长均为2,则球0的表面积为A. 4兀B. 6兀C. 8兀D. 16n 【答案】c【解析】设点P 在底面ABCD 的投影点为O ;贝|JAO‘=-AC = Q, PA = 2, PCT 丄平面ABCD,故 2PO = 7P A 2-AO 2 = 而底iklABCD 所在截面圆的半径AO‘ = ©,故该截血圆即为过球心的圆,则球的半径 R = &‘故球O 的表面积$ = 4?rR 2 = 87T»故选C.点睛:本题考查球的内接体的判断与应用,球的表面积的求法,考查计算能力;研究球与多面体的接、切 问题主要考虑以下几个方面的问题:(1)球心与多面体中心的位置关系;(2)球的半径与多面体的棱长的A.B. 1C.-D.俯视图关系;(3)球自身的对称性与多面体的对称性;(4)能否做岀轴截面.5. 己知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是6. 如图,网格纸上正方形小格的边长为1,粗线画出的是某几何体的三视图,则该几何体的最长棱的长度为【答案】D【解析】由三视图可知,该儿何体为三棱锥,如图所示:C. 6 cm 3D. 7 cm 3【答案】A 【解析】 几何体如图四棱锥’体积为+ 2) x 2 = 4,选A.俯觀图A. 4cm 3B. 5 cm 3()A. 6yj2B. 6&C. 8D. 9AAB = 6, BC = 3忑,BD = CD = 3屈 AD = 9,故选:D点睛:思考三视图还原空间儿何体首先应深刻理解三视图Z间的关系,遵循“长对正,高平齐,宽相等” 的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.7.我国古代数学名箸《孙子算经》中有如下问题:“今有筑城,上广二丈,下广五丈四尺,高三丈八尺,长五千五百五十尺,秋程人功三百尺•问:须工儿何?”意思是:“现要筑造底面为等腰梯形的直棱柱的城墙,其中底面等腰梯形的上底为2丈、下底为5.4丈、高为38丈,直棱柱的侧棱长为5550尺.如果一个秋天工期的单个人可以筑出300立方尺,问:一个秋天工期需要多少个人才能筑起这个城墙?”(注:一丈等于十尺)A. 24642B. 26011C. 52022D. 78033【答案】B20 + 54【解析】根据棱柱的体积公式,可得城墙所需土方为------ x 38 x 5500 = 7803300 (立方尺),一个秋夭工期2所需人数为------- = 26011,故选B.3008.已知某儿何体是两个正四棱锥的组合体,其三视图如下图所示,则该儿何体外接球的表面积为()A. 2兀B. 2#5兀C. 4兀D. 8兀【答案】D【解析】由已知三视图得:该几何体的直观图如下可知该儿何体外接球的半径为Q则该儿何体外接球的表而积为4兀•(厨=8TI故选D9. 在空间直角坐标系O-xyz 中,四面体ABCD 的顶点坐标分别是A(0Q2), B(220), C(1.2,l), D(222).则该四而体的体积V=()二、填空题10. 在平行六面体 ABCD —A]B]C]D]中,AB = 4 , AD = 3 , A 】A=5,厶 BAD = 90。

(完整版)高一数学必修2第一章空间几何体测试题(答案)

(完整版)高一数学必修2第一章空间几何体测试题(答案)

则四边形 EFGH 是

②若 AC BD , 则四边形 EFGH 是

三、解答题: 解答应写出文字说明、证明过程或演算步骤 (共 76 分 ).
15.( 12 分)将下列几何体按结构分类填空
①集装箱;②油罐;③排球;④羽毛球;⑤橄榄球;⑥氢原子;⑦魔方;
⑧金字塔;⑨三棱镜;⑩滤纸卷成的漏斗;○ 11 量筒;○12 量杯;○13 十字架.
( 1)具有棱柱结构特征的有
;( 2)具有棱锥结构特征的有

( 3)具有圆柱结构特征的有
;( 4)具有圆锥结构特征的有

( 5)具有棱台结构特征的有
;( 6)具有圆台结构特征的有

( 7)具有球结构特征的有
;( 8)是简单集合体的有

( 9)其它的有

16.( 12 分)已知: a ,b ,a b A, P b, PQ // a.求证: PQ ..
C.③④
3.棱台上下底面面积分别为 16 和 81,有一平行于底面的截面面积为
() D . ①②③④
36,则截面戴的两棱台高
的比为
()
A .1∶ 1
B. 1∶ 1
C. 2∶ 3
D .3∶4
4.若一个平行六面体的四个侧面都是正方形 ,则这个平行六面体是
()
A .正方体
B.正四棱锥
C.长方体
D .直平行六面体
2la
Q1 2 Q2 2
S侧 4al 2 Q12 Q2 2
19.解:设 A1B1C1D1 是棱台 ABCD -A2B2C2D 2 的中截面,延长各侧棱交于
P 点.
a
∵ BC=a ,B2C2=b ∴ B1C1=

(完整版)空间几何体练习题含答案

(完整版)空间几何体练习题含答案

第一章空间几何体一、选择题1.下图是由哪个平面图形旋转得到的()A B C D2.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()A. B. C. D.1:2:31:3:51:2:41:3:93.在棱长为的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去个三18棱锥后,剩下的几何体的体积是()A. B. C. D.237645564.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为和,则(1V2V12:V V=)A. B. C. D.1:31:12:13:15.如果两个球的体积之比为,那么两个球的表面积之比为( )8:27A. B. C. D.8:272:34:92:96.有一个几何体的三视图及其尺寸如下(单位),则该几何体的表面积及体积为:cmA. ,B. ,224cmπ212cmπ215cmπ212cmπC. ,D. 以上都不正确224cmπ236cmπ二、填空题1. 若圆锥的表面积是,侧面展开图的圆心角是,则圆锥的体积是_______。

15π0602.一个半球的全面积为,一个圆柱与此半球等底等体积,则这个圆柱的全面积是.Q3.球的半径扩大为原来的倍,它的体积扩大为原来的_________ 倍.24.一个直径为厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高厘米329则此球的半径为_________厘米.5.已知棱台的上下底面面积分别为,高为,则该棱台的体积为___________。

4,163三、解答题1. (如图)在底半径为,母线长为的圆柱,求圆柱的表面积242.如图,在四边形中,,,,,ABCD 090DAB ∠=0135ADC ∠=5AB =CD =,求四边形绕旋转一周所成几何体的表面积及体积.2AD =ABCD AD参考答案一、选择题1.A 几何体是圆台上加了个圆锥,分别由直角梯形和直角三角形旋转而得2.B 从此圆锥可以看出三个圆锥,123123::1:2:3,::1:2:3,r r r l l l == 12312132::1:4:9,:():()1:3:5S S S S S S S S =--=3.D 111115818322226V V -=-⨯⨯⨯⨯⨯=正方体三棱锥4.D 121:():()3:13V V Sh Sh ==5.C 121212:8:27,:2:3,:4:9V V r r S S ===6.A 此几何体是个圆锥,23,5,4,33524r l h S πππ====⨯+⨯⨯=表面 2134123V ππ=⨯⨯=二、填空题1. 设圆锥的底面半径为,母线为,则,得,r l 123r l ππ=6l r =,得,圆锥的高226715S r r r r ππππ=+⋅==r =h =21115337V r h ππ==⨯=2. 109Q 22223,S R R R Q R πππ=+===全 32222221010,,2233339V R R h h R S R R R R Q πππππ==⋅==+⋅==3. 821212,8r r V V ==4. 12234,123V Sh r h R R ππ=====5. 28'11()(416)32833V S S h =++=⨯+⨯= 三、解答题1.解:圆锥的高,h ==1r =22(2S SS πππ=+=+=侧面表面底面 2.解:S S S S=++表面圆台底面圆台侧面圆锥侧面25(25)2πππ=⨯+⨯+⨯⨯⨯1)π=+ V V V=-圆台圆锥222112211()331483r r r r h r h πππ=++-=。

人教版高一数学必修2第一章《空间几何体》专题检测(含答案)

人教版高一数学必修2第一章《空间几何体》专题检测(含答案)

