随机信号上机实验报告

合集下载

随机信号实验报告材料(实用模板)(1)

随机信号实验报告材料(实用模板)(1)

随机信号实验报告学院通信工程学院专业信息工程班级1401051班制作人文杰14010510039 制作人晓鹏14010510003一、 摘要根据实验的要求与具体容,我们组做了一下分工,XXX 完成了本次的第一组实验即基于MATLAB 的信号通过线性系统与非线性系统的特性分析,具体容有(高斯白噪声n ,输入信号x ,通过线性与非线性系统的信号a,b,y1,y2的均值,均方值,方差,自相关函数,概率密度,功率谱密度以及频谱并把它们用波形表示出来),XXX 和XXX 两人合力完成了基于QUARTUS II 的2ASK 信号的产生及测试实验具体容有(XXX 负责M 序列发生器以及分频器,XXX 负责载波的产生以及开关函数和管脚配置),最后的示波器调试以及观察2ASK 信号的FFT 变换波形由我们组所有人一起完成的。

二、实验原理及要求实验一、信号通过线性系统与非线性系统的特性分析1、实验原理① 随机过程的均值(数学期望):均值E[x(t)](μ)表示集合平均值或数学期望值。

基于随机过程的各态历经性,可用时间间隔T 的幅值平均值表示,即:∑-==10/)()]([N t Nt x t x E均值表达了信号变化的中心趋势,或称之为直流分量。

② 随机过程的均方值:信号x(t)的均方值E[x2(t)](2ϕ),或称为平均功率,其表达式为:Nt x t x E N t /)()]([(122∑-==均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。

③ 随机信号的方差:信号x(t)的方差定义为:Nt x E t x N t /)]]([)([1022∑-=-=σ2σ称为均方差或标准差。

可以证明,222μϕσ+= 其中:2σ描述了信号的波动量;2μ 描述了信号的静态量,方差反映了信号绕均值的波动程度。

在已知均值和均方值的前提下,方差就很容易求得了。

④随机信号的自相关函数信号的相关性是指客观事物变化量之间的相依关系。

哈工大随机信号实验报告

哈工大随机信号实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:随机信号分析院系:电信学院班级: 1205201 姓名:学号:指导教师:郑薇实验时间: 2014年 11月哈尔滨工业大学实验一 各种分布随机数的产生一、 实验目的在很多系统仿真的过程中,需要产生不同分布的随机变量。

利用计算机可以很方便地产生不同分布的随机变量,各种分布的随机变量的基础是均匀分布的随机变量。

有了均匀分布的随机变量,就可以用函数变换等方法得到其他分布的随机变量。

二、 实验内容产生均匀分布的随机数、高斯分布的随机数和其它分布的随机数。

三、 实验原理1. 均匀分布随机数的产生原理产生伪随机数的一种实用方法是同余法,它利用同余运算递推产生伪随机数序列。

最简单的方法是加同余法)(m od 1M c y y n n +=+My x n n 11++=为了保证产生的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。

加同余法虽然简单,但产生的伪随机数效果不好。

另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布的随机数)(m od 1M ay y nn =+M y x n n 11++=式中,a 为正整数。

用加法和乘法完成递推运算的称为混合同余法,即)(m od 1M c ay y n n +=+My x n n 11++=用混合同余法产生的伪随机数具有较好的特性,一些程序库中都有成熟的程序供选择。

常用的计算语言如Basic 、C 和Matlab 都有产生均匀分布随机数的函数可以调用,只是用各种编程语言对应的函数产生的均匀分布随机数的范围不同,有的函数可能还需要提供种子或初始化。

Matlab 提供的函数rand()可以产生一个在[0,1]区间分布的随机数,rand(2,4)则可以产生一个在[0,1]区间分布的随机数矩阵,矩阵为2行4列。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。

随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。

实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。

实验原理:随机信号可以分为离散随机信号和连续随机信号。

离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。

常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。

实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。

实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。

2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。

3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。

4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。

5.计算统计特性:计算随机信号的均值、方差等统计特性。

6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。

实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。

通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。

通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。

通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。

结论:本实验通过对随机信号的分析,加深了对随机信号的理解。

通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。

2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。

随机信号分析上机实验指导书(金科院新版)

随机信号分析上机实验指导书(金科院新版)

目录实验1 随机信号的计算机仿真(验证性实验) (1)实验2 随机信号平稳性分析(验证性实验) (5)实验3 高斯白噪声通过线性系统分析(综合实验) (6)实验4 窄带随机过程仿真分析 (验证性实验) (13)实验1 随机信号的计算机仿真(验证性实验)一、实验目的(1)掌握均匀分布随机信号产生的常用方法。

(2)掌握高斯分布随机信号的仿真,并对其数字特征进行估计。

(3)了解随机过程特征估计的基本概念和方法,学会运用 Matlab 函数对随机过程进行特征估计,并且通过实验了解不同估计方法所估计出来结果之间的差异。

二、实验原理无论是系统数学模型的建立,还是原始实验数据的产生,最基本的需求就是产生一个所需分布的随机变量。

各种分布的随机变量的基础是均匀分布的随机变量。

有了均匀分布的随机变量,就可以用函数变换等方法得到其他分布的随机变量。

1.均匀分布随机信号的产生利用混合同余法产生均匀分布的随机数,并显示所有的样本。

(mod )n n y ay c M =+ 11n n x y M +=+ 2.高斯分布随机信号的仿真若X 是分布函数为F(x)的随机变量,且分布函数F(x)为严格单调升函数,令Y=F(x),则Y 必是在[0,1]上均匀分布的随机变量。

