第6章 非线性有限元法(几何非线性)
线性和非线性有限元
目
CONTENCT
录
• 线性有限元方法 • 非线性有限元方法 • 线性与非线性有限元的比较 • 线性与非线性有限元的实例分析 • 未来研究方向与展望
01
线性有限元方法
定义与原理
定义
线性有限元方法是一种数值分析方法,用于求解偏微分方程的近 似解。它将复杂的求解区域离散化为有限个小的、简单的子区域 ,即有限元,然后对每个有限元进行求解,最终得到原偏微分方 程的近似解。
THANK YOU
感谢聆听
在实际应用中,应根据问题的特性和需求选择合适 的有限元方法。对于复杂的问题,可能需要结合多 种有限元方法进行求解。
05
未来研究方向与展望
线性有限元方法的改进与优化
80%
高效求解算法
研究更快速、稳定的线性有限元 求解算法,提高计算效率。
100%
自适应网格生成
发展更智能、自动的网格生成技 术,以适应复杂几何形状和边界 条件。
线性有限元
由于线性有限元基于线性方程组进行求解,因此计算复杂度 相对较低,适用于求解一些较简单的问题,如弹性力学问题 。
非线性有限元
非线性有限元需要求解非线性方程组,计算复杂度较高,但 能够处理更复杂的问题,如塑性力学、流体力学等领域的问 题。
精度比较
线性有限元
对于一些简单的问题,线性有限元可以给出较为精确的结果。然而,对于一些 复杂的问题,线性有限元可能无法准确描述非线性行为。
80%
多物理场耦合
研究线性有限元在多物理场耦合 问题中的应用,如流体-结构、电 磁-热等。
非线性有限元方法的改进与优化
高阶非线性有限元
发展高阶非线性有限元方法, 以更精确地描述复杂非线性行 为。
材料非线性
( ) P( ) f 0 0
其中: 表示载荷变化的量。 dP d d f 0 KT f0 0 d d d d 1 K T ( ) f 0 d 切线矩阵
1 1 m1 m KT ( m ) f0m KT ( m )f m
一、材料弹塑性行为的描述
弹塑性材料进入塑性的特征是当载荷卸去后 存在不可恢复的永久变形,因而在涉及卸载的情 况下,应力和应变之间不再存在一一对应的关系, 这是区别于非线性弹性的基本属性。
11
单调加载 对于大多数材料存在屈服应力,应力低于屈服 应力时,材料为弹性,而当应力超出屈服应力时, 材料进入 弹塑性状态。 当应力达到屈服应力后,应力不再增加,而材料 变形可以继续增加—理想弹塑性材料。
第六章 材料非线性问题的有限元法
1
第一节
引言
线弹性力学基本方程的特点: 几何方程的位移和应变的关系是线性的; 物理方程的应力和应变的关系是线性的; 建立于变形前的平衡方程也是线性的。 几何非线性问题 结构的变形使体系的受力状态发生显著变化, 以致于不能用变形前的平衡方程分析,且位移和应 变的关系不是线性的。
K ( ) f 0
增量法 载荷分为若干步: f 0 , f1 , f 2 , f 3 位移分成若干步: 0 , 1 , 2 , 3 每两步之间增长量为增量。 增量解法的一般做法是: 假设第m步的载荷 f m 和位移 m ; 让载荷增加 f m1 ( f m f ) ,再求解 m1( m )。 如果每一步的增量 f 足够小,解的收敛性 可以得到保证
9
NmR-N方法求解非线性方程组时,收敛速度 较慢,特别是对于结构分析时载荷趋近极限载荷或突 然变软的情况下,收敛速度会很慢。为了加速收敛, 可以采用一些方法,比较常用和有效的是Aitken法。 该方法每隔一次迭代进行一次加速。
非线性 元法 几何非线性
5、几何非线性有限元方程的建立
如前所述,几何非线性的有限元方程一般采用T.L或U.L列式法建立:
1、全拉格朗日列式法(T.L列式法): 选取t0=0时刻未变形物体的构形A0作为参照构形进行分析。
2、修正拉格朗日列式法(U.L列式法): 选取tn时刻的物体构形An作为参照构形。由于An随计算而变化,因
Ni (参考面积法向矢量)
变形前面积dA’
变参2形考、后后Ti状状j不态态对下下称::,dd因PiiP 而T较iijjN n难jjdd应A A用到有ijn 限jd元分A T 析ijN 中j。dA ni(变形后面积法向矢量)
将面积映射关系:njdA JN iFij1dA代入上式,得:
iJ j N kF k1jdA TiN j jdA
V
V
S
或写为:
12Sij 12ei*jdV12Q
V
式中, 1 2Q 1 2fibui*dV1 2fiSui*dS 表示外力所做的虚功。
V
S
5、几何非线性有限元方程的建立
引入此前Green应变张量表达式,可得:
e ijijij e ijijij
虚功方程:
12Sij 12ei*jdV12Q
和应变在变形后状态下表示未知。
x2
x3 t0=0 P0
A0
x1
