矩阵连乘备忘录算法
矩阵连乘问题的算法

矩阵连乘问题的算法
一、矩阵连乘问题
矩阵连乘问题是指在矩阵计算中,给定n个矩阵,求这n个矩阵的连乘积的最优解问题。
矩阵连乘问题既可以用于组合优化,也可以用于信息处理系统中查找最优路径的搜索算法。
它是最基本的组合优化问题。
二、矩阵连乘问题的算法
1. 动态规划法:动态规划法是求解矩阵连乘问题的常用算法。
它采用递归方法,将原问题分解为若干个子问题,然后求出各子问题的最优解,最后组合出原问题的最优解。
2. 贪心算法:贪心算法是一种经典的最优化算法,也可以用于求解矩阵连乘问题,即通过某种启发式规则,在每一步中都使最优决策,最终得到最优解。
3. 分支定界法:分支定界法是一种由搜索算法和界定法相结合而成的最优化算法,也可以用于求解矩阵连乘问题。
该算法按照树状的层次结构,向下搜索一个在每一步骤都使得当前最优的路径,然后上溯形成最优解。
4. 模拟退火算法:模拟退火算法是一种搜索算法,它可以用于求解矩阵连乘问题。
它采用一种模拟物理过程的原理,通过不断地改变解的状态,以求出相对最优解。
- 1 -。
《算法设计与分析》第3章 动态规划法

最优解的递推关系 定义m[i:j],表示矩阵连乘A[i:j]所需的最少计算 量 则有: i j 0 m[i ][ j ] i j minj{m[i ][ k ] m[k 1][ j ] pi 1 pk p j } i k
假设:N个矩阵的维数依序放在一维数组p中, 其中Ai的维数记为Pi-1×Pi
A=A1×A2×A3×…×An
A=(A1×A2×…×Ak) × (Ak+1×Ak+2×…×An)
B
C
1.2 穷举法
穷举法:列举出所有可能的计算次序,并计算出 每一种计算次序相应需要的数乘次数,从中找出 一种数乘次数最少的计算次序。
穷举法复杂度分析: 对于n个矩阵的连乘积,设其不同的计算次序有P(n)种。 由于每种加括号方式都可以分解为两个子连乘的加括号问题: (A1...Ak)(Ak+1…An)可以得到关于P(n)的递推式如下:
【程序】矩阵连乘的 穷举法实现 int MatrixChain::LookupChain(int i, int j) { if(i==j) return 0; int u=LookupChain(i+1,j)+p[i-1]*p[i]*p[j]; //k=i s[i][j]=i; //记录最优分解位置 for ( int k=i+1;k<j; k++ ) { //遍历k int t=LookupChain(i,k)+LookupChain(k+1,j) +p[i]*p[k+1]*p[j+1]; if (t<u) { u=t; s[i][j]=k; //记录最优分解位置 } } int MatrixChain::LookupChain() return u; { } return LookupChain(1,n);
算法设计与分析——矩阵连乘问题(动态规划)

算法设计与分析——矩阵连乘问题(动态规划)⼀、问题描述引出问题之前我们先来复习⼀下矩阵乘积的标准算法。
int ra,ca;//矩阵A的⾏数和列数int rb,cb;//矩阵B的⾏数和列数void matrixMultiply(){for(int i=0;i<ra;i++){for(int j=0;j<cb;j++){int sun=0;for(int k=0;k<=ca;k++){sum+=a[i][k]*b[k][j];}c[i][j]=sum;}}}给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。
如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10*100,100*5和5*50,采⽤(A1A2)A3,乘法次数为10*100*5+10*5*50=7500次,⽽采⽤A1(A2A3),乘法次数为100*5*50+10*100*50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次。
加括号的⽅式对计算量有很⼤的影响,于是⾃然地提出矩阵连乘的最优计算次序问题,即对于给定的相继n个矩阵,如何确定矩阵连乘的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
⼆、问题分析矩阵连乘也是Catalan数的⼀个常⽤的例⼦,关于时间复杂度的推算需要参考离散数学关于Catalan的内容。
下⾯考虑使⽤动态规划法解矩阵连乘积的最优计算次序问题。
1、分析最优解的结构问题的最优⼦结构性质是该问题可以⽤动态规划求解的显著特征!!!2、建⽴递归关系3、计算最优值public static void matrixChain(int n) {for (int i = 1; i <= n; i++) {m[i][i] = 0;}for (int r = 2; r <= n; r++) {//i与j的差值for (int i = 1; i <= n - r + 1; i++) {int j = i + r - 1;m[i][j] = m[i + 1][j] + p[i - 1] * p[i] * p[j];s[i][j] = i;for (int k = i + 1; k < j; k++) {int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];if (t < m[i][j]) {m[i][j] = t;s[i][j] = k;}}}}}4、构造最优解public static void traceback(int i, int j) {if (i == j) {System.out.printf("A%d", i); // 输出是第⼏个数据return;}System.out.printf("(");traceback(i, s[i][j]);// 递归下⼀个数据System.out.printf(" x ");traceback(s[i][j] + 1, j);System.out.printf(")");}三、总结。
备忘录矩阵连乘;最大公共子串算法JAVA程序