反之,若Y 是在[0,1]上均匀分布的随机变量,那么1()X F Y -= (1)就是分布函数为F(x)的随机变量。

这样,欲求某个分布的随机变量,先产生[0,1]区间上的均匀分布随机数,在经过(1)的变换,便可以求得所需要分布的随机数。

利用函数变换法产生高斯分布的随机数的方法:如果X1、X2是两个互相独立的均匀分布随机数,那么下式给出的Y1、Y2就是数学期望为m ,方差为2s 的高斯分布随机数m X X Y +-=)2cos(ln 2211πσ m X X Y +-=)2s i n (ln 2212πσ 3.均值的估计11ˆN x n n m x N -==å 4.方差的估计方差估计有两种情况,如果均值x m 已知,则()12201ˆN xn x n x m N s -==-å 如果均值未知,那么()12201ˆˆ1N xn x n x m N s -==--å5. 相关函数估计11ˆ()N m xn m n n R m x x N m--+==-å6. 功率谱估计功率谱的估计有几种方法,此处介绍自相关法: 先求相关函数的估计,11ˆ()N m xn m n n R m x x N m--+==-å然后对估计的相关函数做傅立叶变换,1(1)ˆ()()N jm xx m N G R m e ww +-=--=åMATLAB 有许多估计数字特征的统计函数: (1)均值与方差mean(A),返回序列的均值,序列用矢量 A 表示。

随机信号分析上机实验指导书

随机信号分析上机实验指导书

目录实验1 离散随机变量的仿真与计算(验证性实验) (1)实验2 离散随机信号的计算机仿真(验证性实验) (5)实验3 随机信号平稳性分析(验证性实验) (8)实验4 实验数据分析(综合性实验) (10)实验5 窄带随机过程仿真分析 (验证性实验) (11)实验6 高斯白噪声通过线性系统分析(综合实验) (13)实验1 离散随机变量的仿真与计算(验证性实验)一、实验目的掌握均匀分布的随机变量产生的常用方法。

掌握由均匀分布的随机变量产生任意分布的随机变量的方法。

掌握高斯分布随机变量的仿真,并对其数字特征进行估计。

二、实验步骤无论是系统数学模型的建立,还是原始实验数据的产生,最基本的需求就是产生一个所需分布的随机变量。

比如在通信与信息处理领域中,电子设备的热噪声,通信信道的畸变,图像中的灰度失真等都是遵循某一分布的随机信号。

在产生随机变量时候,虽然运算量很大,但是基本上都是简单的重复,利用计算机可以很方便的产生不同分布的随机变量。

各种分布的随机变量的基础是均匀分布的随机变量。

有了均匀分不得阿随机变量,就可以用函数变换等方法得到其他分布的随机变量。

1.均匀分布随机数的产生利用混合同余法产生均匀分布的随机数,并显示所有的样本,如图1所示。

yn+1=ayn+c (mod M)xn+1=yn+1/M2.高斯分布随机数的仿真根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。

若X 是分布函数为FX (x )的随机变量,且分布函数FX (x )为严格单调升函数,令Y=FX (x ),则Y 必是在[0,1]上均匀分布的随机变量。

繁殖,若Y 是在[0,1]上均匀分布的随机变量,那么X=F-1X(Y) (1.4.5)就是分布函数为FX (x )的随机变量。

这样,欲求某个分布的随机变量,先产生[0,1]区间上的均匀分布随机数,在经过(1.4.5)的变换,便可以求得所需要分布的随机数,产生指数分布的随机数 fX(x)=ae-ax Y=FX(X)=1-e-aX X=-ln(1-Y)/a利用函数变换法产生高斯分布的随机数的方法:图1-1生成均匀分布随机数的结果如果X1X2是两个互相独立的均匀分布随机数,那么下式给出的Y1Y2就是数学期望为m ,方差为σ2的高斯分布随机数mX X Y +-=)2cos(ln 2211πσmX X Y +-=)2s i n (ln 2212πσ生成高斯分布随机数的结果如图1-2所示:3.随机变量数字特征的计算(均值)在很多情况下我们不能得到随机变量所有的样本,只能利用部分样本来获得随机变量数字特征的估计值。

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

随机过程上机实验报告讲解

随机过程上机实验报告讲解

2015-2016第一学期随机过程第二次上机实验报告实验目的:通过随机过程上机实验,熟悉Monte Carlo计算机随机模拟方法,熟悉Matlab的运行环境,了解随机模拟的原理,熟悉随机过程的编码规律即各种随机过程的实现方法,加深对随机过程的理解。

上机内容:(1 )模拟随机游走。

(2)模拟Brown运动的样本轨道。

(3)模拟Markov过程。

实验步骤:(1)给出随机游走的样本轨道模拟结果,并附带模拟程序。

①一维情形%—维简单随机游走% “从0开始,向前跳一步的概率为p,向后跳一步的概率为1-p”n=50;p=0.5;y=[0 cumsum(2.*(rand(1,n-1)v=p)-1)]; % n 步。

plot([0:n-1],y); %画出折线图如下。

w%一维随机步长的随机游动%选取任一零均值的分布为步长,比如,均匀分布。

n=50;x=rand(1,n)-1/2;y=[0 (cumsum(x)-l)];plot([0:n],y);②二维情形%在(u, v)坐标平面上画出点(u(k), v(k)), k=1:n,其中(u(k)) 和(v(k))是一维随机游动。

例%子程序是用四种不同颜色画了同一随机游动的四条轨道。

n=100000;colorstr=['b' 'r' 'g' 'y'];for k=1:4z=2.*(rand(2,n)<0.5)-1;x=[zeros(1,2); cumsum(z')];col=colorstr(k);plot(x(:,1),x(:,2),col);③%三维随机游走 ranwalk3dp=0.5;n=10000; colorstr=['b' 'r' 'g' 'y'];for k=1:4z=2.*(rand(3,n)v=p)-1; x=[zeros(1,3); cumsum(z')];col=colorstr(k);plot3(x(:,1),x(:,2),x(:,3),col);hold on end gridhold onendgrid4:04003?0-200-300-400-2OD20050、-100-200 -20D⑵给出一维,二维Brown运动和Poisson过程的模拟结果,并附带模拟程序,没有结果的也要把程序记录下来。