tn tn+1=tn+Δtn
Pn
Pn+1
An
An+1
5、几何非线性有限元方程的建立
为了求解,需将以上变形后状态下表示的虚功方程转换到
初始状态下表达。
1、采用二阶Piola应力张量和 Green应变张量将虚应变能转换 到初始状态下表示:
2、在外力作用点和方向都不改
非线性有限元法综述
非线性有限元法综述摘要:本文针对非线性有限元法进行综述,分别从UL列式及TL列式、CR列式、几何精确梁、壳理论三个方面介绍其分析思路和发展动态,旨在为相关学者提供一些思路参考。
关键词:几何非线性;UL列式;TL列式;CR列式;几何精确梁、壳理论1引言几何非线性是由于位置改变引起了结构非线性响应。
进行结构几何非线性分析,实质上就是要得到结构真实的变形与受力情况。
有限元方法是进行结构几何非线性分析的最成熟的方法,也是应用最广泛的分析方法.2非线性有限元法研究思路非线性有限元法主要指UL列式法、TL列式法、CR列式法和几何精确梁、壳理论等,它们有着基本相同的思路,即利用虚功原理建立平衡方程。
方程中充分考虑了非线性因素对结构应变和应力的影响,也就是将线性应变和非线性应变都代入到表达式中,然后确定单元的本构关系并选取合适的形函数,导出单元对应的弹性刚度矩阵和几何刚度矩阵,再选取合适的增量-迭代算法进行求解,由此就完成了结构的整个几何非线性分析求解过程。
非线性有限元法将结构的变形过程划分为三个主要阶段:C0状态、C1状态和C2状态,如图1所示。
图1 单元的变形C0状态是单元的初始状态,C1状态是单元受力变形后上一次处于平衡的状态;C2状态是单元的当前状态,也就是所求的状态。
2.1UL法和TL法研究思路UL法和TL法为几何非线性问题提供了新的分析思路。
这两种方法本质上没有很大区别,但是方程建立的参考状态有所不同。
完全拉格朗日法(TL法)是以结构变形前C0状态为参考建立平衡方程的,考虑结构从C0状态到C2状态之间的变形;而更新的拉格朗日法(UL法)以结构变形后C1状态为参考建立平衡方程的[2],考虑结构从C1状态到C2状态之间的变形。
两种拉格朗日法的主要形式如下:(1)TL列式(2)UL列式从上面两式可以看出:TL法和UL法的另一个不同是TL法的增量平衡方程中考虑了初位移矩阵的影响,而UL法则忽略了其影响,只考虑了弹性刚度矩阵和初应力矩阵的影响。
非线性有限元分析报告
非线性有限元分析1 概述在科学技术领域内,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。
但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。
对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。
这类问题的解决通常有两种途径。
一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。
但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。
因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。
特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。
已经发展的数值分析方法可以分为两大类。
一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。
其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。
但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。
另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。
如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。
诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。
但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。
1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。
第6章 玻璃面板的计算和设计
第6章 玻璃面板的计算和设计§6.1 计算理论建筑工程中典型温度下的玻璃特征是完全弹性的,玻璃也不具有蠕变和松弛特性。
当玻璃面板变形较小时,可采用小变形理论计算外荷载作用下的玻璃面板内力和位移。