人教版高一数学必修2第一章《空间几何体》专题检测(含答案)1.在三棱锥P ABC -中, 2,1PA PB AC BC AB PC ======,则三棱锥P ABC -的外接球的表面积为( ) A. 43π B. 4π C. 12π D. 523π 2.直三棱柱111ABC A B C I 的各顶点都在同一球面上,若,则此球的表面积等于( )A. B. 20π C. 10π D. 3.某几何体的三视图如图所示,则此几何体的体积为( )A.23 B. 1 C. 43 D. 834.已知正四棱锥P ABCD -的顶点均在球O 上,且该正四棱锥的各个棱长均为2,则球O 的表面积为A. 4πB. 6πC. 8πD. 16π 5.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是A. 4cm 3B. 5 cm 3C. 6 cm 3D. 7 cm 36.如图,网格纸上正方形小格的边长为1,粗线画出的是某几何体的三视图,则该几何体的最长棱的长度为( )A. B. C. 8 D. 97.我国古代数学名著《孙子算经》中有如下问题:“今有筑城,上广二丈,下广五丈四尺,高三丈八尺,长五千五百五十尺,秋程人功三百尺.问:须工几何?”意思是:“现要筑造底面为等腰梯形的直棱柱的城墙,其中底面等腰梯形的上底为2丈、下底为5.4丈、高为3.8丈,直棱柱的侧棱长为5550尺.如果一个秋天工期的单个人可以筑出300立方尺,问:一个秋天工期需要多少个人才能筑起这个城墙?”(注:一丈等于十尺)A. 24642B. 26011C. 52022D. 780338.已知某几何体是两个正四棱锥的组合体,其三视图如下图所示,则该几何体外接球的表面积为( )A. 2πB.C. 4πD. 8π9.在空间直角坐标系O xyz -中,四面体ABCD 的顶点坐标分别是()0,0,2A , ()2,2,0B , ()1,2,1C , ()2,2,2D .则该四面体的体积V =( )A.13 B. 43 C. 23 D. 3二、填空题10.在平行六面体1111ABCD A B C D - 中, 4AB = , 3AD = , 15A A = , 90BAD ∠=︒ , 1160A AB A AD ∠=∠=︒ ,则1AC = __________.11.Rt ABC ∆中, 30A =︒,斜边4cm AC =,将边BC 绕边AB 所在直线旋转一周,所形成的几何体的表面积为_____________2cm .12.在边长为2的菱形ABCD 中, BD =ABCD 沿对角线AC 对折,使BD =得三棱锥A BCD -的内切球的半径为______________.13.如图,在三棱锥P ABC -中, PC ⊥平面ABC , AC CB ⊥,已知2AC =, PB =PA AB +最大时,三棱锥P ABC -的体积为__________.14.如图,在直三棱柱111ABC A B C -中, 90BAC ∠=, 2AB AC ==,点M 为11A C 的中点,点N 为1AB 上一动点.(1)是否存在一点N ,使得线段//MN 平面11BB C C ?若存在,指出点N 的位置,若不存在,请说明理由.(2)若点N 为1AB 的中点且CM MN ⊥,求三棱锥M NAC -的体积.15.已知边长为2的正方形ABCD 与菱形ABEF 所在平面互相垂直, M 为BC 中点.(1)求证: EMP 平面ADF ;(2)若60ABE ∠=,求四面体M ACE -的体积.16.如图,四棱锥P ABCD -的底面ABCD 是直角梯形, //AD BC , 36AD BC ==, PB =点M 在线段AD 上,且4MD =, AD AB ⊥, PA ⊥平面ABCD .(1)求证:平面PCM ⊥平面PAD ;(2)当四棱锥P ABCD -体积最大时,求四棱锥P ABCD -的表面积.17.如图,正方形ABCD 中, AB = AC 与BD 交于O 点,现将ACD 沿AC 折起得到三棱锥D ABC -, M , N 分别是OD , OB 的中点.(1)求证: AC MN ⊥;(2)若三棱锥D ABC -的最大体积为0V ,当三棱锥D ABC -0,且DOB ∠为锐角时,求三棱锥D MNC -的体积.参考答案1.D 2.B 3.C 4.C 5.A 6.D 7.B 8.D 9.C10 11.12π 12 13.414.【解析】(1)存在点N ,且N 为1AB 的中点.证明如下:如图,连接1A B , 1BC ,点M , N 分别为11A C , 1A B 的中点,所以MN 为11A BC ∆的一条中位线, //MN BC ,MN ⊄平面11BB C C , 1BC ⊂平面11BB C C ,所以//MN 平面11BB C C .(2)如图,设点D , E 分别为AB , 1AA 的中点,连接CD , DN , NE ,并设1AA a =,则221CM a =+,22414a MN +=+ 284a +=, 2254a CN =+ 2204a +=,由CM N ⊥M ,得222CM MN CN +=,解得a =又易得NE ⊥平面11AAC C , 1NE =,M NAC N AMC V V --= 111332AMC S NE ∆=⋅=⨯ 21⨯=所以三棱锥M NAC -的体积为3.15. (1)∵四边形ABCD 是正方形,∴BC ∥AD .∵BC ⊄平面ADF ,AD ⊂平面ADF ,∴BC ∥平面ADF .∵四边形ABEF 是菱形,∴BE ∥AF .∵BE ⊄平面ADF ,AF ⊂平面ADF ,∴BE ∥平面ADF .∵BC ∥平面ADF ,BE ∥平面ADF ,BC ∩BE=B ,∴平面BCE ∥平面ADF .∵EM ⊂平面BCE ,∴EM ∥平面ADF .(2)取AB 中点P ,连结PE .∵在菱形ABEF 中,∠ABE=60°,∴△AEB 为正三角形,∴EP ⊥AB .∵AB=2,∴EP∵平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF=AB ,∴EP ⊥平面ABCD , ∴EP 为四面体E ﹣ACM 的高.∴.16.【解析】(1)由6,4AD DM ==可得2AM =, 易得四边形ABCM 是矩形,∴CM AD ⊥,又PA ⊥平面ABCD , CM ⊂平面ABCD ,∴PA CM ⊥,又PM AD M ⋂=, ,PM AD ⊂平面PAD ,∴CM ⊥平面PAD ,又CM ⊂平面PCM ,∴平面PCM ⊥平面PAD(2)四棱锥P ABCD -的体积为()1132V AD BC =⋅⋅+⋅ 43AB PA AB PA ⋅=⋅⋅, 要使四棱锥P ABCD -的体积取最大值,只需AB PA ⋅取得最大值. 由条件可得22272PA AB PB +==,∴722PA AB ≥⋅,即36PA AB ⋅≤,当且仅当6PA AB ==时, PA AB ⋅取得最大值36.PC =, PD =, CD =,cos CPD ∠= 2222PC PD CD PC PD +-=⋅⋅,则sin CPD ∠=∴1sin 2PCD S PC PD CPD ∆=⋅⋅⋅∠= 则四棱锥P ABCD -的表面积为 ()1162666222⎛⎫⋅+⋅+⋅⋅⋅+ ⎪⎝⎭ (126102⋅⋅=.17.(1)依题意易知OM AC ⊥, ON AC ⊥, OM ON O ⋂=,∴AC ⊥平面OMN ,又∵MN ⊂平面OMN ,∴AC MN ⊥.(2)当体积最大时三棱锥D ABC -的高为DO ,当体积为02时,高为2DO ,OBD 中, OB OD =,作DS OB ⊥于S ,∴DS =,∴60DOB ∠=︒, ∴OBD 为等边三角形,∴S 与N 重合,即DN ⊥平面ABC , 易知D MNC C DMN V V --=.∵CO ⊥平面DOB ,∴2h CO ==,∴1111222DMN ODN S S ==⨯⨯=,∴1123346D MNC C DMN DMN V V S CO --==⋅=⨯⨯=。

数学《必修2》第一章“空间几何体”测试题与答案

数学《必修2》第一章“空间几何体”测试题与答案

数学《必修2》第一章“空间几何体”测试题一、选择题:(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的)1.利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是正方形;③等腰梯形的直观图一定是等腰梯形;④平行四边形的直观图一定是平行四边形。

以上结论正确的是()A.①②B.①④C.③④D. ①②③④2.下列说法正确的是()A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展开成平面图形D.棱柱的各条棱都相等3.圆台的母线长为6,两底面半径分别为2、7,则圆台的侧面积为()A.54πB.8πC.4πD.164.给出下列结论:①圆柱的母线是其上底面圆周上任意一点与下底面圆周上任意一点的连线;②圆锥的母线是圆锥顶点与底面圆周上任意一点的连线;③圆台的母线是圆台上、下底面圆周上任意两点的连线。

其中正确的是()A.①②B.②③C.①③D.②。

5.已知底面为正方形的长方体的各顶点都在一个球面上,长方体的高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π6.下列说法错误的是()A.棱柱最少有5个面B.棱锥最少有4个面C.棱台的底面有2个D.棱锥的底面边数和侧棱数不一定相同7.下列四个图形不是下图1中几何体的三视图之一的是()图1 A B C D8.下面几何体中,过轴的截面一定是圆面的是( )A.圆柱B.圆锥C.球D.圆台 9.正方体的表面积是96,则正方体的体积是( )A. B.64 C.16 D. 96 10.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )二、填空题:(本大题共5个小题,每小题5分,共25分)11.半径为2的球的体积等于 ,表面积等于12.圆锥的侧面展开图为圆心角为120、半径为1的扇形,则圆锥的侧面积为 13.如下图所示,等腰梯形ABCD ,上底1CD =,腰AD CB ==3AB =,以下底所在直线为x 轴,则由斜二测画法画的直观图''''A B C D 的面积为 14.某几何体的三视图如下图所示, 则其体积为_______.15.某几何体的三视图如下图所示,则该几何体的体积是____________.第13题图14题图第15题图三、解答题:(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.求下列几何体的体积与表面积。