2011秋随机信号实验报告模板

2011秋随机信号实验报告模板

实验一一、实验目的熟悉并练习使用Matlab 的函数,明确各个函数的功能说明和内部参数的意义二、实验内容和步骤实验代码:A = [1 2 3; 3 3 6; 4 6 8; 4 7 7];rand(3)randn(3)n3 = normrnd([1 2 3;4 5 6],0.1,2,3)mean(A)mean(A,2)var(A)%%%xcorr%%%%%ww = randn(1000,1);[c_ww,lags] = xcorr(ww,10,'coeff');figure(7);stem(lags,c_ww) %%%%%%%%%%%%%%%%%%%%%%%%% %常用的傅立叶变换是找到在嘈杂的域%信号下掩埋了信号的频率成分。

%考虑数据采样在1000赫兹。

现有一信号%由以下部分组成,50赫兹振幅%为0.7的正弦和120赫兹振幅为1的正弦%并且受到一些零均值的随机噪声的污染%%%%%%%%%%%%%%%%%%%%%%%%% Fs = 1000; % 采样频率T = 1/Fs; % 采样时间L = 1000; % 信号长度t = (0:L-1)*T; % 时间矢量% 50赫兹正弦波与120赫兹正弦波的和x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t); y = x + 2*randn(size(t)); % 正弦波加噪声figure(6);plot(Fs*t(1:50),y(1:50)) %画此信号的时域图title('Signal Corrupted with Zero-Mean Random Noise')xlabel('time (milliseconds)')%这在寻找原始信号的频率成分上是很难%确定的。

转换到频域,噪音信号Y%的傅立叶变换采取快速傅立叶变换%(FFT):NFFT = 2^nextpow2(L); %y长度L附近%的幂级数Y = fft(y,NFFT)/L;f = Fs/2*linspace(0,1,NFFT/2+1); % 单边拉普拉斯变换plot(f,2*abs(Y(1:NFFT/2+1))) %画单边频谱图title('Single-Sided Amplitude Spectrum of y(t)')xlabel('Frequency (Hz)')ylabel('|Y(f)|') %%%%%%%%%%%%%%%%%%%%%%%%% mu = [0:0.1:2];[y i] = max(normpdf(1.5,mu,1));MLE = mu(i) %%%%%%%%%%%%%%%%%%%%%%%%% p = normcdf([-1 1]);p(2) - p(1) %%%%%%%%%%%%%%%%%%%%%%%%% x = 0.1:0.1:0.6;y = unifpdf(x) %%%%%%%%%%%%%%%%%%%%%%%%% probability = unifcdf(0.75) %%%%%%%%%%%%%%%%%%%%%%%%% x = 0:0.1:3;p = raylpdf(x,1);figure(5);plot(x,p) %%%%%%%%%%%%%%%%%%%%%%%%% x = 0:0.1:3;p = raylcdf(x,1);figure(4);plot(x,p) %%%%%%%%%%%%%%%%%%%%%%%%% y = exppdf(5,1:5) %%%%%%%%%%%%%%%%%%%%%%%%% mu = 10:10:60;p = expcdf(log(2)*mu,mu) %%%%%%%%%%%%%%%%%%%%%%%%% n = 5;X = pascal(n)R = chol(X)X(n,n) = X(n,n)-1 %%%%%%%%%%%%%%%%%%%%%%%%% x = [randn(30,1); 5+randn(30,1)];[f,xi] = ksdensity(x);figure(3);plot(xi,f); %%%%%%%%%%%%%%%%%%%%%%%%% x = -2.9:0.1:2.9;y = randn(10000,1);hist(y,x) %%%%%%%%%%%%%%%%%%%%%%%%% %求y=x*log(1+x)在[0 1]上的定积分,积分%变量为系统默认syms x;S=x.*log(1+x) Y=int(S,x,0,1) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 2 %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %(1)产生数学期望为0,方差为1 的高斯随机变量SIGMA=sqrt(1);n2 = normrnd(0,SIGMA,[2 5]) %两行五列数学期望为0,方差为1 的高斯随机变量%产生数学期望为5,方差为10 的高斯随机变量SIGMA=sqrt(10);n2 = normrnd(5,SIGMA,[2 5])%利用计算机求上述随机变量的100个样本的数学期望和方差n1 = normrnd(0,1,[1 100]);SIGMA=sqrt(10);n2 = normrnd(5,SIGMA,[1 100]);M1 = mean(n1)M2 = mean(n2)V1 = var(n1)V2 = var(n2) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 3 %%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %产生自由度为2,数学期望为2,方差为 4 的具有中心2χ分布的随机变量SIGMA=sqrt(2);n1 = normrnd(2,SIGMA);n2 = normrnd(2,SIGMA);y=(n1).^2+(n2).^2%产生自由度为2,数学期望为4,方差为12 的具有中心2χ分布的随机变量SIGMA=sqrt(12);n1 = normrnd(4,SIGMA);n2 = normrnd(4,SIGMA);y=(n1).^2+(n2).^2%利用计算机求上述随机变量的100个样本的数学期望和方差,并与理论值比较SIGMA=sqrt(2);n1 = normrnd(2,SIGMA,[1 100]);n2 = normrnd(2,SIGMA,[1 100]);y=(n1).^2+(n2).^2M1 = mean(y)V1 = var(y)SIGMA=sqrt(12);n1 = normrnd(2,SIGMA,[1 100]);n2 = normrnd(2,SIGMA,[1 100]);y=(n1).^2+(n2).^2M1 = mean(y)V1 = var(y) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 4 %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %利用Matlab 现有pdf 和cdf 函数,画出均值为零、方差为4 的%高斯随机变量的概率密度曲线和概率分布曲线x=-10:0.1:10;Y1 = normpdf(x,0,2);Y2=normcdf(x,0,2);figure(1);plot(x,Y1)figure(2);plot(x,Y2) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 5 %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %产生长度为1000 数学期望为5,方差为10 的高斯随机序列,%并根据该序列值画出其概率密度曲线。