实验报告5课程数据结构与算法实验名称动态规划第页班级11计本学号105032011130 姓名风律澈实验日期:2013年4月1日报告退发(订正、重做)一、实验目的掌握动态规划策略的原理和应用。
二、实验环境1、微型计算机一台2、WINDOWS操作系统,Java SDK,Eclipse开发环境三、实验内容必做题:1.要求采用备忘录方法编写程序求解矩阵连乘问题,要求输出问题最优值及最优解。
要求:输出矩阵连乘最少需要的数乘次数,同时输出最优运算顺序,以A、B、C、D四个矩阵连乘为例,输出最优解格式为:(A(B*C)*D)2.编写程序求解最长公共子序列问题,要求输出问题最优值及最优解。
要求:输出最长公共子序列长度,同时,依次输出该序列的每个元素。
四、实验步骤和结果(附上代码和程序运行结果截图)1,备忘录版本的矩阵连乘public class LookupChain {/***@param args*/public static void main(String[] args) {// TODO Auto-generated method stubint p[]={30,35,15,5,10,20,25};//记录数组行列数量int b[][]=new int[p.length][p.length];//记录连乘次数int s[][]=new int[p.length][p.length];//记录最佳分割位置for(int i=1;i<p.length;i++)//初始化数组 bb[i][i]=0;System.out.println(lookupChain(b,p,s,1,p.length-1));coutlc(1,p.length-1,s);}private static void coutlc(int i,int j,int s[][]) {// TODO Auto-generated method stubif(i==j)System.out.print("A"+i);else if(i+1==j){System.out.print("(A"+i+"*"+"A"+j+")");}else{System.out.print("(");coutlc(i,s[i][j],s);coutlc(s[i][j]+1,j,s);System.out.print(")");}}private static int lookupChain(int[][] b, int[] p, int[][] s,int i,int j) {// TODO Auto-generated method stubif(b[i][j]>0)return b[i][j];if(i==j)return 0;int u=lookupChain(b,p,s,i+1,j)+p[i-1]*p[i]*p[j];s[i][j]=i;for(int k=i+1;k<j;k++){intt=lookupChain(b,p,s,i,k)+lookupChain(b,p,s,k+1,j)+p[i-1]*p[k]*p[j];if(u>t){u=t;b[i][j]=u;s[i][j]=k;}}return u;}}2.最长公共自序列public class Lcslength {/*** @param args*/public static void main(String[] args) {// TODO Auto-generated method stubchar a[]={'A','B','C','B','D','A','B'};char b[]={'B','D','C','A','B','A'};int x[][]=new int[b.length+1][a.length+1];//initefor(int i=0;i<a.length+1;i++)x[0][i]=0;for(int i=0;i<b.length+1;i++)x[i][0]=0;//lcslcslength(a,b,x);//printSystem.out.println(x[b.length][a.length]);coutlcs(x,b.length,a.length,b);}private static void coutlcs(int[][] x, int i, int j,char []b) { // TODO Auto-generated method stubif(i==0||j==0)return;if(x[i-1][j-1]==x[i-1][j]&&x[i-1][j-1]==x[i][j-1]){coutlcs(x,i-1,j-1,b);System.out.print(b[i-1]);}else if(x[i-1][j]>x[i][j-1])coutlcs(x,i-1,j,b);elsecoutlcs(x,i,j-1,b);}private static void lcslength(char[] a, char[] b, int[][] x) { // TODO Auto-generated method stubfor(int i=1;i<=b.length;i++)for(int j=1;j<=a.length;j++){if(b[i-1]==a[j-1])x[i][j]=x[i-1][j-1]+1;else if(x[i][j-1]>x[i-1][j])x[i][j]=x[i][j-1];elsex[i][j]=x[i-1][j];}}}五、实验总结(本次实验完成的情况,心得体会)。
矩阵连乘算法

福州大学数学与计算机科学学院《计算机算法设计与分析》上机实验报告(2)i<=k<j,则:m[i][j]=m[i][k]+m[k+1][j]+pi-1pkpj。
由于在计算是并不知道断开点k的位置,所以k还未定。
不过k的位置只有j-i个可能。
因此,k是这j-i个位置使计算量达到最小的那个位置。
综上,有递推关系如下:若将对应m[i][j]的断开位置k记为s[i][j],在计算出最优值m[i][j]后,可递归地由s[i][j]构造出相应的最优解。
s[i][j]中的数表明,计算矩阵链A[i:j]的最佳方式应在矩阵Ak和Ak+1之间断开,即最优的加括号方式应为(A[i:k])(A[k+1:j)。
从s[1][n]记录的信息可知计算A[1:n]的最优加括号方式为(A[1:s[1][n]])(A[s[1][n]+1:n]),进一步递推,A[1:s[1][n]]的最优加括号方式为(A[1:s[1][s[1][n]]])(A[s[1][s[1][n]]+1:s[1][s[1][n]]] )。
同理可以确定A[s[1][n]+1:n]的最优加括号方式在s[s[1][n]+1][n]处断开...照此递推下去,最终可以确定A[1:n]的最优完全加括号方式,及构造出问题的一个最优解。
3、动态规划迭代算法设计:用动态规划迭代方式解决此问题,可依据其递归式自底向上的方式进行计算。
在计算过程中,保存已解决的子问题的答案。
每个子问题只计算一次,而在后面需要时只需简单检查一下,从而避免了大量的重复计算,最终得到多项式时间的算法。
4、算法代码:1.//3d1-2 矩阵连乘动态规划迭代实现2.//A1 30*35 A2 35*15 A3 15*5 A4 5*10 A5 10*20 A6 20*253.//p[0-6]={30,35,15,5,10,20,25}4.#include "stdafx.h"5.#include <iostream>ing namespace std;7.8.const int L = 7;9.10.int MatrixChain(int n,int **m,int **s,int *p);11.void Traceback(int i,int j,int **s);//构造最优解12.13.int main()14.{15.int p[L]={30,35,15,5,10,20,25};16.17.int **s = new int *[L];18.int **m = new int *[L];19.for(int i=0;i<L;i++)20. {21. s[i] = new int[L];22. m[i] = new int[L];23. }24.25. cout<<"矩阵的最少计算次数为:"<<MatrixChain(6,m,s,p)<<endl;26. cout<<"矩阵最优计算次序为:"<<endl;27. Traceback(1,6,s);28.return 0;29.}30.31.int MatrixChain(int n,int **m,int **s,int *p)32.{33.for(int i=1; i<=n; i++)34. {35. m[i][i] = 0;36. }37.for(int r=2; r<=n; r++) //r为当前计算的链长(子问题规模)38. {39.for(int i=1; i<=n-r+1; i++)//n-r+1为最后一个r链的前边界40. {41.int j = i+r-1;//计算前边界为r,链长为r的链的后边界42.43. m[i][j] = m[i+1][j] + p[i-1]*p[i]*p[j];//将链ij划分为A(i) * ( A[i+1:j] )44.45. s[i][j] = i;46.47.for(int k=i+1; k<j; k++)48. {49.//将链ij划分为( A[i:k] )* (A[k+1:j])50.int t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];51.if(t<m[i][j])52. {53. m[i][j] = t;54. s[i][j] = k;55. }56. }57. }58. }59.return m[1][L-1];60.}61.62.void Traceback(int i,int j,int **s)63.{64.if(i==j) return;65. Traceback(i,s[i][j],s);66. Traceback(s[i][j]+1,j,s);67. cout<<"Multiply A"<<i<<","<<s[i][j];68. cout<<" and A"<<(s[i][j]+1)<<","<<j<<endl;69.}上述迭代算法的运行过程如下图所示:当R=2时,先迭代计算出: m[1:2]=m[1:1]+m[2:2}+p[0]*p[1]*p[2];m[2:3]=m[2:2]+m[3:3]+p[1]*p[2]*p[3];。
算法笔记——【动态规划】矩阵连乘问题——备忘录法

