大学物理课后习题及答案、大学物理考试试题及答案

合集下载

大学物理试题库及答案详解pdf

大学物理试题库及答案详解pdf

大学物理试题库及答案详解pdf一、选择题1. 光在真空中的传播速度是()。

A. 299,792,458 m/sB. 299,792,458 km/sC. 299,792,458 km/hD. 299,792,458 m/h答案:A2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。

这个定律的数学表达式是()。

A. F = maB. F = ma^2C. F = m/aD. F = a/m答案:A二、填空题1. 电磁波的波速在真空中是恒定的,其值为______ m/s。

答案:299,792,4582. 根据热力学第一定律,能量守恒,即能量不能被创造或消灭,只能从一种形式转化为另一种形式。

其数学表达式为:ΔU = Q - W,其中ΔU表示内能的变化,Q表示______,W表示______。

答案:热量的转移;功的做功三、计算题1. 一个质量为5kg的物体从静止开始,受到一个恒定的力F=20N的作用,求物体在5秒内移动的距离。

答案:首先根据牛顿第二定律F=ma,可以计算出物体的加速度a=F/m=20N/5kg=4m/s²。

然后根据位移公式s=1/2at²,可以计算出物体在5秒内移动的距离s=1/2*4m/s²*(5s)²=50m。

2. 一个电容器的电容为2μF,当电压从0增加到5V时,求电容器储存的电荷量。

答案:根据电容的定义C=Q/V,可以计算出电容器储存的电荷量Q=CV=2*10^-6F*5V=10^-5C。

四、简答题1. 简述麦克斯韦方程组的四个方程。

答案:麦克斯韦方程组包括四个方程,分别是:- 高斯电场定律:∇·E = ρ/ε₀- 高斯磁场定律:∇·B = 0- 法拉第电磁感应定律:∇×E = -∂B/∂t- 安培环路定律(包含麦克斯韦修正项):∇×B = μ₀(J +ε₀∂E/∂t)2. 什么是量子力学的不确定性原理?答案:不确定性原理是量子力学中的一个基本原理,由海森堡提出。

大学物理试题及答案 13篇

大学物理试题及答案 13篇

大学物理试题及答案 1物理试题及答案1一、选择题1. 下列哪个物理量是标量?A. 加速度B. 动量C. 荷电量D. 质量答案:D2. 以下哪一项是描述物体向心加速度的?A. F = mV^2/RB. F = maC. F = GmM/R^2D. F = -kx答案:A3. 以下哪种基本力被用于原子核内?A. 弱相互作用力B. 强相互作用力C. 电磁力D. 万有引力答案:B4. 如果一个物体以匀速直线运动,哪些物理量会保持不变?A. 动量B. 加速度C. 动能D. 势能答案:A5. 加速度和质量都是矢量量,因为它们有什么共同之处?A. 它们都可以用标量表示B. 它们都受到相同的力C. 它们都有方向D. 它们都可以用向量表示答案:C二、填空题6. 一个物体从7m/s的速度以匀加速度减速到0m/s,它移动的距离为_____。

答案:(7^2)/2a7. 假设你跳下一个10米高的建筑物,你从地上跳起的速度至少要是_____。

答案:14m/s8. 当电荷增加_____倍,电场的力就增加了相同的倍数。

答案:两倍9. 加速度是速度的_____,速度是位移的_____。

答案:导数,导数10. 能量的单位是_____,它也等于1焦耳。

答案:耗三、解答题11. 题目:一个1000磅的汽车从初始速度60英里/小时匀加速度减速50英里/小时,它会相撞的距离有多远?解答:首先,将速度转换为英尺/秒,即60英里/小时=88英尺/秒,50英里/小时=73.3英尺/秒;通过减去初始速度和最终速度,可以算出减速度,即-5.1英尺/秒^2;将所得的值代入公式,S = (v_f^2 - v_i^2)/2a,算出S = 263英尺。

12. 题目:一颗飞船以7km/s的速度飞行,绕月球公转,它的圆周半径是6000公里。

求该飞船的向心加速度。

解答:首先,将速度转化为米/秒,即7 x 1000 = 7000米/秒;其次,将圆周半径转化为米,即6000 x 1000 = 6 x 10^6米;最后,应用公式a = v^2/r,将所得的值代入,得到a = 6.12 m/s^2。

大学物理试题答案及解析

大学物理试题答案及解析

大学物理试题答案及解析一、选择题1. 光年是表示距离的单位,它等于()。

A. 一年内光所行进的距离B. 一年内光所行进的时间C. 一年内光所行进的路程D. 一年内光所行进的速度答案:A解析:光年是天文学中用来表示距离的单位,它表示光在真空中一年内所行进的距离。

2. 根据牛顿第二定律,一个物体的加速度与作用在它上面的力成正比,与它的质量成反比。

这个定律的数学表达式是()。

A. \( F = ma \)B. \( F = \frac{m}{a} \)C. \( a = \frac{F}{m} \)D. \( a = \frac{m}{F} \)答案:C解析:牛顿第二定律指出,物体的加速度与作用在它上面的力成正比,与它的质量成反比,数学表达式为 \( a = \frac{F}{m} \)。