随机信号

随机信号

clear all; N=500;
xt=random('norm',0,1,1,N); ht=fir1(101,[0.3 0.4]); HW=fft(ht,2*N); Rxx=xcorr(xt,'biased'); Sxx=abs(fft(xt,2*N).^2)/(2*N); HW2=abs(HW).^2; Syy=Sxx.*HW2; Ryy=fftshift(ifft(Syy)); w=(1:N)/N; t=(-N:N-1)/N*(N/20000); subplot(411);plot(w,abs(Sxx(1:N))); subplot(412);plot(w,abs(HW2(1:N))); subplot(413);plot(w,abs(Syy(1:N))); subplot(414);plot(t,Ryy); 分析:仿真结果与理论结果有一定的差异,这是因为使用了有限个样本。
clear all; N=20000; g=-5:0.01:5; G1=random('Normal',0,1,1,N); G2=random('Normal',0,1,1,N); G3=random('Normal',0,1,1,N); G4=random('Normal',0,1,1,N); R=sqrt(G1.*G1+G2.*G2); X2=G1.*G1+G2.*G2+G3.*G3+G4.*G4; subplot(311);hist(G1,g); subplot(312);hist(R,0:0.05:5); subplot(313);hist(X2,0:0.2:24); 分析: 可以看出随着自由度的增大和非中心分布参量的增大非中心分布的均值和 方差都有所增大。 做期望为 0,方差为 1 的高斯分布,求自相关函数,做功率谱

北京理工大学随机信号分析实验报告

北京理工大学随机信号分析实验报告

北京理工大学随机信号分析实验报告本科实验报告实验名称:随机信号分析实验实验一随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。

2、实现随机序列的数字特征估计。

二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。

实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=Ny x n n /=序列{}nx 为产生的(0,1)均匀分布随机数。

下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯;3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。

定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。

2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

大连理工大学随机信号实验报告完整

大连理工大学随机信号实验报告完整

大连理工大学实验预习报告学院(系):信息与通信工程学院专业:电子信息工程班级:姓名:学号:组:___实验时间:2015.12.14 实验室:C221 实验台:指导教师:实验I:随机信号的产生、相关分析及其应用实验实验1 均匀分布随机数的产生,统计特性分析及计算机仿真一、实验目的和要求掌握均匀分布随机信号的基本产生方法二、实验原理和内容较简单的伪随机序列产生方法是采用数论中基于数环理论的线性同余法(乘同余法、混合同余法),其迭代公式的一般形式为f(x) = (r·x+ b) Mod M,其离散形式为s(n + 1) = [r·s(n) + b] Mod M。

其中,s(n)为n 时刻的随机数种子,r 为扩展因子,b 为固定扰动项,M 为循环模,Mod M 表示对M 取模。

为保证s(n)的周期为M,r 的取值应满足r = 4k + 1,M 2p,k 与p的选取应满足:r < M,r(M-1) + 1< 231-1。

通常公式中参数常用取值为s(0) =12357,r = 2045,b = 1,M =1048576。

三、实验步骤1. 编程实现产生10000个在(0, 1)区间均匀分布随机数。

2. 计算生成随机数的1~4阶矩,最大值,最小值,频度直方图。

实验2 高斯分布随机数的产生,统计特性分析及计算机仿真一、实验目的和要求掌握高斯白噪声的基本产生方法二、实验原理和内容1.变换法2.较简单的高斯白噪声产生方法是基于概率论中的中心极限定理。

即无穷多个同分布随机变量之和构成随机变量服从高斯分布。

方便起见,可以使用多个均匀分布随机变量之和近似高斯分布随机变量。

三、实验步骤1.编程实现产生10000 个N(3, 4) 高斯随机数。

2.计算生成随机数的1~4 阶矩,最大值,最小值,频度直方图。

实验3 随机信号相关函数计算、相关分析及计算机仿真一、实验目的和要求掌握随机信号相关函数计算、相关分析及实现二、实验原理和内容根据自相关和互相关的定义,自相关,互相关计算随机信号的自相关和互相关。

随机过程上机实验报告-华中科技大学--HUST

随机过程上机实验报告-华中科技大学--HUST
流程图:
6、/*函数功能,计算任意分布的随机过程的均值
*/
double CMyRand::Ex(void)
{
double Ex = 0;
//添加均值计算代码
int i;
double sum=0;
for(i=0;i<500;i++)
sum+=AverageRandom(0,2);
Ex=sum/i;
return Ex;
Miu为均值,sigma为标准差
*/
double CMyRand::NormalRandom(double miu, double sigma, double min, double max)
{
double dResult;
dResult = 0;
int i,n;
double sum=0.0;
n=200;
我们在示波器界面上点击一个按钮它就会执行这个按钮所对应功能比如点击正态分布它就会调用crandomdlg中的对应凼数在调用cmyrand中的产生正态分布的凼数再将结果送到cscope类中迚行显示最后我们可以在示波器上看到图形