算法笔记——【动态规划】矩阵连乘问题——备忘录法问题描述:给定n个矩阵:A1,A2,...,An,其中Ai与Ai+1是可乘的,i=1,2...,n-1。
确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
输⼊数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。
问题解析:由于矩阵乘法满⾜结合律,故计算矩阵的连乘积可以有许多不同的计算次序。
这种计算次序可以⽤加括号的⽅式来确定。
若⼀个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调⽤2个矩阵相乘的标准算法计算出矩阵连乘积。
完全加括号的矩阵连乘积可递归地定义为:(1)单个矩阵是完全加括号的;(2)矩阵连乘积A是完全加括号的,则A可表⽰为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的⽅式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。
每⼀种完全加括号的⽅式对应于⼀个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。
看下⾯⼀个例⼦,计算三个矩阵连乘{A1,A2,A3};维数分别为10*100 , 100*5 , 5*50 按此顺序计算需要的次数((A1*A2)*A3):10X100X5+10X5X50=7500次,按此顺序计算需要的次数(A1*(A2*A3)):100*5*50 + 10*100*50 = 75000次(注意计算次数的⽅法!)所以问题是:如何确定运算顺序,可以使计算量达到最⼩化。
算法思路:例:设要计算矩阵连乘乘积A1 A2 A3 A4 A5 A6,其中各矩阵的维数分别是:A1:30*35; A2:35*15; A3:15*5; A4:5*10; A5:10*20; A6:20*25递推关系:设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n]。
矩阵连乘问题-备忘录法求最优值

矩阵连乘问题-备忘录法求最优值矩阵连乘问题是一个很典型的动态规划问题。
在这个问题中,给定多个矩阵,我们需要将它们相乘得到一个最终的矩阵。
但是,矩阵相乘的顺序对于最终答案是有影响的,因此需要考虑如何寻找最优的矩阵相乘顺序。
备忘录法可以很好地解决这个问题,它是动态规划的一种优化方法,通过记忆已经计算过的结果来避免重复计算。
首先,我们需要定义一个状态表示,用来表示每一个子问题。
在矩阵连乘问题中,可以将子问题定义为:对于给定的一组矩阵,从第i 个矩阵到第j个矩阵进行连乘所需的最少乘法次数。
接下来,我们可以考虑如何递归地求解子问题。
具体来说,我们可以枚举每一个可能的括号位置,将原问题分解成两个子问题。
这个过程可以用递归实现。
但是,这个方法会涉及到很多重复计算,因为很多子问题会被重复使用。
为了避免这个问题,我们可以使用备忘录法对递归算法进行优化。
具体来说,在计算每一个子问题的最优值时,我们可以将结果存储在一个备忘录中,以便在之后重复使用。
备忘录法的实现过程比较简单。
我们可以定义一个二维数组memo,其中memo[i][j]表示对于给定的矩阵序列,在第i个矩阵到第j个矩阵之间进行连乘所需的最少乘法次数。
初始时,将memo中所有元素都设置为一个较大的数(比如1000000),表示这个子问题还没有被计算过。
接下来,我们可以实现一个递归函数helper(i,j),用来计算memo[i][j]。
具体来说,函数的实现如下:```def helper(i,j):#如果已经计算过memo[i][j],直接返回结果if memo[i][j] != 1000000:return memo[i][j]#如果只有一个矩阵,直接返回0if i == j:return 0#初始化memo[i][j]memo[i][j] = 1000000#枚举括号位置for k in range(i,j):memo[i][j] = min(memo[i][j], helper(i,k) + helper(k+1,j) + matrix[i][0] * matrix[k][1] * matrix[j][1])return memo[i][j]```在实现递归函数时,我们首先检查memo[i][j]是否已经计算过,如果是,直接返回结果。
矩阵连乘问题的算法

矩阵连乘问题的算法介绍矩阵连乘问题是一个经典的数学问题,它涉及到如何寻找一组矩阵相乘的最优顺序,使得计算所需的乘法操作总数最小化。
这个问题在计算机科学和算法设计中有着重要的应用。
本文将介绍矩阵连乘问题的算法及其相关概念和应用。
问题描述给定一组矩阵{A1, A2, A3, …, An},其中Ai的维度为pi-1 × pi(1 ≤ i ≤ n),我们希望找到一种矩阵相乘的顺序,使得计算这些矩阵相乘所需的乘法操作总数最小化。
动态规划算法动态规划算法是解决矩阵连乘问题的经典方法。
它通过存储中间结果来避免重复计算,从而提高计算效率。
下面将介绍动态规划算法的具体实现步骤。
定义子问题假设我们要计算矩阵Ai × Ai+1 × … × Aj的最优顺序和乘法操作总数,其中i ≤ j。
确定状态转移方程设m[i][j]表示计算矩阵Ai × Ai+1 × … × Aj的最优顺序和乘法操作总数。
根据定义,我们有以下状态转移方程: - 当i = j时,m[i][j] = 0,因为只有一个矩阵无需进行乘法操作; - 当i < j时,m[i][j] = min{m[i][k] + m[k+1][j] + pi-1 × pk × pj},其中i ≤ k < j。
填表计算最优值根据状态转移方程,我们可以使用动态规划的方法逐步填充表格m。
具体步骤如下:1. 初始化所有m[i][i]为0(0 ≤ i ≤ n); 2. 对于每个子问题(i, j),从i= 1递增到j = n-1,按照递增的长度进行计算: - 对于每个i和j,根据状态转移方程计算m[i][j]; 3. 最终,m[1][n-1]即为所求的计算矩阵Ai × Ai+1× … × An的最优顺序和乘法操作总数。
重构最优解为了得到最优顺序下的具体计算过程,我们可以使用一个辅助表格s来记录最优划分点。
计算矩阵连乘积