二、填空题1. 根据热力学第一定律,能量守恒,即能量不能被创造也不能被消灭,只能从一种形式转化为另一种形式。

用公式表示为:\( \Delta U = Q- W \),其中 \( \Delta U \) 表示内能的变化,\( Q \) 表示系统吸收的热量,\( W \) 表示系统对外做的功。

2. 电磁波谱中,波长最长的是()。

答案:无线电波解析:电磁波谱中,波长从长到短依次为无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。

三、计算题1. 一辆质量为1000kg的汽车以20m/s的速度行驶,突然遇到紧急情况需要刹车。

假设刹车过程中汽车的加速度为-5m/s²,求汽车从开始刹车到完全停止所需的时间。

答案:4秒解析:根据公式 \( v = u + at \),其中 \( v \) 是最终速度,\( u \) 是初始速度,\( a \) 是加速度,\( t \) 是时间。

已知\( v = 0 \),\( u = 20 \)m/s,\( a = -5 \)m/s²,代入公式得\( 0 = 20 - 5t \),解得 \( t = 4 \)秒。

《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。

(B) 匀速率圆周运动。

(C) 行星的椭圆轨道运动。

(D) 抛体运动。

(E) 圆锥摆运动。

2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。

3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。

大学物理习题与答案解析

大学物理习题与答案解析

根据匀加速直线运动的速度公 式$v = v_0 + at$,代入已知的 $v_0 = 2m/s$和$a = 3m/s^2$,以及时间$t = 3s$, 计算得到$v = 2m/s + 3 times 3m/s^2 = 11m/s$。
一物体做匀减速直线运动,初 速度为10m/s,加速度为2m/s^2,则该物体在速度减为 零时的位移是多少?
04
答案解析
根据公式$v = lambda f$,频率$f = frac{v}{lambda} = frac{3 times 10^{8}}{500 times 10^{-9}}Hz = 6 times 10^{14}Hz$;根据公式 $E = hnu$,能量$E = h times f = 6.626 times 10^{-34} times 6 times
题目
答案解析
计算氢原子光谱线波长与频 率的关系。
根据巴尔末公式,氢原子光 谱线波长与频率的关系可以
表示为λ=R*(1/n1^2 1/n2^2),其中λ是光谱线波 长,R是里德伯常数,n1和 n2分别是两个能级的主量子
数。
பைடு நூலகம்
题目
一束光照射到某金属表面, 求光电子的最大初动能。
答案解析
根据爱因斯坦光电效应方程,光 电子的最大初动能Ekm=hν-W, 其中h是普朗克常数,ν是入射光 的频率,W是金属的逸出功。因 此,通过测量入射光的频率和金 属的逸出功,可以计算出光电子
题目
一定质量的理想气体,在等容升温过 程中,不吸热也不放热,则内能如何 变化?
答案解析
根据热力学第一定律,等容升温过程 中,气体不吸热也不放热,则内能增 加。
热传递习题及答案解析
题目

(完整版)大学物理学上下册习题与答案

(完整版)大学物理学上下册习题与答案

习题九一、选择题9.1 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[A(本章中不涉及导体)、 D ] 9.2有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03 q . (B) 04 q (C) 03 q . (D) 06 q [D ]q题图9.19.3面积为S 的空气平行板电容器,极板上分别带电量q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02(B)S q 022 (C) 2022S q (D) 202Sq [B ]9.4 如题图9.2所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷q ,M 点有负电荷q .今将一试验电荷0q 从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 , 且为有限常量.(C) A =∞. (D) A =0. [D ,0O V ]-题图9.29.5静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)[C ]9.6已知某电场的电场线分布情况如题图9.3所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度M N E E . (B) 电势M N U U .(C) 电势能M N W W . (D) 电场力的功A >0.[C ] 二、计算题9.7 电荷为q 和2q 的两个点电荷分别置于1x m 和1x m 处.一试验电荷置于x 轴上何处,它受到的合力等于零? x2q q 0解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x 即:22221(2)0121011x x x x22212210x x x x2610(322)x x x m 。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。