班级:通信1301班
姓名:郭世康
学号:U201313639
指导教师:卢正新
dResult=dResult*(max-min)+min;//将0~1之间的均匀分布通过乘以倍数放大到到min~max
return dResult;
}
输入参数为min,max,即均匀分布的范围。输出参数为dResult,即为随机序列。
流程图:
3、
/*函数功能,根据大数定律,在min到max范围内产生正态分布的随机数
流程图:

随机信号实验报告

随机信号实验报告

班级:姓名:学号:指导老师:时间:一、信号基本参数1.均值及方差由上图可以看出,该语音信号的能量不是很大,因其均值在0.12左右,方差在0.02左右,故波动不是很大;当加入信噪比为5的白噪声后,其均值明显增大,在0.48左右,说明噪声的能量远大于信号的能量,其方差在0.13左右,故波动很大。

由此看出,白噪声携带能量加大,且波动加大。

2.正态概率分布函数上图为语音信号各点的幅度的概率分布,它与语音信号分布差不多,它放映的是语音信号在各点的能量大小。

当语音信号在某时刻幅值越大,则其概率越大,反之,则越小。

3.自相关上图可以看出,该语音信号的自相关不是很大,因此该语音信号前后相关性不是很大,因此,在信号处理及通信中对信号处理要求不是很高;当加入噪声后,可以看出自相关有明显减小的痕迹,所以白噪声的自相关不大。

4.互相关上图为两个不同的语音信号的互相关,可以看出在前半段完全没有相关性,而在后半段有一定的相关性;当加入白噪声后,互相关增强,且前半段也没有相关性,说明有一语音信号前半段没有信号。

由两图比较可得,高斯白噪声的互相关较大。

二、信号加噪及提取5.信号加入确定噪声后加入确定噪声sin(17500*t)后,时域图上可以看出,振幅较小的语音信号完全被噪声淹没,从回放的声音中可以听到刺耳的噪声信号,从频谱图中也可以看出,在1800Hz左右,有明显的高峰,所含的能量远大于语音信号。

因此,可以用带阻滤波器滤除该噪声信号。

6.去除确定噪声信号sin()从上面两图可以看出,去噪后的频谱中没有高峰突起,确实去掉了噪声信号,从回放的声音中,也听不到刺耳的声音,是比较清晰地声音。

从频谱图中可以明显看到有凹下去的部分,是因为不是理想滤波器,必定会滤掉临近的很小的一部分信号,但并不会语音信号造成太大的影响。

采用的是巴特沃斯带阻滤波器,fp=1700Hz,fs=100Hz,当增大fs后,可以明显看到凹下去的部分增大;而改变fp后,就不能滤掉噪声信号。

随机信号分析上机实验

随机信号分析上机实验

《随机信号分析》上机实验实验一1、熟悉并练习使用下列Matlab的函数,给出各个函数的功能说明和内部参数的意义,并给出至少一个使用例子和运行结果:1)rand()2)randn()3)normrnd()4)mean()5)var()6)xcorr()7)periodogram()8)fft()9)normpdf()10)normcdf()11)unifpdf()12)unifcdf()13)raylpdf()14)raylcdf()15)exppdf()16)expcdf()17)chol()18)ksdensity()19)hist()20)int()2、产生高斯随机变量(1) 产生数学期望为0,方差为1的高斯随机变量;(2) 产生数学期望为5,方差为10的高斯随机变量;(3) 利用计算机求上述随机变量的100个样本的数学期望和方差,并与理论值比较;χ分布的随机变量3、产生2χ分布的随机变量;(1) 产生自由度为2,数学期望为2,方差为4的具有中心2χ分布的随机变量;(2) 产生自由度为2,数学期望为4,方差为12的具有非中心2(3) 利用计算机求上述随机变量的100个样本的数学期望和方差,并与理论值比较;4、利用Matlab现有pdf和cdf函数,画出均值为零、方差为4的高斯随机变量的概率密度曲线和概率分布曲线。

5、产生长度为1000数学期望为5,方差为10的高斯随机序列,并根据该序列值画出其概率密度曲线。

(不使用pdf函数)6、利用Matlab求随机变量的统计特性1)参照上述例题,求:2)参照上述例题,求:2Y X =的数学期望和方差。

实验二1、产生一组(0,1)均匀分布的白噪声序列,画出其自相关函数和功率谱密度;2、产生一组服从()~2,5N 的正态白噪声序列,画出其自相关函数和功率谱密度;3、估计随机过程()()()()cos 600cos 640X t t t N t ππ=++的自相关函数和功率谱,其中()N t 服从()~0,1N 的高斯分布。

随机信号实验报告(微弱信号的提取)

随机信号实验报告(微弱信号的提取)

微弱信号的检测提取及分析1.实验目的⑴了解随机信号分析理论如何在实践中应用。

⑵了解随机信号自身的特性,包括均值(数学期望)、方差、概率密度、相关函数、频谱及功率谱密度等。

⑶掌握随机信号的检测及分析方法。

⒉实验原理⑴随机信号的分析方法在信号系统中,我们可以把信号分成两大类——确知信号和随机信号。

确知信号具有一定的变化规律,因而容易分析,而随机信号无确知的变化规律,需要用统计特性进行分析。

我们在这里引入了随机过程的概念。

所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。

随机过程可分为平稳的和非平稳的、遍历的和非遍历的。

如果随机信号的统计特性不随时间的推移而变化,则随机信号是平稳的。

如果一个平稳的随机过程它的任意一个样本都具有相同的统计特性,则随机过程是遍历的。

我们下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,我们可以取随机过程的一个样本来描述随机过程的统计特性。

随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,它们能够对随机过程作完整的描述。

但是由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。

以下算法都是一种估计算法,条件是N要足够大。

⑵微弱随机信号的检测及提取方法因为噪声总是会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下微弱信号的提取又是信号检测的难点,其目的就是消除噪声,将有用的信号从强噪声背景中提取出来,或者用一些新技术和新方法来提高检测系统输出信号的信噪比。