计算矩阵连乘积问题描述在科学计算中经常要计算矩阵的乘积。
矩阵A和B可乘的条件是矩阵A的列数等于矩阵B的行数。
若A是一个p×q的矩阵,B是一个q×r的矩阵,则其乘积C=AB是一个p ×r的矩阵。
其标准计算公式为:由该公式知计算C=AB总共需要pqr次的数乘。
现在的问题是,给定n个矩阵{A1,A2,…,A n}。
其中A i与A i+1是可乘的,i=1,2,…,n-1。
要求计算出这n个矩阵的连乘积A1A2…A n。
由于矩阵乘法满足结合律,故连乘积的计算可以有许多不同的计算次序。
这种计算次序可以用加括号的方式来确定。
若一个矩阵连乘积的计算次序已完全确定,也就是说该连乘积已完全加括号,则我们可以通过反复调用两个矩阵相乘的标准算法计算出矩阵连乘积。
完全加括号的矩阵连乘积可递归地定义为:1. 单个矩阵是完全加括号的;2. 若矩阵连乘积A是完全加括号的,则A可表示为两个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)。
例如,矩阵连乘积A1A2A3 A4可以有以下5种不同的完全加括号方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。
每一种完全加括号方式对应于一种矩阵连乘积的计算次序,而这种计算次序与计算矩阵连乘积的计算量有着密切的关系。
为了说明在计算矩阵连乘积时加括号方式对整个计算量的影响,我们来看一个计算3个矩阵{A1,A2,A3}的连乘积的例子。
设这3个矩阵的维数分别为10×100,100×5和5×50。
若按第一种加括号方式((A1A2)A3)来计算,总共需要10×100×5+10×5×50=7500次的数乘。
若按第二种加括号方式(A1(A2A3))来计算,则需要的数乘次数为100×5×50+10×100×50=75000。
动态规划之矩阵链相乘问题(算法导论)

动态规划之矩阵链相乘问题(算法导论)问题描述:给定n个矩阵序列,(A1,A2,A3,A4,...,An). 计算他们的乘积:A1A2A3...An.由于矩阵的乘法运算符合结合律,因⽽可以通过调整计算顺序,从⽽降低计算量。
样例分析:⽐如有三个矩阵分别为:A1: 10*100,A2: 100*5,A3: 5*50假如现在按照(A1A2)A3的顺序计算需要的计算量为:10*100*5+10*5*50=7500次运算。
若按照A1(A2A3)的顺序计算,需要的计算量为:100*5*50+10*100*50=75000次运算。
上⾯两种不同的运算顺序所有的计算量相差⼗倍。
因⽽,⼀种最优的计算顺序将能很⼤程度的减少矩阵连乘的运算量。
问题解析:此问题的⽬的是寻找⼀种最优的括号化⽅案。
下⾯⽤动态规划的思想来进⾏分析:1、动态规划的第⼀步:寻找最优⼦结构。
为⽅便起见,使⽤Ai..j表⽰AiAi+1...Aj的乘积结果矩阵。
对于k(i<=k<j), 计算Ai..j所需要的计算量为:Ai..k 和 Ak+1..j 以及⼆者相乘的代价和。
2、设m[i][j]为Ai..j的最优计算顺序所要花费的代价。
则其求解公式为:if i == j, m[i][j] = 0; //因为只有⼀个矩阵时计算代码为0,即不需要计算。
m[i][j]=min{m[i][k] + m[k+1][j] + Pi-1PkPj} i<=k<j3、为了能够输出求解顺序,需要保存区间中的⼀些分割点。
假如Ai..j中的最优分割点为k,则我们使⽤s[i][j]=k。
即在Ai..j 中,分别计算Ai..k 和 Ak+1..j 所⽤的计算开销最⼩。
4、采⽤⾃底向上的表格法。
依次求解矩阵长度为2,3,...,n的最优计算顺序。
算法思想:1、对m[i][i]全部初始化为0.2、在矩阵链A1..n中,依次计算长度len为2,3,...,n的m[i][j]⼤⼩。
矩阵连乘和strassen矩阵乘法

矩阵连乘和strassen矩阵乘法矩阵连乘问题和 Strassen 矩阵乘法是计算机科学中的两个重要问题。
矩阵常常被用来表示线性算法问题,而矩阵的乘法则是表示两个矩阵之间运算的一种方法。
本文将对这两个问题分别进行介绍,以便更深入地了解矩阵的应用和计算方法。
矩阵连乘问题矩阵连乘问题是指给定一组矩阵,求其乘积的最小计算次数,并构造出相应的计算方法。
在算法中,我们通常采用递归的思想来解决这个问题。
递归过程中,我们根据矩阵的大小将矩阵划分成更小的子矩阵,然后再对这些子矩阵进行计算。
设矩阵连乘的矩阵序列为 A1, A2, A3, ..., An,其中矩阵 Ai 的行数和列数分别为 pi - 1 和 pi。
那么,计算这个矩阵序列的最小计算次数可以表示为递推式:m[i,j] = min{m[i,k] + m[k+1,j] + pi-1 * pk * pj} (i <= k < j)这个式子的意思是将矩阵序列Ai, Ai+1,...,Aj-1, Aj划分为两个子序列Ai, Ai+1,...,Ak和Ak+1,...,Aj,然后在这两个子序列中分别计算矩阵乘积所需的最小计算次数,其中pi-1 * pk * pj表示计算Ai到Aj乘积时需要的乘法次数。
由此,我们可以得出矩阵连乘的递归算法:Matrix Chain Multiply(A, p, i, j)if i == jreturn A[i]elsek = iM = Matrix Chain Multiply(A, p, i, k)N = Matrix Chain Multiply(A, p, k+1, j)return M * N其中,A是矩阵序列,p是矩阵的行列数,i和j表示矩阵序列的起止下标。
在递归过程中,我们用k将矩阵序列划分为两个部分,并分别计算左边和右边的矩阵乘积。
最后将两个部分的计算结果相乘即可。
这种算法的时间复杂度为O(n^3),在处理大规模的矩阵乘积时效率较低。
《算法设计与分析》第07章