新人教版空间几何体测试题及答案

新人教版空间几何体测试题及答案

第一章《空间几何体》单元测试题(时间:60分钟,满分:100分)班别 座号 姓名 成绩 一、选择题(本大题共10小题, 每小题5分,共50分) 1、 图(1)是由哪个平面图形旋转得到的( )A B C D2、过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分 的面积之比为( )A.1:2:3B.1:3:5C.1:2:4 D1:3:9 3、棱长都是1的三棱锥的表面积为( )A. 3B. 23C. 33D. 434、已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V 1和V 2,则V 1:V 2=A. 1:3B. 1:1C. 2:1D. 3:15、如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A.8:27B. 2:3C.4:9D. 2:96、有一个几何体的三视图及其尺寸,则该几何体的表面积及体积为:A.24πcm 2,12πcm 3B.15πcm 2,12πcm3C.24πcm 2,36πcm 3D.以上都不正确7、一个球的外切正方体的全面积等于6 cm 2,则此球的体积为 ( ) A.334cm π B.386cm π C. 361cm π D. 366cm π 8、一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是A .28cm πB .212cm πC .216cm πD .220cm π 9、一个正方体的顶点都在球面上,此球与正方体的表面积之比是( )A. 3πB. 4πC. 2πD. π10、如右图为一个几何体的 三视图,其中府视图为 正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为(A)6+3 (B)24+3 (C)24+23 (D)32A B 1 C 正视图侧视图府视图题号 1 2 3 4 5 6 7 8 9 10 _______________.答案二、填空题(本大题共4小题,每小题5分,共20分)11. 长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为12.一个半球的全面积为Q,一个圆柱与此半球等底等体积,则这个圆柱的全面积是______.13、球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.14、一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是_________.三、解答题(本大题共3小题,每小题10分,共30分)15.将圆心角为1200,面积为3 的扇形, 16. (如图)在底半径为2母线长为4的作为圆锥的侧面,求圆锥的表面积和体积. 圆锥中内接一个高为3的圆柱,求圆柱的表面积*16、如图,在四边形ABCD中,,,,,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.参考答案:1.A ;2.B ;3.A ;4.D ;5.C ;6.A ;7.C ;8.B ;9.C ;10.C.11.15;12.910Q;13.8;14.2:1 15.解:l=3,R=1;S=4π;V=322π.16.R=1,h=3,S=2π+2π3.17.S=60π+4π2;V=52π-38π=3148π.。

高一数学第一章空间几何体综合试题及答案

高一数学第一章空间几何体综合试题及答案

人教A 必修2第一章空间几何体综合试题一、选择题(每道题5分)1.有一个几何体的三视图如下图所示;这个几何体可能是一个( ).主视图 左视图 俯视图(第1题)A .棱台B .棱锥C .棱柱D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°;腰和上底均为1的等腰梯形;那么原平面图形的面积是( ).A .2+2B .221+C .22+2D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3;4;5;且它的8个顶点都在同一球面上;则这个球的表面积是( ).A .25πB .50πC .125πD .都不对5.正方体的棱长和外接球的半径之比为( ).A .3∶1B .3∶2C .2∶3D .3∶36.在△ABC 中;AB =2;BC =1.5;∠ABC =120°;若使△ABC 绕直线BC 旋转一周;则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π 7.若底面是菱形的棱柱其侧棱垂直于底面;且侧棱长为5;它的对角线的长分别是9和15;则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.半径为R 的半圆卷成一个圆锥;则它的体积为( )A .324RB .38RC .324RD .38R9.下列关于用斜二测画法画直观图的说法中;错误..的是( ).A.用斜二测画法画出的直观图是在平行投影下画出的空间图形B.几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C.水平放置的矩形的直观图是平行四边形D.水平放置的圆的直观图是椭圆10.如图是一个物体的三视图;则此物体的直观图是( ).(第10题)二、填空题(每道题5分)11.一个棱柱至少有______个面;面数最少的一个棱锥有________个顶点;顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3;则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中;O是上底面ABCD的中心;若正方体的棱长为a;则三棱锥O-AB1D1的体积为_____________.14.如图;E;F分别为正方体的面ADD1A1、面BCC1B1的中心;则四边形BFD1E在该正方体的面上的射影可能是___________(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6;则这个长方体的对角线长是___________;它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球;球全部没入水中后;水面升高9厘米则此球的半径为_________厘米.三、解答题(17题;18;19各15分;20题25分)17.有一个正四棱台形状的油槽;可以装油190 L;假如它的两底面边长分别等于60 cm 和40 cm;求它的深度.18.如图;在四边形ABCD中;∠DAB=90°;∠ADC=135°;AB=5;CD=22;AD=2;求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第18题)19.已知圆台的上下底面半径分别是2,5;且侧面面积等于两底面面积之和;求该圆台的母线长.20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用);已建的仓库的底面直径为12 m;高4 m;养路处拟建一个更大的圆锥形仓库;以存放更多食盐;现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案一、选择题1.A解析:从俯视图来看;上、下底面都是正方形;但是大小不一样;可以判断可能是棱台.2.A解析:原图形为一直角梯形;其面积S =21(1+2+1)×2=2+2. 3.A解析:因为四个面是全等的正三角形;则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径; l =2225+4+3=52;2R =52;R =225;S =4πR 2=50π. 5.C 解析:正方体的对角线是外接球的直径.6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π. 7.D解析:设底面边长是a ;底面的两条对角线分别为l 1;l 2;而21l =152-52;22l =92-52; 而21l +22l =4a 2;即152-52+92-52=4a 2;a =8;S 侧面=4×8×5=160.8.A 2312,,,22324R r R r h V r h R πππ===== 9.B 解析:斜二测画法的规则中;已知图形中平行于 x 轴的线段;在直观图中保持原长度不变;平行于 y 轴的线段;长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆;且为组合体;所以选D.二、填空题11.参考答案:5;4;3.解析:符合条件的几何体分别是:三棱柱;三棱锥;三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3;31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a . 解析:画出正方体;平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点; 三棱锥O -AB 1D 1的高h =33a ;V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1;它的高为AO ;等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6;6.解析:设ab =2;bc =3;ac =6;则V = abc =6;c =3;a =2;b =1; l =1+2+3=6.16.参考答案:12.解析:V =Sh =πr 2h =34πR 3;R =32764×=12. 三、解答题17.参考答案:V =31(S +S S ′+S )h ;h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22=(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π. 19.解2229(25)(25),7l l ππ+=+=20. 解:(1) 参考答案:如果按方案一;仓库的底面直径变成16 m ;则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3). 如果按方案二;仓库的高变成8 m ;则仓库的体积V 2=31Sh =31×π×(212)2×8=3288π(m 3). (2) 参考答案:如果按方案一;仓库的底面直径变成16 m ;半径为8 m . 棱锥的母线长为l =224+8=45;仓库的表面积S 1=π×8×45=325π(m 2).如果按方案二;仓库的高变成8 m .棱锥的母线长为l =226+8=10;仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1;S 2<S 1;∴方案二比方案一更加经济些.。

《第一章 空间几何体》试卷及答案_高中数学必修2_人教A版_2024-2025学年

《第一章 空间几何体》试卷及答案_高中数学必修2_人教A版_2024-2025学年

《第一章空间几何体》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、下列四个图形中,属于棱锥的是:A、正方形B、长方体C、等腰三角形D、三棱锥2、在直角坐标系中,点A(1,2,3)关于平面x=2的对称点为B,则点B的坐标是()A、(3,2,3)B、(1,2,3)C、(3,2,5)D、(1,2,1)3、在长方体ABCD - A1B1C1D1中,AB=3,BC=4,AA1=5。

则对角线AC1的长度是:()A、5B、7C、9D、√(50)4、已知长方体的三个相邻面的面积分别为6、8、10,则该长方体的体对角线长为()A、2√29B、4√29C、2√3D、4√35、一个圆锥的底面半径为3,高为4,则这个圆锥的侧面积为()。

A. 12πB. 24πC. 15πD. 30π6、在一个正方体的一个顶点上出发,经过相交于该顶点的三个面的交线,再经过与这三个面都相邻的三个面的交线,最后到达另一个顶点,这个过程中经过了几次“相交”?A. 4次B. 3次C. 2次D. 1次7、正方体的一个顶点与相邻的三个顶点构成的三棱锥的底面是一个正三角形,那么这个正方体的边长与三棱锥的底面外接圆的直径之比为:A. 1 : √3B. 1 : 2C. √2 : √3D. √2 : 28、一个正方体的棱长为2,该正方体的外接球的半径是多少?A、1B、√2C、√3D、2二、多选题(本大题有3小题,每小题6分,共18分)1、下面哪些选项属于空间几何体的基本特征?()A. 具有长度、宽度、高度B. 表面由平面构成C. 形状独特的立体图形D. 可以被移动和旋转2、在正方体ABCD-A1B1C1D1中,点E是棱AB的中点,点F是棱BB1的中点,下列说法正确的是()A、EF平行于平面AC1D1B、EF垂直于平面ADD1A1C、EF垂直于棱ADD、EF平行于棱CC13、一个圆柱的底面直径为6cm,高为8cm,则该圆柱的侧面积为:A. 48π cm²B. 36π cm²C. 96π cm²D. 72π cm²3、一个正三棱锥的底面边长为6cm,侧棱长为7cm,则该三棱锥的体积为:A. 8√3 cm³B. 16√3 cm³C. 24√3 cm³D. 32√3 cm³3、一个圆锥的底面半径为5cm,高为12cm,则该圆锥被平行于底面的平面截取,截面为圆形,截面圆的半径为3cm时,圆锥的体积减少的比例是:A. 1:9B. 1:4C. 4:9D. 1:3三、填空题(本大题有3小题,每小题5分,共15分)1、(已知平面α内有两一直线l1和l2,且l1∥l2。