对于各种矩形、圆形或三角形的具有不同边界条件的玻璃面板可采用解析解、表格或有限元方法计算。
大面积玻璃面板的实际位移一般要大于小变形理论所得结果,这是因为板因弯曲变形会产生中面的拉应力,而小变形理论忽略了中面拉应力对位移和应力的阻止或抵消效应。
所以,对玻璃幕墙中的玻璃面板,应采用精确的几何非线性方法进行计算和分析。
玻璃与其支承结构连接处的应力状态十分复杂,可采用有限单元法计算此处的局部应力分布,计算结果的可靠性取决于的边界条件选取的合理性。
当然,连接处有限单元模型的精确与否只对局部应力有影响,对玻璃面板的位移和大面应力影响不大。
玻璃内力采用弹性方法计算,截面最大应力设计值不应超过玻璃大面强度设计值。
无地震作用效应组合时,应力应符合下式要求:g w f ≤σγ0 (6-1)有地震作用效应组合时,应力应符合下式要求:RE g E f γσ/≤ (6-2)式中 g f —— 玻璃的大面强度设计值(N/mm 2),按表2-3取用;0γ—— 重要性系数,应取不小于1.0;RE γ——抗震调整系数,应取1.0;w σ——重力荷载和风荷载组合在玻璃中产生的最大应力设计值(N/mm 2);E σ——重力荷载、风荷载及地震荷载组合在玻璃中产生的最大应力设计值(N/mm 2)。
玻璃最大挠度不应超过规定限值。
lim ,f f d d ≤ (6-3)式中 f d ——玻璃在风荷载标准值作用下产生的最大挠度值(mm );lim ,f d ——玻璃的挠度限值,对窗框玻璃取其短边的1/60;点支玻璃取其长边的1/60。
在计算中值得注意的是,由于在这里考虑了玻璃面板的几何非线性效应,因此在计算时应先进行各种荷载的组合,然后对最不利荷载组合进行最大应力的计算,它不符合线性条件下的各种荷载作用下最大应力的叠加原理。
桥梁结构几何非线性计算理论
二十世纪六十年代末,有限元法与计算机相结合,才使工程
中的非线性问题逐步得以解决
1.概述(续)
非线性问题及其分类
固体力学中有三组基本方程,即:本构方程、几何运动方
程和平衡方程。
经典线性理论基于三个基本假定,这些假定使得三组基本
平面桁架单元的切线刚度矩阵;平面柔索单元的切线刚度矩阵;平面 梁单元的切线刚度矩阵。
桥梁结构几何非线性分析若干问题的讨论
稳定函数与几何刚度阵;弯矩对轴向刚度的影响;活载几何非线性; 桥梁结构几何非线性调值计算。
非线性方程的求解
概 述;Newton-Raphson法;收敛准则。
小 结
第十一章
t t
2.4 T.L列式与U.L列式的异同及适用范围 T.L列式与U.L列式是不同学派用不同的简化方程及理
论导出的不同方法,但是,它们在相同的荷载增量步 内其线性化的切线刚度矩阵应该相同,这一点已得到 多个实际例题的证明。
从理论上讲,这两种方法都可以用于各种几何非线性
分析,但一般情况下,T.L列式适用于大位移、中等转 角和小应变的几何非线性问题,而U.L列式除了适应于 上述问题外,还适用于非线性大应变分析、弹塑性、 徐变分析。可以追踪变形过程的应力变化。
求得的位移状态下,新的抗力与总外荷载之间有一差量, 即失衡力,结构必须产生相对位移以改变结构的抗力来消 除这个失衡力。
在计算中,一般通过迭代法来求解。
2.3 更新的拉格朗日列式法(U.L列式)
在建立t+t时刻物体平衡方程时,如果我们选择的参
照构形不是未变形状态t=0时的构形,而是最后一个已 知平衡状态,即以本增量步起始时的t时刻构形为参照 构形,这种列式法称为更新的拉格朗日列式法(U.L列 式) 。
梁杆结构几何非线性有限元的数值实现方法
NUMERICAL IMPLEMENTATION OF GEOMETRICALLY NONLINEAR FINITE ELEMENT METHOD FOR BEAM STRUCTURES
CHEN Zheng-qing
(College of Civil Engineering, Hunan University, Changsha 410082, China)
= tσ ij + ∆∗T ij = ∆∗ Eij
(1) (2)
而它在 t+Δt 时刻柯西应变就等于其增量:
t + ∆t t Eij
式中, ∆ Eij 为:
∗
∆∗ Eij = ∆∗ε ij + ∆∗ηij 1 ∆∗ε ij = (∆ui ,j + ∆u j ,i ) 2 1 ∆∗ηij = ∆uk ,i ∆uk ,j 2
———————————————
收稿日期:2013-05-01;修改日期:2014-03-06 基金项目:国家自然科学基金项目(91215302) 作者简介: 陈政清(1947―), 男, 湖南湘潭人, 教授, 博士, 湖南大学风工程研究中心主任, 主要从事结构振动与控制研究(E-mail: zqchen@).