南京邮电大学计算机学院 2008年3月
for (int r=2; r<=n;r++) for (int i=0;i<=n-r;i++) { int j=i+r-1; m[i][j]=m[i+1][j]+p[i]*p[i+1]*p[j+1]; s[i][j]=i; for (int k=i+1;k<j;k++) { int t=m[i][k] +m[k+1][j]+p[i]*p[k+1]*p[j+1]; if (t<m[i][j]) { m[i][j]=t;s[i][j]=k; } } } return m[0][n-1];
南京邮电大学计算机学院 2008年3月
for (int j=n-2;j>=0;j--){ float min=INFTY; for (ENode<T> *r=a[j];r;r=r->nextArc) { int v=r->adjVex; if (r->w+cost[v]<min) { min=r->w+cost[v];q=v; } } cost[j]=min;d[j]=q; } p[0]=0;p[k-1]=n-1; for(j=1;j<=k-2;j++) p[j]=d[p[j-1]]; delete []cost;delete []d; }
南京邮电大学计算机学院 2008年3月
7.3.3 矩阵连乘算法
【程序7-3】矩阵连乘算法 class MatrixChain { public: MatrixChain(int mSize,int *q); int MChain(); int LookupChain(); void Traceback(); ……
动态规划之矩阵连乘

动态规划之矩阵连乘【问题描述】给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。
如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10*100,100*5和5*50,采⽤(A1A2)A3,乘法次数为10*100*5+10*5*50=7500次,⽽采⽤A1(A2A3),乘法次数为100*5*50+10*100*50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次。
分析:矩阵链乘法问题描述:给定由n个矩阵构成的序列{A1,A2,...,An},对乘积A1A2...An,找到最⼩化乘法次数的加括号⽅法。
1)寻找最优⼦结构此问题最难的地⽅在于找到最优⼦结构。
对乘积A1A2...An的任意加括号⽅法都会将序列在某个地⽅分成两部分,也就是最后⼀次乘法计算的地⽅,我们将这个位置记为k,也就是说⾸先计算A1...Ak和Ak+1...An,然后再将这两部分的结果相乘。
最优⼦结构如下:假设A1A2...An的⼀个最优加括号把乘积在Ak和Ak+1间分开,则前缀⼦链A1...Ak的加括号⽅式必定为A1...Ak的⼀个最优加括号,后缀⼦链同理。
⼀开始并不知道k的确切位置,需要遍历所有位置以保证找到合适的k来分割乘积。
2)构造递归解设m[i,j]为矩阵链Ai...Aj的最优解的代价,则3)构建辅助表,解决重叠⼦问题从第⼆步的递归式可以发现解的过程中会有很多重叠⼦问题,可以⽤⼀个nXn维的辅助表m[n][n] s[n][n]分别表⽰最优乘积代价及其分割位置k 。
辅助表s[n][n]可以由2种⽅法构造,⼀种是⾃底向上填表构建,该⽅法要求按照递增的⽅式逐步填写⼦问题的解,也就是先计算长度为2的所有矩阵链的解,然后计算长度3的矩阵链,直到长度n;另⼀种是⾃顶向下填表的备忘录法,该⽅法将表的每个元素初始化为某特殊值(本问题中可以将最优乘积代价设置为⼀极⼤值),以表⽰待计算,在递归的过程中逐个填⼊遇到的⼦问题的解。
算法设计JAVA矩阵连乘

算法设计JAVA矩阵连乘矩阵连乘问题是一个经典的动态规划问题。
给定一系列的矩阵,我们的目标是找到一个最优的括号表达式,使得矩阵连乘的计算次数最少。
假设有n个矩阵,这些矩阵的维度顺序可以表示为一个数组p,其中第i个矩阵的维度为p[i-1] x p[i]。
我们可以使用一个二维数组dp来保存子问题的最优解,其中dp[i][j]表示矩阵i到j之间的最小计算次数。
初始化时,将dp[i][i]的值设为0,因为单独一个矩阵的计算次数为0。
接下来,我们需要遍历所有可能的区间长度l,从2开始直到n,因为最小区间只有两个矩阵。
对于每个区间长度,我们需要遍历所有可能的起点i,并计算以i为起点、长度为l的区间的最小计算次数。
具体算法如下:```javapublic class MatrixChainMultiplicationpublic static int matrixChainOrder(int[] p)int n = p.length - 1;int[][] dp = new int[n+1][n+1];//初始化单个矩阵的计算次数为0for (int i = 1; i <= n; i++)dp[i][i] = 0;}//遍历所有可能的区间长度for (int len = 2; len <= n; len++)//遍历所有可能的起点for (int i = 1; i <= n - len + 1; i++)int j = i + len - 1;dp[i][j] = Integer.MAX_VALUE;//遍历所有可能的分割点k,计算最小计算次数for (int k = i; k < j; k++)int cost = dp[i][k] + dp[k+1][j] + p[i-1]*p[k]*p[j]; if (cost < dp[i][j])dp[i][j] = cost;}}}}return dp[1][n];}public static void main(String[] args)int[] p = {10, 20, 30, 40, 30};int minCost = matrixChainOrder(p);System.out.println("最小计算次数为:" + minCost);}```这个算法的时间复杂度为O(n^3),空间复杂度为O(n^2)。
矩阵连乘和01背包算法