新人教版必修2第一章空间几何体综合检测卷及答案

新人教版必修2第一章空间几何体综合检测卷及答案

必修2第一章空间几何体综合检测卷本试卷分第Ⅰ卷和第Ⅱ卷两部分.共100分.第Ⅰ卷(选择题,共30分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共30分).1.利用斜二测画法得到的 ①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上结论正确的是 ( )A .①②B . ①C .③④D . ①②③④2.棱台上下底面面积分别为16和81,有一平行于底面的截面面积为36,则截面戴的两棱台高的比为 ( )A .1∶1B .1∶1C .2∶3D .3∶43.若一个平行六面体的四个侧面都是正方形,则这个平行六面体是( )A .正方体B .正四棱锥C .长方体D .直平行六面体4.正六棱台的两底边长分别为1cm,2cm,高是1cm,它的侧面积为 ( )A .279cm 2B .79cm 2C .323cm 2 D .32cm 25.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4. 再将它们卷成两个圆锥侧 面,则两圆锥体积之比为 ( )A .3∶4B .9∶16C .27∶64D .都不对6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D —ABC 的体积为( )A .63aB .123a C .3123a D .3122a 第Ⅱ卷(非选择题,共70分)二、填空题:请把答案填在题中横线上(每小题6分,共24分).7.螺母是由 _________和 两个简单几何体构成的.8.一个长方体的长、宽、高之比为2:1:3,全面积为88cm 2,则它的体积为___________.9.如图,将边长为a 的正方形剪去阴影部分后,围成一个正三棱锥,则正三棱锥的体积是 .10.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. ①若AC=BD ,则四边形EFGH 是 ; ②若则四边形EFGH 是 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共46分).11.(9分)将下列几何体按结构分类填空①集装箱;②油罐;③排球;④羽毛球;⑤橄榄球;⑥氢原子;⑦魔方;⑧金字塔;⑨三棱镜;⑩滤纸卷成的漏斗;○11量筒;○12量杯;○13十字架. (1)具有棱柱结构特征的有 ;(2)具有棱锥结构特征的有 ; (3)具有圆柱结构特征的有 ;(4)具有圆锥结构特征的有 ;(5)具有棱台结构特征的有 ;(6)具有圆台结构特征的有 ;(7)具有球结构特征的有 ;(8)是简单集合体的有 ;(9)其它的有 .12.(11分)正四棱台的侧棱长为3cm ,两底面边长分别为1cm 和5cm ,求体积.13.(12分)直平行六面体的底面是菱形,两个对角面面积分别为21Q Q ,,求直平行六面体的侧面积.14.(14分)已知四棱台上,下底面对应边分别是a ,b ,试求其中截面把此棱台侧面分成的两部分面积之比.参考答案一、BCDADD .二、7.正六棱柱,圆柱;8.48cm 3;9.231)32(121a +-;10.菱形,矩形. 三、11.⑴①⑦⑨;⑵⑧;⑶⑾;⑷⑩;⑸⒁;⑹⑿⒃;⑺③⑥⒂;⑻②④⒀;⑼⑤.12.解:1111D C B A ABCD -正四棱台2,111=C A O O 是两底面的中心,225222511==∴=AO O A AC 1222253221=⎪⎪⎭⎫ ⎝⎛--=∴O O)(331]5251[31]5151[13132222cm =++=⨯++⨯⨯= 13.解:设底面边长为a ,侧棱长为l ,两对角线分别为c ,d .则 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⋅=⋅)3(2121)2()1(22221a d c Q l d Q l c 消去c ,d 由(1)得,代入(3)得 222122212222212222124242121Q Q al S Q Q la a l Q Q a l Q l Q +==∴+=∴=+∴=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛侧14.解:设A 1B 1C 1D 1是棱台ABCD -A 2B 2C 2D 2的中截面,延长各侧棱交于P 点.∵BC=a ,B 2C 2=b ∴B 1C 1=a b +2∵BC ∥B 1C 1∴22)2(11b a a S S C PB PBC +=∆∆ ∴PBC C PB S ab a S ∆∆⋅+=224)(11 同理PBC C PB S a b S ∆∆⋅=2222 ∴S S S S S S B C CB B C C B PB C PBC PB C PB C 112211112211==-∆∆∆∆ =+--+()()a b a b a a b a 222222414=+---b ab a b ab a 22222332=+-+-()()()()b a b a b a b a 33=++b a b a 33 同理:S S S S S S b a b aABB A A B B A DCC D D C C D ADD A A D D A 11112111112211112133===++由等比定理,得SSa ba b 上棱台侧下棱台侧=33++。

第一章 空间几何体 检测试题 Word版含解析

第一章 空间几何体 检测试题 Word版含解析

第一章空间几何体检测试题(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题4分,共40分)1.下列说法正确的是( D )(A)有两个面平行,其余各面都是四边形的几何体叫棱柱(B)有两个面平行,其余各面都是平行四边形的几何体叫棱柱(C)各侧面都是正方形的四棱柱一定是正方体(D)九棱柱有9条侧棱,9个侧面,侧面均为平行四边形解析:选项A,B都不正确,反例如图所示.选项C也不正确,上、下底面是全等的菱形,各侧面是全等的正方形的四棱柱不是正方体.根据棱柱的定义知选项D正确.2.有一个正三棱锥和一个正四棱锥,它们所有的棱长都相等,把这个三棱锥的一个侧面重合在正四棱锥的一个侧面上,则所得到的这个几何体是( D )(A)底面为平行四边形的四棱柱(B)五棱锥(C)无平行平面的六面体(D)斜三棱柱解析:正三棱锥A BEF和正四棱锥B CDEF的一个侧面重合后,平面BCD和平面AEF平行,其余各面都是四边形,故该组合体是斜三棱柱.3.如图,△ABC为正三角形,AA′∥BB′∥CC′,CC′⊥平面ABC, 3AA′=BB′=CC′=AB,则多面体ABC A′B′C′的正视图是( D )解析:由题知AA′<BB′<CC′,正视图为D.4.如果一个水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中O′A′=2,∠B′A′O′=45°,B′C′∥O′A′.则原平面图形的面积为( A )(A)3 (B)6(C) (D)解析:因为O′A′=2,∠B′O′A′=∠B′A′O′=45°,所以O′B′=,又B′C′∥O′A′,所以∠C′B′O′=45°,∠O′C′B′=90°,所以B′C′=1,所以原图形为梯形,其上底为1,下底为2,高为2,所以S==3.5.已知长方体的表面积是24 cm2,过同一顶点的三条棱长之和是6 cm,则它的体对角线长是( D )(A) cm (B)4 cm(C)3 cm (D)2 cm解析:设长方体的长、宽、高分别为a,b,c,由题意可知,2(ab+bc+ac)=24,①a+b+c=6,②②2-①可得a2+b2+c2=12,所以长方体的体对角线的长为==2,故选D.6.一个几何体的三视图如图所示(单位:cm),那么此几何体的表面积(单位:cm2)是( C )(A)102 (B)128 (C)144 (D)184解析:由三视图知几何体为正四棱锥,且底面正方形的边长为8,斜高为5,其直观图如图,所以几何体的表面积S=82+4××8×5=144.故选C.7.若圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1∶V2等于( C )(A)3∶2 (B)2∶1 (C)3∶1 (D)1∶1解析:因为V1=S底·h,V2=S底·h,所以V1∶V2=3∶1.故选C.8.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( C )(A)8 cm3(B)12 cm3(C) cm3(D) cm3解析:该几何体的体积V=V四棱柱+V四棱锥,故V=23+×22×2=(cm3).9.某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)( A )(A) (B)(C) (D)解析:由三视图知,原工件为圆锥,要使正方体新工件的体积最大,则正方体下底面在圆锥底面上,上底面是平行于圆锥底面的截面圆的内接正方形,过正方体的顶点作轴截面如图,且AB为上底面正方形的对角线,设正方体的棱长为a,则AB=a,又圆锥的高为=2,所以=,得a=,正方体体积为V=a3=,圆锥的体积为×π×12×2=,故原工件的材料利用率为=,选A.10.如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE和△BEC分别沿ED,EC向上折起,使A,B重合于点P,则三棱锥P DCE的外接球的体积为( C )(A) (B)(C) (D)解析:因为ABCD为等腰梯形,AB=2DC,E为AB的中点,所以AD=DE= CE=BC,又∠DAB=60°,所以△ADE,△DCE,△CEB均为边长为1的正三角形,故翻折后的三棱锥P DCE为正四面体,其高PO1==,设球的半径为R,所以R2=(-R)2+()2,得R=,所以V=π.故选C.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于cm3,表面积等于 cm2.解析:根据三视图画出几何体,显然是将一个长方体割去两个三棱锥,所以体积V=--=2×2×4-××2×2×2-××2×2×2=(cm3).S表面积=2×4×2+×2×2×2+×4×2×2+×2××2=(28+ 4) cm2.☆答案☆:(28+4)12.某几何体的三视图如图所示,其中俯视图中的弧线是半径为1的四分之一个圆弧,则该几何体的表面积为,体积为.解析:由已知中的三视图可得该几何体为柱体,底面面积为1×1-π=1-,底面周长为1+1+π,柱体的高为1,故该几何体的表面积S=2×(1-)+(1+1+π)×1=4.体积为(1-)×1=1-.☆答案☆:4 1-13.一个空间几何体的三视图(单位:cm)如图所示,则侧视图的面积为cm2,该几何体的体积为cm3.解析:该几何体的直观图为半个圆锥和一个三棱锥,侧视图是底边长为2 cm,高为1 cm的三角形,所以面积为 1 cm2,空间几何体的体积为×1×1+××π×12×1=(+) cm3.☆答案☆:1 (+)14.已知三棱锥O ABC中,OA,OB,OC两两互相垂直,OC=1,OA=x,OB=y,且x+y=4,则此三棱锥体积的最大值是.解析:由题意可知该三棱锥的体积为×xy×1=x(4-x)=-(x-2)2+.由于0<x<4,则当x=2时,该三棱锥的体积最大,且最大值为.☆答案☆:15.如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是.解析:作出直观图如图所示,由题意计算得到BG=4,AF=CD=3,AG=CG=5,比较可得任意两个顶点间距离的最大值是3.☆答案☆:316.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则正方体的体积为,这个球的体积为.解析:设正方体的棱长为a,则6a2=18,所以a=.所以正方体的体积为3.设球的半径为R,则由题意知2R==3,所以R=.故球的体积V=πR3=π×()3=π.☆答案☆:3π17.如图,网格纸上小正方形的边长为2,粗线画出的是某多面体的三视图,则该几何体的各个面的面积的最大值为.解析:构造棱长为2的正方体,由三视图,可知该几何体为如图所示的三棱锥P ABC,其中点A为相应棱的中点.因为S△ABC=S△PAB=×1×2=1,S△PBC=×(2)2=2,S△PAC=×PC×=×2×=.因为2>>1,所以该几何体的各个面的面积的最大值为2.☆答案☆:2三、解答题(本大题共5小题,共74分)18.(本小题满分14分)已知某几何体的三视图如图所示.(1)画出该几何体的直观图;(2)求该几何体的表面积.解:(1)几何体的直观图如图.(2)由(1)知该几何体是底面边长为4,高为2的同底的正四棱柱与正四棱锥的组合体,易求得棱锥的斜高h′=2,其表面积S=42+4×4×2+(×4×2)×4=48+16.19.(本小题满分15分)如图,长方体ABCD A1B1C1D1中,AB=12,BC=10, AA1=8,过点A1,D1的平面α与棱AB和CD分别交于点E,F,四边形A1EFD1为正方形.(1)在图中请画出这个正方形(不必写作法),并求AE的长;(2)问平面α右侧部分是什么几何体,并求其体积.解:(1)正方形A1EFD1如图所示.因为A1E=A1D1=AB=10,A1A=8,在Rt△A1AE中,由勾股定理知AE=6.(2)平面α右侧部分几何体是以A1EBB1为底面的直四棱柱,由棱柱体积公式得V=×(6+12)×8×10=720.20.(本小题满分15分)一几何体按比例绘制的三视图如图所示(单位:m).(1)试画出它的直观图;(2)求它的表面积和体积.解:(1)直观图如图所示.(2)由(1)直观图可知该几何体是长方体被截去一个角得到的,且该几何体的体积是以A1A,A1D1,A1B1为棱的长方体的体积的.在直角梯形AA1B1B中,作BE⊥A1B1,垂足为E,则AA1EB是正方形,所以AA1=BE=1.在Rt△BEB1中,BE=1,EB1=1,所以BB1=.所以几何体的表面积S=+2++S正方形ABCD+ =1+2×(1+2)×1+1×+1+1×2=(7+)m2.体积V=×1×2×1=(m3).所以该几何体的表面积为(7+)m2,体积为 m3.21.(本小题满分15分)有一个倒圆锥形的容器,它的轴截面是正三角形,在这个容器内注入水,并且放入一个半径是r的钢球,这时球面恰好与水面相切,那么将球从圆锥形容器中取出后,水面高是多少?解:如图,作出截面,因轴截面是一个正三角形,根据切线的性质知当球在容器内时,水面的深度为3r,水面半径为r,则容器内水的体积为V=V圆锥-V球=π·(r)2·3r-πr3=πr3.将球取出后,设容器中水的深度为h,则水面圆的半径为,从而容器内水的体积为V′=π··h=πh3,由V=V′,可得h=r.22.(本小题满分15分)已知圆柱OO1的底面半径为2,高为4.(1)求从下底面圆周上一点出发环绕圆柱侧面一周到达上底面的最短路径长;(2)若平行于轴OO1的截面ABCD将底面圆周截去四分之一,求截面面积;(3)在(2)的条件下,设截面将圆柱分成的两部分中较小部分为Ⅰ,较大部分为Ⅱ,求VⅠ∶VⅡ(体积之比).解:(1)将侧面沿过该点的母线剪开铺平得到一个矩形,邻边长分别是4π和4,则从下底面圆周上一点出发环绕侧面一周到达上底面的最短路径长即为此矩形的对角线长4.(2)连接OA,OB,因为截面ABCD将底面圆周截去,所以∠AOB=90°,因为OA=OB=2,所以AB=2,而截面ABCD是矩形且AD=4,所以S矩形ABCD=8.(3)依题知V圆柱=Sh=16π,三棱柱AOB DO1C的体积是8,则VⅠ+8=V圆柱=4π,所以VⅠ=4π-8,而VⅡ=V圆柱-VⅠ=12π+8,于是VⅠ∶VⅡ=.。