(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。

解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

江西理工大学大学物理(下)习题册及答案详解

江西理工大学大学物理(下)习题册及答案详解

班级_____________ 学号___________姓名________________ 简谐振动1. 一质点作谐振动, 振动方程为X=6COS (8πt+π/5) cm, 则t=2秒时的周相为:π5116, 质点第一次回到平衡位置所需要的时间为:s 0375.0.2. 一弹簧振子振动周期为T 0, 若将弹簧剪去一半, 则此弹簧振子振动周期T 和原有周期T 0之间的关系是:022T T =.3. 如图为以余弦函数表示的谐振动的振动曲线, 则其初周相φ=3π-,P 时刻的周相为:0.4. 一个沿X 轴作谐振动的弹簧振子, 振幅为A , 周期为T , 其振动方程用余弦函数表示, 如果在t=0时, 质点的状态分别是:(A) X 0=-A; (B) 过平衡位置向正向运动;(C) 过X=A/2 处向负向运动; (D) 过A x 22-= 处向正向运动.2 1 0 P t(s) X(m)试求出相应的初周相之值, 并写出振动方程.)2cos()(ππ+=t TA x A ; )22cos()(ππ-=t T A x B)32cos()(ππ+=t T A x C ; )452cos()(ππ+=t T A x D5.一质量为0.2kg 的质点作谐振动,其运动议程为:X=0.60 COS(5t -π/2)(SI)。

求(1)质点的初速度;(2)质点在正向最大的位移一半处所受的力。

解(1))5sin(00.32π--==t dtdxv 10.00.3,0-==s m v t(2)x x dtdv a 2520-=-==ω 22.5.7,30.0--===s m a m x AN ma F 5.1-==班级_____________ 学号___________姓名________________简谐振动的合成1. 两个不同的轻质弹簧分别挂上质量相同的物体1和2, 若它们的振幅之比A 2 /A 1=2, 周期之比T 2 / T 1=2, 则它们的总振动能量之比E 2 / E 1 是( A )(A) 1 (B) 1/4 (C) 4/1 (D) 2/11)()(;)(2222221122112=⋅==A A T T E E T A m E π2.有两个同方向的谐振动分别为X 1=4COS(3t+π/4)cm ,X 2 =3COS(3t -3π/4)cm, 则合振动的振幅为:cm A 1=, 初周相为:4πφ=. 3. 一质点同时参与两个同方向, 同频率的谐振动, 已知其中一个分振动的方程为X 1=4COS3t cm, 其合振动的方程为分振动的振幅为A 2 =cm 44. 动方程分别为X 1=A COS(ωt+π/3), X 2 =A COS (ωt+5π/3), X 3 =A COS(ω程为:)6cos(3πω+=t A x5. 频率为v 1和v 2的两个音叉同时振动时,可以听到拍音,可以听到拍音,若v 1>v 2,则拍的频率是(B )(A)v 1+v 2 (B)v 1-v 2 (C)(v 1+v 2)/2 (D)(v 1-v 2)/26.有两个同方向,同频率的谐振动,其合成振动的振幅为0.20m ,周相与第一振动周相差为π/6。