噪声主要来自于检测系统本身的电子电路和系统外的空间高频电磁场干扰等,通常从两种不同的途径来解决:①降低系统的噪声,使被测信号功率大于噪声功率,达到信噪比S /N > 1 。

②采用相关接收技术,可以保证在被测信号功率< 噪声功率的情况下,仍能检测出信号。

随机信号分析报告实验:随机过程通过线性系统地分析报告

随机信号分析报告实验:随机过程通过线性系统地分析报告

实验三 随机过程通过线性系统的分析实验目的1. 理解和分析白噪声通过线性系统后输出的特性。

2. 学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。

实验原理1.白噪声通过线性系统设连续线性系统的传递函数为)(ωH 或)(s H ,输入白噪声的功率谱密度为2)(0N S X =ω,那么系统输出的功率谱密度为2)()(02N H S Y ⋅=ωω (3.1) 输出自相关函数为⎰∞∞-=ωωπτωτd e H N R j Y 20)(4)( (3.2)输出相关系数为)0()()(Y Y Y R R ττγ=(3.3) 输出相关时间为⎰∞=00)(ττγτd Y (3.4)输出平均功率为[]⎰∞=202)(2)(ωωπd H N t Y E (3.5)上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性)(ωH 决定,不再是常数。

2.等效噪声带宽在实际中,常常用一个理想系统等效代替实际系统的)(ωH ,因此引入了等效噪声带宽的概念,他被定义为理想系统的带宽。

等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。

实际系统的等效噪声带宽为⎰∞=∆022max)()(1ωωωωd H H e (3.6)或⎰∞∞--=∆j j e ds s H s H H j )()()(212maxωω (3.7)3.线性系统输出端随机过程的概率分布 (1)正态随机过程通过线性系统若线性系统输入为正态过程,则该系统输出仍为正态过程。

(2)随机过程的正态化随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。

任意分布的白噪声通过线性系统后输出是服从正态分布的;宽带噪声通过窄带系统,输出近似服从正态分布。

实验内容设白噪声通过图3.1所示的RC 电路,分析输出的统计特性。

图3.1 RC 电路(1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。

哈尔滨工业大学(威海)随机信号分析实验一报告

哈尔滨工业大学(威海)随机信号分析实验一报告

《随机信号分析》实验报告班级: 1302502学号:姓名:《随机信号分析》实验报告实验一一、实验目的:熟悉并练习使用随机信号Matlab的函数二、实验内容:1、熟悉并练习使用下列Matlab 的函数,给出各个函数的功能说明和内部参数的意义,并给出至少一个使用例子和运行结果:1)rand() 11)unifpdf()2)randn() 12)unifcdf()3)normrnd() 13)raylpdf()4)mean() 14)raylcdf()5)var() 15)exppdf()6)xcorr() 16)expcdf()7)periodogram() 17)chol()8)fft()18)ksdensity()9)normpdf() 19)hist()10)normcdf() 20)int()用法、功能、程序如下:1)randn(m,n)功能:返回一个从标准正态分布中得到的伪随机标量。

>> r = randn(5) %由标准正态分布随机数组成的5×5 矩阵。

r =-1.0689 -0.7549 0.3192 0.6277 -1.2141-0.8095 1.3703 0.3129 1.0933 -1.1135-2.9443 -1.7115 -0.8649 1.1093 -0.00681.4384 -0.1022 -0.0301 -0.8637 1.53260.3252 -0.2414 -0.1649 0.0774 -0.76972)rand(m,n)功能:返回一个从开区间(0,1) 上的标准均匀分布得到的伪随机标量。

r = rand(5) %生成一个由介于0 和1 之间的均匀分布的随机数组成的5×5 矩阵>>r =0.5469 0.9572 0.9157 0.8491 0.39220.9575 0.4854 0.7922 0.9340 0.65550.9649 0.8003 0.9595 0.6787 0.17120.1576 0.1419 0.6557 0.7577 0.70600.9706 0.4218 0.0357 0.7431 0.03183)normrnd(mu,sigma,m,n)功能:以均值μ和标准差σ为参数的正态分布随机数mxn>> normrnd(0,1,3,4) %生成均值μ=0,σ=1的3x4正态分布随机数ans =0.2761 0.3919 -0.7411 0.0125-0.2612 -1.2507 -0.5078 -3.02920.4434 -0.9480 -0.3206 -0.45704)mean(A,dim)功能:数组的平均值mean(A,dim) dim=1,返回列平均数,默认为1dim=2,返回列平均数dim>2,返回AA = [0 1 1; 2 3 2; 1 3 2; 4 2 2] %M = mean(A) 沿A 的大小不等于1 的第一个数组维度返回均值。

《随机信号分析与处理》实验报告完整版GUI内附完整函数代码

《随机信号分析与处理》实验报告完整版GUI内附完整函数代码

《随机信号分析与处理》实验报告指导教师:班级:学号:姓名:实验一熟悉MATLAB的随机信号处理相关命令一、实验目的1、熟悉GUI格式的编程及使用。

2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程二、实验原理1、语音的录入与打开在MATLAB中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y中,fs表示采样频率(Hz),bits 表示采样位数。

[N1 N2]表示读取从N1点到N2点的值。

2,均匀分布白噪声在matlab 中,有x=rand (a ,b )产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。

3、均值随机变量X 的均值也称为数学期望,它定义为对于离散型随机变量,假定随机变量X 有N个可能取值,各个取值的概率为则均值定义为上式表明,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。