//矩阵连乘的自底向上非递归的动态规划算法或自顶向下递归的动态规划算法(备忘录方法)。
输入:先输入矩阵连乘的个数n,然后依次手动输入(不能随机生成!)矩阵的维数pi(数字)。
注意,6个矩阵,需输7个维数值。
输出:矩阵连乘的次序,如:((A1(A2A3))((A4A5A6))。
示例:输入:6 30 35 15 5 10 20 25,输出:((A1(A2A3))((A4A5)A6))//矩阵连乘import java.util.Scanner;//6 30 35 15 5 10 20 25public class 矩阵连乘{public static void main(String[] args) {Scanner sc = new Scanner(System.in);int n = sc.nextInt();int[] p = new int[n + 1];for (int i = 0; i < p.length; i++) {p[i] = sc.nextInt();}int m[][] = new int[n+1][n+1];int s[][] = new int[n+1][n+1];m(p, m, s);t(s, 1, n);}public static void m(int[]p, int[][] m, int[][] s) {int n = p.length - 1;for (int i = 1; i<= n; i++)m[i][i] = 0;for (int r = 2; r <= n; r++)for (int i = 1; i <= n - r + 1; i++) {int j = i + r - 1;m[i][j] = m[i + 1][j] + p[i - 1] * p[i] * p[j];s[i][j] = i;for (int k = i + 1; k < j; k++) {int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];if (t < m[i][j]) {m[i][j] = t;s[i][j] = k;}}}}public static void t(int[][] s, int i, int j) {if (i == j)System.out.print("A" + i);else if (i + 1 == j)System.out.print("(A" + i + "A" + j + ")");else {System.out.print("(");t(s, i, s[i][j]);t(s, s[i][j] + 1, j);System.out.print(")");}}}//0-1背包问题的自底向上非递归的动态规划算法。
矩阵连乘问题(内附动态规划算法代码)

矩阵连乘问题(内附动态规划算法代码)矩阵连乘问题若矩阵A是⼀个p*q的矩阵,B是⼀个q*r的矩阵,则C=AB,是⼀个p*r的矩阵,需进⾏pqr次数乘计算。
存在{A1,A2,A3}三个矩阵,维数分别为100*5,5*50,50*10。
若直接相乘,A1*A2*A3,则需要进⾏n=100*5*50+100*50*10=25000+50000=75000次数乘计算。
如果我们调整运算顺序,A1*(A2*A3),则需要进⾏n=5*50*10+100*5*10=2500+5000=7500次数乘计算。
由此可见,当进⾏矩阵连乘运算时,加括号的⽅式,即计算次序对计算量有很⼤的影响。
代码展⽰:1 #include<iostream>23using namespace std;4/*5⾃底向上的推出矩阵连乘的最优解6先从两个矩阵相乘开始,⽽后三个矩阵相乘,四个......直到推出⽬标长度的最优解,即假设⼀个矩阵链,初始长度为2,算出所有相邻矩阵相乘的计算次数,⽽后使其长度为3...4...直到⽬标长度 7状态转移⽅程:8 m[i][j]=min {m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j]} i<=k<j i<j9 m[i][j]=0 i==j;10*/11#define LEN 5 //矩阵个数12//矩阵连乘函数,找到最优解13void MatrixChain(int *p, int m[][LEN + 1], int s[][LEN + 1]) {14for (int i = 0; i < LEN + 1; i++) m[i][i] = 0; //初始化,对⾓线元素置零,即当矩阵链长度为1时(只有⼀个矩阵)不⽤乘,为零15for (int r = 2; r <= LEN; r++) { //r表⽰矩阵链的长度,从2开始,两个矩阵相乘,⽽后3...4...5...16for (int i = 1; i <= LEN - r + 1; i++) { //i是矩阵链的⾸个矩阵,⼩于矩阵个数减矩阵链长度加⼀17int j = i + r - 1; //j是矩阵链的最后⼀个元素18 m[i][j] = m[i][i] + m[i + 1][j] + p[i - 1] * p[i] * p[j]; //m[i][j]是⼦结构,从最左边开始推19 s[i][j] = i; //标记断开的位置20for (int k = i + 1; k < j; k++) { //k是i和j直接的断开点,是在i和j之间的⼦结构,通过k的循环找到最优的解21int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j]; //状态转移⽅程22if (t < m[i][j]) {23 m[i][j] = t; //更新最优解24 s[i][j] = k; //更新断开点25 }26 }27 }28 }29 }3031//回溯函数,根据s[i][j]数组标记的位置,回溯找到断开的位置32void Traceback(int i, int j, int s[][LEN + 1]) {33if (i == j) { //当i与j相等说明回溯到该矩阵的位置了34 cout << "A" << i;35 }36else {37 cout << "(";38 Traceback(i, s[i][j], s); //从尾往头回溯39 Traceback(s[i][j] + 1, j, s); //从断点往后回溯40 cout << ")";41 }42 }43//输出函数44void output(int t[][LEN + 1]) {45for (int i = 1; i <= LEN; i++) {46for (int j = 1; j <= LEN; j++) {47 cout << "" << t[i][j] << "";48 }49 cout << endl;50 }51 }52int main(void) {53int p[LEN + 1] = { 6,8,9,3,4,10 }; //矩阵的维度分别是2*3,3*4,4*5,5*6,6*7,LEN+1个数表⽰LEN个矩阵54int m[LEN + 1][LEN + 1] = { 0 }; //记录最优⼦结构的⼆维数组55int s[LEN + 1][LEN + 1] = { 0 }; //记录最优解对应的括号的位置5657 MatrixChain(p, m, s);5859 cout << endl;60 output(m);61 cout << endl;62 output(s);63 cout << endl;64 cout << "outcome:" <<endl;65 Traceback(1, LEN, s);66 cout << endl;6768return0;69 }运⾏结果:与备忘录⽅法的区别:我们使⽤的动态规划⽅法中其实融⼊了备忘录的⼀些东西,我们的m和s数组都是⽤来记录的,所以备忘录⽅法与我们使⽤的⽅法类似,不同在于,我们是⾃底向上的,⽽备忘录⽅法是⾃顶向下的进⾏。
矩阵连乘备忘录算法