大学物理考试题及答案

大学物理考试题及答案

大学物理考试题及答案一、选择题1. 下列关于力的描述,正确的是()。

A. 力是物体间的相互作用,具有大小和方向。

B. 力的作用是相互的,作用力和反作用力大小相等,方向相反。

C. 力的作用效果与力的作用点有关。

D. 以上选项均正确。

答案:D2. 物体做匀速直线运动时,下列说法正确的是()。

A. 物体的速度不变。

B. 物体的加速度为零。

C. 物体所受合力为零。

D. 以上选项均正确。

答案:D3. 关于功的定义,下列说法正确的是()。

A. 功是力和力的方向的乘积。

B. 功是力和力的方向的点积。

C. 功等于力的大小乘以物体在力的方向上的位移。

D. 功是力对物体所做的功。

答案:C4. 根据牛顿第二定律,下列说法正确的是()。

A. 物体的加速度与作用力成正比。

B. 物体的加速度与物体的质量成反比。

C. 加速度的方向与作用力的方向相同。

D. 以上选项均正确。

答案:D5. 波长为λ的光波在介质中的波速为v,那么在真空中该光波的波速为()。

A. vB. λ/vC. 3×10^8 m/sD. 2×10^8 m/s答案:C二、填空题1. 物体在水平面上受到的摩擦力与物体对水平面的压力成正比,比例系数为_________。

答案:摩擦系数2. 一个质量为2kg的物体,受到一个10N的水平力作用,加速度为_________。

答案:5 m/s^23. 一个电路中,电阻R1为10Ω,电阻R2为20Ω,当它们串联时,总电阻为_________。

答案:30Ω4. 一束光从空气射入水中,如果水的折射率为1.33,那么光线的传播方向将_________。

答案:改变5. 一个半径为R的圆形线圈,通以电流I,放在均匀磁场中,线圈所受的磁力矩大小为_________。

答案:μ = I * (πR^2)三、计算题1. 一个质量为0.5kg的物体,受到一个斜向上的力F,大小为20N,与水平方向成30度角,求物体的加速度。

解:首先分解力F为水平分量和垂直分量。

大学物理习题与答案解析

大学物理习题与答案解析

dvy dt
kv
2 y
v dvy kdt
2 y
设入水时为计时起点,水面为坐标原点, 0 时,y=0, v y v0 , t 运动过程中t时刻速度为 v y ,将上式两侧分别以 v y和t为积分变量, k 以 和 y 2 为被积函数作积分得: v
v v0 (kv0 t 1)
x x0 vdt A costdt A sin t
0 0
t
t
x A sin t
大学物理
4、一质点在XOY平面内运动,其运动方程为 x at , y b ct 2 式中a、b、c为常数,当质点运动方向与x 轴成 450角时,它的速率为 v 2a 。
则解得
2 t 9
3
3
2 于是角位移为 2 3t 2 3 0.67(rad) 9
大学物理 2 4、一质点作平面运动,加速度为 ax A cost , a y B 2 sin t ,A B,A 0 ,B 0。当 t 0
时,v x 0 0 ,x0 点的运动轨迹。
2 2 t 1s时,v 2e i 2e j (m/s)
t 1s时,a 4e2i 4e2 j (m/s2 )
dv 2t 2t a 4e i 4e j (m/s 2 ) dt
dr 2t 2t v 2e i 2e j (m/s) dt
0
大学物理 6、一质点沿x轴作直线运动,在 t 0时,质点位于x0 2m
2 处,该质点的速度随时间的变化规律是 v 12 3t , 当质点瞬时静止时,其所在的位置和加速度分别为(A) x=来自6m, a=-12 m/s2 .

大学物理试题及参考答案

大学物理试题及参考答案

⼤学物理试题及参考答案《⼤学物理》试题及参考答案⼀、填空题(每空1分、共20分)1.某质点从静⽌出发沿半径为m R 1=的圆周运动,其⾓加速度随时间的变化规律是t t 6122-=β(SI) ,则该质点切向加速度的⼤⼩为。

2.真空中两根平⾏的⽆限长载流直导线,分别通有电流1I 和2I ,它们之间的距离为d ,则每根导线单位长度受的⼒为。

3.某电容器电容F C µ160=,当充电到100V 时,它储存的能量为____________焦⽿。

4.⼀个均匀带电球⾯,半径为10厘⽶,带电量为2×109-库仑。

在距球⼼6厘⽶处的场强为__________。

5.⼀平⾏板电容器充电后切断电源。

若使两极板间距离增加,则两极板间场强E __________,电容C__________。

(选填:增加、不变、减少)6.⼀质量为m ,电量为q 的带电粒⼦以速度v 与磁感应强度为B 的磁场成θ⾓进⼊时,其运动的轨迹为⼀条等距螺旋,其回旋半径R 为____________ ,周期T 为__________,螺距H 为__________。

7. 真空中⼀个边长为a 的正⽅体闭合⾯的中⼼,有⼀个带电量为Q 库仑的点电荷。

通过⽴⽅体每⼀个⾯的电通量为____________。

8.电⼒线稀疏的地⽅,电场强度。

稠密的地⽅,电场强度。

9. 均匀带电细圆环在圆⼼处的场强为。

10.⼀电偶极⼦,带电量为q=2×105-库仑,间距L =0.5cm ,则它的电距为________库仑⽶11.⼀空⼼圆柱体的内、外半径分别为1R ,2R ,质量为m (SI 单位).则其绕中⼼轴竖直轴的转动惯量为____________。

12.真空中的两个平⾏带电平板,板⾯⾯积均为S ,相距为d (S d ??),分别带电q + 及q -,则两板间相互作⽤⼒F 的⼤⼩为____________。

13.⼀个矩形载流线圈长为a 宽为b ,通有电流I ,处于匀强磁场B 中。

大学物理课后习题答案(上下册全)武汉大学出版社 习题2详解

大学物理课后习题答案(上下册全)武汉大学出版社 习题2详解

2-1 如题2-1图所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为[ ]A. 3mg .B. 2mg .C. 1mg .D. 8mg / 3.答案: D题 2-1图 2-2 一质点作匀速率圆周运动时,[ ] A.它的动量不变,对圆心的角动量也不变。

B.它的动量不变,对圆心的角动量不断改变。

C.它的动量不断改变,对圆心的角动量不变。

D.它的动量不断改变,对圆心的角动量也不断改变。

答案: C2-3 质点系的内力可以改变[ ] A.系统的总质量。

B.系统的总动量。

C.系统的总动能。

D.系统的总角动量。

答案: C2-4 一船浮于静水中,船长L ,质量为m ,一个质量也为m 的人从船尾走到船头。

不计水和空气阻力,则在此过程中船将:[ ] A.不动 B.后退LC.后退L 21 D.后退L 31答案: C2-5 对功的概念有以下几种说法:[ ]①保守力作正功时,系统内相应的势能增加。

②质点运动经一闭合路径,保守力对质点作的功为零。

③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。

在上述说法中:A.①、②是正确的。

B.②、③是正确的。

C.只有②是正确的。

D.只有③是正确的。

答案: C2-6 某质点在力(45)F x i =+(SI )的作用下沿x 轴作直线运动。

在从x=0移动到x=10m的过程中,力F所做功为 。

答案: 290J2-7 如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最小加速度 。

< < < < <m 2m答案: ()cos sin g μθθ-2-8 一质量为1Kg 的球A ,以5m /s 的速率与原来静止的另一球B 作弹性碰撞,碰后A 球以4m /s 的速率垂直于它原来的运动方向,则B 球的动量大小为 。