4、方差定义为随机过程的方差。

方差通常也记为D 【X (t )】 ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。

5、自相关函数设任意两个时刻1t ,2t ,定义为随机过程X (t )的自相关函数,简称为相关函数。

自相关函数可正,可负,其绝对值越大表示相关性越强。

121212121212(,)[()()](,,,)X R t t E X t X t x x f x x t t dx dx +∞+∞-∞-∞==⎰⎰6.哈明(hamming)窗(10.100)(10.101)B = 1.3Δf,A = -43dB,D= -6dB/oct.哈明窗本质上和汉宁窗是一样的,只是系数不同。

哈明窗比汉宁窗消除旁瓣的效果好一些而且主瓣稍窄,但是旁瓣衰减较慢是不利的方面。

四川大学随机信号分析实验报告

四川大学随机信号分析实验报告

随机信号分析基础实验报告课程随机信号分析基础实验题目随机信号通过线性系统学生姓名笔墨东韵专业电子信息科学与技术一、实验目的1.理解白噪声通过线性系统后统计特性的变化规律。

2.熟悉几种常用的时间序列。

二、实验内容1.白噪声通过线性系统后的统计特性分析。

(1)白噪声通过低通系统后的统计特性变化:对比输入输出的波形,自相关函数,功率谱密度,功率,互相关函数等;(2)白噪声通过不同带宽的低通系统后的概率密度;(3)窄带随机过程的产生与特性分析。

(调制,滤波)2.典型时间序列模型分析。

(1)模拟产生AR,ARMA模型序列,画出波形,并估计其均值,方差,自相关函数,功率谱密度;*(2)模拟产生指定功率密度的正态随机序列。

三、实验设备Matlab软件四、实验步骤以及实验结果分析1.白噪声通过线性系统后的统计特性分析。

>>l=(0:length(a2)-1)*200/length(a>>l=(0:length(a2)-1)*200/length(a2.典型时间序列的模拟分析模拟产生AR,ARMA模型序列:五、实验收获(本次实验的感受,对你的哪方面技能或知识有提高。

)本次实验我们收获很多,不仅理解了白噪声通过线性系统后统计特性的变化规律,同时也熟悉了如何使用matlab求信号的波形,自相关函数,功率谱密度,功率,互相关函数等等的统计特性。

深刻地理解到了线性系统对白噪声的影响。

除此之外,我们也深入地了解了AR 和ARMA模型序列。

最重要的是让我们加深了对课本知识的理解。

总之,本次实验我们受益匪浅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:随机信号分析院系:电信学院班级:哈尔滨工业大学实验一各种分布随机数的产生实验目的在很多系统仿真的过程中,需要产生不同分布的随机变量。

利用计算机可以很方便地产生不同分布的随机变量,各种分布的随机变量的基础是均匀分布的随机变量。

有了均匀分布的随机变量,就可以用函数变换等方法得到其他分布的随机变量。

实验内容产生均匀分布的随机数、高斯分布的随机数和其它分布的随机数。

实验原理均匀分布随机数的产生原理产生伪随机数的一种实用方法是同余法,它利用同余运算递推产生伪随机数序列。

最简单的方法是加同余法)(mod 1M c y y n n +=+My x n n 11++=为了保证产生的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。

加同余法虽然简单,但产生的伪随机数效果不好。

另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布的随机数)(mod 1M ay y nn =+M y x n n 11++=式中,a 为正整数。

用加法和乘法完成递推运算的称为混合同余法,即)(mod 1M c ay y n n +=+My x n n 11++=用混合同余法产生的伪随机数具有较好的特性,一些程序库中都有成熟的程序供选择。

常用的计算语言如Basic 、C 和Matlab 都有产生均匀分布随机数的函数可以调用,只是用各种编程语言对应的函数产生的均匀分布随机数的范围不同,有的函数可能还需要提供种子或初始化。

Matlab 提供的函数rand()可以产生一个在[0,1]区间分布的随机数,rand(2,4)则可以产生一个在[0,1]区间分布的随机数矩阵,矩阵为2行4列。

Matlab 提供的另一个产生随机数的函数是random('unif',a,b,N,M),unif 表示均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的行和列。

随机变量的仿真根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。

若X 是分布函数为F(x)的随机变量,且分布函数F(x)为严格单调升函数,令Y=F(X),则Y 必为在[0,1]上均匀分布的随机变量。

反之,若Y 是在[0,1]上均匀分布的随机变量,那么)(1Y F X X -=即是分布函数为FX(x)的随机变量。

式中F X-⋅1()为F X ()⋅的反函数。

这样,欲求某个分布的随机变量,先产生在[0,1]区间上的均匀分布随机数,再经上式变换,便可求得所需分布的随机数。

高斯分布随机数的仿真广泛应用的有两种产生高斯随机数的方法,一种是变换法,一种是近似法。

如果X1,X2是两个互相独立的均匀分布随机数,那么下式给出的Y1,Y2⎪⎩⎪⎨⎧+-=+-=mX X Y mX X Y )π2sin(ln 2)π2cos(ln 2212211σσ 便是数学期望为m ,方差为2σ的高斯分布随机数,且互相独立,这就是变换法。

另外一种产生高斯随机数的方法是近似法。

在学习中心极限定理时,曾提到n 个在[0,1]区间上均匀分布的互相独立随机变量Xi (i=1,2…,n),当n 足够大时,其和的分布接近高斯分布。

当然,只要n 不是无穷大,这个高斯分布是近似的。

由于近似法避免了开方和三角函数运算,计算量大大降低。

当精度要求不太高时,近似法还是具有很大应用价值的。

各种分布随机数的仿真有了高斯随机变量的仿真方法,就可以构成与高斯变量有关的其他分布随机变量,如瑞利分布、指数分布和2分布随机变量。

实验过程和结果分析1.产生均匀分布的随机数>> for n=1:1024 y=rand();x(n)=y*(6-3)+3; end>> plot(x);2.产生高斯分布的随机数 x=random('Normal',0,2,1,1024);3.产生瑞利分布和分布>> N=30000; >> g=-6:0.1:6;>> G1=random('Normal',0,1,1,N); >> G2=random('Normal',0,1,1,N); >> G3=random('Normal',0,1,1,N); >> G4=random('Normal',0,1,1,N); >> R=sqrt(G1.*G1+G2.*G2);>> X2=G1.*G1+G2.*G2+G3.*G3+G4.*G4;实验结论使用Matlab产生均匀分布的随机数、高斯分布的随机数、瑞利分布和分布的随机数。