高中数学必修2第一章空间几何体综合练习题及答案

高中数学必修2第一章空间几何体综合练习题及答案

AB D E F第一章 空间几何体综合型训练一、选择题1. 如果一个水平放置的图形的斜二测直观图是一个底面为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A . 22+B . 221+ C . 222+ D . 21+ 2. 半径为R 的半圆卷成一个圆锥,则它的体积为( )A . 33RB . 33RC . 35RD . 35R 3. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( )A. 28cm π B. 212cmπ C. 216cm π D. 220cm π 4. 圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A . 7 B. 6 C. 5 D. 35. 棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是( )A . 1:7 B. 2:7 C. 7:19 D. 5:166. 如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ) A . 92B. 5 C. 6 D. 152 二、填空题1. 圆台的较小底面半径为1,母线长为2,一条母线和底面的一条半径有交点且成060,则圆台的侧面积为____________.2. Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为____________.3. 等体积的球和正方体,它们的表面积的大小关系是S 球___S 正方体4. 若长方体的一个顶点上的三条棱的长分别为3,4,5,从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,其最短路程是______________.5. 图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(2)中的三视图表示的实物为_____________.6. 若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________.三、解答题1. 有一个正四棱台形状的油槽,可以装油190L ,假如它的两底面边长分别等于60cm 和40cm ,求它的深度为多少cm ?2. 已知圆台的上下底面半径分别是2,5,且侧面面积等于两底面面积之和,求该圆台的母线长.参考答案图(1) 图(2)一、选择题1. A恢复后的原图形为一直角梯形1(11)222S =⨯=+ 2. A2312,,,22324R r R r h V r h R πππ===== 3. B正方体的顶点都在球面上,则球为正方体的外接球,则2R =,2412R S R ππ===4. A (3)84,7S r r l r ππ=+==侧面积5. C 中截面的面积为4个单位, 12124746919V V ++==++ 6. D 过点,E F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,1313152323234222V =⨯⨯⨯⨯+⨯⨯⨯= 二、填空题1. 6π 画出圆台,则12121,2,2,()6r r l S r r l ππ====+=圆台侧面2. 16π 旋转一周所成的几何体是以BC 为半径,以AB 为高的圆锥,2211431633V r h πππ==⨯⨯= 3. <设334,3V R a a R π====2264S a S R π=====<正球4.从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,有两种方案==5. (1)4 (2)圆锥6.设圆锥的底面的半径为r ,圆锥的母线为l ,则由2l r ππ=得2l r =, 而22S r r r a ππ=+⋅=圆锥表,即23,r a r π===,即直径为3π三、解答题1.解:'1(),3V S S h h =+= 319000075360024001600h ⨯==++数学试卷及试题2.解:2229(25)(25),7l lππ+=+=。

第一章《空间几何体》练习题(附答案)

第一章《空间几何体》练习题(附答案)

第一章《空间几何体》练习题(时间:90分钟满分:120分)班级_________________ 姓名_________________ 学号_____一、选择题(3×16=48分)1、如图,左侧的空间几何体是由哪个平面图形旋转得到的···························()(A)(B)(C)(D)2、下列命题正确的是 ············································································()(A)有两个面平行,其余各面都是四边形的几何体叫棱柱(B)有两个面平行,其余各面都是平行四边形的几何体叫棱柱(C)有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱(D)用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台3、如图所示的几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则所截图形可能是··················()(A)(1)(2)(B)(1)(3)(C)(1)(4)(D)(1)(5)4、已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1∶V2等于 ······································································································()(A)1∶3 (B)1∶1 (C)2∶1 (D)3∶15、棱长都是1的正三棱锥的表面积为 ·······················································()(A)3(B)23(C)33(D)436、如果两个球的体积之比为8∶27,那么两个球的表面积之比为····················()(A)8∶27 (B)2∶3 (C)4∶9 (D)2∶97、一平面截球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则该球的体积是 ······································································································()(A)1003πcm3 (B)2083πcm3 (C)5003πcm3 (D)4163πcm38、在棱长为1的正方体上,分别用过具有公共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后,剩下的几何体的体积是 ··················································()(A)23(B)76(C)45(D)569、如右图为一个几何体的三视图,其中俯视图为正三角形,A1B1=2,AA1=4,则该几何体的表面积为 ················································()(A)6(B)24+(C)24+(D)3210、半径为R的半圆卷成一个圆锥,则它的体积为 ······································()(A3R(B3R(C3R(D3R11、过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()(A)1∶2∶3 (B)1∶3∶5(C)1∶2∶4 (D)1∶3∶912、一个空间几何体的三视图及其尺寸如图所示(单位cm),则该空间几何体的表面积及体积为()(A)24πcm2,12πcm3(B)15πcm2,12πcm3(C)24πcm2,36πcm3(D)以上都不正确13、一个球的外切正方体的全面积等于6 cm2,则此球的体积为······················()(A)43πcm3 (B)8cm3 (C)16πcm3 (D)6cm314、一个正方体的顶点都在球面上,此球与正方体的表面积之比是··················()(A)3π(B)4π(C)2π(D)π15、棱台上、下底面面积之比为1∶9,则棱台的中截面分棱台成两部分的体积之比是()(A)1∶7 (B)2∶7 (C)7∶19 (D)5∶1616、如果一个水平放置的图形的直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是········································································()(A)2+(B)12(C)22+(D)1+侧视图AA B1正视图侧视图俯视图二、填空题(4×6=24分)17、球的半径扩大为原来的2倍,它的体积扩大为原来的_______倍。