大学物理课后习题答案(上下册全)武汉大学出版社-习题3详解

大学物理课后习题答案(上下册全)武汉大学出版社-习题3详解

3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J+ B. 02)(ωR m J J + C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。

若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。

答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。

《大学物理学》(赵近芳 主编)第二版 课后习题答案(上下册)第一单元

《大学物理学》(赵近芳 主编)第二版 课后习题答案(上下册)第一单元

习题解答 习题一1-1 |r ∆|与r ∆ 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即td d r==v t s d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rr r +=式中trd d 就是速度径向上的分量, ∴trt d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即tva d d=,t v d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tv t v t v d d d d d d ττ += 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t r d d ,及a =22d d tr而求得结果;又有人先计算速度和加速度v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t x t r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d trt r 与误作速度与加速度的模。

大学物理学(下册)习题答案详解

大学物理学(下册)习题答案详解

第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。

大学物理课后习题答案(全册)

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案习题11-1. 已知质点位矢随时间变化函数形式为)ωtsin ωt(cos j i R r其中为常量.求:(1)质点轨道;(2)速度和速率。

解:1)由)ωtsin ωt(cos j i R r知t cos R x ωtsin R yω消去t 可得轨道方程222Ryx2)jr vt Rcos sin ωωt ωR ωdtd iRωt ωR ωt ωR ωv2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j ir )t 23(t 42,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0t到1t 秒的位移;(3)0t 和1t 秒两时刻的速度。

解:1)由j ir)t 23(t 42可知2t 4x t23y消去t 得轨道方程为:2)3y(x2)jir v 2t 8dtd jij i v r 24)dt2t 8(dt101Δ3)jv 2(0)jiv 28(1)1-3. 已知质点位矢随时间变化的函数形式为j ir t t 22,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:1)ji r v2t 2dtd iv a2dtd 2)212212)1t(2]4)t 2[(v1tt 2dtdv a 2t22221nta aat 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121att v y (1)图 1-420221gttv h y (2)21y y (3)解之2d tg a 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td dr ,td dv ,tv d d .解:(1)t v x 0式(1)2gt21hy 式(2)jir )gt 21-h (t v (t)20(2)联立式(1)、式(2)得22v 2gx hy (3)ji r gt -v td d 0而落地所用时间gh 2t所以j i r 2gh -v t d d 0jv g td d 2202y2x)gt (vvvv 211222222[()](2)g ghg t dv dtvgt vgh 1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。

大学物理教程课后练习题含答案

大学物理教程课后练习题含答案

大学物理教程课后练习题含答案前言大学物理是培养学生科学素养的重要课程,也是许多专业必修的基础课程之一。

然而,因为课程内容的抽象性和难度,学生在学习中往往会遇到一些困难,需要反复练习来加深理解、掌握知识和技能,提高成绩。

本文收录了一些经典的大学物理教程课后练习题,希望能够对学生提供一些有益的帮助。

第一章静力学1.1 问题一绳连接两物体,下面物体沿光滑斜面滑动,假设无空气阻力,则:(1)求该物体所受的重力分力;(2)求该物体所受的斜面支持力。

1.2 答案(1)该物体所受的重力分力为 mg*sinθ,其中 m 是物体的质量,g 是重力加速度,θ是斜面倾角。

(2)该物体所受的斜面支持力为 mg*cosθ。

第二章动力学2.1 问题一个弹性碰撞的实验装置弹性碰撞实验装置其中,m1 和 m2 分别是光滑水平面上两个物体的质量,v1 和 v2 分别是它们在碰撞前的速度,v1’ 和v2’ 分别是它们在碰撞后的速度。

假设碰撞前两个物体相对距离为 L,碰撞后 m1 的速度与 x 轴正方向夹角为θ1,m2 的速度与 x 轴正方向夹角为θ2,则:(1)求碰撞前两个物体的总动量和总动能;(2)求碰撞后两个物体的速度和动能。

2.2 答案(1)碰撞前,两个物体的总动量为 m1v1 + m2v2,总动能为 (1/2)m1v1^2 + (1/2)m2v2^2。

(2)碰撞后,两个物体的速度和动能为:v1’ = [(m1-m2)v1+2m2*v2]cosθ1/(m1+m2) +[(m2+m2)v1+2m1*v1]sinθ1/(m1+m2) v2’ = [(m2-m1)v2+2m1*v1]cosθ2/(m1+m2) + [(m1+m1)v2+2m2*v2]sinθ2/(m1+m2)K1’ = (1/2)m1v1’^2, K2’ = (1/2)m2v2’^2第三章热学3.1 问题设一个物体的初温度为 T1,末温度为 T2,它的质量为 m,比热容为 c,求对该物体施加一定的热量 Q 后它的温度变化。