湖南涉外经济学院计算机科学与技术专业《算法设计与分析》课程矩阵连乘备忘录算法实验报告班级:学号:姓名:教师:成绩:2012年5月【实验目的】1 掌握动态规划算法和备忘录方法;2 利用动态规划备忘录思想实现矩阵连乘;3 分析实验结果,总结算法的时间和空间复杂度。
思考是否能将算法的时间复杂度提高到O(nlgn)【系统环境】Windows 07 平台【实验工具】VC++6.0中文企业版【问题描述】描述:给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1可乘的,i=1,2,…,n-1。
找出这个n个矩阵的连乘A1A2…An所需相乘的最少次数的方式。
例:矩阵连乘积A1A2A3A4可以有一下五种不同的完全加括号方式:(A1(A2(A3A4)))(A1((A2A3)A4))((A1A2)(A3A4))((A1(A2A3))A4)(((A1A2)A3)A4)【实验原理】原理:1、矩阵连乘满足结合律,且不同的结合方式,所需计算的次数不同。
2、利用备忘录方法,用表格保存以解决的子问题答案,降低重复计算,提高效率。
思路:m初始化为0,表示相应的子问题还位被计算。
在调用LookupChain时,若m[i][j]>0,则表示其中储存的是所要求子问题的计算结果,直接返回此结果即刻。
否则与直接递归算法一样,自顶而下的递归计算,并将计算结果存入m[i][j]后返回。
因此,LookupChain总能返回正确的值,但仅在它第一次被调用时计算,以后调用就直接返回计算结果。
方法:用MemorizedMatrixChain函数将已经计算的数据存入表中,用LookupChain函数配合MemorizedMatrixChain函数递归调用计算。
【源程序代码】#include<stdio.h>#include<stdlib.h>#include<ctime>#define N 10int p[N],m[N][N],s[N][N];int LookupChain(int i,int j);//备忘录算法函数int MemorizedMatrixChain(int n,int **m,int **s){for(int i=1;i<=n;i++)for(int j=i;j<=n;j++)m[i][j]=0;return LookupChain(1,n);}//递归调用函数int LookupChain(int i,int j){if(m[i][j]>0)return m[i][j];if(i==j)return 0;int u=LookupChain(i,i)+LookupChain(i+1,j)+p[i-1]*p[i]*p[j];s[i][j]=i;for(int k=i+1;k<j;k++){int t=LookupChain(i,k)+LookupChain(k+1,j)+p[i-1]*p[k]*p[j];if(t<u){u=t;s[i][j]=k;}}m[i][j]=u;return u;}//输出格式函数void Print(int s[][N],int i,int j){if(i==j){printf("A");printf("%d",i);}else如有帮助,欢迎支持。
算法分析与设计 矩阵连乘问题

动态规划基本步骤
• 找出最优解的性质,并刻划其结构特征。 • 递归地定义最优值。 • 以自底向上的方式计算出最优值。 • 根据计算最优值时得到的信息,构造最优
解。
3.1 矩阵连乘问题
给定n个矩阵 {A1, A2 ,...,, A其n}中 与 是Ai 可乘Ai1
的, i 1,2,...,。n 考1 察这n个矩阵的连乘积
for (int i = 1; i <= n - r+1; i++) {//1<=i<j<=n
int j=i+r-1;
m[i][j] = m[i+1][j]+ p[i-1]*p[i]*p[j]; //k==i
s[i][j] = i;
for (int k = i+1; k < j; k++) {// i<k<j
例如:
A1 A2 A3 A4 A5 A6 3035 3515 155 510 1020 2025
m[2][5]
min
m[2][2] m[3][5] m[2][3] m[4][5]
p1 p2 p5 p1 p3 p5
0 2500 35 2625 1000
15 35 5
20 20
P(nP)是(n)随n的kn11增P长(k)呈1P(指n 数k增) 长nn 。11 P(n) (4n / n3/2)
3.1 矩阵连乘问题
穷举法 动态规划
将矩阵连乘积 Ai Ai1... Aj 简记为A[i:j] ,这里i≤j
考察计算A[i:j]的最优计算次序。设这个计算次序在矩阵 Ak和Ak+1之间将矩阵链断开,i≤k<j,则其相应完全
矩阵连乘算法

矩阵连乘算法
矩阵连乘是指将多个矩阵相乘的计算过程。
例如,对于三个矩阵A,B,C,其连乘结果可以表示为:A x B x C。
矩阵连乘算法是一个动态规划算法,用于寻找最优的矩阵连乘顺序,从而实现最小化矩阵乘法的操作次数。
该算法的基本思想是从最小的子问题开始逐步递推,找到最佳的矩阵连乘顺序。
具体实现过程如下:
1. 定义一个二维数组m[][],其中m[i][j]表示从第i个矩阵到第j个矩阵的最小操作次数。
2. 对于每个长度为1的子序列,即i=j的情况,m[i][j]=0。
3. 对于每个长度大于1的子序列,即i<j的情况,计算m[i][j]的值,其中k是一个中间点,它将序列分为两个子序列:i到k和k+1到j。
用以下公式更新
m[i][j]的值:
m[i][j] = min{m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j]}
其中p[]为矩阵的维数,p[i-1]表示第i个矩阵的行数,p[i]表示第i个矩阵的列
数,p[j]表示第j个矩阵的列数。
4. 最后,m[1][n]的值即为矩阵连乘的最小操作次数。
该算法的时间复杂度为O(n^3),其中n为矩阵的个数。
矩阵连乘(dp)