人教版高中数学第一章空间几何体练习题及答案(全)

人教版高中数学第一章空间几何体练习题及答案(全)

第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。

8、一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为————————————9、把等腰三角形绕底边上的高旋转1800,所得的几何体是——————10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。

图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。

则“祝”“你”“前”分别表示正方体的—————祝你前程似锦三、解答题:11、长方体ABCD —A 1B 1C 1D 1中,AB =3,BC =2,BB 1=1,由A 到C 1在长方体表面上的最短距离为多少?AA 1B 1BCC 1D 1D12、说出下列几何体的主要结构特征(1)(2)(3)1.2空间几何体的三视图和直观图一、选择题1、两条相交直线的平行投影是( ) A 两条相交直线 B 一条直线C 一条折线D 两条相交直线或一条直线 2、如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是( )① 长方体 ② 圆锥 ③ 三棱锥 ④ 圆柱 A ②①③ B ①②③ C ③②④ D ④③②正视图侧视图俯视图 正视图 侧视图 俯视图 正视图 侧视图 俯视图甲 乙 丙3、如果一个几何体的正视图和侧视图都是长方形,则这个几何体可能是( )A 长方体或圆柱B 正方体或圆柱C 长方体或圆台D 正方体或四棱锥 4、下列说法正确的是( )A 水平放置的正方形的直观图可能是梯形B 两条相交直线的直观图可能是平行直线C 平行四边形的直观图仍然是平行四边形D 互相垂直的两条直线的直观图仍然互相垂直5、若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21倍 B42倍 C 2倍 D 2倍 6、如图(1)所示的一个几何体,,在图中是该几何体的俯视图的是( )(1) 二、选择题7、当圆锥的三视图中的正视图是一个圆时,侧视图与俯视图是两个全等的———————三角形。

(word版)高中数学必修2第一章空间几何体试题(含答案),文档

(word版)高中数学必修2第一章空间几何体试题(含答案),文档

高一数学必修2第一章复习题一、选择题:〔每题5分,共50分〕1.以下图中的几何体是由哪个平面图形旋转得到的〔〕A B C D2.假设一个几何体的三视图都是等腰三角形,那么这个几何体可能是〔〕A.圆锥 B.正四棱锥 C.正三棱锥 D.正三棱台3.圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,那么V1:V2=〔〕A.1:3B.1:1C. 2:1D.3:14.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三局部的面积之比为〔〕:2:3 :3:5 :2:4 :3:95.棱长都是1的三棱锥的外表积为〔〕A. 3B. 2 3 3 D. 4 36.如果两个球的体积之比为8:27,那么两个球的外表积之比为〔〕A.8:27B.2:3C.4:9D.2:97.有一个几何体的三视图及其尺寸如下〔单位cm〕,那么该几何体的外表积及体积为:〔〕56俯视图主视图侧视图πcm2,12πcm3πcm2,12πcm3πcm2,36πcm3 D.以上都不正确8.以下几种说法正确的个数是〔〕①相等的角在直观图中对应的角仍然相等②相等的线段在直观图中对应的线段仍然相等③平行的线段在直观图中对应的线段仍然平行-1-④线段的中点在直观图中仍然是线段的中点A.1B.2C.3D.49.正方体的内切球和外接球的半径之比为〔〕A.3:1B.3:2C.2:3D.3:310.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4.再将它们卷成两个圆锥侧面,那么两圆锥的高之比为〔〕A.3∶4B.9∶16C.27∶64D.都不对请将选择题的答案填入下表:题号12345678910答案二、填空题:〔每题6分,共30分〕11.一个棱柱至少有_____个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱。

12.图〔1〕为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图〔2〕中的三视图表示的实物为_____________。

【优质文档】第1章空间几何体单元测试卷及参考答案

【优质文档】第1章空间几何体单元测试卷及参考答案

________ cm3.
15.已知各顶点都在一个球面上的正四棱柱高为
4,体积为 16,则这个球的表面积是 ________.
16.一个水平放置的圆柱形储油桶 (如图所示 ),桶内有油部分所在圆弧占底面
圆周长的 1,则油桶直立时,油的高度与桶的高度的比值是 4
________ .
三、解答题
17.某个几何体的三视图如图所示 ( 单位: m),
()
A .①②
B .②③
C .①③
D .①②
3.如图所示的正方体中, M 、N 分别是 AA1、CC1 的中点,作四边形 D1MBN ,
则四边形 D1MBN 在正方体各个面上的正投影图形中, 不可能出现的是
()
4.如图所示的是水平放置的三角形直观图, D ′是△ A′B′ C′中 B′C′边上的一点, 且 D ′ 离 C′比 D ′离 B′近,又 A′ D′∥ y′轴,那么原△ ABC 的 AB、AD 、AC 三条线段中 ( ) A .最长的是 AB,最短的是 AC B .最长的是 AC,最短的是 AB C.最长的是 AB,最短的是 AD D .最长的是 AD ,最短的是 AC
图 2,则该几何体按图 2 所示方向的侧视图为选项图中的
()
11.圆锥的表面积是底面积的 3 倍,那么该圆锥的侧面展开图扇形的圆心角为
()
A . 120 °
B .150 °
C. 180 °
D. 240 °
12.已知三棱锥 S- ABC 的所有顶点都在球 O 的球面上, △ ABC 是边长为 1 的正三角形,
为球 O 的直径,且 SC= 2,则此棱锥的体积为
2 A. 6
3 B. 6
2 C. 3