大学物理试题库及答案详解【考试必备】

大学物理试题库及答案详解【考试必备】

第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D ) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A ) |v |= v ,|v |= v (B ) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |—|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B ).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x ,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A ) 只有(1)(2)正确 (B ) 只有(2)正确(C ) 只有(2)(3)正确 (D ) 只有(3)(4)正确分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t sd d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D ).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A ) 只有(1)、(4)是对的 (B ) 只有(2)、(4)是对的(C ) 只有(2)是对的 (D ) 只有(3)是对的分析与解 td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t sd d 在自然坐标系中表示质点的速率v ;而td d v表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D). 1 —4 一个质点在做圆周运动时,则有( ) (A ) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B ).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v = (C) 变加速运动,θcos 0v v =(D ) 变减速运动,θcos 0v v = (E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h ,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C ). 讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m ,t 的单位为 s .求: (1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用t x d d 和22d d tx两式计算.解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x x m 40Δ242-=-=x x x所以,质点在4。

大学《大学物理(上)》各章节测试题与答案

大学《大学物理(上)》各章节测试题与答案

《大学物理(上)》的答案第1章问题:以下是近代物理学的理论基础的是()。

答案:量子力学问题:谁建立了电磁场理论,将电学、磁学、光学统一起来?()答案:麦克斯韦问题:谁在伽利略、开普勒等人工作的基础上,建立了完整的经典力学理论?()答案:牛顿问题:物理学是探讨物质结构,运动基本规律和相互作用的科学。

()答案:正确问题:20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学也适用于微观粒子和高速运动物体。

()答案:错误第2章问题:爱因斯坦因提出什么理论而获得诺贝尔物理奖?()答案:光量子假说问题:玻尔因做出什么重大贡献而获得诺贝尔物理学奖?()答案:研究原子的结构和原子的辐射问题:运动学中涉及的主要运动学量包括位移、速度和加速度。

()答案:正确第3章问题:在平面极坐标系中,任意位矢可表示为()。

答案:问题:在直角坐标系中,任意位矢的方向余弦的关系为()。

答案:问题:在直角坐标系中,任意位矢可表示为()。

答案:问题:同一个位置矢量可以在不同的坐标系中表示。

()答案:正确问题:位置矢量在直角坐标系和平面极坐标系中的表示方式是一样的。

()答案:错误第4章问题:设质点在均匀转动(角速度为)的水平转盘上从t=0时刻开始自中心出发,以恒定的速率沿一半径运动,则质点的运动方程为()。

答案:问题:设质点在均匀转动(角速度为)的水平转盘上从t=0时刻开始自中心出发,以恒定的速率沿一半径运动,则质点的轨迹方程为()。

答案:问题:质点的位置关于时间的函数称为运动方程。

()答案:正确第5章问题:一个人从O点出发,向正东走了2m,又向正北走了2m,则合位移的大小和方向为()。

答案:东北方向问题:某质点沿半径为R的圆周运动一周,它的位移和路程分别为多少()。

答案:问题:位移和路程都与坐标原点的选取有关。

()答案:错误第6章问题:有一质点沿x方向作直线运动,它的位置由方程决定,其中x的单位是米,t的单位是秒。

则它的速度公式为()。

大学物理考试题目及答案

大学物理考试题目及答案

大学物理考试题目及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是多少?A. 3×10^8 m/sB. 3×10^4 m/sC. 3×10^5 m/sD. 3×10^6 m/s答案:A2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。

这一定律的数学表达式是什么?A. F = maB. F = m/aC. a = F/mD. a = mF答案:A3. 一个物体从静止开始自由下落,其下落的高度h与时间t之间的关系是什么?A. h = gt^2B. h = 1/2 gt^2C. h = 2gtD. h = gt答案:B4. 电场强度的定义式是:A. E = F/qB. E = qFD. E = F/g答案:A5. 一个理想的气体经历等压变化时,其体积与温度的关系遵循什么定律?A. 查理定律B. 盖-吕萨克定律C. 阿伏加德罗定律D. 波义耳定律答案:B6. 根据能量守恒定律,一个封闭系统的总能量是:A. 增加的B. 减少的C. 不变的D. 无法确定的答案:C7. 波长为λ的光波在介质中的折射率为n,当光波从真空进入该介质时,其波速会:A. 增加B. 减少C. 不变D. 先增加后减少答案:B8. 一个电路中的电流I与电阻R之间的关系由欧姆定律描述,该定律的数学表达式是什么?A. I = V/RB. I = VRD. I = V + R答案:A9. 根据热力学第一定律,一个系统的内能变化等于它与外界交换的热量和它对外做的功之和。

如果一个系统吸收了热量并且对外做功,那么它的内能将会:A. 增加B. 减少C. 不变D. 无法确定答案:A10. 两个点电荷之间的相互作用力遵循:A. 库仑定律B. 牛顿定律C. 高斯定律D. 毕奥-萨伐尔定律答案:A二、填空题(每题4分,共20分)11. 一个物体的质量为2kg,受到的力为10N,根据牛顿第二定律,它的加速度是 _______ m/s²。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理(一)复习题及解答一、选择题1.某质点的运动方程为)(6532SI t t x +-=,则该质点作( )。