矩阵连乘(dp)先总结⼀个模板(矩阵连乘,最⼩连乘次数,当然,很简单就可以推出来)//useNum 从 1 到 len,每连续的三个构成⼀个乘法int solve(int len){memset(dp,0,sizeof(dp));for(int r =2; r <= len; r++){for(int i =1; i <= len - r +1; i++){int j = i + r -1;dp[i][j]= maxn;for(int k = i; k < j; k++){int q = dp[i][k]+ dp[k +1][j]+ useNum[i]* useNum[k +1]* useNum[j +1];if(q < dp[i][j]){dp[i][j]= q;}}}}return dp[1][len];}矩阵连乘时间限制: 1 Sec 内存限制: 128 MB题⽬描述给定n个矩阵{A1,A2,…,An},及m个矩阵连乘的表达式,判断每个矩阵连乘表达式是否满⾜矩阵乘法法则,如果满⾜,则计算矩阵的最⼩连乘次数,如果不满⾜输出“MengMengDa“。
输⼊输⼊数据由多组数据组成(不超过10组样例)。
每组数据格式如下:第⼀⾏是2个整数n (1≤n≤26)和m(1≤m≤3),表⽰矩阵的个数。
接下来n⾏,每⾏有⼀个⼤写字母,表⽰矩阵的名字,后⾯有两个整数r和c,分别表⽰该矩阵的⾏数和列数,其中1<r, c<100。
第n+1⾏到第n+m⾏,每⾏是⼀个矩阵连乘的表达式(2<=矩阵个数<=100)。
输出对于每个矩阵连乘表达式,如果运算不满⾜矩阵乘法法则的情况(即左矩阵列数与右矩阵的⾏数不同),则输出“MengMengDa”,否则输出最⼩矩阵连乘次数。
数据保证结果不超过1e9。
样例输⼊3 2A 10 100B 5 50C 100 5ACBABC样例输出7500MengMengDa代码实现#include<iostream>#include<cstring>using namespace std;const int maxn =0x3f3f3f3f;struct node {int x, y;char username;} a[300];int dp[110][110];int useNum[300];char use[300];int solve(int len){memset(dp,0,sizeof(dp));for(int r =2; r <= len; r++){for(int i =1; i <= len - r +1; i++){int j = i + r -1;dp[i][j]= maxn;for(int k = i; k < j; k++){int q = dp[i][k]+ dp[k +1][j]+ useNum[i]* useNum[k +1]* useNum[j +1];if(q < dp[i][j]){dp[i][j]= q;}}}}return dp[1][len];}int main(){int n, m;while(cin >> n >> m){for(int i =1; i <= n; i++){cin >> a[i].username >> a[i].x >> a[i].y;}while(m--){bool flag =1;memset(use,0,sizeof(use));cin >> use;int len =strlen(use);int useIndex =0;for(int i =1; i <= len; i++){if(a[i].username == use[0]){useNum[++useIndex]= a[i].x;useNum[++useIndex]= a[i].y;}}int key;for(int k =1; k < len; k++){for(int i =1; i <= n; i++){if(use[k]== a[i].username){key = i;break;}}if(a[key].x == useNum[useIndex]){useNum[++useIndex]= a[key].y;}else{flag =0;break;}}// for (int i=1;i<=len;i++){// cout << useNum[i] << " ";// }if(!flag){cout <<"MengMengDa"<< endl;}else{cout <<solve(len)<< endl;}}}return0;}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南涉外经济学院计算机科学与技术专业
《算法设计与分析》课程
矩阵连乘备忘录算法
实验报告
班级:
学号:
姓名:
教师:
成绩:
2012年5月
【实验目的】
1 掌握动态规划算法和备忘录方法;
2 利用动态规划备忘录思想实现矩阵连乘;
3 分析实验结果,总结算法的时间和空间复杂度。
思考是否能将算法的时间复杂度提高到
O(nlgn)
【系统环境】
Windows 07 平台
【实验工具】
VC++6.0中文企业版
【问题描述】
描述:给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1可乘的,i=1,2,…,n-1。
找出这个n个矩阵的连乘A1A2…An所需相乘的最少次数的方式。
例:矩阵连乘积A1A2A3A4可以有一下五种不同的完全加括号方式:
(A1(A2(A3A4)))
(A1((A2A3)A4))
((A1A2)(A3A4))
((A1(A2A3))A4)
(((A1A2)A3)A4)
【实验原理】
原理:1、矩阵连乘满足结合律,且不同的结合方式,所需计算的次数不同。
2、利用备忘录方法,用表格保存以解决的子问题答案,降低重复计算,提高效率。
思路:m初始化为0,表示相应的子问题还位被计算。
在调用LookupChain时,若m[i][j]>0,则表示其中储存的是所要求子问题的计算结果,直接返回此结果即刻。
否则与直接递归算法一样,自顶而下的递归计算,并将计算结果存入m[i][j]后返回。
因此,LookupChain总能返回正确的值,但仅在它第一次被调用时计算,以后调用就直接返回计算结果。
方法:用MemorizedMatrixChain函数将已经计算的数据存入表中,用LookupChain函数配合MemorizedMatrixChain函数递归调用计算。
【源程序代码】
#include<stdio.h>
#include<stdlib.h>
#include<ctime>
#define N 10
int p[N],m[N][N],s[N][N];
int LookupChain(int i,int j);
//备忘录算法函数
int MemorizedMatrixChain(int n,int **m,int **s)
{
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++)
m[i][j]=0;
return LookupChain(1,n);
}
//递归调用函数
int LookupChain(int i,int j)
{
if(m[i][j]>0)
return m[i][j];
if(i==j)
return 0;
int u=LookupChain(i,i)+LookupChain(i+1,j)+p[i-1]*p[i]*p[j];
s[i][j]=i;
for(int k=i+1;k<j;k++)
{
int t=LookupChain(i,k)+LookupChain(k+1,j)+p[i-1]*p[k]*p[j];
if(t<u)
{
u=t;
s[i][j]=k;
}
}
m[i][j]=u;
return u;
}
//输出格式函数。