高中数学第一章空间几何体单元质量测评含解析新人教A版必修208192196

高中数学第一章空间几何体单元质量测评含解析新人教A版必修208192196

高中数学第一章空间几何体单元质量测评含解析新人教A版必修208192196对应学生用书P21 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下列命题中正确的是( )A .由五个平面围成的多面体只能是四棱锥B .棱锥的高线可能在几何体之外C .仅有一组对面平行的六面体是棱台D .有一个面是多边形,其余各面是三角形的几何体是棱锥 答案 B解析 由五个平面围成的多面体可能是四棱锥或三棱柱,故A 不正确;根据棱锥的定义,棱锥的高线可能在几何体之外,故B 正确;仅有一组对面平行的六面体可能是四棱台,也可能是四棱柱,故C 不正确;因为棱锥的定义中要求这些三角形必须有公共的顶点,故D 不正确.所以选B .2.如果把圆锥的母线长扩大到原来的n 倍,底面半径缩小为原来的1n ,那么它的侧面积变为原来的( )A .1倍B .n 倍C .n 2倍 D .1n答案 A解析 设圆锥的底面半径为r ,母线长为l ,则侧面积S =πrl,变化后其底面半径为1n r ,母线长为nl ,故变化后的侧面积S′=π·1nr·nl=πrl,所以S′=S .3.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.其实际直观图中四边形不存在,当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是( )A .a ,bB .a ,cC .c ,bD .b ,d 答案 A解析 正视图和侧视图完全相同时,牟合方盖相对的两个曲面正对前方,正视图为一个圆,而俯视图为一个正方形,且有两条实线的对角线.故选A .4.若干毫升水倒入底面半径为2 cm 的圆柱形器皿中,量得水面的高度为6 cm ,若将这些水全部倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( )A .6 3 cmB .6 cmC .2318 cmD .3312 cm 答案 B解析 水的体积V =π×22×6=24π(cm 3).设圆锥中水的底面半径为r ,则水的高度为3r ,∴13πr 2·3r =24π,∴r 3=243. ∴(3r)3=216,∴3r =6,即圆锥中水面的高度为6 cm .5.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的体积为( )A .4π3B .3π C.3π2 D .π答案 C解析 由三视图知,如图,此四面体的外接球即为棱长为1的正方体的外接球,设外接球的半径为R ,则2R =3,R =32.所以球的体积为V =43π×⎝ ⎛⎭⎪⎫323=3π2.6.如图所示是古希腊数学家阿基米德墓碑上刻着的一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( )A .32,1B .23,1C .32,32D .23,32 答案 C解析 设球的半径为R ,则圆柱的底面半径为R ,高为2R . ∵V 圆柱=πR 2×2R=2πR 3,V 球=43πR 3,∴V 圆柱V 球=2πR 343πR 3=32. ∵S 圆柱表面积=2πR×2R+2×πR 2=6πR 2,S 球表面积=4πR 2, ∴S 圆柱表面积S 球表面积=6πR 24πR 2=32. 7.一个棱台上、下底面的面积分别为16,81,有一平行于底面的截面,其面积为36,则截得的两棱台的高之比为( )A .1∶1 B.1∶2 C.2∶3 D.3∶4 答案 C解析 设截得的上面的棱台的高为h 1,下面的棱台的高为h 2,以棱台上底面为底面将棱台补为棱锥,设最上面的小棱锥的高为h ,根据棱锥的性质可得16∶36∶81=h 2∶(h+h 1)2∶(h +h 1+h 2)2,解得h 1∶h 2=2∶3.8.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =6,AD =4,AA 1=3,分别过BC ,A 1D 1的两个平行截面将长方体分成三部分,其体积分别记为V 1=V 三棱柱AEA 1-DFD1,V 2=V 四棱柱EBE 1A 1-FCF 1D 1,V 3=V 三棱柱B 1E 1B -C 1F 1C .若V 1∶V 2∶V 3=1∶4∶1,则截面A 1EFD 1的面积为( )A .213B .413C .613D .813 答案 B解析 由题意可知,V 长方体=6×4×3=72,V 1=16V =16×72=12.其中体积为V 1的几何体是三棱柱AEA 1-DFD 1,其高为AD =4,∴其底面积S△AEA 1=3.在Rt△AEA 1中,∵AA 1=3,∴AE=2. ∴A 1E =32+22=13.又∵截面A 1EFD 1为矩形,∴其面积S =413.9.已知一个棱长为2的正方体,被一个平面截去一部分后所得几何体的三视图如图所示,则该几何体的体积是( )A .143B .173C .203 D .8答案 B解析由三视图,知该几何体的直观图是如图所示的多面体B 1C 1D 1-BCDFE ,该多面体可补全为棱长为2的正方体,其中E ,F 分别为AB ,AD 的中点,多面体AEF -A 1B 1D 1为棱台,棱台高为2,上、下底面均为等腰直角三角形.则该几何体的体积是2×2×2-13×2×12+2+2×12=8-73=173,故选B.10.用斜二测画法画水平放置的△ABC的直观图,得到如图所示的等腰直角三角形A′B′C′.已知点O′是斜边B′C′的中点,且A′O′=1,则△ABC的边BC上的高为( ) A.1 B.2 C. 2 D.2 2答案 D解析∵△ABC的直观图是等腰直角三角形A′B′C′,∠B′A′C′=90°,A′O′=1,∴A′C′=2.根据直观图平行于y轴的长度变为原来的一半,∴△ABC的BC边上的高为AC=2A′C′=22.故选D.11.设长方体的三条棱长分别为a,b,c,若长方体的所有棱的长度之和为24,一条体对角线长为5,体积为2,则1a+1b+1c等于( )A.114B.411C.112D.211答案 A解析由题意可知a+b+c=6,①a2+b2+c2=25,②abc=2.由①两边平方,得a2+b2+c2+2(ab+ac+bc)=36,把②代入此式,得ab+ac+bc=112.∴1a+1b+1c=bc+ac+ababc=1122=114.12.如图,直三棱柱(侧棱垂直于底面)ABC-A1B1C1的六个顶点都在半径为1的半球面上,且AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为( ) A.2 B.1 C. 2 D.22答案 C解析连接BC1,B1C,设交于点O,则O为侧面BCC1B1的中心,由题意知,球心为侧面BCC1B1的中心O ,BC 为截面圆的直径,所以∠BAC=90°,则△ABC 的外接圆的圆心N 位于BC 的中点.同理,△A 1B 1C 1的外接圆的圆心M 位于B 1C 1的中点,设正方形BCC 1B 1的边长为x ,在Rt△OMC 1中,OM =x 2,MC 1=x 2,OC 1=R =1(R 为球的半径),所以⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫x 22=1.解得x =2,所以B 1B =BC =2.同理,在Rt△ABC 中,解得AB =AC =1,所以侧面ABB 1A 1的面积为2×1=2.故选C .第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.用长、宽分别是3π与π的矩形硬纸卷成圆柱的侧面,则圆柱底面的半径为________. 答案 32或12解析 设圆柱底面的半径为R ,当以宽为母线,长为底面圆周长时,则2πR=3π,R =32;当以长为母线,宽为底面圆周长时,则2πR=π,R =12.14.我国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 为________.答案 1.6解析 由图可得π×⎝ ⎛⎭⎪⎫122×x+3×1×(5.4-x)=12.6,解得x =1.6.15.若一个圆台的轴截面是腰长为a 的等腰梯形,下底边长为2a ,对角线长为3a ,则这个圆台的体积为________.答案7324πa 3解析 圆台的轴截面如图,由AD =a ,AB =2a ,BD =3a ,可知∠ADB=90°,∠DAB=60°.分别过点D ,C 作DH⊥AB,CG⊥AB,所以DH =32a ,所以HB =BD 2-DH 2=3a 2-34a 2=32a ,所以DC =HG =a ,所以圆台的体积为 V =π3·⎝ ⎛⎭⎪⎫14a 2+12a 2+a 2·32a =7324πa 3.16.把由折线y =|x|和y =2围成的图形绕x 轴旋转360°,所得旋转体的体积为________.答案32π3解析 由题意,y =|x|和y =2围成图中阴影部分的图形,旋转体为一个圆柱挖去两个共顶点的圆锥.∵V圆柱=π×22×4=16π,2V圆锥=2×π3×22×2=16π3,∴所求几何体的体积为16π-16π3=32π3.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)把长、宽分别为4、2的矩形卷成一个圆柱的侧面,求这个圆柱的体积.解 设圆柱的底面半径为r ,母线长为l ,高为h .当2πr=4,l =2时,r =2π,h =l=2,所以V 圆柱=πr 2h =8π.当2πr=2,l =4时,r =1π,h =l =4,所以V 圆柱=πr 2h =4π.综上所述,这个圆柱的体积为8π或4π.18.(本小题满分12分)如图所示是一个圆台形的纸篓(有底无盖),它的母线长为50 cm ,两底面直径分别为40 cm 和30 cm .现有制作这种纸篓的塑料制品50 m 2,问最多可以做这种纸篓多少个?解 根据题意可知,纸篓底面圆的半径r′=15 cm ,上口的半径r =20 cm ,设母线长为l ,则纸篓的表面积S =πr′2+2πr′+2πr l 2=π(r′2+r′l+rl)=π(152+15×50+20×50)=1975π(cm 2).因为50 m 2=500000 cm 2,故最多可以制作这种纸篓的个数n =500000S≈80.19.(本小题满分12分)如图所示,在正三棱柱(底面为正三角形,侧棱垂直底面)ABC -A 1B 1C 1中,AB =3,AA 1=4,M 为AA 1的中点,P 是BC 上的一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线为29.设这条最短路线与CC 1的交点为N ,求:(1)该三棱柱的侧面展开图的对角线的长; (2)PC 和NC 的长.解 (1)该三棱柱的侧面展开图是宽为4,长为9的矩形,所以对角线的长为42+92=97.(2)将该三棱柱的侧面沿棱BB 1展开,如图所示.设PC 的长为x ,则MP 2=MA 2+(AC +x)2. 因为MP =29,MA =2,AC =3, 所以x =2(负值舍去),即PC 的长为2. 又因为NC∥AM,所以PC PA =NC AM ,即25=NC2,所以NC =45.20.(本小题满分12分)如果一个几何体的正视图与侧视图都是全等的长方形,边长分别是4 cm 与2 cm ,如图所示,俯视图是一个边长为4 cm 的正方形.(1)求该几何体的表面积;(2)求该几何体的外接球的体积.解 (1)由题意可知,该几何体是长方体, 底面是正方形,边长是4,高是2,因此该几何体的表面积是:2×4×4+4×4×2=64(cm 2),即该几何体的表面积是64 cm 2. (2)由长方体与球的性质可得,长方体的体对角线是球的直径,记长方体的体对角线长为d ,球的半径为r ,则d =16+16+4=36=6(cm), 所以球的半径为r =3(cm).因此,球的体积V =43πr 3=43×27π=36π(cm 3),即外接球的体积是36π cm 3.21.(本小题满分12分)如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F 分别是A 1A ,CC 1的中点,求四棱锥C 1-B 1EDF 的体积.解 连接EF ,B 1D 1.设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2.∵正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F 分别是A 1A ,CC 1的中点,∴h 1+h 2=B 1D 1=2a . 又S△C1EF=12C 1F·EF=12×a 2×2a =24a 2,∴VC1-B1EDF =VB1-C1EF +VD -C1EF=13·S△C1EF·(h 1+h 2)=13×24a 2×2a =16a 3. 22.(本小题满分12分)已知正三棱锥(底面为正三角形,顶点在底面内的正投影为底面的中心)S -ABC ,一个正三棱柱的一个底面的三个顶点在正三棱锥的三条侧棱上,另一底面在正三棱锥的底面上,若正三棱锥的高为15 cm ,底面边长为12 cm ,内接正三棱柱的侧面积为120 cm 2.(1)求三棱柱的高;(2)求棱柱上底面截棱锥所得的小棱锥与原棱锥的侧面积之比. 解 (1)设正三棱柱的高为h cm ,底面边长为x cm ,如图,则15-h 15=x12, ∴x=45(15-h).①又S 三棱柱侧=3x·h=120, ∴xh=40.②解①②得⎩⎪⎨⎪⎧x =4,h =10或⎩⎪⎨⎪⎧x =8,h =5.故正三棱柱的高为10 cm 或5 cm . (2)由棱锥的性质,得S 三棱锥S -A 1B 1C 1侧S 三棱锥S -ABC 侧=⎝ ⎛⎭⎪⎫15-10152=19或S 三棱锥S -A 1B 1C 1侧S 三棱锥S -ABC 侧=⎝ ⎛⎭⎪⎫15-5152=49.- 1 -。