A 、匀加速直线运动,加速度沿x 轴正方向;B 、匀加速直线运动,加速度沿x 轴负方向;C 、变加速直线运动,加速度沿x 轴正方向;D 、变加速直线运动,加速度沿x 轴负方向。

2.下列表述中正确的是( )。

A 、质点沿x 轴运动,若加速度0<a ,则质点必作减速运动;B 、在曲线运动中,质点的加速度必定不为零;C 、若质点的加速度为恒矢量,则其运动轨道必为直线;D 、当质点作抛体运动时,其法向加速度n a 、切向加速度t a 是不断变化的;因此, 22t n a a a +=也是不断变化的。

3.下列表述中正确的是:A 、质点作圆周运动时,加速度方向总是指向圆心;B 、质点作抛体运动时,由于加速度恒定,所以加速度的切向分量和法向分量也是恒定的;C 、质点作曲线运动时,加速度方向总是指向曲线凹的一侧;D 、质点作曲线运动时,速度的法向分量总是零,加速度的法向分量也应是零。

4.某物体的运动规律为t kv dtdv 2-=,式中的k 为大于零的常数;当t =0时,初速为0v ,则速度v 与时间t 的函数关系是( )。

A 、0221v kt v +=;B 、0221v kt v +-=;C 、02121v kt v +=;D 、02121v kt v -=。

5.质点在xoy 平面内作曲线运动,则质点速率的正确表达式为( )。

A 、dt dr v =;B 、dt r d v ϖ=;C 、dtds v =;D 、22)()(dt dy dt dx v += ;E 、dt r d v ϖ=。

6.质点作曲线运动,r ϖ表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,(1)a dt dv =;(2)v dt dr =;(3)v dtds =;(4)t a dt v d =ϖ|; A 、只有(1)、(4)是对的; B 、只有(2)、(4)是对的;C 、只有(2)是对的;D 、只有(3)是对的。

( )7.我国第一颗人造卫星绕地球作椭圆运动,地球中心为椭圆的一个焦点。

在运行过程中,下列叙述中正确的是( )。

A 、动量守恒;B 、动能守恒;C 、角动量守恒;D 、以上均不守恒。

8.一力学系统由两个质点组成,它们之间只有引力作用。

若两质点所受外力的矢量和为零,则此系统( )。

A 、动量、机械能以及对一轴的角动量守恒;B 、动量、机械能守恒,但角动量是否守恒不能断定;C 、动量守恒,但机械能和角动量是否守恒不能断定;D 、动量和角动量守恒,但机械能是否守恒不能断定。

9.对于一对作用力和反作用力来说,二者持续时间相同;下列结论中正确的是( )。

A 、二者作功必相同;B 、二者作功总是大小相等符号相反;C 、二者的冲量相同;D 、二者冲量不同,作功也不一定相等。

10.如图1-1所示,用一斜向上的力F (与水平成30°角),将一重为G的木块压靠在竖直壁面上,如果不论用怎样大的力F ,都不能使木块向上滑动,则说明木块与壁面间的静摩擦系数μ的大小为( )。

A 、21≥μ; B 、31≥μ; C 、32≥μ; D 、3≥μ。

11.如图1-2所示,一静止的均匀细棒,长为L ,质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为13ML 2;一质量为m ,速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为12v ,则此时棒的角速度应为( )。

A 、ML mv ;B 、ML mv 23;C 、ML mv 35;D 、ML mv 47。

12.有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零;在上述说法中,( )。

A 、只有(1)是正确的;B 、(1)、(2)正确,(3)、(4)错误;C 、(1)、(2)、(3)都正确,(4)错误;D 、(1)、(2)、(3)、(4)都正确。