(3) (4) (5)
44
工
程
力
学
E G [ t kαβ ]{∆qα } = {t+ ∆t Pβ − tψ β } + t kαβ
仍然假定变形体的应变增量是小应变,应 力应变增量关系可以记为:
(14) (15) (16)
′ ∆∗ε kl ∆∗T ij = Cijki
功增量方程如下: ′ = A3 ′ − A4 ′ A1′ + A2 式中:
简析非线性有限元法
简析非线性有限元法游潇;苏小卒【摘要】In the analysis of reinforeced concrete structures subjected to general loading conditions,the realistic constitutive model and robust analytical procedure are two key preconditions to produce reasonably accurate simulations of nonlinear behaviors of such structures.Based on the FEM analysis,suggestions for further studies are given.%采用有限元法分析一般荷载作用下的钢筋混凝土结构时,要得到对结构性能的合理准确的模拟结果,除了需要合理的本构模型,还要有先进的数值分析方法。
文中将对非线性有限元的特点做出分析,为进一步研究提供参考。
【期刊名称】《江西科学》【年(卷),期】2012(030)001【总页数】4页(P75-78)【关键词】非线性有限元;数值方法;钢筋混凝土【作者】游潇;苏小卒【作者单位】同济大学土木工程学院,上海200092;同济大学土木工程学院,上海200092【正文语种】中文【中图分类】TU311目前,钢筋混凝土结构作为一种经济、实用的结构,是我国工业与民用建筑中最为广泛采用的一种结构形式。
这类结构在各类荷载作用下的反应特性,以及合理的设计方法和构造措施,一直以来是结构研究人员和工程师们经常研究的课题。
由于钢筋混凝土是由2种性质截然不同的材料—钢筋和混凝土组合而成,因此它的性能明显的依赖于这2种材料的性能。
尤其是在非线性阶段,钢筋和混凝土本身的各种非线性性能,都不同程度地在这种组合材料中充分反映出来。
目前钢筋混凝土非线性方面的分析和研究还存在着若干有待解决的问题。
非线性有限元之非线性求解方法
非线性有限元之非线性求解方法平衡回顾✧静态平衡是内力I和外载P力量平衡;✧在非线性问题中,模型的内力I可以是以下量的非线性函数;✧在非线性问题中,模型的外力P也可以是某些量的非线性函数,如位移u和时间t。
非线性求解方法1.已知一个分析,知道结构总载荷和初始刚度,目的是找到最后的位移。
线性分析中,一次计算就能求解出最终位移;非线性问题中不可能,因为结构刚度随着结构变形而改变。
2.求解这类非线性问题需要的是一种增量\迭代技术,获得的解是非线性问题准确的近似。
这些方程通常没有精确解。
3.Abaqus使用迭代求解该方程:使用牛顿拉普森方法求解近似解,使误差最小。
4.Abaqus用法:1)载荷历史被拆解为一系列的分析步;每个分析步拆解为一系列增量步;用户为初始时间增量猜测一个值;Abaqus使用自动增量算法确定其他的增量步。
在每个增量步结束时,Abaqus根据载荷与时间关系计算当前负载大小2)使用牛顿拉普森程序迭代求解每个增量结束时的解;根据收敛容差判断牛顿拉普森程序的收敛;如果迭代不收敛,减少增量步的大小;然后使用小增量步重新进行计算。
5.分析步、增量步、迭代步1)分析步仿真载荷历程含有一个或多个分析步。
2)增量步是分析步的一部分;在静态问题中,总载荷被分成很小的增量步。
以便可以沿着非线性路径求解。
3)迭代步迭代步是增量步中寻找平衡解得一次计算尝试。
5.牛顿拉普森方法Abaqus/Standard 基于牛顿拉普森方法的增量迭代求解技术,该方法是无条件稳定(任何大小的增量步都可以)。
增量步大小影响动态分析精度,每个增量步通常要求多次迭代才能满足收敛要求,每个分析步通常有多个增量步,牛顿拉普森定义了一个残差为0位移曲线。
6.牛顿拉普森方法基础。
平衡是u的非线性方程,牛顿拉普森迭代求解在Cu 处的线性方程,Cu是位移u的修正量。
7.残差定义为了得到线性方程组,重写一下平衡方程,R(u)是u的残差。