实验二随机变量检验实验目的随机数产生之后,必须对它的统计特性做严格的检验。

一般来讲,统计特性的检验包括参数检验、均匀性检验和独立性检验等。

事实上,我们如果在二阶矩范围内讨论随机信号,那么参数检验只对产生的随机数一、二阶矩进行检验。

我们可以把产生的随机数序列作为一个随机变量,也可以看成随机过程中的一个样本函数。

不论是随机变量还是随机过程的样本函数,都会遇到求其数字特征的情况,有时需要计算随机变量的概率密度直方图等。

实验内容1. 对实验一产生的各种分布的随机数进行均值和方差的检验。

2. 对实验一产生的各种分布的随机数概率分布进行统计,并在计算机屏幕上显示实际统计的概率密度直方图。

实验原理1. 均值的计算在实际计算时,如果平稳随机序列满足各态历经性,则统计均值可用时间均值代替。

这样,在计算统计均值时,并不需要大量样本函数的集合,只需对一个样本函数求时间平均即可。

甚至有时也不需要计算N →∞时的极限,况且也不可能。

通常的做法是取一个有限的、计算系统能够承受的N 求时间均值和时间方差。

根据强调计算速度或精度的不同,可选择不同的算法。

设随机数序列{N x x x ,,,21Λ},一种计算均值的方法是直接计算下式∑==Nn n x N m 11式中,xn 为随机数序列中的第n 个随机数。

另一种方法是利用递推算法,第n 次迭代的均值也亦即前n 个随机数的均值为)(111111----+=+-=n n n n n n m x nm x n m n n m 迭代结束后,便得到随机数序列的均值m m N =递推算法的优点是可以实时计算均值,这种方法常用在实时获取数据的场合。

当数据量较大时,为防止计算误差的积累,也可采用)(1111m x N m m n Nn -+=∑= 式中,m1是取一小部分随机数计算的均值。

方差的计算计算方差也分为直接法和递推法。

仿照均值的做法212)(1m x N Nn n -=∑=σ21221m x N N n n -=∑=σ方差的递推算法需要同时递推均值和方差m m nx m n n n n =+---111() ])(1[121212---+-=n n n n m x nn n σσ迭代结束后,得到随机数序列的方差为22N σσ=其它矩函数也可用类似的方法得到。

统计随机数的概率密度直方图假定被统计的序列)(n x 的最大值和最小值分别为a 和b 。

将),(b a 区间等分M (M 应与被统计的序列)(n x 的个数N 相适应,否则统计效果不好。

)份后的区间为))(,(M a b a a -+,))(*2,)((Ma b a M a b a -+-+,… , )*)(*2,)1)(((Mia b a M i a b a -+--+,… , ),)1)(((b M M a b a --+。

用)(i f ,表示序列)(n x 的值落在)*)(*2,)1)(((M ia b a M i a b a -+--+区间里的个数,统计序列)(n x 的值在各个区间的个数)(i f ,1,,2,0-=M i Λ,则)(i f 就粗略地反映了随机序列的概率密度的情况。

用图形方式显示出来就是随机数的概率密度直方图。

实验过程和结果分析1.均值和方差的检验(1)均匀分布随机数x=random('unif',3,6,1,1024) >>>> m=mean(x) m =4.5064 >> d=var(x) d =0.7523(2)产生高斯分布,瑞利分布和分布的均值与方差>> N=30000; g=-6:0.1:6;G1=random('Normal',0,1,1,N); G2=random('Normal',0,1,1,N); G3=random('Normal',0,1,1,N); G4=random('Normal',0,1,1,N); R=sqrt(G1.*G1+G2.*G2);X2=G1.*G1+G2.*G2+G3.*G3+G4.*G4; >> m1=mean(G1)m1 =0.0055>> d1=var(G1)d1 =1.0101>> m2=mean(R)m2 =1.2576>> d2=var(R)d2 =0.4320>> m3=mean(X2)m3 =4.0194>> d3=var(X2)d3 =8.16842.概率密度直方图(1)均匀分布随机数x=random('unif',3,6,1,1024);>> subplot;hist(x,2:0.01:7);(2)高斯分布,瑞利分布和分布>> N=30000;>> g=-6:0.1:6;>> G1=random('Normal',0,1,1,N);>> G2=random('Normal',0,1,1,N);>> G3=random('Normal',0,1,1,N);>> G4=random('Normal',0,1,1,N);>> R=sqrt(G1.*G1+G2.*G2);>> X2=G1.*G1+G2.*G2+G3.*G3+G4.*G4; >> subplot(311);hist(G1,g);>> subplot(312);hist(R,0:0.05:6);>> subplot(313);hist(X2,0:0.02:30);实验结论1.对实验一产生各种分布的均值和方差验证,结果如下(1)均匀分布m = 4.5064 d = 0.7523(2)高斯分布,瑞利分布和分布的均值与方差m1 = 0.0055 d1 =1.0101m2 =1.2576 d2 = 0.4320m3 =4.0194 d3 =8.16842.概率密度直方图如图所示实验三中心极限定理的验证实验目的利用计算机产生均匀分布的随机数。

相关文档
最新文档