新人教版必修2第一章空间几何体综合试题及答案

新人教版必修2第一章空间几何体综合试题及答案

人教A 必修2第一章空间几何体综合试题一、选择题(每道题5分)1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图(第1题)A .棱台B .棱锥C .棱柱D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对5.正方体的棱长和外接球的半径之比为( ).A .3∶1B .3∶2C .2∶3D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π 7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.半径为R 的半圆卷成一个圆锥,则它的体积为( )A .324RB .38RC .324RD .38R9.下列关于用斜二测画法画直观图的说法中,错误..的是( ).A.用斜二测画法画出的直观图是在平行投影下画出的空间图形B.几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C.水平放置的矩形的直观图是平行四边形D.水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第10题)二、填空题(每道题5分)11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题(17题,18,19各15分;20题25分)17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第18题)19.已知圆台的上下底面半径分别是2,5,且侧面面积等于两底面面积之和,求该圆台的母线长.20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案一、选择题1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2. 3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径.6.D 解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π. 7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52, 而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160.8.A 2312,,,22324R r R r h V r h R πππ===== 9.B 解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D.二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a . 解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6.16.参考答案:12.解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22=(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π. 19.解2229(25)(25),7l l ππ+=+=20. 解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3). 如果按方案二,仓库的高变成8 m ,则仓库的体积V 2=31Sh =31×π×(212)2×8=3288π(m 3). (2) 参考答案:如果按方案一,仓库的底面直径变成16 m ,半径为8 m . 棱锥的母线长为l =224+8=45,仓库的表面积S 1=π×8×45=325π(m 2).如果按方案二,仓库的高变成8 m .棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S 2<S 1,∴方案二比方案一更加经济些.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章综合检测题时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.如下图所示,观察四个几何体,其中判断正确的是( )A .①是棱台B .②是圆台C .③是棱锥D .④不是棱柱2.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的( )A.12倍 B .2倍 C.24倍 D.22倍3.(2012·湖南卷)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )4.已知某几何体的三视图如图所示,那么这个几何体是( )A .长方体B .圆柱C .四棱锥D .四棱台5.正方体的体积是64,则其表面积是( )A .64B .16C .96D .无法确定 6.圆锥的高扩大到原来的2倍,底面半径缩短到原来的12,则圆锥的体积( )A .缩小到原来的一半B .扩大到原来的2倍C .不变D .缩小到原来的167.三个球的半径之比为1:2:3,那么最大球的表面积是其余两个球的表面积之和的( )A .1倍B .2倍C.95倍D.74倍8.(2011~2012·浙江龙岩一模)有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为( )A .12πcm 2B .15πcm 2C .24πcm 2D .36πcm 29.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D .310.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( )A.32,1B.23,1C.32,32D.23,3211.(2011-2012·广东惠州一模)某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为5的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为5的等腰三角形.则该几何体的体积为()A.24B.80C.64D.24012.如果用表示1个立方体,用表示两个立方体叠加,用表示3个立方体叠加,那么图中由7个立方体摆成的几何体,从正前方观察,可画出平面图形是()二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.圆台的底半径为1和2,母线长为3,则此圆台的体积为________.14.(2011-2012·北京东城区高三第一学期期末检测)一个几何体的三视图如图所示,则这个几何体的体积为___________________ __________________________________________________.15.圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为________.16.(2011-2012·安徽皖南八校联考)一个几何体的三视图及其尺寸如下图所示,其中主视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,则这个几何体的表面积是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)画出如图所示几何体的三视图.18.(本题满分12分)圆柱的高是8cm,表面积是130πcm2,求它的底面圆半径和体积.19.(本题满分12分)如下图所示是一个空间几何体的三视图,试用斜二测画法画出它的直观图(尺寸不限).20.(本题满分12分)如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,高为7m,制造这个塔顶需要多少铁板?21.(本题满分12分)如下图,在底面半径为2、母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.22.(本题满分12分)如图所示(单位:cm),四边形ABCD 是直角梯形,求图中阴影部分绕AB 旋转一周所成几何体的表面积和体积.详解答案1[答案] C[解析] 图①不是由棱锥截来的,所以①不是棱台;图②上、下两个面不平行,所以②不是圆台;图④前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以④是棱柱;很明显③是棱锥.2[答案] C[解析] 设△ABC 的边AB 上的高为CD ,以D 为原点,DA 为x 轴建系,由斜二测画法规则作出直观图△A ′B ′C ′,则A ′B ′=AB ,C ′D ′=12CD .S △A ′B ′C ′=12A ′B ′·C ′D ′sin45° =24(12AB ·CD )=24S △ABC .3[答案] D[解析]本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.[点评]本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型.4[答案] A[解析]该几何体是长方体,如图所示.5[答案] C[解析]由于正方体的体积是64,则其棱长为4,所以其表面积为6×42=96.6[答案] A[解析] V =13π⎝ ⎛⎭⎪⎫12r 2×2h =16πr 2h ,故选A. [答案] C7[解析] 设最小球的半径为r ,则另两个球的半径分别为2r 、3r ,所以各球的表面积分别为4πr 2,16πr 2,36πr 2,所以36πr 24πr 2+16πr 2=95. 8[答案] C[解析] 由三视图可知该几何体是圆锥,S 表=S 侧+S 底=πrl +πr 2=π×3×5+π×32=24π(cm 2),故选C.9[答案] A[解析] 设圆台较小底面圆的半径为r ,由题意,另一底面圆的半径R =3r .∴S 侧=π(r +R )l =π(r +3r )×3=84π,解得r =7.10[答案] C[解析] 设球的半径为R ,则圆柱的底面半径为R ,高为2R ,∴V 圆柱=πR 2×2R =2πR 3,V 球=43πR 3.∴V 圆柱V 球=2πR 343πR 3=32, S 圆柱=2πR ×2R +2×πR 2=6πR 2,S 球=4πR 2.∴S 圆柱S 球=6πR 24πR 2=32. 11[答案] B[解析] 该几何体的四棱锥,高等于5,底面是长、宽分别为8、6的矩形,则底面积S =6×8=48,则该几何体的体积V =13Sh =13×48×5=80.12[答案] B[解析] 画出该几何体的正视图为,其上层有两个立方体,下层中间有三个立方体,两侧各一个立方体,故B 项满足条件.13[答案] 1423π[解析] 圆台高h =32-(2-1)2=22,∴体积V =π3(r 2+R 2+Rr )h =1423π.14[答案] 36[解析] 该几何体是底面是直角梯形的直四棱柱,如图所示,底面是梯形ABCD ,高h =6,则其体积V =Sh =⎣⎢⎡⎦⎥⎤12(2+4)×2×6=36. [答案] 24π2+8π或24π2+18π15[解析] 圆柱的侧面积S 侧=6π×4π=24π2.(1)以边长为6π的边为轴时,4π为圆柱底面圆周长,所以2πr =4π,即r =2.所以S 底=4π,所以S 表=24π2+8π.(2)以4π所在边为轴时,6π为圆柱底面圆周长,所以2πr =6,即r =3.所以S 底=9π,所以S 表=24π2+18π.16[答案] 2(1+3)π+4 2[解析] 此几何体是半个圆锥,直观图如下图所示,先求出圆锥的侧面积S 圆锥侧=πrl =π×2×23=43π,S 底=π×22=4π,S △SAB =12×4×22=42,所以S 表=43π2+4π2+4 2=2(1+3)π+4 2. 17[解析] 该几何体的上面是一个圆柱,下面是一个四棱柱,其三视图如图所示.18[解析]设圆柱的底面圆半径为r cm,∴S圆柱表=2π·r·8+2πr2=130π.∴r=5(cm),即圆柱的底面圆半径为5cm.则圆柱的体积V=πr2h=π×52×8=200π(cm3).19[解析]由三视图可知该几何体是一个正三棱台.画法:(1)如图①所示,作出两个同心的正三角形,并在一个水平放置的平面内画出它们的直观图;(2)建立z′轴,把里面的正三角形向上平移高的大小;(3)连接两正三角形相应顶点,并擦去辅助线,被遮的线段用虚线表示,如图②所示,即得到要画的正三棱台.连接OP.在Rt △SOP 中,SO =7(m),OP =12BC =1(m),所以SP =22(m),则△SAB 的面积是12×2×22=22(m 2).所以四棱锥的侧面积是4×22=82(m 2),即制造这个塔顶需要82m 2铁板.21[解析] 设圆柱的底面半径为r ,高为h ′.圆锥的高h =42-22=23,又∵h ′=3,∴h ′=12h .∴r 2=23-323,∴r =1. ∴S 表面积=2S 底+S 侧=2πr 2+2πrh ′=2π+2π×3=2(1+3)π.22[解析] 由题意,知所成几何体的表面积等于圆台下底面积+圆台的侧面积+半球面面积.又S 半球面=12×4π×22=8π(cm 2),S 圆台侧=π(2+5)(5-2)2+42=35π(cm 2),S 圆台下底=π×52=25π(cm 2),即该几何全的表面积为8π+35π+25π=68π(cm 2).又V 圆台=π3×(22+2×5+52)×4=52π(cm 3),V 半球=12×4π3×23=16π3(cm 3).所以该几何体的体积为V 圆台-V 半球=52π-16π3=140π3(cm 3).。

相关文档
最新文档