这个残差表示的是位移u处不平衡力。
非线性有限元解法
(9)
(10 )
•在增量方法中通常引入载荷因子λ,用 R R表示载荷, 于是非线性有限
元方程可写成: ( u, ) P( u ) R 0
(1)
用载荷因子λ系列: 0 0 1 2 M 1
(2)
相应于不同的载荷。
若相应于载荷因子 n 的解已经求得,记为 u un ,则 ( un ,n ) P( un ) n R 0
KT n
KT ( un
)
un
(8)
un1 un un
其收敛判据与直接迭代法的收敛判据雷同。
非线性有限元方程组的解法(增量法)
•求解非线性方程组的另一类方法是增量方法。使用增量方法的一个优点是 可以得到整个载荷变化过程的一些中间的数值结果。当问题的性质与加载的 历史有关时,例如弹塑性问题,则必须采用增量方法。
u1 ( K1 )1 R
据此容易写出直接迭代法的迭代公式:
Kn K( un )
un1 ( K n )|1 R
(2)
按照这种迭代公式可以得到一个解数列 { un } ,当这个数列收敛时停止计
算,其数列收敛值就是方程(1)的解。
非线性有限元方程组的解法(直接迭代法)
关于数列收敛的判据,可以采用各种各样的范数定义和收敛判据。若设第 n
( un ) K( un )un R 0
(7)
该值可作为对偏离平衡的一种度量(称为失衡力),收敛判据可相应地取为:
( un ) R
(8)
(失衡力收敛判据)
非线性有限元方程组的解法(牛顿法)
把非线性有限元方程记为: ( u ) P( u ) R 0 (1)
非线性有限元
(三)混合法 如对同一非线性方程组混合使用增量
法和迭代法,则称为混合法或逐步迭代法。 一般在总体上采用Euler增量法,而在
同一级荷载增量内,采用迭代法。
Ki-1
刚度的取值可根据给定的应力-应变曲 线导出。若每级计算都采用上一级增量计算 终了时的刚度值,则称为始点刚度法。
Ki-1
始点刚度法类似于解微分方程初值问题 的欧拉(Euler)折线法,计算方法简单但计算 精度较低,容易“漂移”。
若采用中点刚度法则可以提高精度。该 法类似于解常微分方程初值问题的龙格-库塔 (Runge-Kutta)法,包括中点切线刚度法 和中点平均刚度法。
(1) 直接迭代法 对非线性方程组
设其初始的近似解为 ,由此确定近似的
矩阵
可得出改进的近似解
重复这一过程,以第i次近似解求出第i+1 次近似解的迭代公式为直接迭代法
对非线性方程组
直到 变得充分小,即近似解收敛时,终止迭代。
在迭代过程中,得到的近似解一般不会满足 作为对平衡偏离的一种度量,称为失衡力。
q-Newton—Raphson迭代法的计算过程
(2)初应力法 如果在弹性材料内确实存在初应力 ,则材料的应力应变关系为
由上式及虚功原理可导出单元的结点力为
集合单元得出以下的有限元方程 式中, 为由初应力 引起的等效结点荷载
初应力法就是将初应力看作是变化的, 以此来反映应力和应变之间的非线性关系。 通过不断地调整初应力,使线弹性解逼近非 线性解。
接触非线性 由于接触体的变形和接触边界的摩擦作用,
使得部分边界条件随加载过程而变化,且不 可恢复。这种由边界条件的可变性和不可逆 性产生的非线性问题,称为接触非线性。
材科非线性有限元法 材料非线性是由本构关系的非线性引
非线性解法
解非线性方程是方法主要有:增量法、迭代法、增量迭代混合法。
几何非线性有限元方法:1、完全的拉格朗日列式法(T.L.Formulation)在整个分析过程中,以t=0时的位形作为参考,且参考位形保持不变,这种列式称为完全的拉格朗日列式(T丄法)对于任意应力-应变关系与几何运动方程,杆系单元的平衡方程可由虚功原理推导得到:[[町何如-⑷二0式(1)式中各量分别为:应变矩阵,是单元应变与节点位移的关系矩阵;单元的应力向量;杆端位移向量;V是单元体积分域,对T.L列式,是变形前的单元体积域;单元杆端力向量;直接按上式建立单元刚度方程并建立结构有限元列式,称为全量列式法。
在几何非线性分析中,按全量列式法得到的单元刚度矩阵和结构刚度矩阵往往是非对称的,对求解不利,因此多采用增量列式法。
将式(1)写成微分形式变形后得:("凰十"繊+1疋L M冏=讪显冏"式(2)这就是增量形式T.L列式的单元平衡方程。
式中为:单元弹性刚度矩阵、单元初位移刚度矩阵或单元大位移刚度矩阵、初应力刚度矩阵、三个刚度矩阵之和,称为单元切线刚度矩阵。