13.如图1-3所示,劲度系数为k 的轻弹簧水平放置,一端固定,另一端系一质量为m 的物体,物体与水平面间的摩擦系数为μ。

开始时,弹簧没有伸长,现以恒力F 将物体自平衡位置开始向右拉动,则系统的最大势能为( )。

A 、2)(2mg F k μ- ; B 、2)(21mg F kμ- ; C 、22F k ; D 、221F k 。

14.如图1-4所示,在水平光滑的圆盘上,有一质量为m 的质点,拴在一根穿过圆盘中心光滑小孔的轻绳上。

开始时质点离中心的距离为r ,并以角速度ω转动。

今以均匀的速度向下拉绳,将质点拉至离中心2r 处时,拉力所作的功为( )。

F G300 图1-1图1-2图1-3图1-4A 、2221ωmr ;B 、2223ωmr ;C 、2225ωmr ;D 、2227ωmr 。

15.两个体积不等的容器,分别储有氦气和氧气,若它们的压强相同,温度相同,则下列各量中相同的是( )。

A 、单位体积中的分子数;B 、单位体积中的气体内能;C 、单位体积中的气体质量;D 、容器中的分子总数。

16.4mol 的多原子分子理想气体,当温度为T 时,其内能为( )。

A 、KT 12;B 、KT 10;C 、RT 12;D 、RT 10。

17.两个体积相等的容器中,分别储有氦气和氢气。

以1E 和2E 分别表示氦气和氢气的内能,若它们的压强相同,则( )。

A 、21E E =;B 、21E E > ;C 、21E E < ;D 、无法确定。

18.两个容器中分别装有氮气和水蒸气,它们的温度相同,则下列各量中相同的是( )。

A 、分子平均动能;B 、分子平均速率;C 、分子平均平动动能;D 、最概然速率。

*19.下列对最概然速率p v 的表述中,正确的是( )。

A 、p v 是气体分子可能具有的最大速率;B 、分子速率取p v 的概率最大;C 、速率分布函数)(v f 取极大值时所对应的速率就是p v ;D 、就单位速率区间而言,分子速率处于p v 附近的概率最大。

*20.当气体的温度升高时,麦克斯韦速率分布曲线的变化为( )。

A 、曲线下的面积增大,最概然速率增大;B 、曲线下的面积增大,最概然速率减小;C 、曲线下的面积不变,最概然速率增大;D 、曲线下的面积不变,最概然速率减小;E 、曲线下的面积不变,曲线的最高点降低。

21. 一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示;则摆锤转动的周期为( )。

A . l g ; B. cos l gθ; C. 2πl g ; D. cos 2πθl g 。

22. 依据热力学第一定律,下列说法错误的是( )。

A 、系统对外做的功可能大于系统从外界吸收的热量 :B 、系统内能的增量不一定等于系统从外界吸收的热量 :C 、存在这样的循环过程,在此循环过程中,外界对系统所做的功小于系统传给外界的热量;D 、热机的效率可能等于1 。

23. 如图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O ,该物体原以角速度ω在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉,则物体( )。

A 、动能不变,动量改变 ;B 、动量不变,动能改变 ;C 、角动量不变,动量不变 ;D 、角动量改变,动量改变 ;E 、角动量不变,动能、动量都改变 。

24. 对于沿曲线运动的物体,以下几种说法中哪一种是正确的?( )A 、切向加速度必不为零;B 、法向加速度必不为零(拐点处除外);C 、由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零 ;D 、若物体作匀速率运动,其总加速度必为零;E 、若物体的加速度a v 为恒矢量,它一定作匀变速率运动。

25. 人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B ;用L 和k E 分别表示卫星对地心的角动量及其动能的瞬时值,则应有( )。

A 、AB L L >,k k A B E E > ; B 、k k A B E E >,k k A B E E < ;C 、A B L L =,k k A B E E > ;D 、A B L L <,k k A BE E <。

26. 一定质量的理想气体的内能E 随体积V 的变化关系为一直线(其延长线过-E V 图的原点),则此直线表示的过程为( )。

A 、等体过程 ;B 、等温过程 ;C 、等压过程;D 、绝热过程 。

27. 设有以下一些过程:(1) 液体在等温下汽化; (2) 理想气体在定体下降温; (3) 两种不同气体在等温下互相混合;(4) 理想气体在等温下压缩;(5) 理想气体绝热自由膨胀。

在这些过程中,使系统的熵增加的过程是( )。

A 、(1)、(2)、(3) ;B 、(1)、(3)、(5);C 、(3)、(4)、(5);D 、(2)、(3)、(4) 。

28. 一质点在平面上运动,已知质点位置矢量的表示式为22r at i bt j =+v v v (其中a 、b为常量), 则该质点作( )。

A 、匀速直线运动;B 、变速直线运动 ;C 、抛物线运动 ;D 、一般曲线运动。

29. 质量为m 的小孩站在半径为R 的水平平台边缘上。

平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J ;平台和小孩开始时均静止,当小孩突然以相对于地面为υ 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为( )。

A 、2v mR J R ω⎛⎫= ⎪⎝⎭,顺时针 ;B 、2v mR J R ω⎛⎫= ⎪⎝⎭,逆时针 ; C 、22v mR J mR R ω⎛⎫= ⎪+⎝⎭,顺时针 ; D 、22v mR J mR R ω⎛⎫= ⎪+⎝⎭, 逆时针。

30. 一辆汽车从静止出发,在平直公路上加速前进的过程中,如果发动机的功率一定,阻力大小不变,那么,下面哪一个说法是正确的?( )A 、汽车的加速度是不变的 ;B 、汽车的加速度不断减小;C 、汽车的加速度与它的速度成正比 ;D 、汽车的加速度与它的速度成反比 。

31. 以下五种运动形式中,a v 保持不变的运动是( )。

A 、单摆的运动;B 、匀速率圆周运动;C 、行星的椭圆轨道运动;D 、抛体运动;E 、圆锥摆运动。

32. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动。

相关文档
最新文档