2、修正的拉格朗日列式法(U.L.Formulation)在建立t+t时刻物体平衡方程时,如果我们选择的参照位形不是未变形状态t=0时的位形,而是最后一个已知平衡状态,即本增量步起始的t时刻位形为参照位形,这种列式法称为修正的拉格朗日列式法(U丄列式)。
增量形式的U.L列式结构平衡方程可写成:式(3)3、T.L列式与U.L列式的比较T.L列式与U.L列式是不同学派用不同的简化方程及理论导出的不同方法,但是它们在相同的荷载增量步内其线性化的切线刚度矩阵应该相同,这一点已得到多个实际例题的证明。
T.L列式与U.L列式的不同点比较内容|「L列式|U丄列式|注意点计算单刚的积分域|在初始构形的体积域内进行|在变形后的t时刻体积域内进行|U丄列式必须保留节点坐标值精度|保留了刚度阵中所有线性与非线性项|忽略了高阶非线性|U丄列式的荷载增量不能过大单刚组集成总刚|用初始时刻各单元结构总体坐标系中的方向余弦形成转换阵,计算过程不变|用变形后t时刻单元在结构总体坐标中的方向余弦形成转换阵,计算过程中不断改变|U丄列式中组集荷载向量也必须注意方向余弦的改变本构关系的处理|在大应变时,非线性本构关系不易引入|比较容易引入大应变非线性本构关系|U 丄方法更适用于混凝土徐变分析从理论上讲,这这两种方法都可以用于各种几何非线性分析。
ME7001《应用固体力学》课程教学大纲-上海交通大学机械与
ME7001《应用固体力学》课程教学大纲课程名称:应用固体力学课程代码:ME7001学分/学时:3学分/48学时开课学期:春季学期适用专业:机械工程及自动化先修课程:理论力学,弹性力学,有限元开课单位:机械与动力工程学院一、课程性质和教学目标课程介绍:固体力学是开展机械工程相关科学基础研究和工程技术应用需要掌握的重要理论基础,对于提高机械工程专业博士研究生的力学理论基础及其工程应用能力具有重要作用。
本课程面向机械工程博士研究生在科学研究中的固体力学分析需求,讲授连续介质力学基本理论,包括张量分析基础、弹塑性理论、非线性有限元方法,及其在结构和工艺分析中的应用。
教学目标:学生通过学习本课程,可以掌握固体力学的一些基本概念,了解机械工程问题中数学和力学建模、求解的一般原理,初步具备对机械工程中结构和工艺问题进行建模和计算的应用能力,从而为从事机械工程科研工作奠定基础。
具体目标包括:(1)掌握材张量分析理论的基本概念、技术术语。
(2)掌握连续介质力学的基本概念和基本原理。
(3)培养应用固体力学原理解决工程问题和设计满足要求的构件或系统的能力。
二、课程教学内容及学时分配1.固体力学及应用概论(1学时)主要讲述固体力学涉及的理论内容概述,固体力学在机械工程领域科研和工程实践中的应用基本情况。
2.张量分析基础(6学时)主要讲述欧式空间中的矢量和张量、张量和矩阵的几种记法、矢量和张量分析、张量函数的导数、坐标变换、二阶张量及其不变量、Cayley-Hamilton定理、各向同性张量等内容。
3.线弹性问题(6学时)主要讲述各向同性线弹性材料的应力-应变关系、各向异性弹性固体材料的应力-应变关系、弹性刚度张量的对称性、线弹性理论中的变分方法、不变原理和最小势能原理、有限元方法理论、单元插值函数、单元应变、应力、刚度矩阵、边界加载、位移边界条件的引入等。
4.大变形问题基本方程(6学时)主要讲述无限小应变的适用性、物体的变形分析、物体的运动分析、物体的应变度量、物体的应力度量、静力平衡与能量原理、大变形弹性本构方程等。
有限元方法概述
主要工学硕士数学课程
工程数学 计算方法(数值分析) 随机过程 矩阵论 运筹学(最优化方法) 图论 模糊数学 有限元方法 小波分析 应用泛函分析北 Nhomakorabea航空航天大学
数学课程在研究生培养中的重要性
科技发展日新月异,数学科学地位不断提
高,在自然科学和工程技术方面广泛应用。 数学的面貌发生很大变化,现代数学在理 论上更加抽象、方法上更加综合、应用上 更加广泛。 综合运用数学的能力关系到研究生的创新 能力和研究水平的提高,对研究生的论文 质量至关重要。
X
北京航空航天大学
(2)单元分析 用单元节点位移表示单元内部位移-第i个单元 中的位移用所包含的结点位移来表示。
ui 1 ui ( x xi ) u ( x ) ui Li ui 第i结点的位移 xi 第i结点的坐标
北京航空航天大学
第i个单元的应变 应力 内力
du ui 1 ui i dx Li
自重作用下等截面直杆的解
受自重作用的等截面直杆 如图所示,杆的长度为L, 截面积为A,弹性模量为 E,单位长度的重量为q, 杆的内力为N。 试求:杆的位移分布,杆 的应变和应力。
北京航空航天大学
材料力学解答
N ( x) q( L x)
x
N ( x) q ( L x) A A
d2y EI 2 P ( x L) dx
M ( x) EI d2y dx 2
x
和边界条件
y |x 0 0 dy |x 0 0 dx
M ( x) P ( x L)
北京航空航天大学
再如对于弹性力学问题,可以建立起基本方程与 边界条件,如下: 平衡方程: 几何方程: 物理方程: 边界条件:
第6章 非线性有限元法(几何非线性)分析
FkiFkj ij dxidxi 2eijdxidxi
由于大变形问题有
2、限A元lm方an程sh主i应要变采用张量
T.L列式法或U.L列式 Alm法an建sh立i应,变因张此量应采在用初Eular运动 描述始方状法态,下即定按义当应前变状张态下的构 形定量义,应即变采张用量G。reen应
变ds张2 量d。s2 dxidxi dxidxi
dxidxi dxi Fki1Fkj1dx j
ij Fki1Fkj1 dxidxi 2Eij dxidxi
eij
1 2
FkiFkj ij
式中,eij称为Green应变张量或 Green-Lagrangian应变张量。
Eij
第六章 非线性有限元法(几何非线性)
1、变几形何非体线性的的有运限动元方描程一述 般采用T.L或U.L列式法建立!
变形体上的质点的运动状态 可以随不同的坐标选取以下几 种描述方法:
1、全拉格朗日列式法(T.L列式 法—Total Lagrangian Formulation):
选取t0=0时刻未变形物体的构 形A0作为参照构形进行分析。
uk xj
ij
ij
式中:
ij
1
ui
2 xj
u j xi
为小变形应变张量;
ij
1 2
uk xi
uk xj
为非线性二次项
2、Green变形张量也可写为:
eij
1 2
Cij
ij
式中,Cij是Cauchy变形张量
Cij FkiFkj
由于Cauchy变形张量是正定对称 阵,因此该张量有三个实特征值; 这些特征值的平方根记为材料的 主轴拉伸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中,Eij称为Almanshi应变张量 或Almanshi –Eular应变张量。
可以证明Green应变张量和Almanshi应变张量都是二阶对称张量。
3、应变与变形测度
2、Green – Lagrangian应变张量eij与小应变张量εij的关系
将变形梯度张量表达式代入到 Green应变张量公式中,得:
ds2 ds2 dxi dxi dxidxi
dxiFki Fkj dxj dxidxi Fki Fkj ij dxidxi 2eij dxidxi
1 eij Fki Fkj ij 2
ds ds
dxi dxi dxidxi
t0=0
P0
Pn An
Pn+1
An+1
选取t0=0时刻未变形物体的构 形A0作为参照构形进行分析。
A0
x1
x2
2、修正拉格朗日列式法(U.L列式法—Updated Lagrangian Formulation): 选取tn时刻的物体构形An作为参照构形。由于An随计算而变化,因 此其构形和坐标值也是变化的,即与t有关。tn为非线性增量求解时增量 步的开始时刻。 3、欧拉描述法(Eulerian Formulation): 独立变量是质点当前时刻的位置xn+1与时间tn+1。
1 1 dxi dxi dxi Fki Fkj dx j
1 1 ij Fki Fkj dxi dxi 2 Eij dxi dxi
Eij
1 1 1 ij Fki Fkj 2
式中,eij称为Green应变张量或 Green-Lagrangian应变张量。
x dxi i dxj Fij dxj xj x Fij i xj
Qxi dxi
x3
Pxi dxi
Pxi
x2
Pxi
x1
式中,Fij称为变形梯度张量。
2、变形梯度张量
由位移方程,得:
Fij xi xi ui xj xj xj
第六章 非线性有限元法(几何非线性)
几何非线性的有限元方程一 1、变形体的运动描述 般采用T.L或U.L列式法建立!
变形体上的质点的运动状态 可以随不同的坐标选取以下几 种描述方法:
1、全拉格朗日列式法(T.L列式
法—Total Lagrangian Formulation):
tn
x3
tn+1=tn+Δtn
3、应变与变形测度
由于变形梯度张量Fij中包含了刚体运动,因此不能直接用于定 义应变测度。而材料方向矢量则不包含刚体运动,因此它的平方值 可以作为衡量从某一状态到变形后状态的一个测度,定义为: 初始状态: 变形后状态:
ds2 dxidxi
ds
2
dxi dxi
Qxi dxi
xi u F ij i x j x j
1 ij
变形前面积dA’
ni(变形后面积法向矢量)
逆映射F-1ij 体积映射:
变形后面积dA
由二阶张量特性,变形梯度张量 的三个不变量为:
dV det Fij dV JdV
1 面积映射: n j dA JNi Fij dA
3、应变与变形测度
1、Green 应变张量
Green应变张量采用Lagrangian运 动描述方法,即按初始状态下的 构形定义应变张量。 由于大变形问题有 限元方程主要采用 2、 Almanshi应变张量 T.L列式法或U.L列式 Almanshi 应变张量采用Eular运动 法建立,因此应在初 描述方法,即按当前状态下的构 始状态下定义应变张 形定义应变张量。 量,即采用Green应 变张量。 2 2
式中:
1 ui u j ij 2 xj xi
Cij Fki Fkj
为小变形应变张量;
ij
1 uk uk 2 xi xj
I1 Fii Fij ij I 2 1 Fij Fij Fii Fjj 2 I3 det Fij J
Ni (初始面积法向矢量)
ui 或写为: Fij ij 于Fij表示从初始状态到变 形后状态的一个映射,其逆映射 Fij-1一定存在,即:
1 uk u k eij ki kj 2 xi xj ij
1、Green应变张量
eij ij ij
为小应变张量与一个非线性二 次项之和,这意味所有大变形 分析都是非线性的。
2、变形梯度张量
1、首先采用Lagrangian方法, 将一个物体的加载过程划分为 一系列平衡状态。 初始状态与变形后状态之间坐 标关系为: 位移方程
初始/未变形
x3
变形后
P’
位移u
P
x’
x1
x
xi xi ui
x2
2、然后,考虑材料方向矢量,这个矢量 描述物体内一段无限小的单元。
初始状态与变形后状态之间材料方向矢量 的关系:
x3
Pxi dxi
一个应变测度应该能反映出材料一段 长度发生的改变。因此,应变张量可以由 下式定义:
Pxi
x2
Pxi
x1
ds ds
2
2
dxi dxi dxidxi
提醒:由于Green应变张量表达式中的变形梯度张量对应于初始状
态,因此该应变张量也应在初始状态下计算。
2、Green变形张量也可写为: 1 eij Cij ij 2 式中,Cij是Cauchy变形张量
1 ui u j uk uk ij ij 2 xj xi xi xj u j 1 uk uk 1 u i ij ij 2 x j xi 2 xi x j